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Abstract
Recently, similar entity searching over knowledge graph (KG) has gained much attentions by researchers. However, in

rich-semantic KGs with multi-typed entities and relations, also known as heterogeneous information network, relevant

entity search is considered as a challenging task due to the ambiguity as well as complexity of user’s queries in realistic

applications, such as QA chatbot and KG-based information retrieval. In this paper, we propose a novel approach, called

W-KG2Vec which enables to automatically learn the semantic representations of entities in KG by applying the meta-path.

The proposed W-KG2Vec is a meta-path-specific model which supports to evaluate both semantic relations as well as the

text-based similarity between entities. The combination of text- and structure-based embedding mechanism of W-KG2Vec

is promising to achieve better representations of entities in given KGs for handling complex user’s queries. To effectively

learn the sequential textual representations of entities’ descriptions, we propose a combination of BERT pre-trained model

with LTSM encoder, called BERT-Text2Vec. Then, the text-based similarity between entities is used to leverage our

weighted meta-path-based random walk mechanism in W-KG2Vec model. Extensive experiences on real-world KGs

(YAGO and Freebase) demonstrate the effectiveness of our proposed model against recent state-of-the-art KG embedding

baselines.
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1 Introduction

Go along with the development of Internet, we are wit-

nessing the tremendous growth of multidisciplinary infor-

mation resources in the pattern of knowledge graphs (KG)

[1, 9, 17, 32], such as Wikipedia, WordNet, YAGO,

Freebase and DBpedia recently. In fact, KG plays an

important role as indispensable auxiliary expert knowledge

sources for constructing AI-based systems [4, 8]. A KG is a

multi-relational graph [5] which is composed by large

number of facts which can be denoted as triples in the form

of \head relation tail[, e.g., \Donald_Trump, Presi-

dent_Of, USA[,\Elon_Musk, Founder_Of, SpaceX[. In

recent years, many organizations and researchers have

much concentrated on how to intensively extract latent

features in given KGs by preserving and learning their

structures. This approach is called KG embedding or KG

representation learning. KG embedding [33, 37] has

quickly gained massive attentions due to their wide appli-

cations in different domains, such as information retrieval

[11], QA chatbot [2, 4] and recommendation [34]. In

general, KG embedding can be used to compress high-

dimensional complex data structure of entities and their

associated relations of KGs into fixed low-dimensional and

continuous data structure in the pattern of vectors. Then,

these transformed vectors which are represented for entities

and their relations will be used for multiple tasks, such as

similar entities searching, entities clustering/classification

and relation extraction. Moreover, KG embedding can also

be used to achieve new unknown facts which do not exist

in current KGs yet, such as relations/links predictions

between unconnected entities or entity (head/tail) predic-

tions with given relations, commonly called KG
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completion. Relevant entities searching/querying [1, 3, 18]

is considered as a primitive task for most of common

applications of KG embedding. Recently, similar search in

KG encounters many challenges due to the complexity and

ambiguity of user’s queries. For example, in realistic

application such as QA chatbot [4], we usually encounter

complex similar entity-based queries like as “Which are

places in Paris that are similar to the Louvre museum?,”

“What are similar places of Vo
˙
ng_Cảnh hill in Huế?” The

reasonable outputs for this type of query are more com-

plicated than just finding top-k similar embedded entities

which are closest to “place/ museum:Louvre” and “place/

hill:Vo
˙
ng_Cảnh” entities in a given KG. In fact, there are

multiple searching criteria must be fulfilled before return-

ing the searching results to the end-users, e.g., the top

returned results must be place-/museum-typed entities

within the Paris city of France for the first query. A com-

mon technique for solving these complex searching tasks is

to modelling given queries as meta-path-based patterns. A

meta-path is a symmetric sequential order of entities and

relations which indicates specific semantic meaning of

interconnections between KG’s entities. Back to previous

example of finding similar entities of “Louvre,” we can

formulate this query as a meta-path, as [place/mu-

seum] !containedInPlace
[city]  containedInPlace

[place/museum] (as

shown in Fig. 1a). Similar to the first example, the second

query also can be modelled as a meta-path [14], as

[place] !containedInPlace
[city]  containedInPlace

[place] (Fig. 1-B).

However, the second query can be considered as com-

plicated than previous one due to the ambiguity in multiple

user’s searching purposes. “Vo
˙
ng_Cảnh” is a hill which is a

common place for enjoying sightseeing by tourists, so

similar entities of “Vo
˙
ng_Cảnh” hill must be places which

are suitable for enjoying sightseeing. In this example,

“Ngự_Bı̀nh” mountain is considered as a top candidate for

queries like this: “Which place is similar to Ngự_Bı̀nh?”
The best answers for this type of query must satisfy two

aspects: the place must be in “Hué̂” (same as “Ngự_Bı̀nh”)
and should be a mountain or a hill (“Ngự_Bı̀nh” is a

mountain). Therefore, thorough evaluation of entity’s

concept/description is also necessary while computing the

similarity between two entities in KGs.

1.1 Problem definition

Definition 1 Knowledge Graph (KG) as Heterogeneous

Information Network (HIN) is a directed labelled graph,

denoted as G ¼ V ;E;/;w, where

● V stands for a set of entities/nodes in the given KG.

● E stands for a set of relations/links between entities/

nodes in given KG. These relations might be binary (1

for existing relation and otherwise 0) or weighted

relations.

● / and w are two mapping functions, where

o Node’s type mapping function: / Vð Þ7!A—with

V ¼ v1; v2; . . .; vnf g, a specific node (v) belongs to a

specific type: a,a 2 A, we have: / vð Þ ¼ a.

p Edge’s type mapping function:

w Eð Þ7!R;w eð Þ 2 R—with E ¼ e1; e2; . . .; emf g, a

specific edge (e) belongs to a specific type:

r;r 2 R, we have: w eð Þ ¼ r.

● Traditionally, a knowledge graph is normally d as a set

of triple notations, denoted as h; p; t, whereh, t and p

present for the head, tail objects and the predicate/link,

respectively. A RDF triple is considered as a direct

relation between two entities, e.g., h:Hà

A B

Fig. 1 Illustrations of modelling user’s queries as meta-path-based patterns
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No
˙
ˆi �!r: capital of

tVie
˙
ˆt_Nam. In previous studies, KG

(also known as ontology) is specified as RDF (Resource

Description Framework) graph which contains RDF

triples, as h; p; tf g. These RDF triples are used to model

direct relationships between entities in a given KG.

However, this traditional representation of KG is unable

to sufficiently model real-world KGs as heterogeneous

networks which contain multi-typed entities and

relations.

Definition 2 Network Representation Learning (NRL)

[15]: given an information network, denoted as

G ¼ V ; Eð Þ, where (V) and (E) present for sets of net-

work’s nodes and edges, respectively. The ultimate goal of

a NRL model is to find a mapping function, denoted as f for

transforming the given set of network’s nodes into d-di-

mensional vectors, as f : V ! R Vj j�d.

Definition 3 Similarity search via NRL approach:

depending on a specific similarity searching purpose, NRL

model is defined to capture specific relevant information

between network’s nodes in order to, respectively, map

these features into similar vector spaces. Therefore, similar

nodes with common distinctive features will be represented

as similar vectors. To meet a specific relevant node search

task, the mapping function (f ) is designed accordingly for

capture desired latent features of given network’s nodes.

Similarity search is considered as the most common

problem of knowledge graph (KG) mining [14, 18]. Sim-

ilarity search in KG supports to find most relevant entities

with the given user’s queries. To solve similar search task

in KG, knowledge graph embedding is considered the

subarea of network representation learning (NRL) (Defi-

nition 2) which is recently a most well-known technique

which supports to preserve and represent the structure of

KG (entities and relations) into low-dimensional vectors

[2, 8, 9, 17]. Then, we can simply measure the relevance

entities by calculating the distance between their vectors.

This approach is called similarity search over NRL

approach (Definition 3). From the past, most of KG

embedding models is considered as homogeneous embed-

ding approach which considers all KG’s entities and rela-

tions as the same type. However, in practical

implementation, the ambiguity in user’s queries which are

represented as sequential relations within the complex

structure of KG, also considered as heterogeneous infor-

mation networks (HIN) [5] (Definition 1) with multi-typed

entities and relations. In the past, to effectively achieve the

representation of entities and their associated relations in a

given KG, many embedding methods have been proposed

recently. The most common approach for KG embedding is

the distance translation-based approach with the most well-

known Trans-family models (TransE [33], TransH [37],

TransR [11]). The famous distance translation-based

TransE [5] model is aimed to embed entities and relations

in KG into the same fixed dj j-dimensional continuous

latent space, denoted as R Vj j�d, where Vj j is number of

entities in a given KG. In the translation-based approach,

TransE is designed to exploit the translation from head

entity, (denoted as a vector h) to tail entity (t) regarding

with their associated relation (r) within a specific fact. The

model is trained to achieve the objective that: hþ r � t (as

illustrated in Fig. 2-A). In next improvement for resolving

multiple relations between same head/tail entities, TransH

is proposed the relation-specific hyper-plane projection

mechanism for differentiating the roles of same entities

with different relations in given facts (as illustrated in

Fig. 2b). Similar to TransH, the TransE model employs the

relation-specific spaces (instead of hyper-plane-based pro-

jection in TransH model) to separate same head/tail entities

in different facts according to their corresponding relation.

