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Abstract
This paper introduces an adaptive interval fuzzy modeling method using participatory learning and interval-valued stream

data. The model is a collection of fuzzy functional rules in which the rule base structure and the parameters of the rules

evolve simultaneously as data are input. The evolving nature of the method allows continuous model adaptation using the

stream interval input data. The method employs participatory learning to cluster the interval input data recursively,

constructs a fuzzy rule for each cluster, uses the weighted recursive least squares to update the parameters of the rule

consequent intervals, and returns an interval-valued output. The method is evaluated using actual data to model and

forecast the daily lowest and highest prices of the four most traded cryptocurrencies, BitCoin, Ethereum, XRP, and

LiteCoin. The performance of the adaptive interval fuzzy modeling is compared with the adaptive neuro-fuzzy inference

system, long short-term memory neural network, autoregressive integrated moving average, exponential smoothing state

model, and the naı̈ve random walk methods. Results show that the suggested interval fuzzy model outperforms all these

methods in predicting prices in the digital coin market, especially when considering directional accuracy measure.

Keywords Adaptive machine learning � Fuzzy modeling � Interval-valued stream data � Forecasting � Cryptocurrencies

1 Introduction

Conventionally, time series analysis uses a succession of

single-valued data samples. This may be restrictive in sit-

uations in which complex data analysis is needed to com-

prehend the inherent variability and uncertainty of a

phenomenon. For instance, in economics, the daily stock

price of a corporation is expressed as the daily minimum

and maximum trading prices. If only the lowest (or the

highest, or closing) price of each day is considered, then

the resulting time series is single-valued, neglecting the

inherent intra-daily price variability. If both, the daily

lowest and the highest prices are accounted for, then an

interval-valued time series (ITS) is formed with its intrinsic

trend (or level) and volatility information (the range

between the boundaries) [29]. ITS is encountered in many

fields such as finance [3], energy [30], environment and

climate [8], and agriculture [32] to mention but a few.

This paper introduces a novel adaptive interval fuzzy

modeling method to model and forecast interval-valued

time series. The method processes stream interval-valued

input data, employs participatory learning to cluster inter-

val-valued data, develops a fuzzy rule for each cluster, uses

weighted recursive least squares to update the parameters

of the rule consequents, and outputs interval-valued fore-

casts. The adaptive interval fuzzy method is evaluated in

modeling and forecasting the daily lowest and highest

prices of the most traded cryptocurrencies, respectively,
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BitCoin, Ethereum, XRP and LiteCoin. Its performance is

compared against the adaptive neuro-fuzzy inference sys-

tem (ANFIS), long short-term memory (LSTM) neural

network, autoregressive integrated moving average

(ARIMA), exponential smoothing state model (ETS), and

the naı̈ve random walk benchmarks. These methods do not

rely on interval arithmetic, and their interval forecasts are

produced from the individual lower and upper bound

forecasts.

The rest of this paper proceeds as follows. Section 2

overviews the current literature and state of the art of the

area. Section 3 details the nature of the data, the structure

of the fuzzy models, and suggests the adaptive method to

develop fuzzy models from interval stream data. Section 4

concerns cryptocurrencies modeling and forecasting using

actual daily lowest and highest prices data. Section 5

concludes the paper, summarizing its contributions and

suggesting issues for future investigation.

2 Literature review

Different approaches have been developed to model and

forecast interval-valued data. The first linear regression

model for interval-valued data was investigated in [4] using

the center of the interval method. A constrained center and

interval range method with nonnegative constraints on the

coefficients of the range regression model is addressed in

[16]. The use of ARIMA and neural networks models to

forecast the center and range of intervals is pursued in [21].

An autoregressive time series modeling approach is

addressed in [33], and a threshold autoregressive interval

model in [29]. Nonparametric alternatives such as the

interval kernel regression method [7] and the nonpara-

metric additive approach [15] have also been developed.

Machine learning has also been used in interval-valued

data modeling and forecasting. Examples include the

interval multilayer perceptron (iMLP) model [26], a mul-

tilayer perceptron (MLP) neural network and Holt’s

exponential smoothing [20], a multiple-output support

vector regression method for interval-valued stock price

index forecasting [34].

The possibilistic fuzzy, evolving method for interval

time series modeling and forecasting was proposed in [19].

In this case, the model employs memberships and typi-

calities to recursively cluster data, uses participatory

learning to update the forecasting model structure as stream

data are input, and processes interval-valued data.

Intuitionistic Fuzzy Grey Cognitive Map (IFGCM) for

interval-valued data [9] has also been explored in modeling

and forecasting. IFGCM was evaluated using stock market

data and the results show the high efficiency of the IFGCM,

especially when compared with state-of-the-art models.

