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Abstract
Three-dimensional path planning for autonomous robots is a prevalent problem in mobile robotics. This paper presents

three novel versions of a hybrid method designed to assist in planning such paths for these robots. In this paper, an

improvement on Rapidly exploring Random Tree (RRT) algorithm, namely Adapted-RRT, is presented that uses three

well-known metaheuristic algorithms, namely Grey Wolf Optimization (GWO), Incremental Grey Wolf Optimization (I-

GWO), and Expanded Grey Wolf Optimization (Ex-GWO)). RRT variants, using these algorithms, are named Adapted-

RRTGWO, Adapted-RRTI-GWO, and Adapted-RRTEx-GWO. The most significant shortcoming of the methods in the original

sampling-based algorithm is their inability in finding the optimal paths. On the other hand, the metaheuristic-based

algorithms are disadvantaged as they demand a predetermined knowledge of intermediate stations. This study is novel in

that it uses the advantages of sampling and metaheuristic methods while eliminating their shortcomings. In these methods,

two important operations (length and direction of each movement) are defined that play an important role in selecting the

next stations and generating an optimal path. They try to find solutions close to the optima without collision, while

providing comparatively efficient execution time and space complexities. The proposed methods have been simulated

employing four different maps for three unmanned aerial vehicles, with diverse sets of starting and ending points. The

results have been compared among a total of 11 algorithms. The comparison of results shows that the proposed path

planning methods generally outperform various algorithms, namely BPIB-RRT*, tGSRT, GWO, I-GWO, Ex-GWO, PSO,

Improved BA, and WOA. The simulation results are analysed in terms of optimal path costs, execution time, and

convergence rate.
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1 Introduction

In an environment comprising of numerous autonomous

robots and obstacles, moving robots safely and in a colli-

sion-free manner is a pivotal task. Path planning is a

problem of finding a continuous path that the robot will use

to drive from the source to the destination, also known as a

configuration. The purpose of motion planning in robotics

is to find several valid configurations that can be employed

in moving the robot from the source to the target. Unlike

motion planning, one of the design goals in path planning

is discovering the optimum path in terms of the least time

used, along with modelling the entire environment. Path

planning can be used in fully or partially known environ-

ments, as well as entirely unknown environments where
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sensed information defines the desired robot motion.

Mobile robots are a cutting-edge technology that can be

employed in various novel research areas such as Internet

of Things (IoT) [1], military [2], and health [3]. These

robots have also been used in Vehicle Ad hoc Network

(VANET) [4] and Flying Ad hoc Network (FANET) [5], a

subset of the Mobile Ad hoc networks, and Internet of

Drone (IoD) [6] and Internet of Vehicle (IoV) [7] in the IoT

category. Considering autonomous routing techniques of

these systems, one of the aims is to find safe paths in the

shortest possible time, using the resources effectively.

These robots consist of sensors and actuators. Furthermore,

each robot (node) has a processor and a memory. As such it

is adequate to state that these devices can function as an

all-in smart agent. Therefore, artificial intelligence-based

techniques can be easily implemented using these smart

nodes. When appropriated in interconnected and successive

systems, it is vital to plan a path for each mobile autono-

mous device such as unmanned aerial vehicles (UAVs) and

drones.

In unstructured environments, filled with uncertain ele-

ments, issues on the periphery of robots become increas-

ingly difficult to resolve, causing an ever-growing demand

for 3D path planning algorithms. Obviously, a simple 2D

algorithm cannot qualify for planning complex situations.

The difficulties of path planning in a 3D environment,

unlike 2D path planning, increase exponentially due to the

inherent kinematic nature of the environment. Furthermore,

finding optimal 3D path planning is a Non-Deterministic

Polynomial-Time (NP-hard) problem. In general, the

metaheuristic methods are widely used to solve various

optimization problems [8, 9]. Optimal path planning

includes the shortest path length where the selected path

should be as far as possible from obstacles; it must be

smooth, i.e. without sharp turn, and must consider motion

constraints. As such, it is pragmatic to focus on three-di-

mensional areas with many obstacles and find suit-

able routes for mobile robots. Therefore, in this paper,

three-dimensional path planning methods have been made

available. Hence, metaheuristic algorithms are suit-

able candidates for finding a solution. No-Free-Lunch

(NFL) [10] asserts that there is no specific algorithm pro-

viding the best solution for every optimization problem. As

such, there is a considerable demand to develop new

metaheuristic algorithms that can be used in various

problems. Solution techniques in the 3D path planning

algorithms for autonomous robots include visibility graphs

[11], probabilistic road maps [12], randomly exploring

algorithms [13], random-exploring algorithms [14], and

heuristics. However, literature shows that metaheuristic

methods are much better at 3D path planning [15–17]. On

the other hand, one of the effective methods of solving the

3D path planning problem is sampling-based methods [18].

Rapidly exploring Random Tree (RRT) [19] is one of the

most famous sampling-based method. The main aim of

RRT is to generate a path between source and destination

stations avoiding obstacles. However, the biggest short-

coming of this algorithm is the fact that it may not find the

optimum path. On the other hand, metaheuristic algorithms

can be an appropriate solution to solve the optimal

pathfinding.

Generally, the methods in the sampling-based category

are very fast and useful in real applications; indeed, they

(1) are able to find a feasible motion plan in a relatively

short time and guaranteeing probabilistic completeness (the

path found may not be optimal). (2) can be applied in

different real areas and various dynamic models. However,

there are some shortcomings. They suffer from computa-

tional overload and time inefficiency in optimal pathfind-

ing. The other disadvantage is that it is not considered

successful in finding an optimal path. In addition, they are

not as successful at convergence rate, at least like meta-

heuristic algorithms. Another issue is that they are not very

successful in complex environments [15, 18, 22].

On the other hand, in the metaheuristic-based methods,

in the process of movement of each robot from the current

station to the next station, the options are generally pre-

determined in advance and the positions of these options

(candidate next stations) are also fixed. Therefore, many

metaheuristic-based methods used in solving these types of

problems do not deal with the angle and direction of

motion and only care about the distance to travel or pos-

sible other parameters. Another important problem is that

the locations and numbers of intermediate stations between

the starting and destination points of each UAV are kept in

memory. This may cause inefficient memory usage

[18, 19].

To get around this defect, in this paper, a novel hybrid

method is proposed using the advantages of sampling-

based and metaheuristic-based algorithms for solving the

3D path planning problem. Three metaheuristic algorithms

(Grey Wolf Optimization (GWO) [20], Incremental Grey

Wolf Optimization (I-GWO) [21], and Expanded Grey

Wolf Optimization (Ex-GWO) [21]) are used in the

working mechanism of this method. That’s why the method

is presented with three distinct variants. Benefiting from

them, the optimal path planning mechanisms are realized

for each autonomous mobile robot in different environ-

ments, containing various obstacles without any collisions.

Each proposed method attempts to find an almost optimal

path by eliminating the process of creating complex envi-

ronment models based on stochastic approaches. They can

be faster and more successful in finding the most suit-

able solutions. The contribution and objective of the pro-

posed method can be summarized as follows:
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(1) It is usable in dynamic environments and real

applications as fast.

(2) It tries to find collision-free optimal paths in a short

time with the least process costs.

(3) It solves the problem of the excessive computational

overhead of sampling-based methods in finding

optimum paths. Also, unlike sampling-based meth-

ods, it is successful in finding the optimal path with a

good convergence rate.

(4) It provides efficient memory usage of UAVs.

Because, with this method, UAVs do not need to

store predetermined static map information.

(5) Unlike metaheuristic methods, selectable intermedi-

ate nodes between target and source are not prede-

termined and their numbers are not fixed. Therefore,

the proposed method will not only be limited to static

paths or a limited number of movements but will be

able to work efficiently in dynamic and real

environments.

(6) It focuses on problem solving, not only with the

distance parameter, but also taking into account the

angle and direction of the movement.

The rest of this paper is organized as follows. The lit-

erature review is explained in Sect. 2. The proposed

method is described with the relevant problem in Sect. 3.

In Sect. 4, simulation results are presented. The final sec-

tion provides conclusions and future works.