However, distance translation-based embedding techniques

only focused on the direct relations/triples (which are

occurred in facts) between entities rather than paths.

Therefore, these distance translation-based KG embedding

techniques are unable to handle complex querying tasks

which are required evaluations on indirect interconnections

between entities. Table 1 presents common notations which

are used in our paper.

1.2 Existing challenges and motivations

In realistic requirements for knowledge extraction from

KG, only using direct relations/triples to learn the repre-

sentation of entities is insufficient. Due to the ignore of

evaluating on paths/sequential relations between entities in

KG, the representation output is unable to use for complex

querying task. Recently, there are multiple studies which

are focused on exploiting the sequential relations/paths

between entities to leverage the knowledge representation

outputs, such as PTransE [11] and RPE [2]. These models

consider path-specific evaluation while learning the repre-

sentation of entities which enable to solve complex

querying task in KGs. However, recent proposed models of

Lin et al. (PTransE and RPE) still paid less attention on the

sequential order as well as relation’s type within paths

between entities in KGs. In fact, different orders of paths

between entities might carry out different semantic mean-

ings. For example, different paths between two entities

“France” and “Eiffel Tower” carry out different meaning

like as France !Contain Paris !Contain Eiffel_Tower and France

!Capital Paris !Has Eiffel_Tower. Therefore, different semantic
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paths between same-typed entities should be embedded as

different vectors.

Moreover, most of traditional KG embedding techniques

only focus on the structural information of knowledge

graph (relations between entities) and ignore the textual

information which are tightly associated with entities. In

fact, plain text which associated with entities in KG can

help to provides abundant value information as we as

support for entity and relation disambiguation while

learning the representation of the given KGs. It is unde-

niable that textual data could play as a supplement for

leveraging knowledge graph embedding task with both

structural and contextual aspects. Recently, the joint of

textual information and structure representation learning in

KG has gained a lot of interests from researchers with

multiple proposals [15, 32]. Recent researches [18, 35]

focused on the combinations of textual information with

structural information of KG to improve the representation

outputs. However, joined text-based KG embedding mod-

els are considered as lack of thorough evaluations the

sequential relations between entities in KG.

1.3 Our contributions

To fully incorporate between textual information and KG’s

structure in representation learning task in this paper, we

propose a novel approach of text-enhanced meta-path-

based embedding model, called W-KG2Vec. To properly

capture the rich-semantic structure of given KGs, we apply

the meta-path-based random walk mechanism to generate

contextual entities for each given entity via different

defined meta-paths which is inspired from our previous

works [24–27]. Our principal assumption of applying meta-

path-based guided representation learning in KG is same-

typed entities which are interconnected via defined specific

paths must be transformed into similar vectors in the given

A B

Fig. 2 Illustrations of TransE

and TransH KG embedding

models

Table 1 List of notations which are used in this paper

Notations Descriptions

G Information network/knowledge graph as a graph-based structure

V and A The sets of nodes and node’s types of a(n) information network/knowledge graph, respectively

E and R The sets of edges and edge’s types of a(n) information network/knowledge graph, respectively

P A meta-path

Px y A set of path instances between two nodes: (x) and (y) via meta-path: P
/ð:Þ and wð:Þ The mapping functions of nodes and edges in a heterogeneous information network

RjVj�d An embedding matrix with size: jV j � d, where each vector row presents for an embedding vector of a node

BERTð:Þ The BERT-based embedding layer

LSTMð:Þ A single LSTM neural network cell

w! The embedding vector of a word

s! The embedding vector of a sentence

h
! The vector present for each hidden state in LSTM or BERT architectural layer

wx y The weight of edge between two network’s nodes (x) and (y)

px y The transitional probability between two network’s nodes (x) and (y)
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KG embedding space (as illustrated in Fig. 3a). Moreover,

the random walk is guided by the transitional weight of

text-based similarity between entities. The textual simi-

larity measures between entities are identified by applying

the collaborative self-attention of BERT [15] pre-trained

model and sequential encoding to effectively learn the

representation of textual data.

In this paper, we apply BERT pre-trained model with

the bidirectional LSTM encoder to achieve the embedding

of textual descriptions of entities in the given KGs. Then,

these representations of descriptions are used to compute

the text-based similarity between entities (as illustrated in

Fig. 3b). Then, these computed text-based similarity scores

are used to guide the meta-path-based random walk

mechanism. The jointly representation learning of both

textual information and KG’s structure via meta-path-

based random walk is promising to improve the quality of

KG representation learning output. The main difference

between our proposed model with other KG embedding

model is the capability of capturing both semantic and

local structural latent features of entities in the given KG to

effectively fulfill the similarity search task. To sum up, our

main contributions in this paper can be summarized as the

following:

● The introduction of novel combination of BERT pre-

trained model with Bi-LSTM encoder to support for

learning the sequential representation of textual descrip-

tions which are associated with entities in given KGs,

called BERT-Text2Vec.

● The application of meta-path-based random walk

mechanism in proposed W-KG2Vec model for gener-

ating contextual entities for each target entity in KG via

defined meta-paths. Meta-path-based walks on KG are

guided by the textual similarity weight between entities

which are calculated by Bert-Text2Vec. Then, the

extracted contextual entities are used to train the KG

representation learning model.

● Extensive experiments on benchmark datasets with

complex similar entity searching tasks demonstrate the

effectiveness of our proposed model in comparing with

recent state-of-the-art baselines.

In Fig. 4, we present an overall architecture of our

proposed W-KG2Vec model. The rest of this paper has

four main sections. In the second section, we review the

related and discussing about the advantages/disadvantages

of recent KG embedding techniques. In the third section,

we briefly introduce about the approach of Bert-Text2Vec

and W-KG2Vec models for text-enhanced meta-path-based

KG embedding approach. Next, in Sect. 4, we present the

extensive experiments and comparative studies on perfor-

mance of proposed W-KG2Vec with recent KG embedding

techniques. Finally, we conclude our works and present

future improvement in Sect. 5.

2 Related works and motivations

In recent years, the use of KG for supporting AI-based

systems has growth quickly. KG embedding has been

proved to benefit multiple tasks such as information

retrieval, question-answering system and relation extrac-

tion in different knowledge domains. KG embedding is

designed to transform multi-typed connected data, in form

of entities and their relations into a continuous fixed low-

dimensional vector space. There are several popular KG

A B

Fig. 3 Illustrations of KG embedding strategies of proposed W-KG2Vec model
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embedding techniques which can been categorized as two

main groups, as the following.

2.1 Translational distance KG embedding
approach

In the translational distance approach, proposed embedding

techniques mainly depend on the structural information of

the KGs, specifically the directed relationship between

entities in form of triple: h; r; th i in KGs. The most tra-

ditional well-known KG embedding technique is TransE

[1] model. TransE is considered as a simple and effective

method which support to learn the vector representations of

both entities in relations in a given KG. TransE depends on

a basic idea that a relation between head and tail entities

are supposed to correspond to a distance translation

between the representations of two given entities, denoted

as hþ r � t. We also know about the Unstructured Model

(UM) [3] is an earlier version of TransE with the elimi-

nation of relations between entities in training the

embedding model and the structured embedding (SE) [5]

apply matrix projections to differentiate relations between

same pairwise entities in KGs. However, the TransE model

is only capable to present 1-to-1 relation between target

entities which leads to the failure in translating 1-to-N, N-

to-1 and N-to-N relations. Therefore, several improvements

such as TransH, TransR and TransA have been proposed to

overcome this problem by applying the relation transfor-

mation into different hyper-planes/subspaces. Beside

Trans-family models, there are some proposals which can

be considered as belong to translation-based KG embed-

ding approach such as Gaussian-based KG embedding

techniques (KG2E [13], TransG [38]) which mainly

depend on multivariate Gaussian distributions for learning

the representation of entities and relations. Similar to the

approach of SE model, RESCAL [22] is considered as a

bilinear-based model which represents relations between

entities in KG as matrices. However, most of translational

distance KG embedding techniques are considered as less-

informative embedding approach due to the ignore of

textual data, such as descriptions and concepts of entities

while learning the representations. Textual information

which is associated with KG’s entities is now taken in

consideration while training the KG embedding model in

order to improve the output quality of entities and relations.