Participatory learning in fuzzy clustering [27] was

extended for clustering interval data in [18]. The clustering

method uses interval arithmetic, and the computational

experiments are reported using synthetic interval data sets

with linearly non-separable clusters of different shapes and

sizes.

This paper introduces an adaptive interval fuzzy method

to model stream interval-valued data. The method employs

participatory learning to cluster interval-valued data using

the Hausdorff–Pompeiu [11, 14] distance to compute the

(dis)similarity between intervals. Moore and Hukuhara

subtraction are studied to verify and evaluate the impact of

the distinct subtraction operations on ITS modeling and

forecasting performance. Moreover, the paper also con-

tributes with an alternative forecasting technique for

cryptocurrencies based on highest and lowest prices, which

serve as a measure of volatility, an essential information in

decision making and risk management in high price vari-

ation markets such as digital coins.

3 Adaptive fuzzy modeling of interval-
valued stream data

This section addresses the nature of data, the structure of

interval fuzzy models, and develops an adaptive method to

construct the models within the framework of evolving

participatory learning from interval-valued stream data

[2, 18]. First, a brief reminder of interval-valued time series

and interval arithmetic is given. Next, the structure of the

rule-based model is shown. Finally, the interval adaptive

fuzzy modeling method is explained, and the computa-

tional steps of the corresponding procedure are

summarized.

3.1 Interval time series and interval arithmetic

An interval-valued time series (ITS) is a sequence of

interval-valued data indexed by successive time steps

t ¼ 1; 2; . . .;N. An interval datum is expressed as

½x� ¼ ½xL; xU� 2 KcðRÞ, where KcðRÞ ¼ f½xL; xU� : xL; xU 2
R; xL � xUg is the set of closed intervals of the real line R,

and xL and xU are the lower and upper bounds of the

interval [x]. An interval [x] may also be expressed by a

two-dimensional vector ½x� ¼ ½xL; xU�T .
Modeling ITS requires interval arithmetic, an extension

of traditional arithmetic to operate on intervals. This paper

uses the arithmetic operations introduced by Moore [23]

summarized below:
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½x� þ ½y� ¼ ½xL þ yL; xU þ yU�
x½ � � y½ � ¼ ½xL � yU; xU � yL�
x½ � � y½ � ¼ minfxLyL; xLyU; xUyL; xUyUg;

�

maxfxLyL; xLyU; xUyL; xUyUg
�

x½ �= y½ � ¼ x½ � � 1= y½ �ð Þ with 1= y½ � ¼ ½1=yU; 1=yL�:

ð1Þ

It is well known that ½x� � ½x� 6¼ ½0� for Moore subtrac-

tion, with ½0� ¼ ½0; 0�. An alternative subtraction operation

for which ½x� � ½x� ¼ ½0� is recovered is the generalized

Hukuhara difference [28] defined as follows:

x½ � � y½ � ¼ ½min fxL � yL; xU � yUg;
max fxL � yL; xU � yUg�:

ð2Þ

This paper considers both Moore and Hukuhara sub-

traction to verify and evaluate their impact on ITS mod-

eling and forecasting performance.

The forecasting ability of the models must be verified

and tested using interval-based accuracy metrics, which

requires the notions of union and intersection of intervals

[x] and [y] [23]. They are defined as follows:

½x� [ ½y� ¼ ½min fxL; yLg;max fxU; yUg�; ð3Þ

½x� \ ½y� ¼ ½max fxL; yLg;min fxU; yUg�: ð4Þ

The intersection of [x] and [y] is empty if

max fxL; yLg[ min fxU; yUg. Real numbers are consid-

ered as intervals of zero length, that is, intervals whose

lower bounds are equal to the upper bounds.

The concept of distance between two intervals is

important to measure their (dis)similarity. The Hausdorff–

Pompeiu distance measures how far two intervals [x] and

[y] are from each other [11, 14]. Denoted dH([x], [y]), it is

computed using:

dHð½x�; ½y�Þ ¼ max jxL � yLj; jxU � yUj
� �

: ð5Þ

3.2 Fuzzy interval model structure

A fuzzy interval model is a collection of interval fuzzy

rules, a fuzzy rule base in which each rule has two parts:

an antecedent part identifying the state of the interval-

valued input variable, and a consequent part specifying

the corresponding interval-valued output variable.

Adaptive fuzzy interval modeling (aFIM) uses functional

interval fuzzy rules, an interval extension of functional

fuzzy rules of the form introduced in [31]. An interval

fuzzy rule base is a collection of functional interval

fuzzy rules of the form:

R1 : IF [x] is M1 THEN [y1] = [β1,0] + [β1,1][x1] + . . . + [β1,n][xn],
...

Ri : IF [x] is Mi THEN [yi] = [βi,0] + [βi,1][x1] + . . . + [βi,n][xn],
...