2 Literature review

In recent years, literature shows that there is interest in

studies conducted on path planning and mobile autono-

mous vehicles [22–26], especially in three-dimensional

path planning [27–30]. The general taxonomy of 3D path

planning methods [18], which generally consists of four

basic areas, is presented in Fig. 1. Sampling-based algo-

rithms necessitate mathematical representation of infor-

mation pertaining to the whole search space of the

environment, known a priori. This kind of method needs

some foreknown information of the whole environment

(workspace). In these algorithms, the environment is rep-

resented by several nodes. They employ matching random

search techniques in the path-finding mechanism to reach

the appropriate solution. The matching random search

techniques are then further divided into active and passive

categories. In the active types, the relevant algorithm can

obtain a suitable path to the destination all by its own

processing procedure. Passive means algorithms only

generate a path from initial to destination stations, and thus

a combination of search algorithms is used to select the

best feasible path in the net map where many possible paths

exist. Some related case studies are presented in [31, 32].

Exploration in a node-based optimal algorithm is per-

formed using a decomposed graph. These algorithms are

informed search methods. These methods find an optimal

path based on certain decomposition. Numerous studies

have been proposed in this category [33–35].Mathematical

model-based algorithms include linear algorithms and

optimal control techniques. These algorithms model the

environment (kinematic constraints) as well as the param-

eters of the system (dynamic). Afterwards, they map the

bounds of these two parameters based on the cost function

bound. Some studies in this category are presented in

[36–38]. The methods in these three categories suffer from

high time complexity and local minima capture, especially

where mobile robots face multiple constraints when plan-

ning a path. Metaheuristic algorithms, a subset of nature-

inspired algorithms, are the fourth category of taxonomy

that imitate biological interactive behaviours or physical

events [30, 39, 40]. These methods attempt to find an

almost optimal path by eliminating the process of creating

complex environment models based on stochastic approa-

ches [41, 42]. As mentioned earlier, this study proposes a

hybrid path planning method. The proposed hybrid method

with three versions has been inspired by sampling and

metaheuristic algorithms where the main object is finding

an optimal path. Mathematically based algorithms require

complex calculations; on the other hand, the node-based

algorithms can operate in certain and limited conditions.

Therefore, methods in the other two categories generally

attract more attention from researchers. Therefore, the

possibility of developing new algorithms may increase. So,

in this section, mainly sampling and metaheuristic-based

studies are discussed.

Fig. 1 3D path planning

algorithms taxonomy [18]
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2.1 Review on sampling-based path planning
methods

In sampling-based algorithms, like many path planning

methods, the map and movement areas are predetermined,

but the stations in the middle are not known except for the

start and end stations. This seems that these methods are

dynamic and are used as a suitable solution for path

planning in mobile autonomous devices such as UAV. The

relevant methods based on this category employ matching

random search techniques in the pathfinding mechanism to

reach the appropriate solution and they are divided into

active and passive categories. Active algorithms prefer to

act randomly while passive algorithms suffer from

dynamic barrier detection. The most efficient methods in

sampling-based algorithms are those in the active category

[18, 32]. The RRT is one of the most famous methods in

the active model in this category. In the literature, many

versions and improvements have been made regarding the

RRT [19]. The RRT series solve the most problematic part

of 3D path planning, i.e. holonomic and non-holonomic

obstacles [43, 44]. The most common deficiency of the

RRT algorithm, similar to other sampling-based methods,

lies in the fact that it cannot be used to find an optimal path.

The main purpose of RRT is to generate a path between

source and destination points. In this algorithm, the next

station is defined from the previous state behaviours. In a

path planning with the RRT algorithm, a UAV has some

possible states to move on. In this step, if an obstacle is

located between the two points, that path is discarded,

otherwise, the path without any obstacle is chosen. For the

explanation of the RRT algorithm, the workspace of the

UAVs is shown as p. In addition, pobstacle is the position of

obstacles and pfree is the possible area without obstacles.

Mathematically, pfree , p and pobstacles , p. In this algo-

rithm, the maximum length between two points is impor-

tant. The controlling of this length is realized by

r parameter. The structure of RRT algorithms is described

in the following five steps:

Step 1 Initialize the source and the destination positions

along with parameter r and check the area (pfree). Here,

psource , pfree and pdestination , pfree.

Step 2 Select a random station from pfree.

Step 3 Find the nearest station (pnear) from the trajectory

that the mobile robot passed through before in order to

randomly create stations using the Euclidean metric.

Step 4 If there is no obstacle between pnear and prandom,

then prandom is the direction of our robot. Otherwise, ignore

it and repeat this step until there is no obstacle in the path.

If the distance between pnear and prandom is longer than r,

then it is in the direction of prandom along with the r. At the

end of this step add prandom in set T (trajectory) as new

node.

Step 5 Repeat previous 4 steps until next node of a robot is

pdestination.

Another method based on sampling is RRT* algorithm

[45]. The RRT* is an optimized modified algorithm that

aims to achieve the shortest path, whether by distance or

other metrics. The basic principle of RRT* is the same as

RRT, but two important additions have been made. First,

RRT* records the distance each station has travelled rela-

tive to its next station. Second, RRT* is the tree rewiring.

After a station (vertex) has been connected to the cheapest

neighbour, the neighbours are again examined. Neighbours

are checked if being rewired to the newly added vertex will

make their cost decrease. If the cost does indeed decrease,

the neighbour is rewired to the newly added vertex. This

feature makes the path smoother. RRT* suffers from a

reduction in performance. Due to examining neighbouring

nodes and rewiring the graph, the implementation of RRT*

needs more time to complete a single path. The conver-

gence rate of RRT* is slow in pure exploration. Also, the

successful balance between exploration and exploitation is

not achieved and there may be a local optimal trap similar

to other sampling-based algorithms. In [46], an algorithm

(D* Lite Rapidly exploring Random Tree star (DL-RRT*))

has been proposed for path re-planning in dynamic

radioactive environments. This method, whose purpose is

to improve the convergence ratio, uses the grid feature of

the D* algorithm. However, it has not been very successful

in convergence ratio due to its reliance on a single tree

version.

In [47], the authors have suggested a method to build

two trees rooted at the start and goal configurations,

respectively. The name given to its methods is Bidirec-

tional RRT (B-RRT). Although their purpose is to improve

the convergence ratio and avoid possible local optima

traps, the computational load is quite high in the two trees

that will cover the whole area. Quad-RRT [48] method has

been suggested to solve this problem using the Graphics

Processing Unit (GPU) threads. However, this mechanism

means a high monetary cost. So it’s hard to come to life in

the real world. In [49] has been proposed an improved

version of B-RRT that employed a greedy connect a

heuristic for the connection of two-directional trees (as

named B-RRT*). However, it is still not very successful in

exploration. On the other hand, although it is recommended

as a 3D path planning method, it is possible to use it mainly

in 2D environments. This restriction is mainly valid to all

B-RRT versions.

Besides the advantages of sample-based methods, the

shortcoming of the sampling-based methods can be
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summarized in three basic terms: (1) They suffer from

computational overload and time inefficiency in optimal

pathfinding. (2) They are not considered successful in

finding an optimal path. (3) They are not useful in terms of

convergence rate. The proposed method benefits from the

advantages of sampling-based methods by eliminating their

disadvantages. It is a hybrid approach that employs meta-

heuristic algorithms to find collision-free optimal paths in a

short time with the least process costs. This method is

described in detail, along its three different variants, in

Sect. 3.

2.2 Review on nature-inspired path planning
methods

In [50] has been proposed an Interfered Fluid Dynamical

System (IFDS) to solve the path planning problem. The

authors suggested one method, which is based on mathe-

matical-based algorithms, to detect obstacles shape and

another method, which is based on nature-based algo-

rithms, to find the optimal path for a UAV. The authors

have taken the land impact on path planning as a key factor

and suggested using a stream function method from their

previous work. However, the stream function works in two-

dimensional systems. Based on the principles of a liquid

flowing around objects and the phenomenon of flow from

start to end, a 3D soft path has been created using two

techniques, namely analytical and numerical methods. The

analytical method handles only spherical obstacles and

involves less computation. The numerical method deals

with all types of obstacles, but it requires more pretreat-

ment and higher calculation cost. In the IFDS method,

complex obstacles such as terrains, mountains, radar, and

anti-aircraft systems are converted into cylindrical, conical,

and spherical shapes. Afterward, the combined mathemat-

ical expression of these transformed shapes is fashioned to

obtain 3D flow lines around a single obstacle. If there is

more than one obstacle in the path, it is derived using the

average of the velocity field. Next, methods such as more

control force and virtual obstacle are proposed to deal with

the stagnation point and overlapping of obstacles. Finally, a

genetic algorithm is used to obtain an optimum 3D path of

the UAV by taking the path length and flight height as sub-

targets. Studies demonstrate that the IFDS method gives

better results than both numerical and analytical methods.

Furthermore, the IFDS method has been compared with the

ant optimization algorithm and results conclude that the

IFDS method gives better results.

