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Abstract
In this paper, an intelligent approach of adaptive neuro-fuzzy inference system (ANFIS) and non-dominated sorting genetic

algorithm-II (NSGA-II) was delineated to establish model and optimize the wire electrical discharge machining (WEDM)

process. The WEDM experiments were designed utilizing Taguchi L18 mixed orthogonal array for machining of Ti–6Al–

4V titanium alloy. The ANFIS model was delineated to explain the influence of input machining characteristics, viz. peak

current (IP), pulse on-time (Ton), pulse off-time (Toff) and wire feed (WF) on output response of material removal rate

(MRR) and wire wear ratio (WWR). The proximity of results with confirmation experimental results revealed the

effectiveness of the developed ANFIS model in prediction of output quality characteristics for the chosen input machining

factors. The artificial neural network (ANN) and NSGA-II were integrated and applied for multi-objective optimization in

determining optimal WEDM machining process conditions. The optimal results obtained with NSGA-II for multi-objective

optimization of input control variables are within tolerance limits and realized an improvement in MRR and WWR

(maximum absolute percentage errors as 6.784% and 7.589%) with optimal machining characteristics.

Keywords WEDM � ANFIS model � MRR � WWR � NSGA-II � Titanium alloy

1 Introduction

From the last decade, the use of Ti–6Al–4V titanium alloy,

also known as Ti64, has increased considerably for the

manufacturing of important automotive, aircraft and

biomedical parts owing to its higher strength-to-weight

ratio, high fracture toughness, better corrosion resistance

and good biocompatible properties [1–3]. However, such

superior characteristics and poor machinability of the

titanium alloy result in higher friction, excessive heat

generation and built-up-edge formation with traditional

machining processes. Therefore, these alloy materials are

sometimes known as difficult-to-cut materials in the con-

text of machining in the literature [4, 5]. In the present

scenario, the possible solutions for effective machining and

overcoming the challenges imposed by difficult-to-cut

materials can be realized by non-traditional machining

processes. The wire electrical discharge machining

(WEDM) is a well-known abrasion less non-traditional

machining processes, which can machine hard surfaces

with ample ease and can achieve high quality complex

surfaces with the help of consuming wire electrodes [6].

The WEDM is a contactless process of thermo-electrical

machining that perform material removal by spark erosion

and vaporization of material in between workpiece and the

wire electrode. However, the selection of optimal

machining parameters is one of the important and chal-

lenging tasks for the industrial personnel, operators and

users that further influence the performance of EDM

machining process [7].

The WEDM material removal process performance is

significantly affected by direct and indirect control factors

such as peak current, gap voltage, pulse on-time, pulse off-

time, wire feed and mechanical properties of wire and

workpiece material. Several studies are available for

determining effect of input machining parameters in
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WEDM on the optimal quality characteristics of kerf width,

surface roughness and material removal rate (MRR). The

application of Taguchi orthogonal array for planning of

experiments were studied by different researchers during

the machining of Inconel 625 and aluminium alloy exam-

ining the influence of pulse on-time, pulse off-time, peak

current, wire feed rate and wire tension on MRR and sur-

face roughness. It was concluded that the pulse on-time,

tool electrode and current intensity has an imperative effect

on the responses of MRR and surface roughness [8, 9].

Kuriachen et al. applied fuzzy logic-based model for

examining the effect of different process parameters such

as gap voltage, capacitance, feed rate and wire tension for

prediction of MRR and surface roughness during EDM of

titanium alloy [10]. The non-dominated sorting genetic

algorithm-II (NSGA-II) with Pareto optimal solutions was

applied for the optimization of the MRR and surface

roughness in machining shape memory alloys and tungsten

carbide–cobalt composite [2, 3]. Manna and Bhattacharyya

applied Taguchi experimental design and the Gauss elim-

ination dual response method for determining the optimum

machining process conditions during CNC WEDM of

aluminium reinforced silicon carbide metal matrix com-

posites [11].

