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Abstract
Handwritten Urdu character recognition system faces several challenges including the writer-dependent variations and non-

availability of benchmark databases for cursive writing scripts. In this study, we propose a handwritten Urdu character

dataset for Nasta’liq writing style covering isolated, positional characters as well as numerals. We also propose a con-

volutional neural network (CNN) architecture for the recognition of handwritten Urdu characters and numerals. CNN is a

novel technique for image recognition that does not need explicit feature engineering and extraction and produces efficient

results as compared to standard handcrafted feature extraction approaches. The proposed system was trained on a training

dataset of 74, 285 samples and evaluated on a test dataset of 21, 223 samples and achieved a recognition rate of 98.82% for

133 classes, outperforming the results of all state-of-the-art systems for the Urdu language.

Keywords Handwritten Urdu character recognition · Urdu OCR · Convolutional neural network · Deep learning

1 Introduction

Urdu, the fifth most spoken language in the world catering

to 4.7 percent of the world’s population, is widely spoken

in Pakistan where it is the national language and India

where it is recognized as one of the 22 official languages

[13]. Urdu language speakers reside in 20 different coun-

tries of the world like India, Pakistan, Turkey, Saudi

Arabia, Bangladesh, Afghanistan, Iran, Azerbaijan, Nepal

etc. [34]. The Urdu language is composed and influenced

by different languages like Arabic, Persian, Turkish and

Hindi languages. Urdu is a non-scripting language [20, 21]

which is cursive in nature and has no concept of capital or

small letters because it is highly influenced by Arabic and

Persian Scripts [3, 4, 9] therefore, they share similarities at

writing level. In the cursive script, individual characters are

joined to form ligature, and ligatures are grouped to form

words, such linguistics characteristic is called as a

compound character. Each Urdu ligature has two parts:

RASM and IJAM. RASM is the main stroke without the

associated diacritic and is also called as the main body, see

Fig. 1c. IJAM are mandatory diacritics used to disam-

biguate the same RASM having different consonant

behavior as can be seen in Fig. 1(d). A RASM can or

cannot contain IJAM depending on consonantal behavior.

The RASM of character Reh (ر) does not have any IJAM,

whereas the RASM of character Dhaal (ڈ) has an IJAM

which is indicated in Fig. 1d. The Urdu character set has a

total of 21 unique RASMs which are given in Fig. 2.

Figure 2a specifies the name of RASM, Fig. 2b indicates

the shape of RASM of Urdu character, and all characters

with possible variations of diacritics of the same character

class are shown in Fig. 2c [5]. In the modern Urdu lan-

guage there are 38 basic characters [32] out of which 28

characters are adopted from the Arabic language [10].

Standard Urdu characters are shown in Fig. 1a.

Each character of the Urdu language has multiple forms

or shapes (i.e., isolated, initial, medial, and final) depend-

ing upon its position within the word. For example, char-

acter Beh ( بب ), Peh ,(پ) Teh ,(ت) etc. can join with other

characters from both directions i.e., from preceding and

subsequent character as well in the same word, but some

characters like Alif ,(ا) Daal ,(د) Reh (ر) only joins from
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right to left i.e., from preceding alphabet in a word only.

Also, there exist some characters with no joining ability at

all, for example, character Hamza ( 29[)ء ]. Therefore,

based on the joining properties Urdu characters can be

broadly divided into two categories: Joiners and non-join-

ers. The joiners acquire all the four shapes, depending on

the neighboring character, while non-joiners can only

acquire only isolated and final shape. Figures 3 and 4 show

all the possible shapes of a joiner and non-joiner Urdu

character, respectively.

There are also two field characters in the Urdu language

being excessively used in many Urdu ligatures but are not

the members of the basic character set: Alif-Madd (آ) and
Noon-Ghunna .(ں) Also, like any other languages, such as,

English, Arabic, Persian, etc. the Urdu language also

Fig. 1 a Urdu language basic character set, b Urdu character with Rasm and Ijam

Fig. 2 Rasm classes of Urdu character set

Fig. 3 Joiner Urdu characters
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contains ten numeral characters starting from 0 to 9 (۰,
۱,..,۹) which are shown in Fig. 5.

In this paper, we proposed a new and comprehensive

handwritten dataset for Nasta’liq Urdu script named

Handwritten Urdu Character dataset (HUCD) which con-

sists of isolated and positional characters as well as

numerals collected from 750 individuals of Kashmir valley.

We also proposed a novel deep learning model based on

CNN for recognition of the handwritten Urdu characters

and numerals. The proposed analytical model achieved

state-of-the-art recognition accuracy of 98.82% with a root-

mean-square error rate of 4.24.

1.1 Optical character recognition

The Optical Character Recognition (OCR) is a classical

pattern recognition problem which takes handwritten or

printed text as an input and regenerates an editable ma-

chine-understandable format of text extracted from the

scanned image. In other words, OCR is an electronic and

mechanical conversion of an image into a textual form like

ASCII or UNICODE. OCR finds its applications in trans-

lation tools, document automation, advanced document

scanning, document verification, business applications,

data entry, systems for visually challenged persons [29],

data mining, biometrics, text storage optimization and

electronic data searching, etc. [39]. Over the past recent

years, there has been unending demand for Urdu-based

OCR, not only to facilitate the native speakers to readily

use it for their pocket device requirements, but also for

digitizing historical documents, holy books, and poetry

books to preserve the literary heritage. Various organiza-

tions and libraries throughout the world have digitized their

collections of documents and have made them available

online facilitating their retrieval. A major shortcoming with

these document archives is that they are stored as digitized

images that are neither searchable nor editable [10]. In

addition, such digitized images require more storage space

as compared to text [27] and more bandwidth for their

transfer or retrieval over the internet. Conversion of these

digitized images into text is therefore highly desirable.

There are two types of OCR: Offline and Online OCR

based on the input acquisition which can be printed,

typewritten or handwritten [39]. Offline OCR system deals

with the input image which is already written i.e., hand-

written or machine-printed format. Whereas input to the

Online OCR is directly written by the user using any smart

device.