Perazzo et al. [51] articulate secure positioning and

secure position verification, which are two critical prob-

lems in path planning. The related method focused on path

planning for drones and gave the meaning of a secured path

for an optimum path. In this study, 2D path planning is

discussed, although it is not clearly stated. Their paper

proposes a drone system that passes through a series of

waypoints instead of a static station system. At each

waypoint, the drone acts as a station and determines

positions safely. Here the task is to determine the capability

of the drone in finding the correct path for all devices. The

authors state three methods called LocalizerBee, Veri-

fierBee, and PreciseVerifierBee. In LocalizerBee method,

isosceles triangles have been created to completely cover

the rectangular area determined in the waypoint grid con-

struction structure. After that, drones combine all way-

points by Waypoint Ordering, to find the shortest path with

the Travelling Salesman Problem algorithm. In VerifierBee

method, authors use prior knowledge of the position of the

nodes in three phases. A number of waypoints are created

during the initial path construction phase. The home

waypoint plus three waypoints for each node are placed in

fixed positions to form a minimal verifiable triangle. The

Iterative Improvement phase creates the first path. The

VerifierBee rediscovers the path created in Iterative

Improvement phase, using a local heuristic search algo-

rithm. VerifierBee then analyses each possible change

(moving a waypoint to another location) at each step and

selects the most appropriate as well as the shortest path.

This process ends when a local minimum is found. There

are two types of changes in the Waypoint Reordering

phase. One that changes the position of the waypoint and

the other that removes the waypoint and replaces it with

another available way. The PreciseVerifierBee method is

an extension of the VerifierBee method, where the structure

of the Verifier remains the same except Initial Path Con-

struction and Iterative improvement stages. Unlike the

VerifierBee method, the angle of the drone to the ground

plays an important role in the PreciseVerifierBee method.

As a result of the application, VerifierBee always produces

shorter paths in comparison with PreciesVerifierBee

method. With an increase in the number of nodes, Pre-

cieseVerifierBee shows worse results compared to Veri-

fierBee or even LocalizerBee. The results of their

experiments demonstrate that the proposed algorithms

securely localize all the devices, even in presence of drone

control errors.

Wang et al. [52] aim at improving the flight path by

planning a 3D UAV route along with various types of

restrictions mainly in complex combat environments. They

have proposed the Improved Bat Algorithm (IBA), a

mixture of Differential Evolution (DE), and the Bat

Algorithm (BA). DE is an evolutionary algorithm that

creates new candidate solutions by uniting many other

members in the same population as the parents. BA is an

optimization algorithm inspired by the direction-finding

behaviour and distance of an object by taking advantage of

the echo of a bat, the echolocation. In order to improve the
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selection of a bat during the IBA location update process, a

DE mutation factor was employed. The basic idea behind

the IBA is that the bat group uses ecological placement to

detect distance and random flight over the search area,

updating its location and speed. The IBA bat flight aims to

find its food/prey (best solution, most convenient way). The

authors use the B-Spline Curve Correction Strategy to

further improve the resulting path. It is shown in [52] that

their algorithm, IBA, demonstrates better results than BA

and is an effective tool that can be used in UAV path

planning problems.

In [22] has been presented a new method for a mobile

robot in an uncertain obstacle-based environment based on

Firefly Algorithm (FA). It solves the challenges of navi-

gation by avoiding the random movement of fireflies and

minimizing the computational cost. The authors defined an

objective function, which is controlled by the trial and error

method. With this function, the paths to be chosen are

decided. In this study, which aim is crowded environments,

the choice of the obstacle closest to each station is required

for path planning and an equation has been defined for this

purpose. However, this equation, which contains very few

parameters, may not be successful in real and complex

environmental conditions. Moreover, this study focused

solely on 2D path planning. In [29] has been proposed

ground robot based on a new version of Ant Colony

Optimization (ACO) for 3D path planning. It defines a new

phenomenon update mechanism and constructs various

paths between the initial and target points of a robot. It

avoids obstacles and is used for solving the easily falling

into local optimum and long search times in 3D path

planning problems. Performance analysis could not be

comprehensive by comparing this proposed method with

only the basic ACO method. In addition, generally, it has a

higher time and space complexity than GWO-based

methods, this is due to the nature of ACO.

The GWO algorithm may be more likely to be suc-

cessful than other metaheuristic methods in this type of

problem on various parameters due to its working mecha-

nism. One of the most important and effective of last

studies to solve 3D path planning problem is based on the

GWO algorithm, which has been presented in [40]. The

authors have proposed a new 3D path planning method for

UAVs and they used the GWO algorithm to decrease the

complexity in finding paths to find a minimal cost best

path. The GWO algorithm is based on the hunting beha-

viour of grey wolves. Grey wolves are classified as alpha,

beta, delta, and omega, where each type of wolf exhibits

distinct functionally among encircling, attacking, and

hunting functions. In [40] there are three different maps

with a varying number of obstacles. Furthermore, there are

five UAVs with different initial and final stations.

According to the results of the study, the better path cost

with best time complexity in the GWO-based method in

comparison with other methods such as Dijkstra, A*, D*,

and a few other famous metaheuristic-based methods is

obtained. Euclidean distance between stations, visited by

UAVs, is used to calculate the cost of the path. They claim

that paths generated using the proposed method have low

path calculation costs. Most of the obstacles in this study

have been located in the center of the maps that the UAVs

not more effort to reach the destination. According to this

paper, GWO-based methods, with the specific features and

advantage of the nature of their algorithm, perform a more

balanced and better performance in similar problems.

Therefore, GWO-based algorithms are sought after in

many research and application areas due to their balanced

behaviour among various metaheuristic algorithms. For

this reason, we use three variants of GWO to propose our

path planning method for obstacle detection and avoidance,

random movement avoidance, and optimal pathfinding. By

applying each of these three GWO-based algorithms sep-

arately in our method, three different methods are devel-

oped to solve the 3D path planning problem.

In addition, the general shortcomings of metaheuristic

methods can be outlined as follows: (1) They use fixed

number of intermediate nodes with predetermined loca-

tions. Therefore, they can use only a limited number of

intermediate nodes. (2) They do not deal with the angle and

direction of motion and only cater to simple parameters

such as the distance to travel. Therefore, in this study, a

novel hybrid method is proposed to solve the related

problems by providing all the advantages of each category.

This method has a working mechanism that finds the

optimal paths without collisions in the shortest possible

time with the least process cost. The performances of each

solution are discussed and analysed in chapter 4. Also, their

performance is compared with several other methods. For

this, sampling and metaheuristic-based hybrid mechanisms

are suggested. Therefore, in this paper, it will be sufficient

to have only the starting and ending stations for each UAV,

and it will find the best choices to go along the path.

3 Proposed novel algorithms

As mentioned before, one of the most significant and

contemporary problems in robotics is 3D path planning for

mobile robots. It is necessary to find the optimal (or close

to optimal) path between two source and destination points

for robots to collision-free move without human interven-

tion. In this paper, a new 3D path planning method is

presented using three metaheuristic algorithms for auton-

omous UAVs. In the metaheuristic-based path planning

methods, the selectable stations between the start and

endpoints of each mobile autonomous robot (e.g. UAV)
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may be known before and therefore routes can be static or

each robot may have a limited number of directions of

movement (especially, in discrete and grid areas) and they

are shortcoming. In other words, the stations between the

target and start points of each robot are pre-determined and

the positions of these stations (next candidate stations) are

also fixed. Therefore, most of the metaheuristic-based

methods used in solving such problems are not concerned

with the angle and direction of movement, but only with

the distance to travel or other possible parameters. Also, as

mentioned earlier, they are not good at using memory. It is

worth noting that this working mechanism is not also

exclusive to metaheuristic algorithms, whereas, in this

paper, the direction, as well as the path length, has an effect

on the next stations’ selection. Also, the number and

location of the stations between the two starting and final

points are uncertain. In this study, the next station for each

robot is unclear, and the intermediate stations are not fixed

and predetermined. In this way, it can be applied in more

realistic environments and applications. On the other hand,

the proposed method can solve the problems of sampling-

based algorithms. In the RRT and all its variances, the

intermediate stations are chosen randomly (unlike meta-

heuristic methods). Therefore, they are often fast and also

useful in real applications. However, these have not been

very successful in finding optimal paths. In addition, they

suffer from computational overload and time inefficiency

in optimal pathfinding. Therefore, in this paper, a hybrid

method with three versions inspired by the two categories

(sampling and metaheuristic-based algorithms) are recom-

mended. In this way, both the intermediate stations do not

need to be determined beforehand and will obtainable

optimized paths by avoiding completely random move-

ments. In this paper, an improvement on the RRT algo-

rithm, namely Adapted-RRT, is presented and it is applied

with three different well-known metaheuristic algorithms;

GWO, I-GWO, and Ex-GWO. These methods are named

Adapted-RRTGWO, Adapted-RRTI-GWO, and Adapted-

RRTEx-GWO.