Bobili et al. used Buckingham Pi theorem to evaluate

the influence of input machining characteristics on MRR

and surface roughness for WEDM of two different armour

materials like aluminium alloy 7017 and RHA steel. The

results revealed that with higher value of pulse on-time,

both the output response of MRR and surface roughness

improve during machining [12]. Majumdar in his study

applied hybrid approach of fuzzy logic and particle swarm

optimization (PSO) and investigated the influence of pulse

current, pulse on-time and pulse off-time on MRR and

EWR during machining of AISI 316 LN stainless steel

[13]. The advantage of multiple regression and Taguchi

analysis for predicting MRR and surface roughness in

EDM was studied and results are further optimized using

GA for determining optimal set of input parameters for

higher MRR and minimum surface roughness [14, 15]. In

other study, Goswami and Kumar used Taguchi planned

experiments on EDM for investigating the MRR, surface

integrity and wire wear ratio of Nimonic 80A. The results

revealed that pulse on-time and peak current increases the

recast layer thickness, while the pulse on-time and pulse

off-time significantly affect the MRR [16]. Further,

machining of high-strength low-alloy (HSLA) steel studied

the effects of various process variables using RSM and GA

methods on the overcut value [6]. Similarly, the influence

of different EDM process parameters on surface roughness

and MRR was determined during machining of hard

Inconel 600 alloy and AISI D2 steel workpieces. It was

revealed from both studies that current intensity and pulse

on-time are most influencing factors for achieving optimal

values of output responses [17, 18]. Kumar et al. applied

grey relational analysis to optimize kerf width and surface

roughness during WEDM of hard silicon carbide reinforced

aluminium 6351 alloy composite. They recommended that

pulse on-time was most effective in influencing the com-

bined objective with 96.19 percentage [19]. In a similar

study, Yang et al. explored hybrid methodology of RSM,

BP neural network and simulated annealing (SA) for

optimizing three different objective functions, viz. MRR,

surface roughness and corner quality during machining of

tungsten workpiece. They found that the integration of

BPNN and SA provides superior results in comparison to

RSM approach results [20].

From the literature review, it was revealed that mod-

elling a mathematical correlation equation between input

control variables and the output response quality parame-

ters is exceedingly strenuous in WEDM owing to its

intricate and non-sequential nature of these machining

parameters [21]. The development of a complex modelling

system is essential for predicting and optimizing the quality

characteristics as responses for a given set of process

parameters that further decreases the production cost. In

relation to WEDM process, most of the modelling has been

performed using the traditional optimization techniques.

Several research work presented in past employed

ELMAN-based layer recurrent neural network (LRNN)

[22], artificial neural network (ANN) combined with a

genetic algorithm (GA) [23], regression model and feed

forward backpropagation neural network [24], backpropa-

gation neural network (BPNN) and response surface

methodology (RSM) [25], grey fuzzy logic [26] and BPNN

approach [27] for machining different workpiece using

WEDM.

Based on the past literature results, it is observed that

none of the research reported developing a hybrid approach

for modelling the output quality characteristics by incor-

porating the advantages of both fuzzy and ANN for

WEDM of Ti–6Al–4V alloy. The wire wear ratio (WWR)

is a critical response parameter which was not considered

in past studies for modelling of WEDM process during

machining of titanium alloys. In addition, the machining

ability of brass wire electrode in WEDM and prediction

accuracy of developed model hybrid model were not crit-

ically evaluated in most of the studies. Finally, very few

studies are available that performs optimization of quality

characteristics using NSGA-II for WEDM of titanium

alloys.

Therefore, the objective of present work is to conduct a

logical investigation while machining titanium Ti–6Al–4V

alloy employing WEDM process and to establish an

effective adaptive network-based fuzzy inference system

(ANFIS) prediction model to improve the machining
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characteristics, i.e. material removal rate and wire wear

ratio. Moreover, the results of ANFIS-based prediction

model are compared with experimental results in terms of

accuracy and root mean square error percentage. The

machining parameters of WEDM were optimized by

applying non-dominated sorting genetic algorithm-II

(NSGA-II) and optimal set of input control parameters

were determined. The proposed methodology of combining

ANFIS model and NSGA-II will be beneficial in optimal

modelling and prediction of input process parameters for

the manufacturing of components in different industries.

2 Experimental details

2.1 Workpiece material

The workpiece material used in this study is a–b titanium

(Ti–6Al–4V) alloy with dimensions of 150 mm 9 50

mm 9 3 mm was prepared. The titanium alloy is selected

owing to its higher strength-to-weight ratio and supreme

resistance towards corrosion making it suitable candidate

for aerospace and automotive applications. The chemical

composition of Ti–6Al–4V alloy using an energy-disper-

sive X-ray (EDX) (Quanta 450 FE-SEM, FEI), which is

shown in Table 1. The rectangular slots of 3 mm 9 3 mm

were machined from 3-mm-thick alloy plate specimen at

different set of machining conditions. The fabricated

specimen after machining at various parameter settings is

shown in Fig. 1.

2.2 Experimental set-up

The current section describes the EDM equipment

employed for performing the planned experiments, with the

material used for workpiece along with the brief descrip-

tion of ANFIS and NSGA-II methodology. The planned

experimental trials were conducted on WEDM machine

(Sprint-Cut 734, Electronica, India) with a jet flushing

system at a pressure of 50 kPa. A brass wire (65% Cu and

35% Zn) is used as a tool electrode for the present work

with diameter of 0.25 mm. The dielectric fluid considered

for the experiments is mineral oil having flash point of

72 �C. The experimental set-up for the present study is

shown in Fig. 2. Since the output quality characteristics in

WEDM is affected by different process variables, this

study deals with considering the influence of electrical

process parameters, viz. peak current (IP), pulse on-time

(Ton), pulse off-time (Toff), wire feed rate (Wf) of the

WEDM operation on the output response of material

removal rate and wire wear ratio. The input variables with

their levels are selected on the basis of the literature, trials

and machine constraints are shown in Table 2.