1.2 Peculiarities and challenges in Urdu
language

Urdu OCR is a challenging task due to the following

complexities of cursive scripts:

1.2.1 Ligature

In the Urdu language, two or more individual characters

are combined to form ligatures (sub-word) and ligatures are

grouped to form a word. Figure 6a, b shows two ligature

based and single ligature based Urdu word, respectively.

This complex combination of ligatures is a major challenge

for OCR.

1.2.2 Diacritics

The characters of the Urdu language are not single but are

enriched with some marks (i.e., Chota Toi, Nuqta (dots),

Hamza, Madaa, Shud, Paish, Zabr, Zair, Juzm and Khari

Zabr) below or above the primary character as represented

in Fig. 7. These marks are called secondary characters or

diacritics. Recognition of these diacritics produces prob-

lems in segmentation and then in recognition stages [2,

[24].

1.2.3 Script

The Urdu language has 12 different writing styles like

Naskh, Nasta’liq, Kofi, Riqa, Aswad, Taleeq, Batool etc.,

but two styles Naskh and Nasta’liq are the most commonly

used. Nasta’liq style is mostly followed by printed media

like magazines, newspapers, whereas online material is

generally available in the Naskh style of writing. Both of

these styles are written in a semi-cursive fashion from right

to left, similar to Arabic script.

Fig. 4 Non-Joiner Urdu characters

Fig. 5 Urdu language numerals from 0 to 9
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1.2.4 Diagonality and baselines

A prominent distinction between the Naskh and Nasta’liq

styles is the flow in which these scripts are written. Naskh

has a horizontal writing flow from right to left with a flat

baseline, i.e., words are spread horizontally along the

baseline taking more space, while Nasta’liqs flow is diag-

onal from right-top to left-bottom with multiple baselines.

Although diagonality economizes the horizontal space, the

however vertical overlap of characters is possible with the

words of the underneath line when a word in a given line

contains a large number of letters or vice versa (see Fig. 8).

The Nasta’liq style was evolved from two other writing

styles namely Naskh and Taleeq. The Nasta’liq style of

writing is considered as one of the sophisticated scripts to

be used digitally [36]. Figure 9a shows the style, diagonal

flow, and multiple baselines for Nasta’liq script, whereas

Fig. 9b represents the style, horizontal flow, and single

baseline for Naskh script.

1.2.5 Direction of writing

The Urdu language is bidirectional in nature. Generally, the

right to left direction is used for reading and writing the

Urdu text, whereas the left to the right direction is used for

reading and writing Urdu numerals. The bidirectional

behavior of cursive scripts is illustrated in Fig. 10a.

1.2.6 Overlapping

Words and characters in Nasta’liq style are written from

the right diagonal at different angles with the baselines for

beauty and sufficient space (called kerning). On one hand,

it creates beauty in writing style but on the other hand, it

creates vertical overlapping problems of characters. The

Naskh style can be easily segmented due to its non-over-

lapping of characters, linearity in writing, and single

baseline. On the other hand, Nasta’liq style of writing is

highly cursive with multiple baselines and therefore,

making the segmentation process a difficult task. Figure 9c

shows intra-ligature and inter-ligature overlapping of

characters in Nasta’liq style of writing [25, 36].

1.2.7 Stacking

The diagonality of the Nasta’liq style results in variable

height and variable width ligatures as shown in Fig. 10b.

Since there is no limit on a number of characters to be

joined in a ligature, thus giving rise to stacking problems

(multiple baselines), the stacking of characters makes some

ligatures higher than the usual ones, thus, consuming less

horizontal space as shown in Fig. 9a [25].

1.2.8 Context sensitivity/graphism multiplication

Each character in a ligature has a different shape depending

on the position of the character and the neighboring char-

acter to which it is connected. The character may occur at

initial, medial, final, and isolated positions. Due to the

context sensitivity, the Urdu language is completely dif-

ferent from other languages. Figure 11 shows some sample

alphabets and their shapes with respect to their position in a

word.

Fig. 6 Example of Urdu words. a Separate letters of “Bandagi,” b Separate letters of “Tasbih”

Fig. 7 Urdu diacritics. a Common: Chota Toi, Dots, b Uncommon: Hamza, Madaa, Shud, Paish, Zabr, Zair, Juzm and Khari Zabr

Fig. 8 Red circles and green boxes represent inter-word and inter-

ligature variable spacing; sky blue circles show vertical overlapping
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1.2.9 Dotting problem

The diacritics ‘Nuqta (dots)’ and ‘Chota Toi’ are a requisite

part of many Urdu characters. The position and number of

‘Nuqtas’ associated with a character are vital for differ-

entiating the characters from the same class. Therefore, in

Urdu script, the characters are differentiated from each

other using dots. All the diacritics except ‘Nuqta’ and

‘Chota Toi’ helps in pronouncing the Urdu words and are

called ‘Aerab’ [2, 24]. Figure 7a and b shows the com-

monly and rarely used Urdu diacritics.

1.2.9.1 Non-monotonicity Cursive scripts are non-mono-

tonic in nature meaning that the stroke of some characters

frequently goes back beyond the previously written char-

acter. The non-monotonic nature of the cursive script is

illustrated in Fig. 12a where ‘Bari-Yay’ goes backward

beyond the previous character ‘Beh’.

1.2.9.2 Stretching and positioning In Nasta’liq, some

characters frequently change their standard version to a

longer version, if space is to be occupied which causes

certain characters to change their default shape, while

others change their width only. The characters Seen, Sheen,

Beh, Keef, and Gaaf etc. often exhibit such phenomenon.

Figure 12b shows such a phenomenon for the character

‘Seen’. On the other hand, positioning refers to a situation

when a character or ligature is placed on top of the previous

ligature of the same word or an adjacent word in order to

economize the space. Figure 12c illustrates such a

phenomenon.

1.2.9.3 Spacing In the cursive script, variable spacing

may occur between two words or between the ligatures just

to justify the text in Urdu script. Figure 8 shows various

inter-word and inter-ligature spacing in Urdu text as rep-

resented by red circles and green boxes, respectively.

