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Abstract
According to statistical reports, thermal power plants have long played a critical role in supplying electricity using fossil

fuels. However, due to the high investment and operation costs of these power plants and their destructive effects on the

environment, renewable energy sources (RESs) in power networks have been considered an effective alternative to

traditional power plants. Optimal scheduling of microgrid in smart grids has a significant impact on reducing energy

consumption, environmental pollutants and end-user’s energy prices. In this paper, the influence of plug-in hybrid electric

vehicles (PHEVs) charging on microgrids’ optimal operation is evaluated. To assess the behaviour of PHEVs, three various

charging patterns consisting of uncontrolled, controlled and smart charging methods are considered. Uncertainties due to

forecast error in the PHEVs, loads, prices and renewable source output power are also considered in microgrid modelling

energy management. To deal with the optimisation scheduling of microgrid considering uncertainty, a modified harmony

search (MHS) algorithm is used. The suggested scheme is validated using simulations and without the PHEV charging

effects compared with the conventional methods.
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List of symbols
tstart Start time of PHEV charging

BGi Bids of the DGs

Bsj Bids of storage devices

SG Start-up or shutdown costs for ith DG

Ssj Start-up or shutdown costs for jth storage

PGrid Active power

PGrid Utility bid

X Control vector

n State variables

Ng Total number of generation units

Ns Total number of storage units

Pg Power vector including active powers

Ug State vector

PGi(t) Real power outputs of ith generator

Psj(t) Real power outputs jth storage

PLk Value of the load level k

Nk Load levels

Dt Available energy in the battery at each time

slot

Wess,t Intertemporal feature

t Current number of iterations

PS,charge Charging power

PS,discharge Discharging power

max Upper bounds

min Lower bounds

gcharge Efficiencies in the charging modes

gdischarge Efficiencies in the discharging modes

Xr Random position vector

Xw Worst frog position between (0, 1)

Xb Best frog position between (0, 1
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1 Introduction

According to statistical reports, thermal power plants have

long played a critical role in supplying electricity using

fossil fuels. However, due to the high investment and

operation costs of these power plants and their destructive

effects on the environment, the use of renewable energy

sources (RESs) such as wind turbines (WTs) and photo-

voltaics (PVs) in power networks has been considered as an

effective alternative to traditional power plants [1]. The

presence of RESs as clean and high-efficiency power plants

has broadened new horizons in cheap electricity genera-

tion. These RESs can form microgrids (MG) combined

with flexible loads and storage devices [2, 3]. MGs can be

used in grid-connected and island modes; therefore, control

and management systems must be designed for each mode

[4]. Each distributed generation can play an influential role

in the optimal operation and high efficiency of both MGs

and the main grid. MG management’s principal aim is to

calculate the optimal production of each RES to minimise

operating costs and maximise the participation of resources

in the electricity market [5]. However, one of the signifi-

cant problems in MGs’ optimal operation is the intermittent

output of RESs due to weather condition changes [6].

Therefore, considering the uncertainties in the output of

RESs and the uncertainties in the load is one of the most

important issues that should be considered in MGs’ optimal

scheduling.

So far, various articles on the optimal scheduling of

MGs are published. In [7], MGs’ optimal operation is

evaluated by considering their resources’ erratic behaviour.

In this article, MGs’ optimal scheduling has been done by

considering the resources’ uncertainties and reducing costs

and losses. Liu et al. [8] suggest an optimal MG operation

consists of RESs, storages and controllable distributed

generations (DGs) and load in a resurrected power system.

The main purpose of this article is to control the Generation

and consumption of DGs to organise the import and export

of energy in the MG to minimise costs.

Niknam et al. [9] propose optimal management for an

MG comprise several DGs. The objective function of this

study is to minimise losses, costs and voltage distortions. In

[10], MGs’ day-ahead scheduling to maximise distribution

companies’ profit and minimise MGs’ operating costs has

Table 1 Different states of PHEV charging

Levels Maximum power (kW)