The peak current, pulse on-time, pulse off-time and wire

feed rate have been selected as input parameters, and the

effect of these input parameters has been investigated on

material removal rate and wire wear ratio. The peak current

is the maximum current of each pulse applied between both

the electrodes when the spark is created. The pulse on-time

and pulse off-time, measured in microseconds, are the

duration for which current is flowing till end of discharge

Table 1 Chemical composition

of workpiece (Ti–6Al–4V) alloy

[28]

Component C Sn Si Mn Fe Cr Ti Al V

Weight % 0.006 0.001 0.01 0.0053 0.091 0.021 89.83 6.321 3.714

Fig. 1 Machined Ti–6A1–4V alloy specimen with slots

Fig. 2 Electronica Sprint-Cut 734 EDM machine
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and the duration between two consecutive pulses, respec-

tively. The wire feed is the advancement of wire electrode

in machining direction with the help of servo motor per

minute. The material removal rate was measured in mm3/

min by using Eq. (1):

MRR ¼ d � l� h

t
mm3=min ð1Þ

where t is the machining time, h is the height of the

workpiece, l is the length of the cut and d is the kerf width.

MRR was calculated in mm3/min. The weight of the

removed wire is measured by the weighing machine, Sar-

torius, model: BSA225S-CW. The wire wear ratio is

measured using Eq. (2).

Wire wear ratio ¼ Initial weight of wire � Final weight of wire

Initial weight of wire

ð2Þ

2.3 Taguchi experimental design

In present study, the experiments were performed to

determine and optimize MRR and WWR using Taguchi

orthogonal array design. The Taguchi technique provides a

platform for statistical and mathematical models to opti-

mize the response variables. The Taguchi method proce-

dure allows a synchronized experimental trial of different

parameters and their interaction effects planned for eval-

uating the consequence of the parameters on response

variables [29]. In traditional full factorial design, it needs

34 = 81 experimental trials to study and analyse four input

factors. However, in the present work Taguchi experi-

mental design suppresses it to only 18 trials using L18

(21 9 34) mixed orthogonal array, thus reducing the

number of experiments significantly and saving precious

time and the cost associated with it. The data assembled

from experimental results are then transformed to calculate

signal-to-noise (S/N) ratio. The S/N ratio is the performance

indicator of output response and is chosen based on certain

quality characteristics such as lower-is-better, nominal-is-

better and higher-is-better. This work aims at maximizing

MRR and minimizing the WWR; thus, higher-is-better and

lower-is-better characteristics are chosen to evaluate the S/

N ratio performance and can be expressed as shown in

Eq. (3) [30]:

S

N
¼ �10log

1

n

Xn

i¼1

y2
i

" #
ð3Þ

where yi represents the response of specific wear rate and n

denotes the number of experimental trials. Table 3 shows

the experimental conditions and measured responses based

on Taguchi L18 mixed orthogonal array. The minimum and

maximum values of MRR and WWR for the machined

specimen are 19.11–9.92 mm3/min and 0.371–0.057,

respectively. Table 3 reports 18 experimental data that

were selected for testing of adaptive neuro-fuzzy inference

system (ANFIS) and random 50 experiments samples are

utilized for testing the accuracy of the trained ANFIS

model.

2.4 Adaptive neuro-fuzzy inference system
(ANFIS)

The ANFIS network generally refers to adaptive neuro-

fuzzy system inheriting the advantages of both fuzzy net-

work and artificial neural network [31]. Neural network can

enhance the learning process; however, it is quite difficult

to deduce the data and knowledge acquired by it. Instead,

the fuzzy logic system cannot learn itself from the samples

but utilizes the linguistic variables as crisp set values in

place of numeric values which are easy to comprehend and

follow. In ANFIS network, the ANN architecture is

employed to develop the fuzzy model and through which it

aids in learning the ANN data from the given data.

Simultaneously, the results are plotted for different factors

arranged in Sugeno category of if–then rules. The sche-

matic diagram of ANFIS architecture is shown in Fig. 3.

As shown in Fig. 3, five different layers are utilized to

develop the ANFIS network. The procedure of ANFIS

modelling begins with converting the crisp input parame-

ters into fuzzy inputs exploiting the membership functions.