1.3 Artificial neural network

Artificial neural network (ANN) is a machine learning

(ML) approach comprised of many interconnected, simple

functional units called neurons organized in input, hidden,

and output layers that act together as parallel information-

Fig. 9 a Nasta’liq style of writing, diagonal flow, and multiple baselines, b Naskh style of writing, horizontal flow and single baseline,

(c) overlapping: Red ovals represent inter-ligature and green ovals represent intra-ligature overlapping

Fig. 10 a Bi-directional nature of Urdu language, b dimensions of ligature increase with stacking

Fig. 11 Different shapes of alphabets with respect to their position in a Word

Fig. 12 a Non-monotonicity, b stretching, c positioning in Urdu

Script
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processors, to solve regression or classification problems.

The ANN is inspired by the structure of the brain and

resembles the biological nervous system. Therefore, if the

network is created by stacking layers of these multiple

connected neurons the resulting computational system can

separate the input space (that receives the input informa-

tion) into a discrete number of classes (that relay the pro-

cessed information out called output layer) or they can

approximate the function (black-box) that maps inputs to

outputs (that pass the information back and forth between

layers for processing by invoking certain goals and learn-

ing rules called hidden layers). The units in each layer are

interconnected to the nodes or units in surrounding layers

with each connection having a weight value. Each input is

then multiplied by a corresponding weight value and then

summed up. This computation is the dot product between

the input vector and the weight vector which can be

thought of as a measure of similarity between the two. The

summed value then undergoes a transformation based on

activation function, which can be sigmoid, hyperbolic

(tanh) or rectified linear unit (ReLu) function. These

functions are used because they make it easier to compute

the partial derivative of the error delta with respect to

individual weights. Both sigmoid and tanh functions

implement nonlinearity before and after the respective

thresholds as output plateaus and normalize the input into a

narrow output range i.e., 0/1 and 1/?1, respectively. On

the other hand, ReLu exhibits both saturating and non-

saturating behaviors. Finally, the output of the activation

function is then fed as input to the subsequent unit into the

next layer. The result of the final output layer is used as the

solution for the problem. The ANN can be used to solve

various day today problems including pattern recognition,

classification, computer vision, dimensionality reduction,

regression, and natural language processing, etc. [38].

1.3.1 Deep learning

Deep Learning (DL) or hierarchical learning is a type of

ANN based on a set of algorithms that attempt to model

high-level representations or abstractions from datasets

without any manual design of feature extractors. Deep

neural network consists of several nonlinear processing

layers with complex structures in between the input and

output layer for feature learning and pattern classification.

Deep Learning can be Supervised, Unsupervised, and Semi-

Supervised. There exists another category of learning

approach called Reinforcement Learning (RL) or Deep RL

(DRL) which is often discussed under the scope of semi-

supervised or unsupervised learning approaches. In the

case of supervised DL, the environment has a set of inputs

and the corresponding set of outputs. Therefore, in super-

vised learning, there is an output label associated with

every input data. In other words, supervised learning uses

the labeled data to train the network. Different supervised

DL learning approaches include deep neural network

(DNN), convolutional neural network (CNN), and recur-

rent neural network (RNN) including long short-term

memory (LSTM) and Gated Recurrent Units (GRU). In

unsupervised DL, the algorithms are left to themselves to

discover interesting structures or patterns in the data.

Therefore, there are no output labels associated with the

given input data. Clustering, dimensionality reduction and

generative techniques like Auto-Encoders (AE), Restricted

Boltzmann Machines (RBM) and Generative Adversarial

Networks (GAN) are considered as unsupervised learning

approaches. In addition, RNNs (LSTM) and RL are used

for unsupervised learning in various application domains.

Semi-supervised learning is a learning approach that occurs

on partially labeled datasets, while DRL is a learning

technique in which the model is exposed to an environment

where it continuously trains itself using the trial and error

method [7].

1.3.1.1 Convolutional neural network CNN is a type of

deep learning based on the organization of the animal

visual cortex for processing data of grid pattern, such as

images. CNN is the neural network of choice for computer

vision (image recognition) and is designed to automatically

and adaptively learn spatial hierarchies of features (low to

high-level patterns) through a backpropagation algorithm

[38, 40]. CNN is a mathematical construct that is composed

of a series of convolution and pooling layers followed by a

fully connected layer and a normalizing (softmax) layer.

Each node of the convolution layer extracts features from

the input images by performing the convolution operations

on input nodes and preserves the spatial relationship

between pixels by learning image features using matrices

of input data. A fully connected layer performs classifica-

tion by mapping the extracted features into the final output

as class probabilities prediction. Subsampling or pooling

layer performs the down-sampling operation on input

maps. The down-sampling operation reduces the size of

each dimension of output maps depending on the size of

down-sampling mask.

Convolution layer: A CNN implicitly breaks down an

image in terms of spatial properties like edges, strokes,

contours, textures, gradients, orientation, and color and

learns them as representations in different layers. A con-

volution layer typically consists of a combination of linear

(convolution) and nonlinear (activation function) opera-

tions to perform feature extraction. In a Convolution

operation, a small array of numbers, called a kernel is

applied on an input array of numbers, called a tensor by

performing the summation of the element-wise product of

each kernel element and input tensor to obtain the output
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value in the corresponding position of output tensor, called

as feature map (see Fig. 13). The process is repeated on

multiple kernels to generate an arbitrary number of feature

maps, each representing different characteristics of the

input tensor. Thus, different kernels can be considered as

different feature extractors of the convolutional layer.

Therefore, the size and number of kernels (filter size)

define the two main hyper-parameters of the convolution

layer. The size of the kernel is a tuple of 393 or sometimes

595 or 797. , whereas the number of kernels is arbitrary

and determines the depth of output feature maps.

There are two other parameters in convolution operation

i.e., padding and strides: Padding can be ‘same’ or ‘valid’.

Setting Padding to ‘valid’ means that the spatial dimen-

sions of the output feature map are allowed to reduce

compared to the input tensor via the natural application of

convolution because it does not allow the center of each

kernel to overlap the outermost element of the input tensor

as described in Fig. 13. With ‘valid’ padding each suc-

cessive feature map would get smaller after the convolution

operation. To preserve spatial dimensions of the output

feature map with input tensor, ‘same’ padding is used. This

is achieved by adding rows and columns of zeros on each

side of the input tensor, so as to fit the center of a kernel on

the outermost element of the input tensor and keep the

same in-plane dimension through the convolution opera-

tion (see Fig. 14). The distance between two successive

kernel positions is called a stride. In other words, stride

denotes the number of pixels by which the kernel window

moves after each convolution operation (see Fig. 15). The

typical choice of a stride is 1. However, in order to achieve

down-sampling of the feature maps a stride larger than 1 or

alternatively pooling operation can be used.