This text-enhanced KG embedding trend has led to the

proposals of some improved models recently. Recently, the

proposed ConvE [31] is designed to perform a global 2-D

convolution operation on the subject entity and relation

embedding vectors. These embedding vectors are reshaped

as the matrices and then concatenated. Similar to previous

approach, the proposed RotateE [39] leverages the KG

embedding model with multiple relations/entities by

defining each relation as a rotation in the complex

embedding spaces. However, these recent approaches are

all considered as link/triple-based embedding approach

without considering text-based semantic similarity between

entities.

2.2 Jointly text-enhanced KG embedding
approach

In recent times, researchers have gained much interests on

jointly learning the representation of both structural infor-

mation and textual information of KGs. There are multiple

proposed techniques applying embedded textual data to

leverage the quality of entities representations in KGs such

as the use of average word representation [16, 31] in

entities’ names for identifying similar entities while train-

ing the KG embedding model. Inspiring from previous

work [31] on jointly text-enhanced KG embedding, the

next improvements [27, 39] proposed an extended

embedding approach for learning the representation of

entities’ textual descriptions which help to enrich the

embedding quality of entities in KG. In fact, in previous,

the textual information and KG’s structure embedding are

Fig. 4 Overall architecture of our proposed W-KG2Vec model for KG embedding task
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learnt separately with different objective functions which

leads to the sparsity of KG’s entity representation. To

overcome the separation in structure-based and text-based

representations in KG embedding, a proposal [24] of using

convolutional neural network (CNN) architecture, which

enable to utilize both structure-based and text-based

embedding aspects, can be called as J-CNN for short.

Recently, with successes of auto-encoding approach, such

as GPT [36] and BERT [27], in natural textual data pro-

cessing, several studies have been adopted these techniques

to leverage the performance of KG embedding task in the

rich-textual context, such as KG-BERT [42] and K-BERT

[41]. Through successes of previous jointly text-enhanced

models in leveraging the overall output of KG embedding

task, the textual information is proved as effective way for

improving the quality of entity representations. However,

for the textual data, mainly descriptions of given entities in

KGs are existed in form of long-text documents separately

learning the embedding of each word in these documents

(continuous bag-of-words approach) might cause the

information lost due to the sequential complex of textual

data which are composed in natural language form.

3 Methodology

In this section, we introduce our proposed W-KG2Vec

model for text-enhanced knowledge graph embedding by

applying the jointly learning of textual descriptions of

entities in KGs and meta-path-based random walk for

generating contextual entities of each source entity with

defined semantic sequential relations in form of meta-

paths.

3.1 Preliminaries and definitions

Formulating a KG as a heterogeneous information network

(HIN) (Definition 1), we denote A and R stand for the set

of entity/node types and relation/link types, respectively. In

context of HIN, a knowledge graph is considered as a

directed labelled graph with V is a set of multi-typed

entities which are connected by a set of multi-typed rela-

tions, denoted as E.

A KG is considered as rich-semantic if it has large

number of entity types and relation types such as YAGO or

Freebase contain thousands of entity’s types and relation’s

types. In order to have an overview about the complexity of

a KG, we need to look at its network schema KGNS

(Definition 4). In fact, most of real-world KGs such as

YAGO, Freebase and DBpedia have complex structure

with number of entity types and relation types might be up

to thousands. These KGs are considered rich-schematic

KGs with complicated KGNS. For rich-schematic KGs,

KGNS is really necessary for understanding possible

occurred direct relation types between multiple entity types

as well as defining semantic paths between pairwise enti-

ties. With the KGNS of a given KG, we can easily identify

set of direct relation types can be occurred between two

entity types as well as interconnected paths/sequence of

relations. In a KG, two entities might be connected by not

only direct relations but also via indirect sequential rela-

tions which carry out rich-semantic meanings.

Definition 4 Knowledge Graph Network Schema (KGNS):

For a given KG, denoted as G ¼ V ;E;/;w a KGNS is

formally defined as a tuple, with: AG;RG; EG;PG where

AG,AG ¼
S

v2V / vð Þ and RG; RG ¼
S

e2E wðeÞ are entity

types and relation types which appear in the given KG

(G).EG and PG present for sets of direct relations and

indirect relations in form of meta-paths (Definition 5)

between entities in a given KG (G)

Definition 5 Meta-path ðPÞ [30]: It is defined as

sequential relations between two entity types, normally a

meta-path is defined as symmetric with same source and

target entity type. A meta-path with (l)-length is defined in

form of P ¼ A1!R1 A2!R2
. . .!Rl Alþ1, where

A1;A2. . .Alþ1 2 A and R1;R2. . .Rlþ1 2 R are entity

types and relation types which are occurred in given meta-

path P, respectively.
In a KG, the indirect sequential relations/paths between

entities which are written as v1!e1 v2. . .!el vlþ1. These

indirect sequential paths connect two entities can be for-

mulated as “meta-paths” (Definition 5). Beside the aspect

of carrying rich-semantic meanings of relations between

entities, the number of possible meta-paths also corre-

sponds to distinctive features. In order words, existing

meta-paths carry the real-world structural complexity of a

given KG. There are some rich-schematic KGs, such as

YAGO and Freebase, which the number of meta-paths

which are possibly defined and might be much larger than

simple-schematic KGs, such as DBLP and MovieLens.

Between two same-typed entities, we might have multiple

meta-paths with different length. In approach of hetero-

geneous network analysis and mining tasks, such as simi-

larity search task, given meta-paths between entities are

mostly defined by users in order to achieve different out-

puts. Or in other words, meta-paths are patterns of

depending on querying purposes of the users. By applying

user-specified meta-paths in KG embedding, we can flex-

ibly utilize the entity representation outputs following the

needs of retrieval tasks. In our W-KG2Vec model, instead

of using all directed relation between entities in all KG’s

triples, the user-specified meta-paths will be used to train

the KG’s entity representation model.
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In this paper, we propose a meta-path-based KG

embedding technique which contains two modules. The

first module is in charged for learning the representation of

entities’ textual descriptions by applying collaborative self-

attention of BERT to learn the sentence-level representa-

tion then combining with LSTM encoder to produce the

final representations of given entities’ textual descriptions.

This module is called BERT-Text2Vec. Next, for each

entity in the given KG, we used the meta-path-based ran-

dom walk mechanism to generate set of contextual entities

which will be used for embedding model training process.

The random walks on each entity will be controlled by the

calculated similarity weight of that entity with its neigh-

bors. Finally, the representation model is optimized by

applying heterogeneous negative sampling with SGD.

3.2 BERT-Text2Vec: sequential textual data
representation learning approach

The main goal of proposed BERT-Text2Vec in this paper

is to learn the textual description representation of entities

in a given KG. The textual description of each entity can

provide supplementary information for entity’s concept

disambiguation (e.g., “JFKAirPort” with “JFKPerson,”

“blackberrycompany” with “blackberryfruit”) as well as text-

based similarity evaluation (e.g., “Bengal tigeranimal” with

“Sumatran tigeranimal,” “ParisLocation City” with

“LyonLocation City” etc.). In fact, textual descriptions of

entities in KGs are in form of long-text documents with

multiple long sentences. Unfortunately, recently BERT

pre-trained models have not yet been fine-tuned for long-

text documents (larger than 512 words/tokens), so we need

to propose a new approach for learning the representation

of textual descriptions of entities in KGs, called BERT-

Text2Vec. The BERT-Text2Vec is a combination of BERT

pre-trained model with bidirectional LSTM encoder to

fulfill long-text representation learning task.

3.2.1 Sentence representation learning with BERT pre-
trained model

At first, we split each textual description (d) of entities in

KGs into multiple (n) sentences, denoted as s,

d ¼ s1; s2; . . .; snf g. Then, we apply the BERT pre-trained

model to learn the representation of each word/token in the

given sentence. Assuming that, for a sentence, we have list

(m), (with m\512) tokenized words (w), denoted as

s ¼ w1;w2; . . .;wmf g. We apply BERT pre-trained

(BERTbase) model to learn the representation of each word

in each sentence. For the original BERT pre-trained model

contains 12 hidden layers, and 768 hidden units. We will

use these output hidden units as the embedding vectors for

words in each sentence. Each word is now represented as

768-dimensional vector, denoted as

w1
�!; w2

�!; . . .; wm
�!� � 2 R768. Then, we apply the Bi-LSTM

architecture with global average pool to form representa-

tion of given sentence, denoted as s~. We construct the Bi-

LSTM with the different parameters (hforward; hbackward) to
reflect the asymmetry of sentence processing. After that the

hidden states of both forward (h~) and backward (h
 
) pro-

cesses are concatenated and apply global average pool to

form the final representation of a given sentence. The

overall sentence representation learning can be described

as following, (see Eq. 1):

h~¼ LSTMð w1
�!; w2

�!. . .wm
�!jhforwardÞ

h
 ¼ LSTMðwm

�!;wm�1���!. . . w1
�!jhbackwardÞ

s~¼ AvgPool h~; h
 h i� � ð1Þ

where

● w is 768-dimensional vector which represents for each

word/token in a given sentence (s) which is achieve

from BERT.