From the commonly used membership functions such as

triangular, trapezoidal and Gaussian, this study employs

Gaussian and G-bell membership function in ANFIS model

for assessment of input variables and triangular-type

functions were chosen for output variables. Further steps

deal with providing the Gaussian membership functions

along with fuzzy input to the neural network. The back-

propagation algorithm is applied to train the inference

engine for appropriate rule base selection in the neural

Table 2 Process parameters and

their levels
Parameter Symbol Unit Level 1 Level 2 Level 3

Peak current (A) IP Ampere 16 22 –

Pulse on-time (B) Ton ls 120 140 160

Pulse off-time (C) Toff ls 35 40 45

Wire feed (D) WF Machine unit 6 8 10
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network block. After adequate training, suitable rules are

fired from the neural network to produce the optimal out-

put. Finally, the output variable in linguistic terms is con-

verted into crisp output by the de-fuzzifier block. The

structure of ANFIS based on Takagi–Sugeno system

comprises of five different network layers, i.e. Layer 1 to

Layer 5. For describing the ANFIS procedure, two inputs x

and y, one output F. The Takagi–Sugeno ANFIS rules base

consists of if–then fuzzy rules and that can be expressed as:

Rule 1: If x is A1 and y is B1; then output is

f 1 = a1xþ b1yþ c1

Rule 2: If x is A2 and y is B2; then output is

f 2 = a2xþ b2yþ c2

2.4.1 Layer 1

The first layer deals with conversion of set of inputs (x, y)

into linguistic terms (A1, A2, B1 and B2) by applying

membership function. Fuzzy layer comprises of set of

adaptive nodes whose function is expressed as Eqs. (4)–(5):

O1;i ¼ lAiðxÞ for i ¼ 1; 2 ð4Þ

O1;i ¼ lBi�2ðyÞ for i ¼ 3; 4 ð5Þ

where O1;i represents the output function. lAi and lBi�2

represent the membership functions. For the present study,

Gaussian membership function is selected for input and

triangular membership function is chosen for output.

Table 3 Experimental trials and

response results
Ex. No. Peak current (A) Ton (ls) Toff (ls) Wire feed (m/min) MRR (mm3 /min) WWR

1 16 120 35 6 12.56 0.068

2 16 120 40 8 11.86 0.082

3 16 120 45 10 9.92 0.057

4 16 140 35 6 12.09 0.062

5 16 140 40 8 16.76 0.094

6 16 140 45 10 13.43 0.06

7 16 160 35 8 18.08 0.1

8 16 160 40 10 13.81 0.088

9 16 160 45 6 16.12 0.074

10 22 120 35 10 10.51 0.108

11 22 120 40 6 11.11 0.128

12 22 120 45 8 12.89 0.114

13 22 140 35 8 17.06 0.242

14 22 140 40 10 15.47 0.2

15 22 140 45 6 15.85 0.157

16 22 160 35 10 19.11 0.371

17 22 160 40 6 17.22 0.314

18 22 160 45 8 18.20 0.214

A1 

A2 

B1 

B2 

x

y

W1 

W2 

 

 

 

 

F

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Fig. 3 Schematic of ANFIS

architecture
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2.4.2 Layer 2

The second layer shown with circle deals with obtaining

the output signal by multiplying the input signal received

from previous layers with fixed node function denoted as

O2;i. The output of every node provides the firing strength

of a rule as expressed in Eq. (6).

O2;i ¼ wilAiðxÞlBiðyÞ for i ¼ 1; 2 ð6Þ

2.4.3 Layer 3

The third layer, also named as normalized layer, is repre-

sented in Eq. (7) as ratio of individual rule of firing

strength to the algebraic sum of all the firing strength.

O3;i ¼ �w ¼ wi

w1 þ w2

ð7Þ

where O3;i and �w represents the output of third layer and

firing strength, respectively.

2.4.4 Layer 4

The fourth layer is also referred to as defuzzification layer

where each node of layer is adjustable and variable in

nature. The output node function can be represented as

Eq. (8):

O4;i ¼ �wfi ¼ �w aixþ biyþ cið Þ ð8Þ

where ai, bi and ci are the set of consequent parameters for

rule i.

2.4.5 Layer 5

The fifth layer shown by circle consist of only one node. It

evaluates the overall ANFIS output by summing up the all

the output coming from previous layer and can be

expressed as Eq. (9):

O5;i ¼ F ¼
X2

i

�wfi ð9Þ

2.5 Non-dominated sorting genetic algorithm-II
(NSGA-II)

This study employed NSGA-II for optimizing the complex

and conflicting objective functions, i.e. MRR maximizing

and WWR minimizing, in WEDM process. In contrast to

single-objective functions where only one optimal solution

exists, the multi-objective functions consist of more than

one solution. Numerous traditional techniques are available

in the literature for solving multi-objective functions;

however, they suffer from shortcomings such as weighting

the objectives having more relevance; thus, the user must

have adequate knowledge of all the objective functions

considered. Moreover, no such requirement needed in

NSGA-II algorithm and it is free from gradient require-

ments during finding the solution in search space. The

NSGA-II algorithm is primarily based on Pareto optimal

set and effective in finding the optimal solution for non-

trivial real life multi-objective problems [32]. Beginning

with generation of initial population of size n using ANFIS

model, subsequently the comparison of different solutions

takes place for determining the set of optimal solutions.