Thus, with regard to the convolution layer training, a

CNN model is to identify the kernels that are effective for a

given task based on a given training dataset. During the

training process kernels are the only parameters automati-

cally learned in the convolution layer, whereas the hyper-

parameters such as number of kernels, size of the kernels,

padding, and stride are needed to be set before the training

process starts.

Nonlinear activation function: ReLU: Once the con-

volved outputs are obtained they undergo a nonlinear

transformation by passing through a nonlinear activation

function. The only purpose of the activation function is to

introduce nonlinearity in the network. Different types of

nonlinear activation functions include sigmoid, tanh and

rectified linear unit (ReLU). ReLU is less computationally

expensive as compared tanh and sigmoid because it

involves simpler mathematical operations and only a few

neurons are activated at a time making the network sparse

efficient and easy for computation. In simple words, RELU

learns much faster than tanh and sigmoid function and

simply computes the function: f(x)=max(0, x) (see Fig. 16).

In other words, the activation function decides, whether

a neuron should be excited by calculating a weighted sum

and further adding bias with it. A neural network generally

updates the weights and biases of the neurons on the basis

of the output error. This process is called as backpropa-

gation. The backpropagation is only possible by activation

Fig. 13 An example of convolution operation with a kernel size of 393

Fig. 14 Example of zero padding

Fig. 15 Movement of kernel window for Stride of 1
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functions since the gradients are supplied along with the

error to update the weights and biases.

Pooling Layer: A pooling layer is a simple down-sam-

pling operation performed in order to introduce a transla-

tion invariance to small shifts and distortions by reducing

the size of each dimension of output feature maps, which in

turn decreases the number of subsequent learnable

parameters. Like convolution operation, pool size, stride,

and padding are the hyper-parameters in pooling opera-

tions. However, there is no learnable parameter in any of

the pooling layers.

● Max pooling and average pooling

In max pooling, each pooling operation extracts patches

from the input feature maps and then selects the maximum

value of the current patch, whereas in average pooling, the

average of all the elements of the current patch is taken

(see Fig. 17). A max pooling or average pooling operation

down-samples of the in-plane dimension (height9width)

of feature maps by a factor of 2. However, the depth

dimension of feature maps remains unchanged.

● Global max pooling and global average pooling

A global max pooling or global average pooling oper-

ation down-samples the in-plane dimension (height9

width) of a feature map into a 11 array by selecting the

maximum value or by taking the average of all the ele-

ments in each feature map, respectively, whereas the depth

of feature maps is retained. These types of pooling

operations reduce the number of learnable parameters,

enable the CNN to accept variable size input, and are only

applied once before the fully connected layers.

Fully Connected layer: The fully connected layer (FC)

operates on a flattened input as shown in Fig. 18, where

each input feature map is mapped by a subset of fully

connected layers to the final outputs of the network, as the

predicted probabilities of each class for final classification.

In other words, the output feature maps of the final con-

volutional or pooling layer are flattened and connected to

one or more FC layers, also called as dense layers in which

every input is connected to every output by a learnable

weight. Flattening is the process of transforming the multi-

dimensional feature maps into a one-dimensional array of

numbers. The final dense layer typically has the same

number of output nodes as the number of classes. Each

fully connected layer is followed by a nonlinear function.

Last layer activation function (softmax): A softmax

function can be seen as a generalized logistic function that

takes as input a vector of scores and produces as output a

vector of output probabilities. In other words, a softmax

function is an activation function for performing multiclass

classification which normalizes the output of the last dense

layer to target class probabilities, where each value ranges

between 0 and 1 and all values sum to 1. For a given class,

the softmax function can be computed as:

f xið Þ ¼ exiPN
k¼1 e

xk

where xi is the output CNN Score for each class i.

2 Related work

Recognition techniques for cursive scripts are generally

grouped into two major classes, segmentation-based and

segmentation-free methods.

Fig. 16 ReLU activation function

Fig. 17 Example of max and average pooling
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2.1 Segmentation-based approaches

Segmentation-based (or analytical) methods employ indi-

vidual characters as recognition units which are segmented

either implicitly [31] or explicitly [2]. Segmentation of

Urdu text into characters is itself a very challenging task

because of various complexities inherited to cursive scripts.

In implicit segmentation-based techniques, the learning

algorithm is provided with the complete transcription of

text lines as an input to determine and learn the character

boundaries and shapes by itself. Among well-known ana-

lytical methods, an implicit segmentation-based Urdu

character recognition technique for Nasta’liq writing style

was presented by Akram and Hussain [5], based on

recognition of characters and joiners using Hidden Markov

Models (HMMs). At first, the artistic features of characters

and joiners were extracted using robust stroke-based

traversal of Urdu ligatures in order to analyze their shapes,

train, and recognize the sequence of characters and their

joiners. The system was tested on standard Urdu Printed

Text Images (UPTI dataset) Dataset-1 comprising of 3,

309, 762 ligature instances with 1446 ligature classes and

91, 129 unique Urdu words, based on the recognition of

character Unicode using the recognized labels of character

core shapes, giving the recognition accuracy of 95.58%. In

addition, the system was also tested on a UPTI dataset

called Dataset-2 comprising of 1600 text lines, giving

character recognition accuracy of 98.37%.

In explicit segmentation-based techniques, either liga-

ture is divided into characters or isolated characters are

considered as recognition units. Among the significant

works, Rizvi et al. [34] proposed a supervised learning-

based OCR system for the Nasta’liq Urdu language. The

proposed system apprehends 98.4% accuracy using Ran-

dom Forest and Logistics Algorithm. Other supervised

learning algorithms like Sequential Minimal Optimization

(SMO), Multilayer Perception resulted in the accuracy of

94.57% and 97.67%, respectively. The proposed technique

also provides 89.92% recognition accuracy using Naı̈ve

Bayes Algorithm. Similarly, Naz, Ahmed, Ahmad, and

Razzak [28, 30] proposed an OCR system based on zoning

features and 2-dimensional long short-term memory net-

works (2DLSTM) for classification of Nasta’liq Urdu text.