1 1.44

2 11.5

3 86

4 (DC) 240

Fig. 1 Flow chart of the proposed method
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been evaluated. Optimal scheduling is also presented for a

grid-connected MG in [11]. The proposed model is

implemented based on cost and benefit to improve the

efficiency of the MG. In [12], optimising MGs’ perfor-

mance to maximise MGs’ profit in the uncertain electricity

energy market has been investigated. In this paper, MGs’

role in reducing electricity prices, increasing reliability and

reducing operating costs is investigated. Optimal schedul-

ing for the MG, including RESs and hybrid vehicles, is

given in [13, 14]. The uncertainties in this paper are

modelled using the Monte Carlo simulations. In [15, 16], to

maximise the profit and enhancement in ancillary services

in the energy market, an arrangement among various

sources including pumped storage hydro-power plant, PV

Fig. 2 MG structure

Table 2 Costs and limitations of DGs [6, 7]

MT FC PV WT Utility Bat

PMin kw 6 3 0 0 - 30 - 30

P Max kW 30 30 25 15 120 30

Bid €ct/kWh 0.457 0.294 2.584 1.073 – 0.38

SUD/SDC €ct 0.96 1.65 – – –
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and WT is made. The uncertainties in the output of sources

and the price are also modelled.

According to the reviewed papers, although much

research has been done on MGs’ optimal scheduling, one

of the main disadvantages of the aforementioned work is

the lack of PHEVs. Given the recent developments in

PHEVs, it is expected that they will play a significant role

in the future of MGs [17, 18]. In [18], the performance of

EVs and RESs in the power system is investigated. The

impact of PEVs on the power system on reducing envi-

ronmental pollution has been assessed in [19, 20]. Due to

the increasing influence of PEVs in power networks, the

negative effects of uncertain behaviour of them are eval-

uated in [21]. According to the statistics, it is expected that

PEVs can reach 20% of the US car market by 2030 [22].

Besides, the charging and discharging capability of PEVs

make them effective to exchange power with the main grid

as ancillary services. PEVs can also play the role of bat-

teries to deal with the intermittent nature of the RESs and

provide more power quality and reliability for the power

system. MGs can also use PEVs as the storage to provide a

stable and secure power when the output of RESs are

fluctuated [23]. PEVs are also capable of participating in

the market and provide ancillary service with arbitrage

[24].

To deal with MGs’ optimal operation with RESs and

PHEVs, a robust optimisation is used for minimising the

operational cost while considering the risk management

[25]. Day-ahead scheduling for an MG consisting of

PHEVs, storage devices and RESs using symbiotic

organism search (SOS) algorithm is suggested in [13]. This

optimisation aims to minimise local units’ operational cost

and reduce the cost of interaction between the main grid.

To minimise energy costs not supplied, reliability and

power supply for loads and PHEVs, an optimal operation

for a MG using the bat algorithm is given in [26]. The

optimal operation of a MG containing vehicle to grid

(V2G) technology is solved to minimise the operational

cost in [27]. In [28, 29], the V2G is used to enhance an

islanded MG’s performance under unbalanced conditions.

This paper aims to meet market participation with risks,

while it improves the economic and environmental

advantages. In [30], the sitting and sizing of V2G in a MG

are investigated.

One of the main challenges of PHEVs is the optimal

time management for charging. If the optimal charging

time is not achieved, the MG cannot supply the charging

demand, and the cost of operation is increased. Therefore,

this study is focused on the charging influence of PHEVs

on the MG operation. To achieve this goal, three various

charging patterns consisting of uncontrolled, controlled and

smart charging patterns are taken into account. The paper

suggests an effective methodology to shift the charging

demand of PHEVs from peak times to light loads. The

increasing integration of PHEVs in the MG can decrease

the MG cost. Due to PHEVs’ stochastic behaviour, it is

needed to investigate the effect of high penetration of them

into the MGs. The probability density functions (PDF) is

used for modelling uncertain parameters. Monte Carlo

simulation (MCS) is also used to model the uncertainties of

PHEVs in the MGs. To address the nonlinear optimisation

problem, the MHS algorithm is used.

The paper’s organisation is as follows: Three different

plans for charging PHEVs are given in Sect. 2. Section 3

contains the mathematical representation of the problem.

The optimisation algorithm is suggested in Sect. 4, and the

modification approach and the way it applies are thor-

oughly described as well. A comprehensive comparison is

made in Sect. 5 between the MHS algorithm and other

algorithms. Furthermore, the impacts of PHEVs integration

are investigated in this section. Lastly, Sect. 6 includes the

conclusions of the paper.
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Fig. 5 a and b Power generation of units, disregarding the PHEVS—Scenario 1. c Simulation time of Scenario 1
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2 Charging behaviour of PHEVS

The load demand in PHEVs relies on various aspects,

including the distance, departure and arrival times, battery

capacity, the state of charge (SOC), the present charge

level and the charging algorithm. In this part, uncoordi-

nated charging (UC), coordinated charging (CC) and smart

charging (SC) patterns are evaluated.