Rc : IF [x] is Mc THEN [yc] = [βc,0] + [βc,1][x1] + . . . + [βc,n][xn],

ð6Þ

where Ri is the ith fuzzy rule, i ¼ 1; 2; . . .; c, c is the

number of fuzzy rules in the rule base, ½x� ¼
½x1�; ½x2�; . . .; ½xn�ð ÞT the vector of inputs,

½xj� ¼ ½xLj ; xUj � 2 KcðRÞ, j ¼ 1; . . .; n, and ½bi;l� ¼
½bLi;l; b

U
i;l� 2 KcðRÞ are interval-valued parameters of the

rule consequent, l ¼ 0; 1; . . .; n. Mi is the fuzzy set of the

antecedent whose membership function is

lið½x�Þ : KcðRpÞ ! ½0; 1�, and ½yi� ¼ ½yLi ; yUi � 2 KcðRÞ is the
output of the ith rule. Fuzzy inference with interval func-

tional rules (6) produces outputs [y] as the weighted

average:

½y� ¼
Xc

i¼1

lið½x�Þ½yi�Pc
j¼1 ljð½x�Þ

 !

¼
Xc

i¼1

ki½yi�;
ð7Þ

where ki ¼
lið½x�ÞPc
j¼1 ljð½x�Þ

is the normalized degree of acti-

vation of the ith rule. The membership degree lið½x�Þ of

datum ½x� is given by:

lið½x�Þ ¼
Xc

h¼1

Pn
j¼1 max jxLj � vLi;jj; jxUj � vUi;jj

n o� �

Pn
j¼1 max jxLj � vLh;jj; jxUj � vUh;jj

n o� �

0

@

1

A

2
ðm�1Þ

2

64

3

75

�1

;

ð8Þ

where m is a fuzzification parameter (usually m ¼ 2), and

½vi;j� ¼ ½vLi;j; vUi;j� 2 KcðRÞ, j ¼ 1; . . .; n and i ¼ 1; . . .; c is

the cluster center of the ith cluster/rule.

Functional interval fuzzy modeling uses parameterized

fuzzy regions of the data space, and associates each region

with a local affine interval-valued model. The nature of the

rule-based model emerges from the fuzzy weighted com-

bination of the collection of the multiple local interval

models. The contribution of a local model to the model

output is proportional to the normalized activation degree

of the corresponding rule. The construction of interval-

valued fuzzy models needs two steps: (1) to learn the

antecedent part of the rules using fuzzy clustering to

granulate the input interval-valued data space into
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parameterized regions; and (2) to estimate the parameters

of the local models of the rules consequents. These two

steps are detailed in the next section.

3.3 Learning the antecedents of interval fuzzy
rules

Identification of the fuzzy rules of an interval fuzzy model

is done using the participatory learning fuzzy clustering

algorithm extended to handle interval-valued data [18].

The aim of interval-valued data clustering is to partition an

interval data set ½X� ¼ f½x1�; . . .; ½xN �g in c fuzzy subsets,

2� c�N, where N is the number of samples. Intervals ½xj�
bounds are assumed to be normalized using min–max

operator:

xBnorm ¼ xB �min fxL; xUg
max fxL; xUg �min fxL; xUg ;

ð9Þ

where B denotes either the lower bound L, or the upper

bound U of the interval.

Participatory learning clustering is based on the idea that

the current cluster structure influences the cluster learning

process whenever a new data sample is an input. Model

learning depends on what the system already knows about

the model itself. The input data and the cluster structure

affect self-organization depending on the compatibility of

the data with the current cluster structure [27]. The impact

of new data in inducing model revision depends on its

compatibility with the current rule base structure or,

equivalently, its compatibility with the current cluster

structure.

The cluster structure is defined by the cluster centers. If

½V� ¼ ½½v1�; . . .; ½vc��, ½vi� ¼ ½vi;1�; . . .; ½vi;n�
� 	T

,

½vi;j� ¼ ½vLi;j; vUi;j� 2 Kcð½0; 1�Þ, j ¼ 1; . . .; n and i ¼ 1; . . .; c,

then ½V� represents a cluster structure. The aim of the

antecedent learning is to determine ½V� from inputs

½x�t 2 ½0; 1�n, t ¼ 1; . . ., i.e., ½x�t is used as a vehicle to learn

about ½V�.
The learning process is participatory if the contribution

of ½x�t to the learning process depends upon its acceptance

by the cluster structure ½V�t at t being valid. In other words,

data ½x�t must be compatible with current cluster structure

½V�t. The compatibility qti 2 ½0; 1� of input ½x�t with the

cluster center ½vi�t of ½V�t, i ¼ 1; . . .; c is calculated as:

qti ¼ 1� 1

n

Xn

j¼1

max jxL;tj � vL;t�1
i;j j; jxU;tj � vU;t�1

i;j j
n o� �

:

ð10Þ

Participatory clustering updates only the cluster center

whose compatibility with input ½x�t is the highest. Thus, if

cluster center ½vi�t�1
is the most compatible with ½x�t, that

is, i ¼ argmaxj¼1;...;c fqtjg, then it is updated as follows:

½vi�t ¼ ½vi�t�1 þ Gt
ið½x�

t � ½vi�t�1Þ; Gt
i ¼ aqti ð11Þ

where a 2 ½0; 1� is the basic learning rate. Notice that (11)

needs the value of (½x�t � ½vi�t�1
). Both Moore’s (1) and

generalized Hukuhara subtraction (2) are used in (11) to

verify if they make a difference in interval time series

modeling and forecasting performance.