3.1 Definitions

The path planning problem is related to finding optimal

paths in a defined environment containing various obsta-

cles. UAVs detect these obstacles and attempt to find a path

without collisions. UAVs can be categorized under the

mobile robots that meant to fly from one point to another

autonomously in the most complicated three-dimensional

(R3) environments. In these environments, UAVs must

consider the Z dimension alongside the X and the Y

dimensions. In some cases, environments that UAVs are

considered to operate inside can be defined as the work-

space, w. The most difficult part of complicated

environments for UAVs is the various shapes of obstacles.

The ith obstacle in the workspace can be represented aswoi.

All the free parts of the environment are the set of coor-

dinates,wfree. So, free spaces in the environment that the

mobile robots can move inside without facing any possible

collision can be calculated usingwfree ¼ wUiwoi. Both the

initial (source, start) point of the mobile robot,wsource, and

it’s final (destination, target) point in the workspace,

wdestination should be the element included in thewfree. The

definition of 3D path planning can be defined

as Sð Þ ¼ wsource, and Tð Þ ¼ wdestination. Here d represents the

functions of initial and final points of a robot, respectively,

and the bounded variation is given as: S; T½ � ! R3. If there

is any continues process U exists that can

attaindðsÞ 2 wfree, then this process can be called as 3D

path planning. Here s is a set in which positions are located

on the path that takes the UAV from source to destination.

The main purpose of 3D path planning is to find a trajec-

tory between the source (start, initial) and the destination

(final, target). For that reason, a path planning function is

defined in Eq. 1.

f source; destinationð Þ ! Trajectory ð1Þ

where source and destination denote relative coordinates of

the source Xsource; Y source; Zsourceð Þ and the destination

Xdestination; Ydestination; Zdestinationð Þ positions on the map.

Each path contains a cost for motion from source to des-

tination. There are different parameters that define cost

between the two points. In each map, the positions of n

number of search agents in the m dimensional search space

can be defined as the matrix in Eq. 2.

positions ¼

p11 p21 � � � � � � pm1
p12 p22 � � � � � � pm2
� � � � � �
� � �
p1n

� � �
p2n

� � � � � �
� � � � � �

� � �
pmn

2
6664

3
7775 ð2Þ

where pm’s represents position coordinates of each sta-

tion that the mobile robot takes on the map. In most

studies, cost is calculated using consumption of energy,

Euclidean distance, and velocity. In this study optimal

cost is considered in a path with minimum Euclidean

distance between two points. Due to the Euclidean

metrics system distance between 2 completely randomly

selected points in the three-dimensional workspace can

be expressed as: D station1; station2ð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2 þ y1 � y2ð Þ2 þ z1 � z2ð Þ2

q
: For the calcula-

tion of the cost (length of the trajectory) of nth UAV can

be transformed into the sum of the Euclidean distances

between tuples from source to the destination stations,

we present the equation as below.
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Cost ¼
XD
m¼S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmþ1 � xmð Þ2 þ ymþ1 � ym

� �2 þ zmþ1 � zmð Þ2
q

ð3Þ

Path planning itself for the mobile robots sometimes

may not be enough to solve the problem. The 3D path

planning algorithm should find the optimum paths to save

time, energy, or other consumable sources for mobile

robots. The definition of optimal path planning can be

defined as follows. Given a path planning problem function

in Eq. 1 and cost function in Eq. 3, the definition of the

path planning is fulfilled and is found a path d0. Here,
Cost(d0) is equal to minimum Cost(d) and d is the set of all

possible paths. In this situation, d
0
is an optimal path, U

0
is

the optimal path planning.

Figure 2 shows a sample trajectory between the source

and destination stations in 2D and 3D perspectives. In the

trajectory, there are some stations that the UAVs move-

ment over stations. The S indicates the initial station, and

the D is the final station. The p presents the possible sta-

tions that UAVs can move in the environment. In all path

planning methods, the next station is selected from each

current station and this process continues until it reaches

the destination or target station. While in some methods the

stations’ elections are chosen randomly, in others, they are

realized by a certain mechanism. In the final phase of all

methods, the sum of all tuples costs based on certain

mechanisms, that have been calculated, is obtained; giving

the cost of the path. In the proposed method in this study,

the cost of each tuple on the path is calculated by a fitness

function (Eq. 3). Therefore, it is possible to find an opti-

mum or close to an optimal path with a minimum cost

between two points.

The other term that needs to be defined is random

position matrix. Hence, primarily, the proposed method

initializes the random position matrix. Each row of position

matrix defines the path, and the columns represent the

number of stations, in the path, to the destination. The

xmn ; y
m
n ; z

m
n

� �
presents coordinates of each station where m is

the aforementioned index of stations and n is the number of

search agents in each method (Table 1). The search agents

are the configuration parameter of the metaheuristic algo-

rithms. Then, for each metaheuristic algorithm, a search

space, based on the position matrix, is initialized. Table 2

represents the distance between tuples. In this table, each

row represents a path length. Each element of the row

shows the distance between two points as dni;jð Þ, where i is

the current state and j is the previous state.

3.2 Map design

Typically, the first step in path planning is to represent the

workspace as a map. The presence of obstacles in the maps

makes the task of finding an optimal path a bit complex for

the UAVs. The challenge is avoiding the obstacles and

reaching the final position with minimum costs. In this

paper, four maps have been considered to evaluate the

proposed method; a small map, a medium map, a crowded

medium map, and a large map. In Table 3, the boundaries

for the four maps are presented. Furthermore, three UAVs

with dissimilar start and end positions are used. These

three-dimensional points of UAVs are listed in Table 4.

The number of obstacles in each map is different, and the

position of each obstacle is depicted in Table 5. In this

study, obstacles are assumed to be three-dimensional

quadrilaterals of different sizes.

3.3 Obstacle management

Obstacle avoidance is one of the many challenges that exist

in the path planning problem. In this study, a mechanism is

proposed to avoid the collision of the UAVs with obstacles,

which benefits from geometric and calculus-based formu-

lae. The proposed obstacle avoidance mechanism has an

important role in finding the shortest path without collision.

This mechanism entails two main steps that take place in a

sequential fashion.

Fig. 2 The randomly and

optimized trajectory
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1. Whenever the randomly assigned station finds itself

within the special parameters of the obstacle, it is

relocated to the nearest corner of the obstacle as

presented in Algorithm 1 and Fig. 3a.

2. Whenever an obstacle is encountered in the path found

by the metaheuristic algorithm, the following steps are

taken:

2:1 Sorting Phase: sort the obstacles by Euclidean

distance proximity to the current station. Signif-

icance of sorting is for detecting and avoiding

various number of obstacles in series from the

nearest one to the farthest one.

2:2 Detection and Avoidance Phase:

2:2:1 Detection: if there is a collision between

the couple stations, geometric calculation

method will be used. The detection mech-

anism is based on Algorithm 2. A virtual

triangle between current, next stations, and

the center point of obstacle is considered.

As shown in Fig. 3b, the h is the height

from center point of obstacle to the base-

line, and the h can be found using Heron’s

formula. Besides, the R is the radius of the

around circle of the obstacle. These param-

eters are used to check whether there is a

collision or not.

2:2:2 Avoidance: in this step the closest corner

of the obstacle to the current station is

calculated using Euclidean distance. The

UAV moves to that corner and then across

the opposite side of obstacle which has

clear sight of next station or next obstacle

as shown in Algorithm 2 and Fig. 3c.

2:2:3 If the UAV does not reach to the next

station, repeat phase 2.2.1 and 2.2.2.

3. If the UAV does reach the next station, repeat sorting

and detection and avoidance phase for each couple in

the path.

Table 1 The position matrix of each path

Path 1 2 � � � m

1 x11; y
1
1; z

1
1

� �
x21; y

2
1; z

2
1

� � � � � xm1 ; y
m
1 ; z

m
1

� �

2 x12; y
1
2; z

1
2

� �
x22; y

2
2; z

2
2

� � � � � xm2 ; y
m
2 ; z

m
2

� �

..

. ..
. ..

. ..
. ..