The proposed system considers lines of text for classifi-

cation as they represent significant information with low

complexity and high speed. The system was evaluated on a

standard UPTI database and achieved a character recog-

nition accuracy of 93.39%. In another study, [19] proposed

an approach for the development and experimental analysis

of the Urdu OCR system. First a medium-sized database of

441 handwritten and machine-written Urdu characters were

created, then features were extracted with three different

methods like Hu moments, Zernike moments, and Principal

Component Analysis (PCA) and finally Decision tree

algorithm J-48 was used for classification. Overall recog-

nition accuracy of 92.06% was achieved using the Hu

moments. Kaushal, Khan, and Varma [18] proposed a

novel and robust technique for handwritten Urdu numerals

and digits recognition based on Zernike Invariants and

SVM as a classifier. This hybrid approach is used for

feature extraction and is independent of basic information

and other variations in handwritten numerals and overall 22

features corresponding to each numeral proceed for clas-

sification using Support Vector Machine (SVM) classifier,

and the accuracy of 96.29% was achieved by the proposed

technique. Pal and Sarkar [32] suggested an individual

character recognition-based system using a combination of

topological, contour, and water reservoir concept-based

features. The system was evaluated on the Small Variety

Character dataset and achieved the recognition accuracy of

97.8% on average for Nasta’liq Urdu characters. It also

identified individual text lines with an accuracy of 98.3%.

Pal and Sarkar [32] used a horizontal and vertical projec-

tion profile, component labeling method for character

segmentation and achieved the character segmentation

accuracy of 96.9%.

2.2 Segmentation-free methods

Segmentation-free (or holistic) methods consider partial

words or ligatures as a unit of recognition rather than

individual characters. Among significant holistic

Fig. 18 CNN’s fully connected layer
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techniques, N. H. Khan, Adnan, and Basar [20, 21] pro-

posed a recognition system based on semi-supervised

multi-level agglomerative hierarchical clustering for the

classification of the ligatures. The classification and

recognition were performed using four machine learning

techniques i.e., K-Nearest Neighbor (K-NN), Naı̈ve Bayes,

Decision Trees and Linear Discriminant Analysis and

achieved the maximum accuracy of 100% for K-NN. They

also analyzed geometrical features which are responsible

for most misclassifications and applied noise removal pre-

processing to improve the overall accuracy. In another

study, Din, Siddiqi, Khalid, and Azam [11] presented a

holistic OCR system for printed Urdu Nasta’liq font based

on statistical features and employing HMMs for classifi-

cation. The system was trained on 1,525 unique high-fre-

quency Urdu ligature clusters among which 16 represent

dots and diacritics and evaluated on random 6,187 ligatures

from a standard UPTI database containing 7,063 text lines.

The extracted ligatures were first split into 9,778 primary

and secondary ligatures and achieved the recognition rate

of 95.24% and 93.30%, respectively, and after association

by sequential clustering algorithm the recognition rate

decreases to 92.26% on complete ligatures (partial words).

In another study, Ahmed, Iqbal, Mehmood, and Ayub [4]

proposed a correlation-based framework for the Nasta’liq

Urdu, where each ligature was categorized according to

segmented last character by finding statistical similarity

correlation with corresponding one-, two-, and three-char-

acter ligatures in sequence. The system was evaluated on a

ligature image bank comprising of 3500 images and an

accuracy of 97.4%, 82.3%, and 80.6% was achieved for

isolated characters two- and three-character ligatures,

respectively. They also found that the accuracy was

affected after diacritic association and by similar shaped

characters at smaller fonts such as ر,د , and .و Kadhm and

Abdul [17] proposed an architecture based on a Support

Vector Machine (SVM) classifier for handwritten word

recognition depending on the handwriting word level. The

system was trained and tested on an Arabic handwritten

dataset (AHDB) comprising of 2913 handwriting word

images and achieved the recognition accuracy of 96.317%

based on Discrete Cosine Transform (DCT) and Histogram

of Oriented Gradient (HOG) feature extraction methods

and SVM classifier with the polynomial kernel. They also

found that the polynomial kernel is convergent and more

accurate than linear or Radial Basis Function (RBF) SVM

kernel. Sobia T Javed et al. [16] suggested a holistic OCR

model for Nasta’liq Urdu script in which global transfor-

mational features were extracted from non-segmented

ligatures and were given as input to Hidden Markov Model

(HMM) recognizer because of ease and efficiency in

identification. The process of HMM was divided into two

tasks of training (carried out on 1500 high-frequency

ligatures which vary from one character to seven characters

in ligature) and recognition, which resulted in text recog-

nition accuracy of 92%.

2.3 Deep learning-based approaches

Deep learning is a state-of-the-art machine learning algo-

rithm but it has not been extensively applied for recogni-

tion of cursive like scripts such as Urdu until recently with

advances in technology, computing power, and computing

resources. Among the notable implementation of such

algorithms Latif, Alghazo, Alzubaidi, Naseer, and Alghazo

[23] proposed a deep CNN architecture with two hidden

layers for the recognition of Multilanguage handwritten

numerals. The system was evaluated on datasets of 5 dif-

ferent language numerals i.e., Eastern Arabic, Persian,

Devanagari, Urdu and Western Arabic, and achieved the

average recognition accuracy of 99.26% with a precision of

99.29% for the combined Multilanguage database and

99.322% for each individual language. They also found

that the proposed system produced better results on data-

sets having similar geometrical features or have combined

different geometrical features. Similarly, I. Ahmad et al.

[1] proposed a novel case of recurrent neural network, i.e.,

gated bidirectional LSTM (GBLSTM) based on ligature

information dissimilar to character-based LSTM strategies.