Adaptive modeling is particularly relevant in time-varying

domains. A sequence of input data with low compatibility

with the current cluster structure indicates that the current

model should be revised in front of new information. Par-

ticipatory learning uses an arousal mechanism to monitor how

the compatibility measure values progress, i.e., the arousal

mechanism acts as a reminder of when current cluster struc-

ture should be revised, given the new information carried in

the data. A high arousal value indicates less confidence in

how the current model fits recent input data. Thus, arousal can

be seen as the complement of confidence of [18]. A way to

express the arousal ati 2 ½0; 1� at step t is:

ati ¼ at�1
i þ bð1� qti � at�1

i Þ; ð12Þ

where b 2 ½0; 1� controls the rate of change of arousal. The
closer b is to one, the faster the learning process senses

compatibility variations. If the values of arousal ati are

greater than or equal a threshold s 2 ½0; 1� for i ¼ 1; . . .; c,
then a new cluster should be created, assigning the current

data as its cluster center, that is, ½vcþ1�t ¼ ½x�t. Otherwise,
the center with the highest compatibility is updated to

accommodate input the data using (11). The arousal

mechanism (12) becomes part of the learning process by

converting Gt
i of (11) in an effective learning rate:

Gt
i ¼ aðqtiÞ

1�ati : ð13Þ

Updates of cluster centers (11) can be viewed as a form of

exponential smoothing modulated by the compatibility of

data with the model structure, the very nature of partici-

patory learning. Participatory clustering also accounts for

redundant clusters because updating a cluster center using

(11) can cause the center to get closer to another one, and a

redundant cluster may be formed. A cluster i is redundant if

its similarity with any other cluster h, qti;h, is greater than or

equal to a threshold k 2 ½0; 1�. The similarity between

cluster centers i and h is found using:

qti;h ¼ 1� 1

n
dHð½vi�t; ½vh�tÞ

¼ 1� 1

n

Xn

j¼1

max jvL;ti;j � vL;th;j j; jv
U;t
i;j � vU;th;j j

n o� �
:

ð14Þ

If clusters i and h are declared redundant, then they are

replaced by a cluster whose center is the average of their
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centers. Figure 1 summarizes the rule antecedent learning

process of aFIM.

3.4 Parameter estimation of interval fuzzy rule
consequents

To complete the interval rule-based model construction

procedure, the interval-valued parameters

½bi;0�; ½bi;1�; . . .; ½bi;n� of the rule consequent are estimated

using the classic weighted recursive least squares algorithm

(wRLS) [1, 17] to compute the lower bounds bLi;l and the

upper bounds bUi;l, i ¼ 1; . . .; c and l ¼ 0; 1; . . .; n sepa-

rately. To do this, expression (7) is expressed in terms of

the input interval data bounds individually, namely yB ¼
KTH where K ¼ k1xTe ; k2x

T
e ; . . .; kcx

T
e

� �T
is the fuzzily

weighted input data, xe ¼ 1; xB1 ; x
B
2 ; . . .; x

B
n

� �T
is the exten-

ded input, H ¼ bT1 ; b
T
2 ; . . .; b

T
c

� �T
, and bi ¼ ½bBi;0; bBi;1; . . .;

bBi;n�
T
. Recall that superscript B denotes either the lower L,

or the upper bound U of the interval. The locally optimal

error criterion wRLS is considered:

minEt
i ¼ min

Xt

k¼1

ki y
B;k � ðxkeÞ

T
bki

� 	2
; ð15Þ

whose solution can be expressed recursively by [17]:

btþ1
i ¼ bti þ Rt

ix
t
ek

t
i y

B;tðxteÞ
T
bti

� 	
; b0i ¼ 0; ð16Þ

Rtþ1
i ¼ Rt

i �
ktiR

t
ix

t
eðxteÞ

TRt
i

1þ ktiðxteÞ
TRt

ix
t
e

; R0
i ¼ XI; ð17Þ

where X is a large number (typically X ¼ 1000), and R is

the dispersion matrix.