.

n x1n; y
1
n; z

1
n

� �
x2n; y

2
n; z

2
n

� � � � � xmn ; y
m
n ; z

m
n

� �

Table 2 The search space that represents distance between tuples

Path 1 2 � � � m

1 d11;sð Þ d12;1ð Þ � � � d1D;mð Þ

2 d21;sð Þ d22;1ð Þ � � � d2D;mð Þ

..

. ..
. ..

. ..
. ..

.

n dn1;sð Þ dn2;1ð Þ � � � dnD;mð Þ

Table 3 3D map boundary

Map Start boundary End Boundary

Small map (0, 0, 0) (50, 50, 50)

Medium map (0, 0, 0) (100, 100, 100)

Crowded medium map (0, 0, 0) (100, 100, 100)

Large map (0, 0, 0) (150, 150, 150)

Table 4 3D map UAV initial

and final positions
Small map Medium map

UAV1 UAV2 UAV3 UAV1 UAV2 UAV3

Initial (0, 0, 0) (0, 25, 0) (0, 50, 0) (0, 0, 0) (0, 50, 0) (0, 100, 0)

Final (50, 50, 50) (50, 25, 50) (50, 0, 50) (100, 100, 100) (100, 50 100) (100, 0, 100)

Crowded medium map Large map

UAV1 UAV2 UAV3 UAV1 UAV2 UAV3

Initial (0, 0, 0) (0, 100, 0) (0, 50, 0) (0, 0, 0) (0, 75, 0) (0, 150, 0)

Final (100, 100, 100) (100, 0, 100) (100, 50, 100) (150, 150, 150) (150, 75, 150) (150, 0, 150)
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Fig. 3 Obstacle avoidance mechanism

Table 5 3D obstacles coordinate for each map

Obstacle number Small map Medium map Crowded medium map Large map

1 (5, 7.5, 4)–(10, 20, 15) (5, 7.5, 4)–(10, 20, 15) (5, 7.5, 4)–(10, 20, 15) (5, 7.5, 4)–(10, 20, 15)

2 (20, 5, 10)–(44, 44, 36) (20, 5, 10)–(44, 44, 36) (20, 5, 10)–(44, 44, 36) (20, 5, 10)–(44, 44, 36)

3 (8, 30, 4)–(10, 34, 28) (8, 30, 4)–(10, 34, 28) (0, 91, 0)–(2, 96, 100) (1, 5, 14)–(3, 6, 16)

4 (17, 14, 17)–(19, 16, 21) (17, 14, 17)–(19, 16, 21) (0, 9, 0)–(2, 8, 14) (0, 15, 1)–(7, 16, 3)

5 (22, 5, 0)–(23, 5, 100) (8, 30, 4)–(10, 34, 28) (0, 18, 4)–(10, 13, 6)

6 (15, 5, 0)–(16, 0, 100) (17, 14, 17)–(19, 16, 21) (0, 7, 2)–(4, 5, 5)

7 (19, 1, 0)–(19, 6, 100) (25, 20, 10)–(30, 22, 12.5) (4, 0, 2)–(7, 5, 6)

8 (25, 6, 0)–(25, 8, 100) (31, 20, 15)–(31, 20, 18.8) (0, 15, 0)–(10, 20, 1)

9 (42, 42, 42)–(42, 42, 44) (7, 8, 9)–(10, 11, 12)

10 (51, 22, 31)–(62, 31, 39) (5, 89, 140)–(5, 90, 144)

11 (60, 15, 0)–(75, 40, 100) (9, 15, 2)–(12, 19, 6)

12 (85, 85, 0)–(90, 90, 100) (85, 15, 23)–(86, 16, 26)
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Algorithm 1. Check the station position
1. If (x < xmax && y < ymax && z < zmax)
2. If (x > xmin && y > ymin && z > zmin)
3. //Station is positioned inside the obstacle
4. Find nearest corner to the station and reassign position
5. End
6. End

Algorithm 2. Collision detection and avoidance
1. If (h <= R)
2. //Collision occurs
3. UAV finds nearest corner to current station, across the opposite 

corner of the obstacle, from that corner UAV pass to the 
next station

4. Else
5. //Collision does not occur
6. End

3.4 Grey wolf algorithms: GWO, I-GWO, and Ex-
GWO

In this section, the GWO-based algorithms used in our

proposed method are summarized. The GWO algorithm is

inspired by grey wolves in nature and the natural behaviour

of the grey wolves are mathematically modelled. The main

behavioural traits of the wolves are encircling, hunting, and

attacking the prey. There are four types of wolves in each

pack; alpha, beta, delta, and omega. Each wolf has different

responsibilities in the pack. Alpha, beta, and delta wolves

encircle the prey, whereas the omega wolves follow the

first three wolves’ position. In simple terms, omega wolves

update their own position based on the other wolves in

order to attack the prey. The GWO algorithm is mathe-

matically defined using Eqs. 4–11. Here t indicates the

current iteration, T demonstrates maximum number of

iterations, X
*
indicates the position vector of a wolf. Also, D

is a vector that depends on the location of the target. Here

the coefficient vectors A
*

and C
*

are considered to lead in

encircling the prey (Eqs. 6 and 7). These parameters con-

trol the trade-off between the exploration and exploitation

phases in all variants of used GWO algorithms. In addition,

a
*

is linearly decreased from 2 to 0 over the courses of

iteration. It is used to get closer to the solution range and r1
and r2 are the random vectors in a range of [0, 1]. In all

variants, when A
*

is less than 1, the wolves in the pack

attack to hunt, otherwise, they try to find prey to be hunted.

Figure 4 shows the working mechanisms of these algo-

rithms by considering exploration and exploitation phases.

D
!¼ C

!� Xp
�!

tð Þ � X
!

tð Þ
���

��� ð4Þ

X
!

t þ 1ð Þ ¼ X
!

p tð Þ � A
!� D! ð5Þ

A
!¼ 2 a!� r1!� a! ð6Þ

C
!¼ 2 � r2! ð7Þ

a!¼ 2 1� t

T

� �
ð8Þ

Da
�! ¼ C1

�! � Xa
�!� X

!���
���; Db
�! ¼ C2

�! � Xb
�!� X

!���
���; Dd
�!

¼ C3
�! � Xd

�!� X
!���
��� ð9Þ

X1
�! ¼ X

!
a � A1

�! � Da
�!

; X2
�! ¼ X

!
b � A2

�! � Db
�!

; X3
�!

¼ X
!

d � A3
�! � Dd

�! ð10Þ

X
!

t þ 1ð Þ ¼ X1
�!

tð Þ þ X2
�!

tð Þ þ X3
�!

tð Þ
3

ð11Þ

In I-GWO algorithm, the hunting mechanism of the

GWO has been modified. The authors of I-GWO algorithm

supposed that the alpha wolf has the best knowledge about

the prey. The second wolf in the pack follows the alpha

wolf, and in the same way, the nth wolf in the pack follows

all n - 1 wolves before it in the pack. Simply putting, the

alpha wolf guides the other wolves in the pack for hunting.

There are also some modifications in I-GWO mathemati-

cally from the classic GWO. In the I-GWO, each grey wolf

in the pack encircles the prey; mathematically presented in

Eqs. 4 and 5. In this method, authors have been used a new

version of the a! parameter so as to improve the conver-

gence speed of the metaheuristics, which is defined in

Eq. 12. The I-GWO benefits from the position of the alpha

wolf while updating other wolves’ positions in the pack

(Eqs. 13–15).

a!¼ 2 1� t2

T2

	 

ð12Þ

Da
�! ¼ Ca

�! � Xa
�!� X

!���
��� ð13Þ

X1
�! ¼ X

!
a � A1

�! � Da
�! ð14Þ

Xn
�!

t þ 1ð Þ ¼ 1

n� 1

Xn�1

i¼1

Xi tð Þ; n ¼ 2; 3; . . .;m ð15Þ

Ex-GWO algorithm is yet another version of the GWO

algorithm. In the Ex-GWO, the first three wolves; alpha,

beta, and delta wolves, all have the best knowledge about

the prey. The fourth wolf in the pack, just like in the GWO

algorithm, updates its own position based on alpha, beta,

and delta wolves. The fifth wolf updates its own position

using the positions of the first three wolves and the fourth

wolf. As such, the nth wolf updates its own position based
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on the first three wolves in the pack and the n - 3 wolves

before it. So, the wolves benefit more from the packs’

knowledge in order to hunt and attack the prey. In the Ex-

GWO, encircling of the prey is mathematically expressed

using Eqs. 4–7. The hunting and position updates are also

given by Eqs. 16–18.

D1
�! ¼ C1

�! � X1
�!� X

!���
���; D2
�! ¼ C2

�! � X2
�!� X

!���
���; D3
�!