● s~, is d-dimensional vector which represents for the given

sentence, where d is number of LSTM cells which is

used.

● h~ and h
 

are hidden states of forward and backward

processes, respectively.

Our objective of applying BERT for extracting word

embedding in each sentence and forming the sentence

embedding by applying Bi-LSTM technique is to capture

the implicit discourse relations between words in each

sentence. Given (ds) is the initial size of embedding vector

for sentence which is also number setup LSTM cells in

forward and backward flows, the inputs of Bi-LSTM model

are set of 768-dimensional embedded vectors which are

represented for words in the given sentence (s).

Taking 768-dimensional embedded vector of each word

(wi), the Bi-LSTM is used to learn the sequential orders of

words’ representations in both forward and backward

processes. Finally, we concatenate hidden forward and

backward states and apply AvgPool to form a final |ds|-

dimensional representation of given sentence (s). Through

our experimental studies, the use of average pooling can

help to achieve better performance than other vector

combination strategy such as max pool or min pooling.

Through careful evaluations of textual document repre-

sentation via Bi-LSTM encoder, we figured out that the

output latent hidden vectors are quite synthetic, and to

softly aligned and combine the latent representations of

these two hidden state vectors into a final document
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representation vector, average pooling strategy is consid-

ered as a suitable strategy. We conducted extra experi-

ments to compare the performance of max, min and

average pooling strategies on the overall W-KG2Vec

model performance in Sect. 4.3.2.

The overall process of our sentence representation

learning strategy is described in Fig. 5. Our approach of

sentence representation learning by utilizing the sequential

encoding mechanism of Bi-LSTM is inspired from previ-

ous approaches [7, 23]. However, a major difference of our

sentence representation learning strategy in comparing

with previous models is the application of BERT pre-

trained model for achieving the bidirectional word

embedding.

3.2.2 LSTM encoder for long-text document model

In order to capture sequential representation of sentence in

each description of KG’s entity, denoted as d~, we propose a

technique of performing the textual embedding exchange

between sentences through the state transition of recurrent

neural network (RNN) architecture, resulting in a sequence

of sentence states. From the sentence representations which

are achieved by taking average output layer of BERT

embedding, we apply the LSTM encoder to learn the final

representation of given textual descriptions of KG’s enti-

ties. Taking each sentence as each time-step input for

LSTM encoder, the gated state transition operation for the

hidden state hj of (j)-th sentence, denoted as sj can be

defined as the following (see Eq. 2):

ij ¼ r Wi sj
!þ Uihj þ bi

� �
oj ¼ r Wo sj

!þ Uohj þ bo
� �

fj ¼ r Wf sj
!þ Uf hj�1 þ bf

� �
uj ¼ r Wu sj

!þ Uuhi þ bu
� �

cj ¼ ij � uj þ fj � cj�1
hj ¼ oj � tanh cj

� �

ð2Þ

where

● ij, oj and fj present for input, output and forget gates,

respectively.

● W , U and b are model parameters which are optimized

during the training process.

Each embedded sentence will be passed to the given

LSTM encoder and update the model the state transition

process. In particular, the state transition between embed-

ded vectors also consists state transition for each sentence

within the given textual description of entity. In fact, these

state transitions carry out information exchange between a

sentence with all previous sentences that are composed

within an entity’s description. Finally, we take the last

output hidden state of given LSTM encoder as the final

representation for entities’ descriptions in a given KG. The

size of embedded document vectors equal to number of

setup gated LSMT cells.

Fig. 5 Overall strategy of

sentence representation learning

of proposed BERT-Text2Vec

model by applying BERT pre-

trained model with Bi-LSTM

encoder
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In fact, textual data are frequently considered as a

complex structure data where traditional sequential repre-

sentation learning method such as GRU/Bi-GRU seems

unfordable to fully capture latent features of textual doc-

ument. In fact, the use of GRU/Bi-GRU can help to reduce

the training computational effort and time-consuming due

to the smaller number of model’s parameters. However,

our studies in this paper are majorly focused on how to

improve the accuracy performance of KG embedding for

similarity search task, therefore we designed to use the

LSTM as the main textual sequential encoder in our

approach. In Sect. 4.3.2, we also present experiments for

comparing the difference in model’s accuracy performance

between the uses of Bi-GRU and Bi-LSTM.

3.3 W-KG2Vec: text-enhanced meta-path-based
KG embedding approach

3.3.1 Text-based similarity weight between entities

From the representations of textual descriptions of entities

which have been learnt in previous steps, we apply to

cosine similarity to compute the text-based similarity

between entities in a given KG. For any given source entity

(vs) and target entity (vt), the text-based similarity weight,

denoted as wvs vt , is calculated by following equation (see

Eq. 3):

wvs vt ¼
dvs
�!

: dvt
�!

dvs
�!

: dvt
�! ð3Þ

where

● wvs vt , is text-based similarity weight between source

entity (vs) and target entity (vt).

● dvs
�!

and dvt
�!

are textual description representations of

source entity (vs) and target entity (vt) in a given KG,

respectively.

3.3.2 Meta-path-based random walk on KG

After learning the representation of textual descriptions in

given KGs, we apply the meta-path-based random walk to

generate contextual entities for each given entity. Given a

KG, denoted as G ¼ V ;E;/;w, with a defined meta-path

(P). For any starting entity in KG, denoted as vs and next

target node: vt, where vs and vt is in same type,

/ vsð Þ ¼ / vtð Þ, the transitional probability between source

(vs) and target (vt) entities, following the given meta-path

(P) which is denoted as pvs vt ;P. This transitional prob-

ability is formulated by the following equation (see Eq. 4):

where

●
P

i;i2EP s tð Þ
1

jN við Þj, is the sum of transitional probabilities

for meta-path-based walker to travel through all entities

(vi, with O við Þ is out-degree neighbors of vi) (within

given meta-path P) between entity (s) and entity (t).

● wvs vt , is the text-based similarity weight between

source entity (vs) and target entity (vt) which is

calculated by Eq. 3.

● k, the global normalizing constant which help to

normalize the value of transitional probability (p)
within range [0, 1]. Normally, the value of normalizing

constant is calculated for each meta-path-based walk by

taking total transitional probability of all walks via

different path instances of each meta-path.

Semantic-aware meta-path-based random walk (RW)

over KG Our proposed defined random walk mechanism

which are adopted in our previous works [14, 15] is mainly

designed for generating contextual entities of each KG’s

entity which are then used for the network representation

learning process. Our proposed meta-path-based RW

mechanism contains two main types of walks, which are

same-typed walk and different-typed walk. Let’s take a

meta-path: P(place)-C(city)-Ci(country)-C-P in YAGO

knowledge as an example in this case (as illustrated in

pvs vt ;P ¼
with e vs; vtð Þ 62 E

P
Pvs vt

P
i;i2EP s tð Þ

1

N við Þj j þ wvs vt

k
; with / vsð Þ ¼ / vtð Þ 4að Þ

0; with : / vsð Þ 6¼ / vtð Þ 4bð Þ

8><
>:

1

N vsð Þj j ;with e vs; vtð Þ 62 EP 4cð Þ

8>>>>><
>>>>>:

ð4Þ
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Fig. 6 Illustration of meta-path-

based random walk mechanism

in W-KG2Vec model for

generating contextual entities

for each entity in a given KG

Fig. 7 Similar entity search task with different KG embedding

techniques in YAGO-small dataset

Fig. 8 Similar entity search task with different KG embedding

techniques in Freebase-small dataset
Fig. 10 Similar entity search task with different KG embedding

techniques in Freebase-large dataset

Fig. 9 Similar entity search task with different KG embedding

techniques in YAGO-large dataset
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Fig. 6). For walks between [place]-[city] and [city]-[-

country] entities, we randomly select a next neighborhood

node with a distribution of 1
N vsð Þj j (as shown in Eq. 4c). At

the end of each path instance following the given meta-

path, P, we need to re-calculate all transitional probability

between two target-typed entities (in this case is place) to

identify the next target-typed entity for the next move of

our walk via selecting the target-typed node with the

maximum transitional probability (as identified by Eq. 4a)

(Figs. 7, 8, 9, 10). The overall semantic-aware meta-path-

based RW are controlled by predefined walk’s length (l)

and number of walks per node (w) which are applied in

previous studies [22, 29].