More precisely, parameter estimation of interval fuzzy

rule consequents is done is two steps. The first step uses

expressions (16)–(17) to individually estimate the lower

bounds bLi;l and the upper bounds bUi;l of the interval-valued

parameters ½bi;l� ¼ ½bLi;l; bUi;l�, l ¼ 0; 1; . . .; n. the second step

computes the outputs of the fuzzy rules (6) at t þ 1 using:

½yi�tþ1 ¼ ½bi;0�t þ ½bi;1�t½x1�t þ � � � þ ½bi;n�t½xn�t: ð18Þ

i ¼ 0; 1; . . .; c. The model output ½y�tþ1
at t þ 1 is the

weighted average of the outputs ½yi�tþ1
computed using (7).

3.5 Adaptive interval fuzzy modeling method

Adaptive interval fuzzy modeling is inherently recursive,

which means that it is memory efficient in continuously

and endlessly learning and adaptation using stream data.

This is of major importance, especially in online and real-

time application situations. The procedure to construct

interval fuzzy models is as follows.

Fig. 1 Participatory learning in clustering interval stream data and antecedents learning
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4 Computational experiments

This section illustrates the adaptive fuzzy interval model-

ing method (aFIM) introduced in this paper in modeling

and forecasting the daily lowest and highest prices of the

currently most traded cryptocurrencies, respectively, Bit-

Coin, Ethereum, XRP and LiteCoin. Moreover, the per-

formance of aFIM is compared against ANFIS, LSTM,

ARIMA, ETS, and the naı̈ve random walk.

4.1 Cryptocurrency trade

Current interest in cryptocurrencies has offered to investors

and speculators a diversity of electronic crypto assets to

trade due to benefits such as anonymity, transparency,

lower transaction costs, and diversification [6]. Because of

their high volatile dynamics, risk management of cryp-

tocurrencies investment positions based on volatility

modeling and forecasting is of key interest. When risk

management models are built based on intervals forecasts,

more accurate analyses can be done. Intervals of daily

highest and lowest digital currency prices convey a better

idea of portfolio risk perception (volatility) at a time period

than a single value such as closing prices. Interval-valued

modeling and forecasting inherently embed price vari-

ability information contained in the data samples. This

section addresses the performance evaluation of the adap-

tive fuzzy interval modeling (aFIM) using real-world ITS

data from the cryptocurrency market.

4.2 Data

Adaptive fuzzy interval modeling and forecasting use daily

highest and lowest prices as interval bounds of four leading

cryptocurrencies: BitCoin, XRP (Ripple), Ethereum, and

LiteCoin, respectively. Data cover January 1, 2016 to

December 31, 2019, with a total of 1461 observations.1 The

data set was divided into in-sample and out-of-sample sets.

The in-sample data set contains data from January 1, 2016

to December 31, 2018, and the out-of-sample data contains

the 2019 data. Thus, 2019 data are used to evaluate the

modeling power and forecasting performance of aFIM and

its counterparts. For the in-sample set, data from January 1,

2016 to December 31, 2017 were used for models learning,

and the year of 2018 was used as a validation set on

1 Selection is made one choosing cryptocurrencies with the highest

liquidity and market capitalization. The data are available at https://

coinmarketcap.com/.
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choosing control parameters. aFIM processes data as a

stream and learning may be done endlessly, which means

that there is no need to split data in training, validation, and

testing data as usual in machine learning experiments. In

spite of that, a data set split was done to keep evaluations

and comparisons with the competing methods fair. Fore-

casting is one-step-ahead with an iterated strategy. The

forecasting techniques considered for comparison are the

autoregressive moving average (ARIMA), the exponential

smoothing state-space model (ETS) [12], the adaptive

neuro-fuzzy inference system (ANFIS), a long short-term

memory (LSTM) neural network, and the naı̈ve random

walk (RW). These methods produce interval forecasts from

the individual lowest and highest daily currency data.

4.3 Performance measures

Performace evaluation of the methods is accessed consid-

ering the mean absolute percentage error (MAPE) and the

root mean squared scaled error (RMSSE) [3], respectively:

MAPEB ¼ 100

N

XN

t¼1

jyB;t � ŷB;tj
yB;t

; ð19Þ

RMSSEB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mean
ðyB;t � ŷB;tÞ2

1
N�1

PN
i¼2 ðyB;i � yB;i�1Þ2

 !vuut ; ð20Þ

where the superscript B denotes either the lower bound L,

or the upper bound U of the interval prices, ½y�t ¼ ½yL;t; yU;t�
is the actual price interval, ½ŷ�t ¼ ½ŷL;t; ŷU;t� is the forecast

price interval at t, and N is the size of the out-of-sample

data set.