The proposed single layer GBLSTM system was trained on

un-degraded and evaluated on unseen artificially degraded

samples of UPTI database which recognized 3604 ligature

classes and 191 character classes with an accuracy of

96.71% and 86.4%, respectively. They used character raw

pixels as features instead of traditional human-crafted

features because of the latter being more error prone. In

another study, N. Javed, Shabbir, Siddiqi, and Khurshid

[14] adopted the convolutional neural network-based sys-

tem for recognition of Urdu ligatures. The system was

evaluated on 18,000 Urdu ligatures with 98 different

classes, realized a recognition rate of 95%. The input to

CNN was fixed sized ligature images which automatically

extract features from raw pixels. CNN was found to be an

effective feature extractor as compared to conventional

human-crafted feature extraction methods. They also

investigated different CNN architectures and realized that

the smaller the kernel size and the deeper the network, the

better are the recognition results. Similarly, Naz et al. [31]

proposed a novel technique for Urdu OCR system based on

CNN and RNN for feature extraction, learning, and clas-

sification of cursive Nasta’liq Urdu script. At first, the low-

level translational invariant features were extracted using

CNNs and are then forwarded to multi-dimensional long

short-term memory (MDLSTM) for contextual feature

extraction and learning. The proposed system when eval-

uated on the publicly available UPTI dataset, a recognition
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rate of up to 98.12% for 44-classes was achieved. In

another study, Naz, Umar, et al. [28, 30] suggested a seg-

mentation-based technique for the Nasta’liq script based on

multidimensional recurrent neural networks by extracting

statistical features of characters and feed them to a

MDLSTM recurrent neural network (MDLSTM RNN).

The proposed technique was carried out on the standard

UPTI database comprising of 10, 000 Nasta’liq font text

lines and evaluation of the proposed system resulted in a

promising character recognition rate accuracy of 96.40%.

2.4 Study on various challenges in Urdu script

Having similarly shaped and a large set of character classes

makes the case of Urdu like cursive script challenging and

more complex. The issues related to the Urdu language

require more considerable efforts for the Nasta’liq style of

writing as compared to Naskh because it poses even greater

challenges for the development of the Urdu OCR system as

compared to the later one. Such numerous challenges in

Urdu and Urdu like script languages are explained by Naz

et al. [29] with the emphasis being on the peculiar nature of

Nasta’liq script and explained the detailed overview of

existing OCR Systems and also suggested that there is a

need to develop a model which overcomes the challenges

inherited to Urdu like script languages. Further, Naz et al.

[29] also proposed a multilingual character recognition

system based on a ghost character theory, which states on

the basis of a proponent of this theory that there are some

problems in Urdu ASCI code plate. Similarly, Raza, Habib,

Ashraf, and Javed [33] presented a comprehensive review

of various parsing techniques used in natural language

processing to extract syntactic features of a sentence.

Further Raza et al. [33] contributed past, present, and

future of parsing techniques for the Urdu language. In a

similar study, Daud et al. [9] contributed a broad survey

regarding modern techniques and different linguistic

resources available for Urdu language processing. Daud

et al. [9] also discussed available datasets, characteristics,

resource sharing between Hindi and Urdu language,

orthography and morphology of Urdu language, pre-pro-

cessing aspects like Diacritics removal, stop words

removal, normalization, stemming etc. in detail. The

overall goal of their survey was to organize the past and

present of Urdu language processing (ULP) so that it can

provide a vital platform to ULP researchers in the future

using statistical learning.

2.5 Pre-processing approaches

For improving the performance of an OCR system, the pre-

processing step plays an important role in the development

of an OCR engine. Pre-processing the input data directly

affects the readability and efficiency in the rest of the steps

which may involve binarization, noise filtering, smoothing,

segmentation, skew correction, and thinning (skeletoniza-

tion) [6, 12]. Among the preliminary works, Nautiyal,

Singh, and Rana [26] presented a supervised single layer

perceptron learning algorithm which was used to detect

noisy characters in the given texts, the main aim of the

study was to improve the accuracy and performance of the

recognition system, but he suggested his approach using

English language characters and the algorithm recognizes

85% of the characters in a very noisy environment having

87.66% noise. Similarly, Sobia Tariq Javed, Fasihi, Khan,

and Ashraf [16] proposed a model to remove punch-hole

and background noise from handwritten Urdu text images.

For background noise removal, the difference between the

meaningful foreground text and background noise was

exploited using median color intensities (threshold). For

punch-hole noise removal, iterators across the outer regions

were launched which look for a series of dark pixels. The

dark pixels were brushed off with the median color value

based on the local median color intensities. The proposed

system was able to remove 93% background and 96%

punch-hole noise. Kadhm and Abdul [17] used Fuzzy

C-Means clustering (FCM) for the removal of unwanted

space (noise) by defining the bounding box around the

Urdu ligatures. They also performed image thinning for

removing the redundant pixels around the edges of text and

finally normalized the images to fix size for fast image

recognition. In another study, K. Khan et al. [19] used

filtering and morphological operations for noise removal,

global and adaptive thresholding for binarization, the cor-

relation for skew correction, thinning for removal of

redundant pixels, and normalization for fixed sized images.

2.6 Knowledge gap and motivation

Although OCR, a computational intensive field, has wit-

nessed a significant improvement over the years mainly

due to the advancement in the computational intelligence

algorithms. The OCR for Urdu like scripts is still in its

infancy stage due to its complex cursive nature. This

massive lag of research is mainly due to segmentation

errors because of various complexities associated with its

cursive script as well as the inefficiencies in different

fields, such as benchmark datasets, dictionaries, research

funding’s, equipment’s and other necessary utilities. The

development of OCR for Urdu script has remained a

challenging task for Urdu researchers for last few years due

to the complexity of Nasta’liq Urdu writing style (i.e., dots,

diacritics, diagonal writing style etc.). In addition, the lit-

erature review also showed that the accuracy of Urdu OCR

system directly depends upon the quality of the input
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images. The main difficulties encountered in different

document images were as follows:

● Writer-dependent style variations in shape.

● Distortions, caused by broken, connected and smudged

characters, ink spread and speckle.

● Space variations, due to skew and variable spacing.