¼ C3
�! � X3

�!� X
!���
���

ð16Þ

X1
�! ¼ X

!
1 � A1

�! � D1
�!

; X2
�! ¼ X

!
2 � A2

�! � D2
�!

; X3
�!

¼ X
!

3 � A3
�! � D3

�! ð17Þ

Xn
�!

t þ 1ð Þ ¼ 1

n� 1

Xn�1

i¼1

Xi tð Þ; n ¼ 4; 5; . . .;m ð18Þ

3.5 Hybrid path planning methods: adapted-
RRTGWO, adapted-RRTI-GWO, and adapted-
RRTEx-GWO

In this paper, a new hybrid path planning method with

three versions is proposed to use the advantages of

Fig. 4 Working mechanism considering exploration and exploitation a GWO, b I-GWO, c Ex-GWO
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metaheuristic and sampling-based methods in one place.

We propose an improvement in the RRT algorithm using

three metaheuristic algorithms (GWO, I-GWO, and Ex-

GWO). In order to use the RRT concept together with

metaheuristic methods, it is necessary to make the classical

RRT method compatible and efficient. Thus, the success

rate of the proposed method in finding optimal solutions

may be increased. Based on this, a newer version of the

RRT method (Adapted-RRT) is recommended in this

study. Figure 5 shows the working mechanism of the RRT

and Adapted-RRT.

The random selection of the intermediate stations in all

RRT methods is realized by a mechanism with considering

possible obstacles. In the RRT, if an obstacle is located

between the two points, the relevant path is discarded,

otherwise, the path without any obstacle is chosen. How-

ever, this algorithm or its related improvements, either

failed to find the optimal path or they suffered over-com-

puted processes to find the optimal path and were not

efficient in time. As stated in Sect. 2.1, the terms defined

for this algorithm are used. As shown in Fig. 5a, in the

RRT, when the UAV is in state 1, there are three possible

stations, a UAV chooses a station without obstacle in the

path and follows this path to reach the destination.

Adapted-RRT avoids possible obstacles without making

random movements. It is a hybrid method that uses meta-

heuristic algorithms in its working mechanism to find

collision-free optimal paths in a short time with the least

process costs. It has also suitable behaviour in convergence

rate. We define the r parameter more efficiently with a

different mechanism and also use this value in choosing the

appropriate path length in a next station selection of each

UAV. For this, it acts with the X parameter in its meta-

heuristic algorithms. It also tries to find the optimal

direction to reach the destination station via a shorter route

as collision-free. For this, the angle is defined and opti-

mized by metaheuristic algorithms. In the Adapted-RRT is

deployed two important operations to select next stations

and finally generate path; the length of each movement and

the direction of each movement. For this, three meta-

heuristic algorithms are used to perform these two opera-

tions in the most appropriate way. The GWO algorithms

may be the best choice to perform these operations in a

balanced way. Accordingly, three different variants of this

algorithm are used. The Ex-GWO-based path planning

method may be performed more successfully in larger and

crowded environments with more populations and itera-

tions and I-GWO-based path planning method may give

good results in medium and smaller with less populated

environments. In addition, the GWO-based method is

generally between these two methods and behaves in a

balanced way. Equation 3 is used to calculate the total path

cost of the selected stations in all versions of our proposed

method. The working mechanism of the proposed method,

Fig. 5 Working mechanism sample of a RRT and b Adapted-RRT

Fig. 6 Angle finding and movement length updating mechanism in a

certain iteration of proposed method- An example
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which is based on sampling and metaheuristic algorithms,

is illustrated schematically in Fig. 5b.

3.5.1 Calculation of length of each movement

In the proposed method, generally, each UAV has a travel

length of 0 to r. This value indicates the length of each

movement to a next station (new station). As mentioned

before, the Euclidean distance determines the cost of each

path. There is a limitation parameter that forces the UAVs

to move around to the r value. It is necessary to use this

since the next stations are not initially defined, otherwise,

the agents reach the destination or a random station without

any restriction. The r value calculation in the Adapted-

RRT is obtained using Eq. 19. Here dim represents stations

number between source and destination states. On the other

hand, in this study, length of each movement, which is

selected using metaheuristic algorithms, is aimed to be the

best length. The value calculated from metaheuristic

algorithms is named with X. Therefore, firstly, an X value is

calculated from the GWO, I-GWO, and Ex-GWO algo-

rithms based on Eqs. 11, 15, and 18, respectively. If this

value is greater than r, the length of the value is calculated

according to the first part of Eq. 20, otherwise, it is

obtained by another part of Eq. 20.

r ¼ pdestination � psourceð Þ= dimþ 1ð Þ ð19Þ

X ¼ r þ X � rð Þ � rand 0; 1ð Þ if X[ r
X ¼ X þ r � Xð Þ � rand 0; 1ð Þ if X� r

�
ð20Þ

3.5.2 Conclusion of direction of each movement

In this method, another control parameter to find an opti-

mal path is direction. The movement direction is not

declared, because it is desired to avoid standing in the

current station. Thanks to this operation, the most suit-

able next station for each current station is selected and

therefore the corresponding UAV moves to the selected

next station position. In this step, the Adapted-RRT algo-

rithm still uses three GWO algorithms to find an optimal

angle to determine the movement direction. The angles

obtained from these metaheuristic algorithms are updated

to a more precise value as the iterations progress. The

parameter a is very important to determine the most

appropriate angle. While a has the largest value, the larger

angle is chosen and as the iterations progress, a value

becomes smaller and hence the angle will also narrow. The

a is linearly decreased from 2 to 0 over the courses of

iteration. This parameter helps the Adapted-RRT algorithm

in finding a better solution over the iterations of the pro-

posed method. As mentioned before, the first process in the

work of the GWO algorithms is to initialize a, A and C

values (Eqs. 6, 7, 8, and 12). The coefficient vectors A
!

and

C
!

are considered to lead in encircling their hunt (angle)

based on Eqs. 4 and 5. These parameters control the trade-

off between the exploration and exploitation phase in each

GWO algorithms.

In angle calculation, first, the angle between current and

destination stations is calculated by Eq. 21. For this, the

angle is determined with cosines. Here, the Euclidian dis-

tance between current and destination stations is effective

in finding the angular value. The parameter EuclDist rep-

resents this distance. Then, Eqs. 22 and 23 are used to find

the angle between current and next stations. It is most

important in the next station selection. The parameter b
determines the movable degrees that take UAVs to the

destination. This parameter is experimental that in this

study it is chosen 15 degrees. Equation 24 is used to find

the coordinates of candidate state based on the angle and

X value obtained. Since the problem is three-dimensional,

there are two angles, so it is quite natural to update two

axes. The working mechanism of the angle finding and

updating is shown in Fig. 6 with a simple example.

cos angleð Þ ¼ Xdestination � Xcurrent

EuclDistdestination;current
ð21Þ

Angle1 ¼ arccos angleð Þ þ b � að Þð Þ;
Angle2 ¼ arccos angleð Þ � b � að Þð Þ

ð22Þ

UpdatedAngle :¼ rand Angle1;Angle2ð Þ ð23Þ

Xnext ¼ Xcurrent þ X � cos UpdatedAngleð Þ;
Ynext ¼ Ycurrent þ X � sin UpdatedAngleð Þ; Znext ¼ Zcurrent

ð24Þ

Based on these two operations, the most suitable next

station is selected for each current station. Therefore, the

optimal path will be determined for each UAV. The

pseudocode and flowchart of the proposed method with

three variants of metaheuristic algorithms (Adapted-

RRTGWO, Adapted-RRTI-GWO, and Adapted-RRTEX-GWO)

can be found in Algorithm 3 and Fig. 7. The general

architecture of the proposed method is also represented in

Fig. 8.
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4 Simulation results

This section presents the results of the proposed method

with three variants of metaheuristic algorithms (Adapted-

RRTGWO, Adapted-RRTI-GWO, and Adapted-RRTEx-GWO)

and evaluates their performance. They are compared with 8

mixed sampling and metaheuristic-based methods; BPIB-

RRT* [49], tGSRT [53], GWO [20], I-GWO [21], Ex-

GWO [21], PSO [54], Improved BA [52], and WOA [55]

using same environmental conditions. The implementation

and analysis presentation has been performed using Java

and MATLAB. The proposed methods and other used

methods to compare are simulated on a Core i7-5500U 2.4

processor with 8 GB of RAM.