Additionally, in practice, the direction of price change is

as important as, sometimes more important than, the

magnitude of the forecasting error [5]. A measure of

direction accuracy (DA) [10] is as follows:

DAB ¼ 1

N

XN

t¼1

ZB;t;

ZB;t ¼ 1; if ŷB;tþ1 � yB;t
� 	

yB;tþ1 � yB;tð Þ[ 0;

0; otherwise:

(

ð21Þ

Because MAPE, RMSSE, and DA are computed individ-

ually for each bound of an interval, they neglect the

inherent interval nature of the data. Performance evaluation

of forecasting methods of interval time series data uses the

normalized symmetric difference of intervals (NSD) [25]

defined by:

NSDð½y�t; ½ŷ�tÞ

¼ 1

N

XN

t¼1

wð½y�t [ ½ŷ�tÞ � wð½y�t \ ½ŷ�tÞ
wð½y�t [ ½ŷ�tÞ

;
ð22Þ

as well as the average coverage (RC) rate, and the effi-

ciency rate (RE) [25]:

RC ¼ 1

N

XN

t¼1

wð½y�t \ ½ŷ�tÞ
wð½y�tÞ

;

RE ¼ 1

N

Xn

t¼N

wð½y�t \ ½ŷ�tÞ
wð½ŷ�tÞ

:

ð23Þ

RC and RE give information on what part of ITS data are

covered by their forecasts (coverage), and what part of the

forecasts cover ITS data (efficiency). If the observed

intervals are fully enclosed in the predicted intervals, then

the coverage rate is 100%, but the efficiency could be less

than 100% and reveal the fact that the forecasted ITS is in

average wider than the actual ITS data samples. Hence, RC

and RE values must be considered jointly. As the literature

indicates [25], good forecast performance is expected when

the average coverage and efficiency rates are reasonably

high, and the difference between them is small.

4.4 Results

The aFIM is compared with ARIMA, ETS, ANFIS, LSTM

and RW in cryptocurrencies lowest and highest price

forecast. ARIMA, ETS, ANFIS, LSTM and RW are uni-

variate techniques, and their price forecasts are developed

for the interval bounds individually. Contrary, aFIM is an

interval-based method and develops interval-valued price

forecasts. aFIM assumes that forecasts are produced

assuming:

½ŷ�tþ1 ¼ f ½y�t; ½y�t�1; . . .; ½y�t�l
� �

; ð24Þ

that is, the inputs are lagged values of the interval time

series ½y�t ¼ ½yL;t; yU;t�, the output is the one-step-ahead

forecast ½ŷ�tþ1 ¼ ½ŷL;tþ1; ŷU;tþ1�, and f encodes the aFIM

output in (7).

Performance evaluation was done using the out-of-

sample data, i.e., from January 1, 2019 to December 31,

2019. aFIM was implemented in MATLAB, while

ARIMA, ETS, ANFIS and LSTM were developed using

software R. Table 1 shows the values of the control

parameters for each method. aFIM parameters were chosen

by doing simulations to select the ones that give the best

MAPE and RMSSE values. Structures of ARIMA, ETS,

ANFIS and LSTM are different for lower (L) and upper (U)

interval bounds. In ARIMA(p, d, q), p, d and q are the

number of autoregressive, difference, and moving average

Neural Computing and Applications (2023) 35:7149–7159 7155

123



terms, respectively. In ETS(er, tr, sea), er, tr, and sea mean

error, trend, and season components, respectively, such that

each component could be of the type A, M or N, denoting

additive, multiplicative, and none, respectively. In

ANFIS(l), l is the number of lagged time series values

(inputs). In LSTM(l, h), l is the number of lagged time

series values (inputs), and h is the number of hidden units.

The structures of ARIMA, ETS, ANFIS and LSTM were

selected to achieve their highest accuracy. aFIM parame-

ters were chosen by doing simulations to select the ones

that give the best MAPE and RMSSE values. Recall that

aFIM may use either Moore (aFIMM) and generalized

Hukuhara (aFIMH) subtractions. ANFIS is as detailed in

[13]. LSTM has one layer, 800 as the maximum number of

epochs, and uses tangent hyperbolic and sigmoid as state

and gate activation functions, respectively.

Table 2 summarizes the forecasting performance in

terms of MAPE, RMSSE, and DA. Best results are high-

lighted in bold. aFIM outperforms all competitors from the

point of view of MAPE and RMSSE, except for Ethereum

high prices when MAPE is the lowest. LSTM is the second

best approach, from the point of view of lowest values of

MAPE and RMSSE, in general. It is worth to note that

naı̈ve random walk performs worst than aFIM, but better

than ARIMA, ETS and ANFIS, in line with the well-known

‘‘Meese–Rogoff puzzle’’ [22] which states that exchange

rate forecasting models are not able to outperform random

walk. The simulations show that this is also the case for

cryptocurrency forecasts, but when an adaptive nonlinear

model such as aFIM or LSTM is considered, the RW can

be outperformed. Concerning the use of the two distinct

interval subtraction operations in aFIM, the generalized

Hukuhara generally produces, except for Ethereum,

slightly higher performance for all currencies lowest and

highest prices forecasts.