These imperfections introduce numerous problems in

different parts of the recognition process of an OCR sys-

tem, resulting in rejections or misclassifications. The

majority of errors were often due to the acquisition and

segmentation process. Errors in the acquisition process

were the result of noise (dust) inserted during scanning

which resulted in joining characters or association of noise

as dots with the character core shapes. Errors in the seg-

mentation process were the result of confusion between

text and noise, space insertion or deletion, compound

words and reduplication of words. Even if the character

was written or printed, scanned and segmented properly, it

was incorrectly classified. This happened mainly due to

similar core shapes of different characters (such as د,و and

ل,ں ) or confusing shapes of different joiners or the selected

features were not sufficiently efficient in separating the

different classes, or the features that were difficult to

extract were computed incorrectly. Finally, errors were

also introduced by the post-processing due to the incorrect

association of secondary characters (diacritics) with the

primary characters to reconstruct the original words or

ligatures. These problems occurred if the text is skewed, or

due to proportional spacing. Also, it has been observed that

with the increase in a number of characters per ligature the

recognition accuracy decreased. In addition, the existing

models do not provide significant practical usability due to

the following reasons:

● Due to the poor design of classifiers where the classifier

was trained and tested on smaller datasets, however,

larger datasets are needed to include all the possible

forms of each character as well as to incorporate Special

characters in order to develop a complete Urdu OCR

engine.

● The existing OCR models were mostly tested on trained

ligature level datasets and not for recognition of text in

real documents which require efficient text word

segmentation.

● Most of the existing systems have not included the

Aerabs (Zair, Zabar, and Paish) in the OCR system,

which plays an important role in correct character

recognition and preserving the meaning of Urdu words.

The main motivation of character recognition is to

imitate the human reading ability, with human accuracy but

at a far higher speed. Therefore, the main aim of this study

is to solve some of these imperfections by proposing a new

Handwritten Urdu Character dataset (HUCD) and explor-

ing advanced computational algorithms mainly for feature

extraction and recognition purposes.

3 Proposed methodology

This section details the methodology proposed for recog-

nition of isolated Handwritten Urdu characters, numerals as

well as the positional characters of each individual char-

acter written in a different context (i.e., initial, medial, and

final) using a deep neural network-based approach. The

technique relies on an explicit segmentation-based

approach where features are extracted from individual

characters using convolutional neural networks. The

overall structure followed to reach the final solution is

shown in Fig. 19a.

3.1 Dataset collection

In order to perform the evaluation and development of

Handwritten Urdu OCR, a self-collected dataset named

Handwritten Urdu Character dataset (HUCD) containing a

total of 106, 120 samples of Handwritten Urdu is used in

the proposed CNN algorithm. In the Urdu language, there

are a total of 38 basic characters, 10 numerals and two field

characters and many special characters in Urdu language,

out of 38 basic characters, 27 characters are joiners, 10

characters are non-joiners and 1 character has no joining

property at all. Among two field characters, one character

is a non-joiner and the other has no joining property.

Similarly, 10 numerals do not have any joining property.

Thus, making a total of 142 unique forms as shown in

Fig. 20. With regard to this, the dataset was collected on an

A4-sized paper, printed with rectangular boxes in land-

scape mode where each box corresponds to the unique

Urdu character as shown in Fig. 21. Each page contained a

total of 142 rectangular boxes to be used for writing 132

Fig. 19 a Flow of work to be followed, b pre-processing steps
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different individual and positional characters and 10

numeral characters. The dataset was acquired in different

parts of Kashmir valley from 750 native writers with dif-

ferent age groups and different educational qualifications.

The dataset documents were written by both male and

female. Each individual writer was trained before gathering

the dataset and was asked to write the provided Urdu

characters within the respective box in neat and natural

way while maintaining the appropriate number and place-

ment of dots so that the character would not overlap with

the bounding lines of the rectangle. Each writer was asked

to write Urdu characters in an unconstrained environment

in his or her natural handwriting with different pen, style,

and inks. It must be noted that no special characters,

‘Aerabs’ or second form of ‘Hay final’ (i.e., (’ه character
has been considered in this study.

3.2 Data acquisition

After dataset collection, paper-based handwritten docu-

ments are converted into electronic format by using a

document scanner with 600 dpi for manipulation by digital

computers. The document scanner scans a document and

produces an electronic representation of the same in an

image file format (.png in our case). Such an approach is

basically termed as offline recognition where source images

are obtained by scanning documents (handwritten, printed

or typewritten,) or by using a digital camera for capturing a

photograph. The digital representation of one such col-

lected document is shown in Fig. 21.

38 basic 
characters

27 Joiners

27x4=108 
shapes

10 non 
Joiners

10x2=20 
shapes

1 no 
joining

1x1=1 
shape

2 field 
characters

1 non 
Joiner

1x2=2 
shapes

1 no 
joining

1x1=1 
shape

10 Numeral 
characters

10x1=10 
shapes

Fig. 20 Division of characters into joiners and non-joiners

Fig. 21 Scanned image of collected data
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3.3 Pre-processing

Pre-processing is an important phase in automatic hand-

written character recognition which involves various

operations that are carried out on the scanned input image

in the sequence to make it effective for later recognition

phases and to improve the overall performance [8, 29]. If

the process of image acquisition is not carried out properly

several issues like distortion, deformations, quality break-

down, orientation, and skewness may arise, which may

introduce several difficulties in character recognition.

Therefore, the phase of pre-processing is essential and

plays a vital role in the development of an effective OCR

engine. There are various pre-processing techniques to

remove such image acquisition anomalies and the selection

of such techniques depends on the nature and source of the

images. These techniques include image thresholding (bi-

narization), noise removal, smoothing, de-skewing, thin-

ning (skeletonization), image dilation and normalization

etc. [29]. The series of operations performed in the pre-

processing phase of our proposed system with their

implementation scenario are shown in Figs. 19b and 22,

respectively, which include segmentation, normalization,

binarization, and denoising and smoothing. Each of the

pre-processing operations is discussed in detail as:

3.3.1 Segmentation

In this step, the rectangular bounding boxes of the input

image within which individual Urdu characters are written

are detected horizontally, and the characters within the box

are then cropped (segmented) and each stored in the

specific directory at the end of the pre-processing phase.

The process is repeated for all 750 input images. In this

way, all instances of each character are stored in the

respective directory (class).