The solution under consideration must satisfy the following

rules for non-dominated sorting.

Objective 1½i�[Objective 1½j� and

Objective 2½i� �Objective 2½j�
Or

Objective 1½i� �Objective 1½j� and

Objective 2½i�[Objective 2½j�

where i 6¼ j, and they are referred as solution numbers.

For sorting of n non-dominated solutions, solution was

chosen based on justifying the above criteria and are

assigned rank 1; otherwise, solutions are marked as dom-

inated solutions. Similarly, next non-dominating sorting

takes place from dominated solution and assigned rank 2

and so on. These iterations will be continued till all solu-

tions received their rankings. Further, based on their

ranking fitness value is assigned to each of the solutions.

The crowding distance (CD) is evaluated for each of the

non-dominated solutions and higher value of CD provides

better diversity among population. The comparison

between tournament choice and CD was utilized for the

selection of parents. The offspring generated using muta-

tion and crossover operator, and initial population along

with offspring were used for realizing the non-dominated

solution. This solution was selected if the newly generated

population exceeds maximum solution; else, new popula-

tion was generated followed by the above steps until Pareto

front of non-dominated result is found. For more reading

on NSGA-II, researchers can go through the following

studies [33].

3 Result and discussion

This section comprises of three main parts: the first part

deals with development of predictive model based on

ANFIS. The second part deals with the description about

influence of EDM process parameters on the response

variables (MRR and WWR) using surface plots obtained

from developed ANFIS models. At last, the third part
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involves simultaneous optimization of EDM response

variables using NSGA-II.

3.1 Development of ANFIS model

The ANFIS structure and model are developed utilizing

MATLAB ANFIS editor toolbox for predicting separately

MRR and WWR for the EDM machined titanium alloy. It

exploits the Sugeno-based fuzzy inference system and the

membership functions are used to perform training of the

model and for mapping relationship between process inputs

and the response variables. The prediction of MRR and

WWR of the EDM using ANFIS model involves two main

steps: training and testing. Therefore, fifty randomly per-

formed experimental datasets have been selected for

training and sixteen sample data of Table 3 for testing

process. The testing datasets are selected, and testing of the

ANFIS model was performed that have not contributed to

training process. The accurate prediction of results using

ANFIS structure depends on some important parameters

such as number of membership function, number of itera-

tions and type of membership function. In the same con-

text, during the training process of designed ANFIS model,

the input data were plotted several times to reduce the

error. The number of iterations for adequate mapping is

considered as epochs. In order to further improve the

results of ANFIS model, different types of membership

functions were employed, and root mean square error

(RMSE) is measured and compared. Training epochs are

continued till it reaches an assumed value say 400 or fall

below a specified value (0.005) of RMSE.

The best membership function is selected based on low

value of RMSE in the training phase having accurate pre-

diction of new input data when compared with experi-

mental values. After testing various models of ANFIS

structure separately for each of the two responses (MRR

and WWR), it was resulted that model structure with 12

membership function (3–3–3–3 topography or 3 member-

ship function for each response) has the lowest value of

RMSE. Other structures with lower and higher membership

functions resulted in either underfitting or overfitting with

undesired values of error. The model and structure of

developed ANFIS model for MRR and WWR is shown in

Figs. 4 and 5. Other factors affecting the prediction accu-

racy of ANFIS structure is type of membership function.

For this study, six different membership functions available

in ANFIS editor were tried, and selection was performed

based on the lower RMSE value. For this study, Gaussian

membership function was employed for the assessment of

input variables and triangular-type functions are chosen for

output variables as shown in Fig. 6.

Table 4 shows the RMSEs results for different mem-

bership functions in testing of MRR and WWR. Table 4

shows that six different 3–3–3–3 structure membership

functions were trained and tested, and the result shows that

Gaussian membership function has the lowest value of

RMSE and hence greater prediction accuracy for both

material removal rate and wire wear ratio.

The comparison of experimental and predicted value of

ANFIS model for MRR and WWR is presented in Table 5.

The variation of predicted values (Ef ) from actual mea-

sured experimental value (Em) is used to calculate error

percentage (Ep) after dividing the absolute difference

between the above values by the measured experimental

value as shown in Eq. (10).

Ep ¼ Ef � Emj jð Þ
Em

� 100% ð10Þ

Furthermore, the accuracy is calculated by determining

the closeness of the predicted ANFIS model value to the

measured experimental value. Equation (11) is used to

calculate accuracy, where Am is the accuracy of the model

and n is the total number of considered samples for finding

the average individual accuracy.