It is interesting to recall that the Meese–Rogoff puzzle

[24] also suggests that dynamic forecasting models can

outperform the random walk in out-of-sample forecasting

if performance is measured by the direction of change and

profitability. Indeed, this is the case in cryptocurrency price

forecasting as well. Table 2 shows that aFIM outperforms

random walk, ARIMA, ETS, ANFIS and LSTM from the

point of view of the direction accuracy (DA). These results

agree with those of [5, 24], in which the random walk is

decisively beaten when the direction is used as a compar-

ison measure. The high performance that aFIM achieves in

predicting directions of price changes is due to its evolving,

continuous adaptation ability to capture price changes more

accurately in time-varying environments such as digital

currency markets. When trading strategies use direction,

the potential to anticipate price change is crucial.

To further illustrate the forecasting efficiency of aFIM,

Fig. 2 shows an example of the actual and forecast values

developed for BitCoin (BTC) daily lowest and highest

prices from July to December 2019. Prices are in loga-

rithmic values to give better visualization. aFIM is able to

accurately predict both the lowest and highest price

dynamics of the BTC during the period evaluated. Because

the differences between lowest and highest values give an

efficient measure of volatility, aFIM appears as a poten-

tially strategic tool to manage risk in digital coin markets,

especially in real-time situations.

Table 1 Structure of the forecasting models and their respective control parameters

Currency ARIMA ETS ANFIS LSTM aFIMM aFIMH

BitCoin L(2, 1,

1)

U(2, 1,

2)

L(M, A,

N)

U(M, A,

N)

L(3)

U(4)

L(2,

150)

U(3,

180)

l ¼ 4, b ¼ 0:10, s ¼ 0:46, a ¼ 0:01,
k ¼ 0:87

l ¼ 6, b ¼ 0:11, s ¼ 0:55, a ¼ 0:03,
k ¼ 0:83

Ethereum L(2, 1,

2)

U(0, 1,

1)

L(M, A,

N)

U(M, A,

N)

L(5)

U(5)

L(4,

120)

U(3,

150)

l ¼ 4, b ¼ 0:11, s ¼ 0:48, a ¼ 0:02,
k ¼ 0:83

l ¼ 7, b ¼ 0:09, s ¼ 0:44, a ¼ 0:06,
k ¼ 0:88

XRP L(4, 1,

5)

U(5, 1,

5)

L(M, A,

N)

U(M, A,

N)

L(2)

U(5)

L(3,

150)

U(2,

150)

l ¼ 3, b ¼ 0:13, s ¼ 0:44, a ¼ 0:03,
k ¼ 0:85

l ¼ 5, b ¼ 0:11, s ¼ 0:48, a ¼ 0:02,
k ¼ 0:85

LiteCoin L(3, 1,

1)

U(2, 1,

2)

L(M, A,

N)

U(M, A,

N)

L(3)

U(2)

L(4,

180)

U(4,

200)

l ¼ 4, b ¼ 0:11, s ¼ 0:48, a ¼ 0:03,
k ¼ 0:83

l ¼ 5, b ¼ 0:12, s ¼ 0:49, a ¼ 0:03,
k ¼ 0:89
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Table 2 MAPE, RMSSE and