2.1 Uncoordinated Charging

In this section, it is assumed that PHEVs leave morning and

return home in the afternoon. So, most PHEVs start

charging when they get home, around 6:00 P.M. The PDF

with a uniformly distributed feature can be presented as

[22]:

f ðtstartÞ ¼
1

b� a
a� tstart � b a ¼ 18; b ¼ 19 ð1Þ

2.2 Coordinated Charging

Light load conditions are considered for charging of

PHEVs in this pattern. In other words, the charging process

is done when the energy price is low, after 9.00 P.M. The

PDF for this part can be given as:

f ðtstartÞ ¼
1

b� a
a� tstart � b a ¼ 21; b ¼ 24 ð2Þ

2.3 Smart Charging

In this part, the charging process is done when these exist a

surplus in the power generation where the energy tariff is

low. It is accomplished based on interest between PHEV

owners and the power grid. The PDF of this pattern is:

f ðtstartÞ ¼
1

r
ffiffiffiffiffiffi

2p
p e ��1

2

tstart�l
rð Þ2

� �

l ¼ 1 ; r ¼ 3 ð3Þ

The PDF of the daily driven miles can be given as:

f ðmÞ ¼ 1

mrm
ffiffiffiffiffiffi

2p
p e

� ln mð Þ�lmð Þ2

2rm2 m�0 ð4Þ

The ratio of energy in a battery to the capacity is called

the SoC of a PHEV. It is calculated based on the distance

and the vehicle AER (the maximum distance travelled in

the electric mode). The SOC can be given as:

SoC ¼
0 m�AER

AER� m

AER
� 100% m�AER

8

<

:

ð5Þ

The initial SOC, final SOC and vehicle’s battery

capacity play a key role in the needed energy for charging

PHEVs. The required energy for charging PHEVs is

received from the main grid based on the desired charging

algorithm as:

tD ¼ Cbat � ð1� SOCÞ �MaxDOD

g� P
ð6Þ

According to the internal power management scheme of

PHEVs, the MaxDOD is calculated. P denotes the charging

rate determined by the type of charger. P and g form a limit

for the PHEV charging period, while g is the charger

efficiency. The rates of various types of chargers are rep-

resented in Table 1 [25, 27].

3 Formulating of problem

Here, the objective function and the considered constraints

are given to achieve optimal operation for the MG.

3.1 Cost of energy

The MG is responsible for meeting the loads in all condi-

tions using the DGs and storages or the main grid. Firstly,

the MG should try to supply loads using their own DGs and

storages at the minimum cost. However, if the inside

sources cannot meet the loads, it is necessary to buy power

from the utility grid. However, when the electricity tariff is

low, it is more profitable for the MG to buy power from the

utility grid and keep its sources at minimum capacity. It is

also more economical for storage devices to store energy

when the tariff is low and utilise it at peak load conditions.

To achieve an ecumenical operation with the minimum

cost, MG central control (MGCC) is in charge of opti-

mising the following cost function [16, 31, 32]:

Table 3 Comparison of costs

Method Std (€ct) Mean (€ct) WS (€ct) BS (€ct)

GA [6, 7] 13.442 290.432 304.588 277.744

PSO [6, 7] 10.182 288.876 303.379 277.323

FSAPSO [6, 7]] 8.33 280.684 291.756 276.786

CPSO-T [6, 7] 6.234 277.404 286.54 275.045

CPSO-L [6, 7] 5.969 276.332 281.118 274.743

AMPSO-T [6, 7] 0.321 274.982 275.09 274.55

AMPSO-L [6, 7] 0.092 274.564 274.731 274.431

HS 0.9521 265.954 267.671 264.507

MHS algorithm 0.7 263.615 263.987 262.784
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Min f ðxÞ ¼
X