Advantages of applying meta-path-based randomwalk on

KG embedding For traditional approach of KG embedding,

all relations between entities (in forms of triples) will be

scanned and taken in consideration during the embedding

process. This is considered as time-consuming task and

needs more computing resources for the large-scaled KG

representation learning process. On the other hand, random

walk is considered a computational efficient approach for

large-scaled KGs in terms of both computing resource and

time requirements. The complexity of storing immediate

same-typed neighbors of each entity is about O Ej jð Þ. For
meta-path-based random walk, it is useful to store the meta-

path-based interconnections between next same-typed

neighbors of every entity with: O a2 Ej jð Þ, where a is average
out-degree of all entities in the given KG. For each entity,

with the (k) number of contextual samples which are needed

for each entity, we can choose a longerwalk-length value, (k)

with: l[ k, which only needs effective computing com-

plexity about: O l
k l�kð Þ

� �
for each contextual sample. After

the meta-path-based randomwalk process in a given KG, we

will obtain a set of contextual entities for each KG’s entity in

form of v; ctf g, with ct presents for a set of same-typed

(t) entities of a given entity (v). Then, similar to the approach

of previous heterogeneous network representation learning

approach such as Node2Vec [22] and Metapath2Vec [29],

we applied the Skip-gram architecture of the well-known

Word2Vec [28] model to generate training set for our pro-

posed W-KG2Vec model. Specifically, considering a KG as

a heterogeneous network with different-typed entities, our

proposed KG embedding model is designed to learn

embedding of different-typed entities over multi-typed

generated entities via meta-paths, therefore we adopted the

previous heterogeneous Skip-gram approach of Dong et al.

in Metapath2Vec [29] to facilitate the heterogeneity of KG

representation learning process.

Application of heterogeneous Skip-gram architecture

From sets of generated contextual entities of each entity in

the given KGs which are extracted by the meta-path-based

random walk mechanism. We apply the heterogeneous

skip-gram sampling technique to learn the representation of

entity. In order to learn the representation of entities in the

given KG, the model is aimed to maximize the probability

of having a set of same-typed contextual entities, denoted

as (c) for specific given entity (v) as following equation

(see Eq. 5):

argmax
h

X
v2V

X
t2TV

X
ct2Nt vð Þ

Prob ctjv; hð Þ ð5Þ

where

● N vð Þ and Nt vð Þ, are the set of neighborhood entities of

(v) and set of neighborhood entities (v) with t-th type,

respectively.

● Probðctjv; hÞ, is the conditional probability of having

context entities (c) which belong to t-th type with given

entity (v).

The given probability of having a set of contextual

entities (ct) goes along with target same-typed entity (v) is

normally defined as a softmax function,

with:Prob ctjv; hð Þ ¼ eXct�XvP
u2V;/ vð Þ¼/ðct Þ

eXct�Xv
, where Xct and Xv

are the row embedding vector of the given entity (v) and

contextual entities (ct), respectively. Then, the sampling

distributions of contextual entities over each given entity

are formulated by the given objective function (as shown in

Eq. 6):

Oct ;vi ¼ logr Xct � Xvð Þ þ
XK
k¼1

logr �Xukt
� Xv

� �
ð6Þ

where

● Xct and Xukt
, stand for the matrix rows of contextual

entities (ct) and set of negative sample entities (ukt ),

respectively.

● ukt , is defined as the k-th negative node which is sampled

for context entities (ct), in heterogeneous sampling

approach the sampling entities: (ukt ) and (ct) are in the

same type, or: (/ ukt
� � ¼ /ðctÞ).

Finally, the overall model’s parameters are estimated by

applying stochastic gradient descent (SGD) with gradients

are updated by the following: Xv ¼ Xv � g
oOct ;vi

oXv
;Xukt

¼

Xukt
� g

oOct ;vi

oX
uk
t

with g is the setup learning rate. In more

details, at the beginning, our model will iterate through all

entities in a given KG to generated the corresponding

contextual entities (ct) for each target entity via our pro-

posed semantic-aware meta-path-based random walk.

Next, we applied the Skip-gram and negative sampling

technique to optimize the probability of occurring same-
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typed contextual entities (ct) for each target entity (v) (as

shown in Eq. 5). Then, we applied the defined learning

objective function (Eq. 6) to retrieve the representations of

entities in a given KG with SGD.

3.3.3 Challenges of optimal meta-path’s length
and ambiguity in KG embedding

Normally, in KG as HIN-based embedding task, we might

encounter challenges related to the long-length represen-

tation of semantic relations between entities in user’

queries. The complexity of user’s queries along with

existing KG’s relations might lead to common problems of

infinite meta-path’s length selection as well as ambiguity in

the semantic representation between entities. Considering

KG as a heterogeneous network with different-typed rela-

tions between entities, such as relations between common

entities like as person (“Emmanuel_Macron,” “Donald

Trump”) and location (“France,” “USA”) and there is no

clue for which relation is important than the others to select

for appropriated meta-path forming. In fact, most of recent

HIN is rich in schematic with hundreds of relation’s types

which leads to difficulties in selecting proper relations for

meta-paths which are used in the embedding process.

Moreover, similar relations between entities also lead to

ambiguity in different formed meta-paths which carried out

different meanings and only some of them can be suit-

able for answering a specific user’s query. If the length of

formed meta-paths is too long, it might lead to problems

related to the time-consuming of overall embedding pro-

cess. Currently, to prevent these problems, we combined a

previous approach of Changping M. et al. [22] for auto-

matically discovering potential meta-paths between speci-

fic entity’s types in KG with human-based knowledge

expert to select proper meta-paths which is considered as a

semi-supervised technique to obtain potential meta-paths

for fulfilling user’s queries. For the practical implementa-

tion of W-KG2Vec model, automatic discovered meta-

paths between all types of entities will be showed for users

to select which are the targeted semantic relations could be

suitable for their queries.

4 Experiments and discussions

In this section, we conduct thorough experiments to

demonstrate the effectiveness of our proposed W-KG2Vec

model. Two well-known benchmark datasets are used in

our experiments, including Freebase and YAGO. We

implement W-KG2Vec with recent state-of-the-art KG

embedding models for solving problem of similarity search

task in KGs. The extensive comparative studies of pro-

posed W-KG2Vec model with well-known KG embedding

baselines show the effectiveness and scalability of our

W-KG2Vec model performance in solving content-rich KG

embedding task.

4.1 Dataset usage

To evaluate the performance of W-KG2Vec model with

different KG embedding baselines, we use two main

standard datasets, which are YAGO-{small, large} and

Freebase-{small, large}. In these two KGs, we collect main

entity types which are used for similar locations/places

searching task, including (see Tables 2 and 3):

For experiments, we used to main datasets and each

dataset has two different versions, as small and large. The

main purposes of using different sizes of each KG in order

to evaluate the influence of KG’s size on the accuracy

performance of each KG embedding model. As shown in

Table 3, the number of extracted entities and relations for

Freebase is quite smaller than YAGO. For the larger

dataset of YAGO, we mainly use for extensive evaluations

the scalability comparison between our proposed

W-KG2Vec and other state-of-the-art KG embedding

models.

4.2 Experimental setups

For textual description of each entity, we collected from

multiple Internet resources, mainly from Wikipedia,

DBpedia (content of “dbo:abstract” and “dbo:comments”

fields). For W-KG2Vec model, we apply the BERT-Tex-

t2Vec model to learn the representation of textual

descriptions, then these representations will be used for

computing the text-based similarity weight wvs vt in next

processing steps. The numbers of vector’s size for sentence

and full-text description representation (number of LSTM

cells) are both established as 128 for all experiments.