DA performance for one-step-

ahead forecasting of the daily

cryptocurrencies lowest and

highest prices

Error measure ARIMA ETS ANFIS LSTM RW aFIMM aFIMH

BitCoin

MAPEL 0.0205 0.0197 0.0199 0.0186 0.0200 0.0182 0.0177

MAPEU 0.0212 0.0200 0.0198 0.0195 0.0199 0.0188 0.0182

RMSSEL 1.0068 0.9997 1.0056 1.0023 0.9986 0.9961 0.9957

RMSSEU 1.0071 0.9986 1.0016 0.9980 0.9986 0.9969 0.9952

DAL 0.5110 0.5852 0.5860 0.5987 – 0.6019 0.6166

DAU 0.5385 0.5440 0.5490 0.5492 – 0.5671 0.5542

Ethereum

MAPEL 0.0249 0.0244 0.0239 0.0239 0.0245 0.0231 0.0234

MAPEU 0.0243 0.0246 0.0244 0.0240 0.0239 0.0241 0.0240

RMSSEL 1.0066 1.0026 1.0022 0.9980 0.9986 0.9970 0.9965

RMSSEU 0.9997 1.0041 0.9855 0.9987 0.9989 0.9973 0.9970

DAL 0.5000 0.5247 0.5265 0.5563 – 0.5798 0.5911

DAU 0.5719 0.5440 0.5610 0.5700 – 0.5800 0.6009

XRP

MAPEL 0.0232 0.0196 0.0197 0.0192 0.0192 0.0184 0.0187

MAPEU 0.0244 0.0250 0.0246 0.0230 0.0215 0.0198 0.0207

RMSSEL 1.0782 1.0053 1.0032 0.9987 0.9986 0.9953 0.9951

RMSSEU 1.0014 1.1244 1.1230 1.0928 0.9994 0.9960 0.9968

DAL 0.4753 0.4863 0.4980 0.5462 – 0.5911 0.5877

DAU 0.5385 0.5055 0.5198 0.5672 – 0.6166 0.6013

LiteCoin

MAPEL 0.0278 0.0271 0.0269 0.0252 0.0271 0.0253 0.0249

MAPEU 0.0304 0.0290 0.0287 0.0277 0.0283 0.0275 0.0271

RMSSEL 1.0049 0.9996 0.1008 0.9970 0.9984 0.9966 0.9962

RMSSEU 1.0104 1.0087 1.0074 0.9988 0.9983 0.9969 0.9964

DAL 0.4863 0.5604 0.5701 0.5799 – 0.5811 0.5890

DAU 0.5549 0.5110 0.5230 0.5722 – 0.5880 0.5913

Fig. 2 BitCoin actual and

forecast values of aFIM lowest

and highest daily log-prices
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Forecasting performance, considering the interval nature

of the data, measured by the normalized symmetric

divergence (NSD), coverage rate (RC), and the efficiency

rate (RE), are shown in Table 3. Again, aFIM outperforms

all the remaining methods. Table 3 also indicates that when

forecasts are evaluated by interval-oriented metrics, aFIM

achieves superior performance, especially when it uses the

generalized Hukuhara subtraction (aFIMH).

The average number of fuzzy rules that aFIM developed

using the out-of-sample data (the year of 2019) when using

Moore/Hukuhara subtraction operator were 4/4 (BitCoin),

4/3 (Ethereum), 3/3 (XRP) and 3/2 (LiteCoin). It shows

that model complexity varies slightly depending on the

dynamic nature of the the digital coin, and that generally

model complexity is insensitive to the choice of either

Moore or Hukuhara subtraction.2

5 Conclusion

This paper has introduced a novel adaptive fuzzy interval

modeling and forecasting method for interval-valued time

series. The model collects functional fuzzy rules with a

learning mechanism that continuously updates the rule base

structure and its parameters using interval stream input

data. The structure of the rule base is found employing

participatory learning clustering, and parameters of the

fuzzy rules consequents are estimated using the weighted

recursive least squares algorithm. Experimental evaluation

was done using an actual interval time series of cryp-

tocurrency prices whose lowest and highest prices are the

low and high interval bounds. One-step-ahead forecasts of

the interval-valued prices of BitCoin, Etherem, XRP, and

LiteCoin for the period from January 2016 to December

2019 were produced. Comparison of the adaptive fuzzy

interval model aFIM with ARIMA, ETS, ANFIS, LSTM

and naı̈ve random walk indicate that aFIM outperforms all

of them. The performance of aFIM also is the highest when

performance is measured by the direction of price changes.

This is a key feature, especially when trading with the price

and direction-based strategies. Future work shall consider

autonomous mechanisms to select and adjust control

parameters such as thresholds in real-time, the evaluation

of the results trough a trading strategy based on forecasts,

and model and forecast interval time series from com-

modities markets, energy, environment, and transportation

systems.
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Table 3 NSD, RC and RE for

one-step-ahead forecast of

cryptocurrencies lowest and

highest prices

Error measure ARIMA ETS ANFIS LSTM RW aFIMM aFIMH

BitCoin

NSD 0.6507 0.6114 0.6018 0.5487 0.5926 0.5419 0.5013

RC 0.5418 0.5677 0.5770 0.6013 0.6092 0.6218 0.6330

RE 0.6812 0.5971 0.5955 0.6419 0.5805 0.7116 0.7382

Ethereum

NSD 0.6086 0.6029 0.6009 0.5877 0.5840 0.5573 0.5607

RC 0.5945 0.5899 0.5911 0.6123 0.6165 0.6450 0.6388

RE 0.5761 0.5808 0.5917 0.6099 0.5781 0.6098 0.6213

XRP

NSD 0.6899 0.6184 0.5811 0.5228 0.5541 0.5019 0.4881

RC 0.5098 0.5718 0.5884 0.5910 0.6483 0.6981 0.7013

RE 0.5448 0.5514 0.5619 0.6275 0.6052 0.6125 0.6441

LiteCoin

NSD 0.6228 0.5976 0.6018 0.5317 0.5777 0.5211 0.5008

RC 0.5827 0.5916 0.6012 0.6344 0.6258 0.6775 0.6810

RE 0.5447 0.5978 0.6009 0.6177 0.5926 0.6309 0.6566

Better results are highlighted in bold

2 Examples of the fuzzy rules are not shown. They are available upon

request.
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