T

t¼1

Costt

¼
X

T

t¼1

X

Ng

i¼1

uiðtÞpGiðtÞBGiðtÞ þ SGi uiðtÞ � uiðt � 1Þj j½ �
(

þ
X

Ns

j¼1

ujðtÞpsjðtÞBsjðtÞþ

Ssj ujðtÞ � ujðt � 1Þ
�

�

�

�þ PGridðtÞBGridðtÞ

" #)

ð7Þ

The ON/OFF condition of DGs are:

X ¼ Pg;Ug

� �

1�2nT

Pg ¼ PG;Ps½ �
n ¼ Ng þ Ns þ 1

ð8Þ

where

PG ¼ PG;1;PG;2; :::;PG;Ng

� �

PG;i ¼ PG;ið1Þ;PG;ið2Þ; :::;PG;iðTÞ
� �

i¼ 1;2; :::;Ng þ 1

Ps ¼ Ps;1;Ps;2; :::;Ps;Ns

� �

PS;i ¼ PS;jð1Þ;PS;jð2Þ; :::;PS;jðTÞ
� �

j¼ 1;2; :::;Ns

ð9Þ

3.2 Limitations

3.2.1 Generation and consumption balance

The MGCC is responsible for balancing the Generation and

consumption in the MG. It should be noted that PHEV

charging demand is considered as variable loads [6, 7].

Table 4 Cost function comparison

Method Std (€ct) Mean (€ct) WS (€ct) BS (€ct)

GA 16.6365 335.9641 344.1411 333.7594

PSO 12.1344 330.6371 339.2623 326.3611

FSAPSO 9.4261 330.4697 334.2671 325.4651

HS 3.2176 306.8812 309.0761 306.3614

MHS algorithm 0.007 300.1749 300.1074 297.8513
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X

Ng

i¼1

PG;iðtÞþ
X

Ns

j¼1

Ps;jðtÞþ
X

Ng

i¼1

PGridðtÞ

¼
X

NL

k¼1

PL;kðtÞ þ
X

NPHEV

l¼1

PPHEV;lðtÞ
ð10Þ

3.2.2 Generation capacity

The generation capacity for each DG is limited by [16]:

PGi;minðtÞ�PGiðtÞ�PGi;maxðtÞ
Pgrid;minðtÞ�PGridðtÞ�Pgrid;maxðtÞ

ð11Þ

3.2.3 Battery charging/discharging limits

Batteries can inject power at time t into the MG based on

the amount of power stored in the last hours. The charging

or discharging process of batteries are based on the specific

rates as [6]:

WessðtÞ ¼ Wess t � 1ð Þ þ gchargePs;chargeDt

� 1

gdischarge
Ps;dischargeDt

Wess;min �WessðtÞ�Wess;max

Ps;chargeðtÞ�Pcharge;max

Ps;dischargeðtÞ�Pdischarge;max

8

>

>

<

>

>

:

ð12Þ

3.3 Stochastic framework

To model the uncertain considerations in the MG’s optimal

scheduling, it is required to select a proper method. The

uncertain parameters include the output power of WT and

PV system, fluctuations in the loads, electricity price and

PHEV charging demand. So far, many stochastic approa-

ches have been suggested for modelling the uncertainties in

the problem. Among various methods, MCS received

considerable attention in recent years. It is implemented

based on generating in which each scenario denotes a

probable position with inaccuracies. The parameters of the

MCS are PDF for forecast errors.
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4 MHS algorithm

The harmony search (HS) is a nature-inspired algorithm

that mimics music players’ improvisation and is recom-

mended by Geem and Kim [31, 32]. The harmony in music

is similar to the optimisation solutions, and the musician’s

improvisations are like the local and global search patterns.

In this algorithm, a stochastic random search is used in

preference to a gradient search. It applies harmony memory

(HM) by considering the rate and pitch adjustment rate to

find solutions in the search space. In this scheme, to

determine the optimal value of the objective function, the

aesthetic estimation concept to find the perfect state of

harmony is applied. The advantages of this algorithm

include a simple concept, a low number of parameters and

easy implementation. This algorithm can deal with several

optimisation problems properly.

The HS algorithm optimisation process can be described

as:

1. Initialising the optimisation problem and algorithm

parameters.

2. Initialising the HM.

3. Improvising the novel HM.

4. Updating the HM.

5. Examination for stopping criteria. If not, repeat step 3

to 4.

Further details on the HS algorithm are provided in

[29–31]. The flow chart of the recommended method is

shown in Fig. 1.