For locations/places in each knowledge graph, we

intuitively labeled the level of similarity depending on the

12 tourist purpose aspects, which are: “amusement park,”

“beach,” “historical,” “lake,” “market,” “mountain,” “mu-

seum,” “national parks,” “pagoda,” “street,” “temple” and

“villages.” One tourist location/place might be matched

with multiple aspects, such as “Stonehenge” (Great Britain)

can be labelled as {“historical/prehistoric,” “mountain”},

“Ho
˙
ˆi_An” (Vietnam): {“village,” “historical”, “temple”},

or “Disneyland” (USA): {“amusement park,” “museum”},

etc. Depending on labelled set of matching tourist aspects

of each place we will score the similarity level each two

pairwise locations/places as following (see Table 4):

The range of similarity scores as shown in Table 4 is

adopted from previous studies of network’s node similarity

search task [12, 16, 22]. On two given KGs (YAGO and

Neural Computing and Applications (2021) 33:16533–16555 16545

123



Freebase), we conducted experiments on similar loca-

tion/place-typed entities searching with different KG

embedding models. The embedding vectors which repre-

sented for entities in two KGs are used to calculate the

similarity scores (via cosine similarity) between loca-

tion-/place-typed entities in queries and other same-typed

entities in KGs. To evaluate the results of similar entities

searching task in the given KGs, we use the nDCG (nor-

malized Discounted Cumulative Gain) metric [19]. The

average nDCG@10 (top-10 returned entities), nDCG@15,

nDCG@20 and nDCG@30 of 100 queries for random 100

entities in each KG will be taken as the final results for

comparisons. The use of sliding [k] range value from 10 to

30 in this paper is majorly inherited from previous net-

work’s node similarity search studies which follows the

searching behavior of user in common search engine such

as Google where the returned results in the first three pages

(10 results for each page) are mainly focused. For the

W-KG2Vec model, we implemented an experimental

environment with the following model’s configurations:

For other KG embedding baselines, we applied the

golden configurations of each model from their original

published works, such as STransE [30], PTransE [34], and

RPE [6] (as shown in Table 5). To learn the representation

of given KGs, we apply multiple meta-paths (as shown in

Table 6) to capture the semantic meanings of intercon-

nected relations of similar location/place-typed entities.

We used the default configurations of Word2Vec [20] and

Node2Vec [10] models for our neural network-based

training process with learning rate is 0.025, and number of

training epochs is about 300 for all datasets. For compar-

ative studies with recent KG embedding techniques, we

also implemented directed triple/relation-based KG

embedding (including TransE [1], TransH, TransR,

Table 2 Selected entity and relation types for similar locations/places searching task in YAGO and Freebase knowledge graph

KG

Usage

Selected entity types Relation types

YAGO schema:Country, schema:Place, schema:TouristAttraction, schema:GovernmentBuilding, schema:

Museum, schema:AmusementPark

containedInPlace,

containsPlace

Freebase “Country,” “Location,” “City/Town/Village,” “Amusement Park,” “Tourist Attraction” Contained_by, Contained_by

(reversed)

Table 3 Number of extracted entities and relations which are used in experiments

KG Usage Number of entities Number of relations Number of entity types Number of relation types

YAGO-Small 3,846,790 5,187,731 6 2

YAGO-Large 6,582,779 11,093,421 6 2

Freebase-Small 624,698 1,633,240 5 2

Freebase-Large 1,235,492 3,639,482 5 2

Table 4 Scores for similarity

level of two entities
Score Description

0 Non-relevant

1 Quite relevant

2 Closely relevant

3 Very/highly relevant

Table 5 Configurations for other KG embedding baselines

Parameter Value

Trans-family models [17] (TransE, TransH and

TransR)

STransE

[30]

PTransE

[34]

RPE

[6]

The vector dimension (d) for entity
representation

100 100 100 100

Model’s hyper-parameters (k) 0:01 0:0005 0:005 0.8

Model’s hyper-parameters (c) 2 50 2 5
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STransE [21]) and path-based KG embedding (including

PTransE and RPE) techniques, the joint textual deep

learning-based technique such as J-CNN [12] and BERT-

based KG embedding models: KG-BERT [40] and K-

BERT [19] for solving the same KG embedding tasks in

the same datasets (YAGO and Freebase). For direct rela-

tion-based KG embedding techniques (Trans-family mod-

els and STransE), we apply the direct triples in two given

datasets for training the entities representations. With the

path-based KG embedding models (PTransE and RPE), we

use the same meta-paths which are used in the W-KG2Vec

model as the main training paths—p ¼ ðr1; r2. . .rlÞ-
between entities.

4.3 Experimental results & discussions

4.3.1 Similar entity searching on KG

For similar location-/place-typed entities searching task in

both YAGO and Freebase, we randomly picked up loca-

tion-/place-typed 100 entities and conducted the similarity

searches. The returned entities for each query are sorted by

top-10, top-15, top-20 and top-30 depending on the simi-

larity weights between entities which calculated by cosine

similarity on the embedded vectors of given pairwise

entities. Then, these top-k returned entities were evaluated

and ranked by level of relevance (see Table 4) before

applying the nDCG metric to calculate the query accuracy

score. Finally, the average accuracy scores of 100 queries

were taken as the final results for each embedding tech-

nique. Tables 7 and 8 show the average top-k nDCG

accuracy results for similar location-/place-typed entities

searching task with different embedding models in YAGO

and Freebase KGs, respectively.

For the small version of both two datasets, the experi-

mental results show the outperformance of our proposed

W-KG2Vec model (averagely 70.47% in YAGO and

79.49% in Freebase) in comparing with other state-of-the-

art KG embedding techniques. In general, path-based

methods gain better performance about 10.18% in term of

nDCG metric than direct triple-based KG embedding

techniques. The results implicitly indicate the advantages

of applying paths in better capturing sematic meanings of

relations between entities during the KG embedding task.

Table 6 Used meta-paths for KGs representation learning via W-KG2Vec model

KG

Usage

Meta-paths Semantic meanings

ID Details

YAGO Y-

1
PlacecontainedInPlace! CountrycontainedInPlace Place Same places in a specific country (e.g.,

“Paris,” “Lyon,” etc. in France)

Y-

2
PlacecontainedInPlace! PlacecontainedInPlace Place Same places in a specific place (e.g.,

“Yosemite national park,” “Golden Gate
bridge,” etc. in California, USA)

Y-

3
MuseumcontainedInPlace! PlacecontainedInPlace Museum Museums in a specific place (e.g., “Vietnam

History Museum,” “Áo Dài Museum” in

HCM city, Vietnam)

Y-

4
TouristAttractioncontainedInPlace! PlacecontainedInPlace TouristAttraction Tourist attractions in a specific place (e.g.,

“Ba
˙
ch Mã national park,” “Vo

˙
ng Cảnh

hill,” etc. in Hué̂, Vietnam)

Y-

5
AmusementParkcontainedInPlace! PlacecontainedInPlace AmusementPark Amusement parks in a same specific place

(“Disneyland,” “Universal Studios
Hollywood,” etc. in California, USA)

Y-

6
GovernmentBuildingcontainedInPlace! PlacecontainedInPlace GovernmentBuilding Government buildings in a same place (e.g.,

“Houses of Parliament,” “Palace of
Westminster,” etc. in London, UK)

Freebase F-

1
City/Town/Village

Contained byðreversedÞ! Country
ContainedbyðreversedÞ City/Town/Village Same cities, towns or villages in a specific

country (e.g., “Vernazza,” “Positano,”
“San Gimignano” in Italia)

F-

2
Location

ContainedbyðreversedÞ! Country
ContainedbyðreversedÞ Location Similar to meta-path [Y-1] and [F-1]

F-

4
Tourist Attraction !Contained by reversedð Þ

Location  Contained by reversedð Þ
Tourist Attraction

Similar to meta-path [Y-4]

F-

3
Amusement Park !Contained by reversedð Þ

Location  Contained by reversedð Þ
Amusement Park

Similar to meta-path [Y-5]
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In fact, W-KG2Vec model achieves the better accuracy

performance in Freebase which is considered as a smaller

KG (\1 M entities) than YAGO ([3.8 M entities). In

YAGO dataset, W-KG2Vec reasonably outperforms about

16.08% in comparing with direct triple-based KG embed-

ding methods (TransE—18.09%, TransH—18.11%,

TransR—15.29% and STransE—12.83%) and average

3.65% in comparing with path-based KG embedding

methods (PTransE—5.21% and RPE—2.09%) and J-CNN

(3.92%). For experiments on Freebase dataset, our pro-

posed W-KG2Vec model also slightly improves the accu-

racy in term of nDCG with both direct triple-based (about

9.09%) and path-based KG (2.13%) embedding techniques

and 2.4% for J-CNN technique.

Differently with large version of two datasets, where the

number of entities is more than 2 times the small versions,

the experimental outputs demonstrate a significant

improvement of our proposed W-KG2Vec model in com-

paring with previous KG embedding models (as shown in

Tables 7 and 8). In more details, the W-KG2Vec model

outperforms Trans-family models (TransE, TransH and

TransE) averagely about 21.76%, STransE (15%), PTransE

(12.1%) and RPE (10.56%). Experimental outputs in the

large version of two dataset demonstrate the effectiveness

of our proposed model which can effectively capture richer

semantic of relations between entities in context of large-

scaled KGs.

Furthermore, in comparing with recent BERT-based KG

embedding approaches, such as KG-BERT and K-BERT,

our proposed W-KG2Vec also slightly outperforms aver-

agely 1.31% (K-BERT)—3.98%(KG-BERT) and 3.25%

(K-BERT)—4.97% (KG-BERT) in YAGO and Freebase

datasets, respectively.