Am ¼ 1

n

Xn

i¼1

1 � Ef � Emj jð Þ
Em

� �
� 100% ð11Þ

The highest and lowest error percentage between mea-

sured and predicted ANFIS model results for MRR is 6.18

and 2.15, respectively. Similarly, the WWR highest and

lowest error percentage between measured and predicted

ANFIS model results is 8.77 and 2.27, respectively. The

average percentage error for MRR and WWR is 5.35 and

5.13, respectively. Such a consistent and lower error per-

centage of the overall model specifies that the developed

ANFIS model predicted the outcome which is in proximity

with the experimental results. It is worth mentioning that

the overall model accuracy comes out to be 94.76% in

predicting the values of MRR and WWR in machining of

titanium alloy through WEDM. Such a high overall model

accuracy justifies the utilization of Gaussian ANFIS model

for successful prediction of output responses in WEDM of

titanium alloy specimen. Results in Table 5 clearly show

that even though the levels of the individual input variables

are different from the training values, the ANFIS model

can predict the responses with an adequate accuracy level.

The ANFIS model predicted values for MRR and WWR

are in good proximity with the experimental measured

values.

3.2 Analysis of responses

Here are the response surface analysis of material removal

rate and wire wear ratio obtained through ANFIS models

which are presented in Figs. 9 and 10, respectively. These
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3D surfaces show interaction effects between input

parameters. Furthermore, these can be used for analysing

effects input parameters on MRR and WWR as well.

3.2.1 Analysis of MRR

Figure 7a shows the interaction plot between pulse on-time

and peak current. From this Figure, it was inferred that

combination of high peak current and pulse on-time results

in achieving higher value of material removal rate. The

maximum MRR, i.e. 18 mm3/min, was obtained at higher

value of peak current and pulse on-time, i.e. 22 A and

160 ls, respectively. The possible reason may be attributed

to the faster dielectric fluid ionization at higher value of

current density, and hence, higher MRR is achieved. Fig-

ure 7b shows the surface plot that at 35 ls of pulse off-

time and higher value of peak current more material

removal rate is achieved. This may be due the higher value

of Toff that provides proper flushing by dielectric medium

to process. So, debris are removed properly form the

workpiece surface and more MRR is obtained. Figure 7c

shows that combination of higher pulse on-time with

medium to higher value of wire feed provides higher MRR

primarily due to the increase in the discharge energy.

Figure 7d, e shows that high and low value of wire feed

improves the material removal rate due to less dissipation

to the surrounding and more heat generated at spark gap,

leading to more material melts from the workpiece surface,

and higher MRR is gained. In Fig. 7f, the interaction plot

between Ton and Toff shows that more material removal

takes place at the higher value of Ton (140–160 ls) and Toff

(45 ls). The higher value of thermal energy is generated

that vaporizes and removes higher amount of material from

sample surface. The increase in cutting time and the tem-

perature of workpiece surface increase; thus, the more

material is melted and MRR increases.

Fig. 4 Developed Sugeno

ANFIS model

Fig. 5 Structure of the

developed ANFIS model
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3.2.2 Analysis of WWR

Figure 8a illustrates the interaction plot between pulse on-

time and peak current. From the figure, it was observed that

low value of peak current, i.e. 16 A, combined with low

pulse on-time around 120–140 ls provides low value of

WWR, i.e. less than 0.06. This may be due to the lower

value of discharge energy at low peak current and pulse on-

time that save the wire electrode from wear out. Figure 8b,

c shows that low tool wear ratio was achieved at medium

value of pulse off-time, i.e. 40 ls, combining with low

value of peak current. This may be because the proper

flushing of the debris is performed and sticking tendency of

debris to the tool surface decreases with the help of rota-

tional movement of the workpiece and less wire wear ratio

is achieved. Figure 8d shows the interaction plot for Ton

and Toff and depicts that lower wire wear ratio can be

obtained within a range of 35 to 40 ls values of pulse off-

time and 120–140 ls for pulse on-time. This may be due to

the combination of adequate machining time and enough

time allowed for removing of debris from machining sur-

face causing the minimization in sticking of wear debris on

wire electrode and thus reducing the WWR value. Fig-

ure 8e shows prediction of WWR by varying pulse on-time

and wire feed simultaneously. It was inferred that the

moderate value of wire feed, i.e. 8 m/min, proved to be

effective for minimizing the WWR. However, when wire

feed rate was decreased from 8 to 6 m/min, higher value of

wire wear rate is achieved. Figure 8f shows the interaction

plot between wire feed and pulse off-time and predicts that

higher pulse off-time leads to lesser WWR because of the

reduction in the spark due to the removal of wear debris.