The number of population in this algorithm is similar to

other evolutionary algorithms. This algorithm’s matrix is

filled with a large number of created random values

between the minimum and maximum amount.

In this part, HMCR and HM are applied to generate a

novel solution Xnew
i as:

Xnew
i ¼ xnewi;1 ; :::; xnewi;j ; :::; xnewi;d

h i

xnewi;j ¼
xHMi;j for rand\HMCR

xrandi;j for else

8

<

:

9

=

;

XHM
i ¼ xHMi;1 ; :::; xHMi;j ; :::; xHMi;d

h i

Xrand
i ¼ xrandi;1 ; :::; xrandi;j ; :::; xrandi;d

h i

ð13Þ

(a)

(b)

-50

-30

-10

10

30

50

70

90

110

130

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Po
w

er
(k

W
)

Time(h)

MT Ba�ery U�lity

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PO
W

ER
(K

W
)

TIME(H)

FC PV WT

Fig. 9 a and b Power dispatch

of SC pattern—Scenario 1

16104 Neural Computing and Applications (2021) 33:16095–16111

123



A random single is created within the allowable values

as xrandi;j . The algorithm with a higher HMCR chooses novel

components of the HM. Then, in order to pitch adjustment,

the solutions obtained from the previous step must be

evaluated. This operation utilises the pitch adjusting rate

(PAR) parameter. The operation is done by PAR using the

parameter as:

xnewi;j ¼
xrandi;j � rand� bw for rand\PAR

xrandi;j for else

(

ð14Þ

where bw is the arbitrary distance bandwidth [31].

bwðIterÞ ¼ bwmax expðc� IterÞ

c ¼
Ln bwmin

bwmax

� 	

Itermax

ð15Þ

4.1 Modified algorithm

In this part, three novel modified methods have been pro-

posed for the HS algorithm. The first modified technique

employs a mathematical formulation to create a local

search around each solution. With this method, population

diversity can be efficiently improved. The suggested MHS

can cope with any nonlinear constraint without simplifying

or requiring derivatives in problem formulation compared

to conventional approaches.

To achieve this aim, the mean value of the HM is

determined MHM, at first. Afterwards, the whole HM is

moved towards the best player as:

Xnew
i ¼ Xold

i þ TF Xbest �MHMð Þ
Xbest ¼ xbest;1; xbest;2; :::; xbest;d

� � ð16Þ

If the novel result is superior to the previous one, it must

be replaced. To improve the diversity of the results, the

second modification technique is employed. This amend-

ment decreases the probability of achieving local optima.

In this regard, three solutions, hm1, hm2 and hm3, are

selected from the HM matrix as i = hm3 = hm2 = hm1.

i stands for the ith solution in the HM (Xi). The enhanced

solution can be presented as:

Xmut ¼ XHM
hm1 þ q1 � XHM

hm2 � XHM
hm3

� �

ð17Þ
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Fig. 10 a and b Power dispatch

of UC pattern—Scenario 2
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Assuming the best solution is Xbest. Three novel solu-

tions Xnew
1 ;Xnew

2 ;Xnew
3 are created as follows. The best

solution among Xnew
1 ; Xnew

2 ; Xnew
3 &Xi replaces Xi.

xnew1;j ¼
xmut;j if q2 � q3

xbest;j else

(

xnew2;j ¼
xmut;j if q3 � q4

xj else

(

xnew3 ¼ q5 � Xbest þ q6 � Xbest � HM nrandð Þð Þ

ð18Þ

5 Results of simulation

In this part, energy management performance in MG with

several RESs and storage devices is investigated. In Fig. 2,

the structure of the grid-connected MG is depicted. To

determine the optimal power generation for each source, a

24 h analysis is performed. Table 2 shows the constraints

of DGs and the bidding strategy in cents of Euro (€ct) per
kilo-Watt hour (kWh). The MG can import or export power

with the main grid based on various conditions. To inves-

tigate the performance of the MHS with the presence of

PHEVs in this MG, two case studies are considered.

5.1 First Scenario

In this part, the simulation is done deterministically with-

out considering PHEVs, and the outcomes of the suggested

algorithm are compared with other popular approaches. In

this stage, the battery is considered charged infinitely at the

starting point. Besides, all sources of MG are in service for

24 h. The forecasted outputs powers of WT’s and PV’s are

given in Fig. 3. The real-time electricity tariff and the load

demand of the MG are depicted in Fig. 4, respectively. All

DGs operated in the MG operate at unity power factor.