4.3.2 Experimental studies on representation learning
approaches for KG similarity search task

The combination of textual and meta-path-based repre-

sentation learning for KG embedding In this section, we

demonstrate experiments related to the comparison

between the use of sequential textual representation

learning with the combined text-enhanced meta-path-based

approach of W-KG2Vec model. Our proposed W-KG2Vec

model is a combination between two modules, which are

BERT-Text2Vec and the meta-path-based network

embedding (MP2Vec) approach which is majorly inspired

from the previous Metapath2Vec model [30]. Figures 11

and 12 demonstrate the separated performance evaluations

of each embedding module in comparing with the com-

pleted W-KG2Vec model for the KG’s entity similarity

search task in YAGO-large and Freebase-large datasets.

As shown from the experiments, the combination

between two embedding modules (BERT-Text2Vec and

MP2Vec) of our proposed W-KG2Vec model can achieve

better performance than separated usage of each embed-

ding approach in the KG’s entity similarity searching task.

Comparison on the uses of GRU/Bi-GRU and LSTM/Bi-

LSTM for sequential textual encoding In Sect. 3.2, we

Table 7 Average nDCG@k

accuracy for different

embedding techniques on

YAGO dataset

Dataset Model nDCG@10 nDCG@15 nDCG@20 nDCG@30

YAGO-small TransE 0.67822 0.62672 0.57921 0.50281

TransH 0.65821 0.63291 0.58271 0.51271

TransR 0.68271 0.64872 0.59281 0.52082

STransE 0.68992 0.65281 0.61281 0.54278

PTransE 0.71062 0.68271 0.66872 0.61721

RPE 0.74261 0.69982 0.67796 0.64072

J-CNN 0.72193 0.68123 0.66921 0.64021

KG-BERT 0.73213 0.71023 0.68029 0.63012

K-BERT 0.75021 0.71023 0.68921 0.65021

W-KG2Vec 0.76261 0.70281 0.69271 0.66082

YAGO-large TransE 0.56281 0.52823 0.51923 0.50291

TransH 0.61923 0.58921 0.56829 0.54231

TransR 0.62912 0.57821 0.54921 0.51023

STransE 0.63921 0.59281 0.57281 0.55231

PTransE 0.64212 0.58291 0.55721 0.54812

RPE 0.65821 0.62913 0.59821 0.56271

J-CNN 0.68232 0.64912 0.57213 0.55921

KG-BERT 0.69201 0.68212 0.63231 0.62892

K-BERT 0.72912 0.70192 0.67812 0.62012

W-KG2Vec 0.73923 0.71291 0.68821 0.64213
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present the use of LSTM/Bi-LSTM sequential textual

encoder to learn representations of words/sentences in each

textual document which is associated with each KG’s

entity. However, there is a question of which type of

sequential textual encoder can suitable for our proposed

model in order to each the highest accuracy performance in

similarity search task. We implemented our W-KG2Vec

with two types of sequential textual encoders which are

W-KG2Vec-LSTM and W-KG2Vec-GRU.

Experimental outputs (as shown in Figs. 11 and 12)

demonstrate the use of LSTM can achieve better perfor-

mance than GRU approximately 18.45% in terms of

nDCG@k metric for both YAGO and Freebase dataset.

This output proves that LSTM could be the best sequential

textual encoder for our proposed W-KG2Vec model

(Figs. 13, 14).

Comparison on the uses of different vector combination

strategies In this section, we study the influence of dif-

ferent vector pooling strategies, which are denoted as max

pooling, min pooling and average pooling on the overall

W-KG2Vec model accuracy performance. Three versions

of W-KG2Vec model are implemented corresponding to

different pool strategies (W-KG2Vec-AvgPool,

W-KG2Vec-MaxPool and W-KG2Vec-MinPool) to

demonstrate the differences of model’s accuracy perfor-

mance in similar entity search task in both YAGO and

Freebase. Figures 15 and 16 present that the use of the

average pool strategy in the sequential textual representa-

tion learning process can help our proposed W-KG2Vec

model can achieve the highest accuracy performance in

both YAGO and Freebase datasets.

4.3.3 Text-based similarity weight studies via different
textual embedding techniques

The W-KG2Vec model mainly applied the textual repre-

sentation of BERT-Text2Vec which is a combination of

BERT pre-trained model and LSTM encoder. To demon-

strate the outperformance of this combination in comparing

with recent common textual representation learning

Table 8 Average nDCG@k

accuracy for different

embedding techniques on

Freebase dataset

Dataset Model nDCG@10 nDCG@15 nDCG@20 nDCG@30

Freebase-small TransE 0.76828 0.73281 0.69829 0.67891

TransH 0.77621 0.72712 0.70281 0.66873

TransR 0.78068 0.73271 0.72472 0.69281

STransE 0.77271 0.74872 0.73928 0.71621

PTransE 0.81293 0.78927 0.75271 0.73521

RPE 0.82687 0.79562 0.77056 0.74392

J-CNN 0.81023 0.79231 0.78231 0.72023

KG-BERT 0.83213 0.78621 0.75201 0.71023

K-BERT 0.80219 0.79392 0.76921 0.72012

W-KG2Vec 0.83727 0.80726 0.78261 0.75261

Freebase-large TransE 0.61823 0.60192 0.58291 0.53021

TransH 0.62912 0.59021 0.57821 0.54912

TransR 0.64213 0.60291 0.58213 0.56728

STransE 0.66271 0.65921 0.60192 0.57281

PTransE 0.68721 0.65221 0.62182 0.59972

RPE 0.69281 0.67281 0.63821 0.59281

J-CNN 0.71023 0.68923 0.64021 0.60923

KG-BERT 0.71923 0.69212 0.68291 0.63921

K-BERT 0.76021 0.72123 0.70123 0.67821

W-KG2Vec 0.78291 0.74921 0.72921 0.69819

Fig. 11 Comparative studies between W-KG2Vec model with

separated embedding modules (BERT-Text2Vec and MP2Vec) in

YAGO-large dataset
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techniques, such as topic modeling—Latent Dirichlet

Allocation (LDA), Word2Vec and Doc2Vec, we imple-

mented W-KG2Vec with different textual representation

learning mechanisms to solve the same similar entities

search task. The details of different textual representation

learning implementations for W-KG2Vec are described as

the following (as shown in Table 9):

To evaluate the performance of each textual represen-

tation learning techniques, we varied the size of two given

KGs (YAGO and Freebase) from 10 to 100%. Each mod-

ified implementation of W-KG2Vec (described in Table 9)

is applied to solve similar entities search task and reported

the accuracy performance in terms of nDCG@30.

Tables 10 and 11 present the accuracy outputs for each

textual representation learning implementation of

W-KG2Vec in terms of nDCG@30 on YAGO-small and

Freebase-small datasets.

The experimental results (Figs. 17 and 18) demonstrate

the effectiveness of applying our proposed BERT-Tex-

t2Vec for textual representation learning in comparing with

recent well-known embedding techniques (LDA, Word2-

Vec and Doc2Vec). In fact, previous textual representation

learning techniques are lack of evaluations on the

sequential relations between words in different document’s

contexts, therefore it leads to the significant decrease in the

quality of textual representation outputs. In overall, the

original W-KG2Vec implement with BERT-Text2Vec

based textual representation learning outperforms about

5.63% (YAGO) and 5.78% (Freebase) other textual

embedding techniques.

4.3.4 Parameter sensitivity studies

Model’s parameters of network representation learning

process In this section, we demonstrate experiments on the

influence of model’s parameters, including the walk length

Fig. 12 Comparative studies between W-KG2Vec model with

separated embedding modules (BERT-Text2Vec and MP2Vec) in

Freebase-large dataset

Fig. 13 Comparative studies between different types of sequential

textual embedding techniques for W-KG2Vec model in YAGO-large

dataset

Fig. 14 Comparative studies between different types of sequential

textual embedding techniques for W-KG2Vec model in Freebase-

large dataset Fig. 15 Comparative studies between different types of vector

combination strategies for W-KG2Vec model in YAGO-large dataset
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(l), number walk per node (w) and the dimension of

embedding vector (d) on KG’s embedding task in YAGO-

small dataset. Following the same experimental procedure

on similar entities searching task in YAGO-small, we

varied the values of walk length (l), number walk per node

(w) and embedding vector dimension (d) and reported the

changes on proposed W-KG2vec’s accuracy performance

in terms of nDCG@30 metric.

We conducted multiple experiments on similar entities

search task with different values of model’s parameters.