(a) (b)

(c) (d)

Fig. 6 Gaussian membership function for different input variables

Table 4 RMSE value for different membership functions

S. No. Membership functions RMSE of MRR RMSE of WWR

1 Triangular 0.29630 0.55652

2 Trapezoid 0.26906 0.51773

3 G-bell 0.26044 0.51852

4 Gaussian 0.23024 0.42451

5 Pi shaped 0.28258 0.62924

6 D sigmoidal 0.29473 0.55392

Bold underline signifies the minimum RMSE value of membership

functions
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3.3 Parametric study using ANFIS model

3.3.1 Effect of peak current

Figure 9a shows that the MRR and WWR value increases

with an increase in peak current. The MRR shows an

uptrend from 10.56 to 18.10 mm3/min with the increase in

peak current owing to increase in the discharge energy.

There is an enhancement in the duration of sparks as the

peak current rises which assists in faster removal of

material. Figure 9b shows that the WWR value increases

from 0.877 to 0.0925 with the increase in the value of peak

current from 16 to 22 A. The possible reason being higher

peak current that develops concentrated thermal effect on

the wire electrode causing its intense wear.

3.3.2 Effect of pulse on-time

Figure 10a clearly depicts that the value of MRR increases

from 10.65 to 12.60 mm3/min till the pulse on-time value

reaches 145 ls and decreases further till 160 ls. The

probable reason for such increase in MRR can be regarded

due to the higher value of thermal energy with the increase

in the pulse on-time that vaporizes and removes higher

amount of material from sample surface. Figure 10b shows

that as the pulse on-time was increased from 120 to 160 ls,

the value of WWR increased gradually from 0.068 to

0.112. With higher pulse on-time, discharge energy rises

causing an effective explosion, and hence, more electrode

wear takes place.

3.3.3 Effect of pulse off-time

Figure 11a, b shows that the pulse off-time has negative

influence on both MRR and WWR. The MRR decreases

comprehensively with the increase in the pulse off-time

value from 35 to 45 ls owing to decrement in the spark

intensity. In contrast, the value of MRR is more when

comparatively lower pulse off-time value is selected, pro-

viding higher spark intensity that melts and vaporizes more

material. Similarly, Fig. 11b illustrates that with lesser

pulse off-time, the discharge current is more, and thus,

more material removal takes place which increases the

WWR value.

3.3.4 Effect of wire feed

Figure 12a shows that with the increase in the value of wire

feed from 6 to 10 machine units, the MRR value increased

slightly from 9.95 to 10.14 mm3/min owing to higher

amount of material available at spark location, and thus,

more discharge can be realized making material removal at

more ease. Figure 12b provides insight into the influence of

wire feed versus WWR. It is evident that with more

material fed at spark location, the WWR value will

increase due to enhanced wear of electrode wire.

3.4 NSGA-II-based optimization of WEDM

The prime objective of the current investigation is to

maximize the MRR value and minimize the WWR. These

objectives are of conflicting nature and are function of peak

Table 5 Experimental and

ANFIS predicted MRR and

WWR

Ex. No. Output parameters

Material removal rate (mm3/min) Wire wear ratio

Exp Pred Error % Accuracy % Exp Pred Error % Accuracy %

1 12.56 11.50 8.44 91.56 0.068 0.07 2.94 98.06

2 11.86 11.50 3.03 96.97 0.082 0.078 4.88 95.12

3 9.92 10.50 5.84 94.16 0.057 0.062 8.77 91.23

4 12.09 13.05 6.95 93.05 0.062 0.064 3.22 96.78

5 16.76 15.92 5.01 94.99 0.094 0.090 4.25 95.75

6 13.43 14.05 4.61 95.39 0.06 0.063 5.00 95.00

7 18.08 16.45 9.00 91.00 0.1 0.092 8.00 92.00

8 13.81 14.35 3.91 96.09 0.088 0.086 2.27 97.73

9 16.12 16.00 0.74 99.26 0.074 0.081 9.45 90.55

10 10.51 11.50 9.41 90.59 0.108 0.113 4.62 95.38

11 11.11 11.50 3.51 96.49 0.128 0.122 4.69 95.31

12 12.89 12.40 3.80 96.2 0.114 0.118 3.51 96.49

Average % error 5.35 5.13
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current (IP), pulse on-time (Ton), pulse off-time (Toff) and

wire feed rate (Wf). To solve the bi-objectives and avoid

any conflict between two objectives, the objective of MRR

is converted to minimization by adding negative sign as

shown in Eq. (12).