According to Fig. 5, when the energy tariff is low on the

utility side, the battery starting to charge while other

sources generate in minimum possible power. Conversely,

during peak load condition, the battery starts to discharge,

the DGs produce at maximum rate and the MG export

power to the utility to reduce MG operational cost. Since

the power generation with the MT is costly, it generates
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Fig. 11 a and b Power dispatch

of CC pattern—Scenario 2
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power at the minimum rate in the first hours of the day due

to the low energy price. However, when the energy tariff

on the utility side is raised, it is more preferable to enhance

the output power of the MT during hours 9 to 17. This

strategy leads to minimising the cost of the MG. Moreover,

the MGCC allows the FC to generate at maximum rate as

the power generation cost is low with this source.

Table 3 signifies the simulation outcomes, disregarding

PHEVs. Table 3 gives a comprehensive comparison among

various conventional methods and the suggested scheme in

the case of the best solution (BS), worst solution (WS),

average results (mean) and standard deviation (Std). The

comparison outcomes indicate that the MHS algorithm

enhances the total operating cost of MG. Evaluating the

MHS algorithm compared with eight algorithms verifies

that this algorithm is the best one. The obtained results

verify that the used algorithm has a superior act in coping

with MG management.

The time desired by each algorithm to handle the given

studies is shown in Fig. 5c. According to the figure, the

time needed by the used scheme to handle the first case

study’s challenge is 5.87 s, showing improvement than

GA, PSO and HS, which require 12.56 s, 10.33 s and 7.95,

respectively.

5.2 Second Scenario

At the second stage, all local sources in the MG can start up

or shut down while the battery is also not charged at the

study’s begging. The PV and WT are generated in two

scenarios. As shown in Fig. 6, the MT is responsible for

charging the battery as the expensive DG. Consequently,

by exporting the stored energy to the utility during peak

load, MG’s cost can be decreased. At the first hours, the

battery is charged by the utility and FC as they are cost-

effective and can be used for the high-cost hours. Even

though the MT is generating power in the first hours, it is

not economical for power generation. In this regard, to

achieve economical operation, the MGCC tried to shut it

down in especial hours. Figure 6a depicts the cost function

trend against the number of iterations. Table 4 shows a

comparison between the proposed MHS algorithm and

other approaches. Other swarm intelligence algorithms GA,

PSO, FSAPSO are employed for comparing the outcomes.

The comparison results revealed that the MHS algorithm

enhanced the total cost of the MG. The MHS algorithm has

the best performance compared to other algorithms. The

time required to cope with case studies is shown in Fig. 6c.

As seen, the time needed by the proposed technique to
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handle the problem is 5.19 s, where shows improvement

than GA, PSO and HS.

5.3 PHEVs Considered for first scenario
and second scenario

In this section, the performance of PHEVs is evaluated. It

is assumed that the integration of PHEVs in the MGs is

30% out of 70 vehicles. Besides, MCS is used to model the

MG uncertainties, including charging demand of PHEVs

and load, electricity tariff and the power output of PV and

WT. the various case studied containing UC, CC and SC

are investigated. Figures 7, 8, 9, 10, 11, 12 and 13 depict

the simulation results of this part. To enhance the maxi-

mum power generation, such a change in utility limit is

required. Note that the MG cannot charge the PHEV if this

modification is not performed. Note that for the test system

with PHEVs, some novel amendment are needed. Owing to

(a) Simulation time of the SC method Scenario 1.

(b) Simulation time of the SC method Scenario 2.
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Fig. 13 a Simulation time of the

SC method—Scenario 1.

b Simulation time of the SC

method—Scenario 2

Table 5 Best cost—Scenario 1
Method SC method (€ct) CC method (€ct) UC method (€ct)

GA 379.3621 428.3269 705.9762

PSO 376.3549 423.6358 702.3654

HS 338.3317 392.0179 678.3374

MHS algorithm 336.3374 390.3491 675.1074

Table 6 Best cost—Scenario 2

Method SC method CC method (€ct) UC method (€ct)

GA 366.3214 426.9874 695.6314

PSO 362.3894 421.6314 690.3251

HS 330.5271 393.9761 669.5574

MHS algorithm 324.3374 389.3078 662.9917
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changing the main grid’s maximum capacity, the outcomes

for both cases are updated with the novel capacity.