4.1 Assumptions of simulation

In this study, different scenarios have been considered in

various conditions such as map size, the number of

obstacles and their sizes, start and target points of UAV to

better analyse the performance of the proposed method. In

this regard, four maps (small, medium, crowded medium,

and large), presented in Table 3, with different starting and

ending boundaries have been used in simulations. Fur-

thermore, the starting and final stations of three UAVs are

listed in Table 4, whereas the obstacles coordinates are

given in Table 5. The shape of obstacles is supposed

rectangle. All the coordinates are presented in three-di-

mensional space. Moreover, the assumed environment is

continuous and bounded. The optimal path costs, execution

time and complexity, and convergence rate analysis is

explained in the following section in detail, using various

population sizes and iterations numbers as given in the

couple-tuples form: (25, 40), (50, 100), (100, 100). In

addition, the parameter values of metaheuristic algorithms

used are presented in Table 6.

4.2 Comparison and evaluation of the path costs

In this section, the Adapted-RRTGWO, Adapted-RRTI-GWO,

and Adapted-RRTEx-GWO for path planning are analysed

based on cost function (Eq. 3). All the obtained cost values

are in centimetres. Also, the overall time parameter refers

to the average running time of each method. As meta-

heuristic algorithms may obtain different as well as near

solutions, we run each algorithm 10 times. The best cost

values are presented with different population sizes and

iteration numbers (see Tables 7, 8, 9 and 10). Each version

of the proposed method has three UAVs with different start

and final stations. According to the results, the Adapted-

RRT-based methods are moved to the next station based on

the adapting current position according to the destination

position. With larger dimensions of the map and the

increasing number of obstacles, the proposed algorithms

give better minimum cost values, when compare with other

algorithms.

Among all the algorithms used in this paper, Adapted-

RRTEX-GWO algorithm gives the best results compared to

other algorithms, while Adapted-RRTI-GWO and I-GWO

algorithms take in the second and third ranks, respectively.

Table 11 presents ranking summary of each algorithm.

Briefly, each path planning method runs in the three

Algorithm 3. Pseudocode of Adapted-RRTGWO,I-GWO, Ex-GWO
1. Initialize grey wolf population Xi (i=1, 2, …..,n )
2. Initialize r, a, A and C                     //Eq. 19, 12, 6, and 7
3. Initialize Positions matrix   
4. Calculate fitness of each agent   //Eq.3
5. Xα = best search agent
6. While (t< Max number of iterations)
7. For each search agent
8. Find distance between r and solution obtained by metaheuristics
9. // For Adapted-RRTGWO :Eq. 11, For Adapted- RRTI-GWO : Eq. 15, For Adapted-RRTEx-GWO :Eq. 18
10. Find best length of movement   // Eq. 19 and 20 
11. Find best angle degree as direction of movement     // Eq. 22, 23
12. Update coordinates of current search agent    //Eq. 24
13. End For
14. Update a, A and C
15. Calculate fitness of all search agents
16. Update Xα

17. Insert Xα to best Positions matrix
18. t = t +1
19. End While
20. Return Xα
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different populations and iteration sizes on four maps.

Table 11 shows the percentage of algorithms obtaining the

minimum cost. Here, each path planning method has a

different mechanism, as the metaheuristic operations and

mechanism vary, the obtained results are different. The

proposed adapted-RRT path planning method benefits from

the parameters of the metaheuristic algorithms to find the

optimal path.

Although it is not possible to make a definite general-

ization based on the analysis of the results obtained, a

result like the following may arise. The Adapted-RRTEX-

GWO can perform more successfully in larger and crowded

environments with more obstacles. Also, the more

Fig. 7 The flowchart of the proposed method
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populations and iterations used, it may have more chance

to find good results. The main reason for this is that in the

Ex-GWO method, almost all wolves in the pack have an

important role in each other’s position update. Therefore,

the wolves in the pack minimize the escape paths of the

hunt (prey), and hence, the hunts can be caught faster. On

the other hand, the Adapted-RRTI-GWO method may give

good results in small-medium sized environments. In

addition, it may be more successful than other GWO

algorithms in fewer populations and iterations because it

depends only on the alpha wolf. The GWO-based method

is generally between these two methods and behaves in a

balanced way.

All the paths generated for different maps have been

shown in Fig. 9 is a perspective view. In this figure, it

shows the path of each UAV travels in 3D. The cost of

these paths was presented in the previous paragraph in

Tables 7, 8, 9 and 10. In this figure, the balls show the

source (initial) station of each UAV, and the star symbols

show the destination state of each UAV. As mentioned

before, there are three UAVs on each map, that the pro-

posed path planning methods generate collision-free opti-

mal paths. As such, there are three different paths

generated for each algorithm; making 9 different paths for

each map. The results show that the proposed methods

generate optimum paths without any collision. Also, the

Table 6 The simulation parameters

Algorithm Parameter Value Algorithm Parameter Value

GWO

I-GWO

Ex-GWO

a [2, 0] WOA a [2, 0]

A [2, 0] A [2, 0]

C 2.rand (0, 1) C 2.rand (0, 1)

l [- 1, 1]

IBA Mutation scaling 0.5 b 1

Pulse rate 0.5 PSO Weight 0.6

Loudness balances 0.95 c1 and c2 acceleration constants 1.7

Counts of dimension to change 0.65

Frequency 0.5

Fig. 8 General architecture of the proposed method
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experiments demonstrate that the metaheuristic algorithms

need at least 40 iteration number and 25 population size for

the optimal path, after which the metaheuristic algorithms

are less likely to decrease the cost of the path. This issue

has also been determined in studies in the literature

[17, 22, 39].

4.3 Comparison and evaluation of the execution
time

The execution times of each algorithm are presented in

Fig. 10. The proposed algorithms have better performance

in terms of time taken when going through the maps. The

execution time difference among the proposed algorithms

and others are detailed in the figure. The performance of

the execution time of Adapted-RRTEx-GWO and Adapted-

RRTI-GWO is better than others, respectively. In the

Adapted-RRT method, locating the next station necessi-

tates only the angle and the distance of the destination and

the next station selection is based on the situation. There-

fore, it can find suitable solutions in a short time. So, this is

due to its hybrid mechanism. Another important inference

is that as the population and iteration numbers of meta-

heuristic algorithms increase, the overall time parameter

will also increase, but this problem is not encountered

despite using metaheuristic algorithms in the proposed

hybrid versions.

Also, in time complexity analysis, while metaheuristic-

based methods generally have O(n2) B T notations, sam-

pling-based methods such as RRT have

O (n Logn) B T B O(n2) complexity. Our proposed

methods, which are a hybridization of sampling and

metaheuristic methods, have O(n2) complexity. In the

computational analysis, the Adapted-RRTI-GWO is better

than the two other proposed. Because I-GWO depends on

only alpha wolf and therefore, calculations are more effi-

cient. Among the other two algorithms (Adapted-RRTGWO

and Adapted-RRTEx-GWO), the best performance belongs to

Adapted-RRTGWO. Because only the best three wolves are

taken into account in Adapted-RRTGWO. However, in

Adapted-RRTEx-GWO, every wolf in the group follows all

their previous wolves and performs an update process. On

the other hand, the complexity of BPIB-RRT * is

O(n Logn), tGSRT is O(n2), and the complexity of the rest

of the other algorithms is equal or bigger than O(n2).

4.4 Comparison and evaluation
of the convergence rate

Another analysis parameter is the convergence rate. Fig-

ures 11, 12, and 13 present the convergence curve of each

path planning algorithm. As aforementioned, the obstacles

numbers and the boundary sizes of the map are declared in

Sect. 3.2. The three versions of the proposed path planning

method have different structures with respect to explo-

ration and exploitation. The presented figures illustrate the

convergence curve of algorithms with 40 iterations and a

population size of 25. In general metaheuristic algorithms

have better convergence performances than others. Among

the metaheuristic approaches used in this study, GWO-

based methods are more successful due to their working

mechanism as a swarm-intelligence group. Because wolves

can update their positions according to the positions of

other wolves in the herd and approach the hunt (solution).