Figure 19 shows the experimental outputs for similar

entities search task as the function of each of three model’s

parameters while fixing the other two parameters. From the

results, we observe the performance of our proposed W-

KG2Vec model is gradually improved by increasing the

number of walk per node (w). The model’s accuracy per-

formance becomes stable when number of walk per node is

going above 800. Similar to that, the increase of walk

length (l) parameter also leads to significant improvement

on overall model’s accuracy which is stable at above 120.

The number of node and walk length parameters is con-

sidered as important in the aspect of semantic meaning

capturing between entities in KGs. The higher setup

number of (w) and (l) values are equal to higher number of

contextual entities which are generated for each target

Fig. 16 Comparative studies between different types of vector

combination strategies for W-KG2Vec model in Freebase-large

dataset

Table 9 Details of different textual representation learning implementations for W-KG2Vec

Implementation Description Configurations

W-KG2Vec

(original)

This implement is setup with the default BERT-Text2Vec model for textual representation

learning

Same configurations which are

descried in Table 12

W-KG2Vec-

LDA

We used the LDA topic model to learn the topic representations of given text corpus in two

given datasets with the initial number of latent topics is 10 (k ¼ 10)

Model’s parameters:

Number of latent topics: 10

(k ¼ 10)

Number of words per latent

topic: 20

W-KG2Vec-

Word2Vec

Separated words in textual descriptions of two given KGs are learnt by applying well-

known Word2Vec model. Then, these word embedding vectors will be used to form the

full-text descriptions of entities by taking the average vector of all words which are

occurred in the given descriptions

Model’s parameters:

Window size (w): 5

Negative sampling batch size: 5

Word embedding dimension (d):
128

W-KG2Vec-

Doc2Vec

For this implementation, we used the well-known Doc2Vec model to learn the textual

representations of entities’ descriptions in two given datasets. For experiments with

Doc2Vec model, we used both Distributed Memory (DM) and Distributed Bag-Of-

Words (DBOW) implementations on the same dataset and reported the average results of

both two approaches as the final experimental output

Model’s parameters:

Window size (w): 5

Document embedding dimension

(d): 128

Table 10 Evaluations of different textual representation learning implementations for W-KG2Vec on YAGO

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

W-KG2Vec-LDA 0.78921 0.77281 0.74281 0.73821 0.71207 0.68261 0.67261 0.66982 0.65078 0.64281

W-KG2Vec-Word2Vec 0.82108 0.81995 0.79021 0.76281 0.73526 0.70281 0.69787 0.67521 0.66872 0.66271

W-KG2Vec-Doc2Vec 0.81828 0.80821 0.80821 0.75281 0.72617 0.69281 0.68271 0.66852 0.65087 0.64071

W-KG2Vec 0.83215 0.83018 0.81722 0.77261 0.75627 0.73281 0.72891 0.71978 0.70972 0.70572
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entity. In fact, for the training set generation process of our

proposed W-KG2Vec model, each generated set of con-

textual entities of each target entity is majorly controlled

by these two parameters which ensure the size of generated

contextual entities is large enough to guarantee the quality

of learnt entity embedding vectors.

For the embedding vector dimension parameter (d), we

can see that when the embedding dimension is larger than

130, the accuracy performance of our proposed W-

KG2Vec model reaches the highest value and become

stable. The chosen number of embedding dimension for

entities is also important which can influence the perfor-

mance of overall representation learning process. With too

high value of (d), our model will need more time as well as

computer’s resource to complete the training process. In

order words, the configured dimensionality of embedding

vector is quite important in network/KG embedding

approach which is frequently chosen heuristically by

evaluating the size and actual distinctive feature of entities

in the given KG.

Different textual embedding approaches for W-KG2Vec

model In previous section, we have demonstrated studies

related to the use of different textual embedding models

beside the BERT-Bi-LSTM, including LDA, Word2Vec

and Doc2Vec models. To thoroughly evaluate the changes

of model’s hyperparameters, including the size of embed-

ding vector dimensionality (Bert-Bi-LSTM, Word2Vec

and Doc2Vec) and number of latent topics (LDA). As

shown from experimental outputs in Fig. 20, our proposed

W-KG2Vec model reaches the highest and stable accuracy

performance with the value of embedding vector dimen-

sionality (d) at range [ 110 for Bert-Bi-LSTM approach,

[ 80 for both Word2Vec and Doc2Vec approaches. With

the approach of LDA topic modeling, the model also

reaches the highest accuracy performance with number of

latent topic (k) is over 8.

4.3.5 System performance and scalability evaluations

In the era of big data with tremendous large-scaled KGs, it

is important to demonstrate the efficiency and scalability of

the proposed KG embedding model. To evaluate the effi-

ciency and scalability of our proposed W-KG2Vec model,

we conducted experiments with default configurations (as

shown in Table 12) on a single server with Intel® Xeon®
E7-8890 v4 CPU—24 cores CPU and 64 Gb memory. We

ran the experiments with different number of threads from

1 to 24 and reported the speedup rates with respect to

number of threads usage. In this experiment, we used

YAGO-{small, large} which is considered as a quite large

KG with more than 3.8 M entities and 5.1 M relations as

the main dataset. Figures 21 and 22 show the average

Table 11 Evaluations of different textual representation learning implementations for W-KG2Vec on Freebase

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

W-KG2Vec-LDA 0.80295 0.79741 0.76552 0.7455 0.74111 0.70325 0.69121 0.67993 0.67511 0.66207

W-KG2Vec-Word2Vec 0.82885 0.82823 0.8077 0.76929 0.74474 0.72354 0.72649 0.69333 0.69026 0.67195

W-KG2Vec-Doc2Vec 0.83889 0.83632 0.83278 0.76772 0.73829 0.70781 0.69429 0.68088 0.67034 0.65394

W-KG2Vec 0.83995 0.84175 0.83532 0.79589 0.76764 0.74709 0.75684 0.7397 0.73864 0.75297

Fig. 17 Comparisons of different textual representation learning

implementations for W-KG2Vec on YAGO

Fig. 18 Comparisons of different textual representation learning

implementations for W-KG2Vec on Freebase
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speedup rate of our proposed W-KG2Vec model over

multi-threaded running environment in two versions of

YAGO dataset. As shown from the experimental outputs,

the W-KG2Vec model achieves an acceptable sub-linear

speedup rate which is quite close to the optimal line.

Overall, this experiment demonstrates that our proposed

W-KG2Vec model is efficient and scalable for handling

large-scaled KGs with millions of entities and relations.

5 Conclusions and future works

In this paper, we formally present a novel approach of text-

enhanced KG representation learning, called W-KG2Vec.

In context of heterogeneous network with diverse types of

entities and relations, KG embedding is considered as a

challenging task for complex similar searching/querying

task. A common technique for solving the complex entities

searching in KGs is modelling user’s queries as meta-path-

based patterns. However, most of well-known KG

embedding techniques are considered as direct relation/

triple-based approach which is incapable to handle com-

plex similar entities searching task. Other recent path-based

KG embedding techniques are also lack of thorough eval-

uations on textual semantic meanings as well as diverse

types of relations between KG’s entities which leads to the

decrease in quality of KG representation. To address these

challenges, we proposed a joint textual representation

learning with weighted meta-path-based random walk

mechanism to leverage the accuracy performance of KG

embedding task. The introduction of BERT-Text2Vec is

our first contribution in this paper. BERT-Text2Vec is a

combination of BERT pre-trained model and LSTM

encoder which is aimed to learn the bidirectional sequential

representations of textual descriptions of KG’s entities.

Then, these textual representations are used to compute the

text-based similarity weights of pairwise entities in the

given KGs. The computed text-based similarity weights

between entities play an important role in our proposed

weighted meta-path-based random walk strategy. The

weighted meta-path-based random walk mechanism

Fig. 19 Parameter sensitivity studies on W-KG2Vec model

Fig. 20 Parameter sensitivity studies on different textual embedding approaches for W-KG2Vec model

Table 12 Experimental setup parameters for W-KG2Vec model

Parameter Value

Size of negative sampling (n) 5

Number of random walk (RW) start at each entity (c) 80

The walk length (l) 100

The vector dimension (d) for entity representation 128

Number of walks per entity (w) 800

Neural Computing and Applications (2021) 33:16533–16555 16553

123



supports to generate contextual entities for each entity in

KGs which are used for training the representation model

by applying heterogeneous skip-gram method. Extensive

experiments on benchmark datasets demonstrate the capa-

bility of W-KG2Vec model on better handling complex

entities searching/querying task in comparing with recent

state-of-the-art KG embedding baselines. Our future works

include various improvements which are mainly related to

model’s scalability. We tend to extend our proposed

W-KG2Vec model to incorporate with the distributed

processing platform such as Apache Spark which enable

the capability of handling massive KGs with billions of

entities and uncountable relations.
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