As shown in Fig. 7, PHEVs is mostly charged through

imported from the utility grid in the uncontrolled charging

mode. Moreover, the battery is stored energy at light load

hours. Owing to the high cost of MT, it is not contributing

to the MG operation. According to Fig. 8, in a controlled

charging mode, the MT is not started, and the extra

required power is in response to the utility grid. Achieving

minimum cost in the MG operation indicates the positive

impact of controlled and smart charging modes in MG’s

optimal operation with PHEVs. According to the results of

the three scenarios, it is clear that in the uncontrolled mode,

most of the energy is provided by the utility grid during the

peak period of 15–17, and in this mode, the cost of MG is

high.

Tables 5 and 6 show the total operating costs achieved

from the MHS algorithm and other methods. Other swarm

intelligence algorithms like GA and PSO have been used

for comparing the results. The comparison outcomes con-

firm that the MHS algorithm enhances the MG cost, and it

has the best performance among others. The best solutions

obtained from different methods confirm that the MHS

algorithm has improved performance compared to other

algorithms.

Simulation time of the SC plans Scenario 1 and Scenario

2, as shown in Fig. 13a and b, respectively. As these fig-

ures indicate, the time needed by the suggested algorithm

to handle the first scenario and second scenario is 7.33 and

7.87, respectively, which shows improvement than GA,

PSO and HS algorithms.

5.4 Discussion

As discussed earlier, in the first scenario PHEVs and

uncertainties of MG are not considered. In the second case

study, all local sources in the MG can start up or shut down

while the battery is also not charged at the begging of the

study; according to Table 6, in the second scenario, the MT

is charging the battery as an expensive DG; to provide a

comparison, the outcomes of the suggested MHS are

compared with other conventional approaches. Thirty trails

are used for simulations. From the table, it can be found

that the suggested MHS algorithm shows high perfor-

mance. The results show that the MHS algorithm has the

best results by achieving the optimal solution. The MHS

algorithm also shows superior performance rather than the

original HS algorithm. From the two scenarios’ results, the

second scenario’s total cost is more than the first one.

Besides, the charging demands of PHEVs are evaluated

in Sect. 5.3 for both scenarios. Moreover, MCS is used to

model uncertainties in load, generation, price and charging

demand of PHEVs. Section 5.3 is done by considering

three modes uncontrolled charging, controlled charging

and smart charging.

Tables 5 and 6 show the total operating costs attained

from the MHS algorithm and other methods. Other swarm

intelligence algorithms like GA and PSO have been used

for comparing the results. The comparison outcomes depict

that the MHS algorithm enhances the MG cost, and it has

the best performance among others.

Figure 14 shows the operating costs with/without con-

sidering the PHEVs in both scenarios. According to this

figure, PHEVs are supplied mainly by improving the power

imported from the utility grid in the uncontrolled charging

mode. Moreover, the battery is stored energy at light load

hours. Owing to the high cost of MT, it is not contributing

to the MG operation.

The result of this sensitivity analysis demonstrates that

raising the number of memeplexes can lead to an improved

fitness value but not necessarily. Nevertheless, it enhances
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the time of the optimisation procedure, which is not

acceptable.

6 Conclusion

MG consists of active loads, storages and various DG

technology. However, the day-ahead scheduling of the MG

is critical issues that need considerable attention. In this

work, the optimal operation of an MG with various RESs

like WT, FC, PV and MT and PHEV charging demand is

assessed. For evaluating the effect of PHEV charging

demand UC, CC and SC modes are taken into account. The

simulation results prove the improved performance of the

MHS algorithm rather than conventional methods. Form

outcomes: It is clear that SC mode can adequately reduce

the total effect, but the PHEV charging demand can raise

the MG’s total cost.

Moreover, smart charging mode can minimise the cost

of the MG in comparison with other patterns. Generally,

the proposed algorism can ensure reliable and satisfying

performance when operating the MG, and the results also

show that increasing penetration of PHEVs provides more

reliability and security for the MG with minimum cost.

This paper showed that the use of PHEVs in MG provides

many economic, technical and environmental benefits.
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