Based on the results, the Ex-GWO-based Adapted-RRT

algorithm has better convergence curve behaviour overall

in many cases, because in the Ex-GWO algorithm the

experience of the entire population is used in the optimal

pathfinding, in each iteration. When the convergence curve

behaviours are analysed, it is seen that the Adapted-RRTEx-

GWO method generally behaves more balanced between

exploration and exploitation phases. With this balance, it is

slowly moving towards a global optimum. Thus it gives a

chance to find all possible candidate solutions in the global

workspace. The term convergence in the literature

[20, 55, 57–59] refers to the rate or behaviour of an algo-

rithm towards the global optimum. Of course, a quick

convergence results in local optima stagnation. By contrast,

sudden changes in the solutions lead to local optima

avoidance but reduce the convergence speed towards the

global optimum. In other words, the search agents change

abruptly in the early stages of the optimization process and

Table 11 Ranking summary of used algorithms in cost path parameter

Algorithm Success rate (percent) Rank

Adapted-RRTGWO 11.11 5

Adapted-RRTI-GWO 19.44 2

Adapted-RRTEX-GWO 27.78 1

GWO 2.78 6

I-GWO 16.67 3

EX-GWO 13.88 4

BPIB-RRT* 2.78 6

tGSRT 0.00 10

PSO 2.78 6

IBA 0.00 10

WOA 2.78 6

The bold value and underlined value are the best results
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Fig. 9 Generated optimal paths in four maps
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then gradually converge. The proposed method generally

has a balanced movement in all situations where it could

find or not the best solution. In other words, using the Ex-

GWO algorithm, this method mainly exhibits balanced

convergence behaviour. Also, thanks to its characteristic

feature, it outperformed in more complex and larger areas.

According to the results and the figures obtained, regarding

the I-GWO algorithm, UAVs reach the best optimal path

earlier than when using other techniques. In the analysis,

different iteration sizes have been considered to get the size

of the optimal iteration. As a result of our observations, we

conclude that 40 iterations are enough to find the best path.

Because it was seen that the same results were obtained

when more iterations were continued. The acquired out-

comes also indicate that the execution time of algorithms is

variable in the maps. Due to the number of obstacles and

the map boundary, different results are collected. Also,

while using three UAVs with different initial and final

states’ behaviours in the convergence rate analysis, it is

shown that the number of obstacles has an effect on the

path cost.

Figure 14 depicts the boxplot analysis of each map and

UAV1. The aim is to compare the performance of the

proposed and used methods. These results are acquired for

10 runs of metaheuristics with iteration size of 40. The box

plot graph analysis shows the maximum and minimum

values of the best cost obtained along with the frequency of

the values. The boxplot analysis shows that Adapted-

RRTEx-GWO algorithm gives better performance in com-

parison with other algorithms. It can be stated, based on

values in Sect. 4.2, the finding costs by Ex-GWO-based

methods are generally close to the average values, shown

by red lines in the Fig. 14. It should be noted that best cost

was typically obtained after an average of 10 runs.

Fig. 10 Execution time analysis for different maps in each algorithm

15592 Neural Computing and Applications (2021) 33:15569–15599

123



4.5 General comparison and discussion

Table 12 presents the general characteristics of each type of

method in path planning. In this paper, we compared our

proposed three-versions method with 8 different methods

(sampling and nature categories-based). The proposed

method has been evaluated in a simulation environment

like other algorithms used to compare. In this simulation,

the obtained results and analysis of them explain the pro-

posed method outperformed other algorithms in defined

considered parameters. As a result, a summary evaluation

of our proposed hybrid method with other methods in both

categories has also been made. The values and ranges of

the parameters in this study have been used considering the

parameters and their ranges as they appear in the literature

[18, 23, 27, 29, 43, 56].

The advantages and outperformof themethod proposed in

this study are discussed in the simulation and analysis sec-

tion. However, this method did not take into account UAVs’

own variables such as the battery, speed, altitude, and pro-

cessing power. In addition, dynamic conditions such as wind

and rain in real environments are not taken as a basis.

However, the proposed method is also expected to be suc-

cessful under these conditions, in line with its general

architecture and hybrid mechanism. Since this method has a

wide range, it can be used in real and various application

areas, and new studies are planned in the future based on the

parameters that are not considered in this study.

Fig. 11 Convergence analysis for UAV1 on each map with 25 populations and 40 iterations
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5 Conclusions and future scope

This study presented a new hybrid method with three

versions to solve 3D path planning problem in autonomous

UAVs. In this paper, an improvement on RRT algorithm,

namely Adapted-RRT, is presented and it is applied with

three different well-known metaheuristic algorithms;

GWO, I-GWO, and Ex-GWO. These methods are named

as Adapted-RRTGWO, Adapted-RRTI-GWO, and Adapted-

RRTEx-GWO. They were suggested to find the optimal paths

between initial and final stations of each UAV without any

collision as well as with minimum time and space com-

plexities. Adapted-RRT avoids possible obstacles without

making random movements. In the Adapted-RRT were

deployed two important operations (length of each move-

ment and direction of each movement) to select next sta-

tions and finally generate path. For this, three metaheuristic

algorithms are used to perform these two operations in the

most appropriate way. Based on results, it was concluded

that the Adapted-RRTEX-GWO can perform more success-

fully in larger and crowded environments with more

obstacles, populations and iterations. On the other hand,

Fig. 12 Convergence analysis for UAV2 on each map in 25 populations and 40 iterations
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Adapted-RRTI-GWO method may give good results in

small-medium sized environments. In addition, it may be

more successful than other GWO algorithms in fewer

populations and iterations. The GWO-based method is

generally between these two methods and behaves in a

balanced way. In this study, four different maps with var-

ious obstacles have been used, furthermore, three UAVs

with different start and destination states have been con-

sidered. The proposed methods have been analysed in

terms of optimal path costs, execution time, and

convergence rate by varying the population sizes as well as

the iteration numbers. The results obtained show that the

Adapted-RRTEx-GWO method outperforms the others 10,

out of the total of 11 algorithms. In future work, 3D path

planning method proposed will be realized using machine

learning methods such as reinforcement learning or game

theory-based algorithms. Another possible direction of

further study can be path planning for Autonomous

Underwater Vehicle (AUV), connected vehicles with

VANET and FANET structures.

Fig. 13 Convergence analysis for UAV3 on each map with 25 populations and 40 iterations
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Fig. 14 Boxplots graph analysis for UAV2 for each map with 25 populations and 40 iterations

Table 12 Features of the focused path planning methods

Features Sampling-based algorithms Nature-based algorithms Our method

Obstacle avoidance Yes Yes Yes

Optimum pathfinding No Yes Yes

Environment Small Complex Complex

Convergence Slow Fast Fast

Local minima capture Yes No No

Operating environment Static/dynamic Static/dynamic Static/dynamic

Time efficiency in find a

path

High Low Medium

Time efficiency in optimal

pathfinding

Low Medium High

Searching Fast Medium Medium

Process costs Low Medium Low

Computational overload High Medium Medium

Complexity O(n Logn) B T B O(n2) O(n2) B T O(n2)

Device memory efficiency Medium–high Low Medium–high

Multi-paths finding No Yes Yes

Random movement Yes Partial No

Location and number of

intermediate stations

Undetermined Predetermined Undetermined

Intermediate stations

selection

Usually random but a certain

mechanism is followed

Optimized selection but on a

limited candidate stations

Optimized selection from desired

number of candidate stations

Adaptability High Low High

Fault tolerance Low High High
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Appendix: Terminologies

Term Explanation

Path Planning It is a computational problem to find a

sequence of valid configurations that

moves the mobile robot from the source

to the destination

Optimal Path Planning It is measured based on various factors

such as path length, collision-free space,

execution time, and the total number of

turns

Sampling-based Path

Planning

These methods need some pre-known

information of the whole workspace, that

is, a mathematical representation to

describe the workspace

Mathematical-based

Path Planning

These algorithms model the environment

(kinematic constraints) as well as the

parameters of the system (dynamic).

Afterward, they map the bounds of these

two parameters based on the cost

function bound

Nature-based Path

Planning

These methods attempt to find an almost

optimal path by eliminating the process

of creating complex environment models

based on stochastic approaches

Node-based Path

Planning

These algorithms are informed search

methods and find an optimal path based

on certain decomposition

Unknown Environments The mobile robot does not have any

information about the environment. In

this case, the movements are not

deterministic and it is according to local

information. The results for all actions

are unknown to the agent

Known Environments The mobile robot has enough information

about the environment. the results for all

actions are known to the agent

Fully or Partially

Known Environments

The whole or part of the environment

refers to certain situations

Unstructured

Environments

The mobile robot cannot rely on complete

knowledge about its environment. The

environment fills with uncertain

elements

Trajectory The path between two points that followed

by an object

Metaheuristics

Algorithms

These algorithms try to efficiently explore

the search space in order to find near-

optimal solutions by exploiting without

falling to local trap optima

Local Optima Trap Situation mistakenly considered the best

solution. However, there is a better

solution in the global area than the found

solution

Autonomous Mobile

Robots

They gain required information about their

environment. They can operate

autonomously without human

intervention
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