(a) (b)

(c) (d)

(e) (f)

Fig. 7 a–f Surfaces plots of MRR by ANFIS
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Maximize MRR ¼ Minimize �MRRð Þ
¼ F Ip; Ton; Toff ;Wf

� �
ð12Þ

and

Minimize WWR ¼ F Ip; Ton; Toff ;Wf

� �

subject to constraints

16� Ip � 22

120� Ton � 160

35� Toff � 45

6�Wf � 10

For multi-objective optimization of input process

parameters of WEDM, a hybridization of ANFIS output

(a) (b)

(c) (d)

(e) (f)

Fig. 8 a–f Surface plots of WWR by ANFIS
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with NSGA-II is performed in MATLAB environment

based on objectives and different constraints. The initial

population generation takes place using ANFIS model in

initial generations and further employed to evaluate the

objective functions in subsequent iterations. For

determining the non-dominated optimal results, different

solutions are compared, while the best solution was chosen

after the sorting and ranking performed by NSGA-II. The

variable chosen for NSGA-II is based on the past literature

and optimization problem for obtaining optimal solution

(a) (b)

Fig. 9 Effect of peak current on a MRR, b WWR

(a) (b)

Fig. 10 Effect of pulse on-time on a MRR, b WWR

(a) (b)

Fig. 11 Effect of pulse off-time on a MRR, b WWR
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with minimum computational cost. The population size

considered for current study is 45 based on several

experimental trials, which shows no appreciable change in

objective function value after 45. The other important

parameters considered for NSGA-II are selected as: max-

imum iterations = 100, mutation probability = 0.20 and

crossover probability = 0.8. Figure 13 illustrates ultimate

set of optimal solutions as the Pareto front of 23 results in

the exploration space for the optimization. The eight ran-

domly selected optimal solutions out of 23 non-dominated

solutions are reported in Table 6 and compared with lit-

erature results for WEDM using AHP-MOORA technique

[34]. It was evident that the MRR and WWR value of

proposed methodology is better (maximum for MRR and

minimum for WWR) than literature technique.

3.4.1 Confirmation of optimal result

The proficiency of optimal response was examined by

validation of the non-dominated solutions obtained using

dual approach of ANFIS-NSGA-II with experimental trial

results. The data of non-dominated solutions reported in

Table 6 were considered and actual responses, i.e. MRR

and WWR, obtained from experiments were reported

employing the corresponding input WEDM parameters.

Table 7 shows the comparison of experimental and optimal

responses in the form of absolute error. From comparison,

it was revealed that maximum absolute percentage errors

value for MRR and WWR are 6.784% and 7.589%,

respectively.

(a) (b)

Fig. 12 Effect of wire feed on a MRR, b WWR

Fig. 13 Pareto front of non-dominated solutions

Table 6 Optimal combination

of non-dominated solution for

WEDM

S. No. Ip Ton Toff W f MRR WWR MRR [34] WWR [34]

1 16.07 158.40 42.43 9.87 13.88 0.116 9.165 1.796

2 18.96 162.68 48.74 9.72 16.30 0.125

3 17.87 159.82 48.12 10.25 16.95 0.143

4 18.02 160.25 46.88 9.97 17.91 0.224

5 14.38 155.33 40.25 9.08 11.62 0.094

6 15.93 150.22 47.09 10.22 12.53 0.102

7 18.51 160.79 48.02 9.98 18.10 0.348

8 13.66 148.58 46.25 9.02 8.74 0.873
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4 Conclusion

In this present study, a dual and intelligent approach of

ANFIS–NSGA-II has been presented to minimize the

WWR value and maximize the MRR during WEDM of

titanium (Ti–6Al–4V) alloy. The experimental work con-

sists of ANFIS modelling and multi-characteristic opti-

mization of WEDM while machining Ti–6Al–4V alloy.

The current, pulse on-time, pulse off-time and wire feed

have been considered as input parameters. An adaptive

neuro-fuzzy inference system was employed to create

mapping relationship between process parameters and

responses. Therefore, after the detailed study the following

conclusions can be drawn:

• In modelling of MRR and WWR by ANFIS model, the

3–3–3–3 structure was chosen as the best topography

due to its minimum prediction error and faster perfor-

mance. The developed ANFIS model was found

suitable to model the WEDM process during machining

of titanium alloy.

• For ANFIS modelling, Gaussian type of membership

function was utilized for MRR and WWR due to low

value of RMSE. The developed ANFIS model predic-

tions are in proximity with the experimental trials data

and predict the MRR and WWR rationally well having

average percentage errors as 5.35% and 5.13%,

respectively.

• The ANFIS plot analysis revealed that with the increase

in pulse on-time and peak current, the value of MRR

and WWR increases significantly, while with the

increase in the pulse off-time both MRR and WWR

decrease comprehensively.

• The MRR and WWR decrease with the increase in the

pulse off-time. The optimum settings of Peak current

and pulse on-time were near to 18 A and 160 ls for the

maximum MRR and minimum WWR, whereas 45 ls

pulse off-time and 6 m/min wire feed were the

optimum settings that was obtained for MRR. Also,

for WWR the optimum settings were obtained at 40 ls

pulse off-time and 10 m/min wire feed.

• Optimal results achieved through NSGA-II are in

accordance with experimental outcomes having the

maximum absolute percentage errors as 6.784% and

7.589% for MRR and WWR, respectively.
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