3.3.2 Normalization

In this step, each cropped character having different

dimensions is normalized (resized) to a fixed size by pad-

ding each segmented character at the center of a 64964

pixel image window so as to make identical input to the

CNN.

3.3.3 Binarization

Binarization operation attempts to convert grayscale (RGB

or) image to a binary-level image in such a way that

foreground information is represented by black pixels and

background by white pixels. Therefore, in a binary image,

each pixel holds a value of 0 or 1 [35]. Binarization

removes all the unnecessary pixel information (color, or

gray shades) from the acquired image, which is not needed

for an OCR system so that the resulting image is small,

computationally fast, and easy to analyze. There are two

types of binarization algorithms: global and local adaptive

thresholding. In global thresholding, only a single thresh-

old value is used for an entire image based on the back-

ground level estimation from the intensity of the image

histogram, whereas in local adaptive, the threshold is

computed for each pixel by considering neighborhood

pixel information. If the pixel under observation is darker

than its adjacent neighboring pixel, the pixel is converted

into black, otherwise into white. Global thresholding is

more feasible for non-varying background intensities,

whereas local adaptive thresholding works well for

degraded documents with uneven background illumination.

[22, 37]. In the proposed system, each normalized character

image undergoes Otsu’s method of global binarization

because the system is implemented on simple handwritten

character images, where characters can be easily distin-

guished into the background and foreground pixels.

Fig. 22 Pre-processing implementation
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3.3.4 De-noising and smoothing

Digital images are prone to a variety of noise due to bad

photocopying, scanning, or due to external factors (such as

dust) that lead to the degradation of an image. The main

objective of de-noising is to remove any unwanted bit

patterns. De-noising techniques include filtering, morpho-

logical operation, and noise modeling. For smoothing,

sharpening, thresholding, removing the slightly textured

background and contrast adjustment process filters can be

used. However, various morphological operations can be

designed to smoothen contours, connect broken strokes,

clipping unwanted points, thinning the characters, and

extract the boundaries [22].

In this step, each binarized image is de-noised using a

median filter of 393 pixel window of image and smoothed

to preserve the contours of the character using morpho-

logical operation. The median filter is a nonlinear low pass

filter which eliminates isolated pixel noise in gray level.

The median filter takes an image window (393, 595 etc.)

and replaces the center pixel with the median value. If the

area (neighborhood) under consideration contains an even

number of pixels, the mean of the two middle pixel values

is used. The median filter is effective for removing random

occurrences of black and white pixel noise such as “salt

and pepper noise.” A median filter is more effective than

other filtering or morphological methods when the goal is

to simultaneously reduce noise and preserve the edges [22].

3.4 Dataset generation

In order to remove the ambiguity in our OCR system in

recognizing the handwritten Urdu characters, various

character classes have been combined together to represent

one class (instead of two), because of minor differences in

the visual appearance of handwritten characters that could

only be differentiated by the context in which these indi-

vidual characters are written. Therefore, all the possible

Urdu characters and numerals can be grouped into 133

unique classes rather than 142 classes. For example, Alif (ا)
and numeral one (۱) are written in the exactly the same

way, and can only be differentiated by the context and

direction of writing, and are thus combined. Similarly,

other classes that have been merged together to represent a

single unique class are:

● Toi isolated (ط) and Toi initial (ط)

● Toi medial (ط) and Toi final (ط)

● Zoi isolated (ظ) and Zoi initial (ظ)

● Zoi medial (ظ) and Zoi final (ظ)

● Hay Do chasm isolated (ھ) and Hay Do chasm initial (ھ)

● Hay Do chasm medial (ھ) and Hay Do chasm final (ھ)

● Choti Yay isolated (ی) and Choti Yay final (ى)

● Yay-Bari isolated (ے) and Yay-Bari final (ے)

The complete distribution of characters in 133 unique

classes is shown in Fig. 23.

Once 133 unique classes have been created, the dataset

is explicitly partitioned into train and test datasets, with the

training dataset comprising of 80% samples, and the test

dataset comprising of remaining 20% samples from each of

the 133 classes. Furthermore, the training dataset is

implicitly divided into two parts: a training set and a val-

idation set. Finally, the training, validation, and testing

dataset comprises of 70% (74, 285 samples), 10% (10, 612

samples) and 20% (21, 223 samples) of total samples

(106,120 samples), respectively.

3.5 Classification

This phase presents the detailed overview of proposed

CNN architecture, layers, activation functions, and various

CNN hyper-parameters used for recognition of handwritten

Urdu characters and numerals. The training dataset is used

as an input to the proposed CNN to train our deep learning

model, the validation dataset is used for hyper-parameter

tuning during the training process and the test dataset is

used to check how accurately the proposed CNN model is

going to recognize the handwritten Urdu characters based

on the training dataset.

3.5.1 Proposed CNN architecture

The algorithm used for our proposed OCR system is based

on deep learning i.e., a CNN, a two-dimensional (2D) set of

neurons, to classify handwritten Urdu characters and

numerals. The overall CNN algorithm architecture used in

the proposed OCR model is shown in Fig. 24, which

comprises of the following layers: an input layer, 4 hidden

convolutional layers each followed by a max pooling layer,

and finally, two fully connected layers to perform classi-

fication. The input layer is equivalent to the input image

size of 64964 units. In the first convolution layer, we have

used 64 arbitrary kernels each of 595 unit size (also called

as a local receptive field) with default parameter values to

produce 64 feature maps. The resulting feature maps are

then passed to another convolution layer with a higher

number of kernels to extract higher-level features of the

input image. Therefore, the rest of the three convolutional

layers have been designed with 128, 256, and 128 kernels,

respectively, each having a fixed kernel size of 393 units,

and zero padding. This helps CNN to learn few features for

smaller receptive fields and more features for higher
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Fig. 23 Distribution of handwritten Urdu character samples in each of 133 classes

Fig. 24 The proposed CNN architecture for handwritten Urdu character recognition
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receptive fields and hence extracting more abstract features

for training. Each of the convolution layers is then fol-

lowed by a max pooling layer with a pool size of 2 and zero

paddings in order to reduce the spatial dimensions of out-

put feature maps by a factor of 2, and eventually reduces

the number of learnable parameters (less computation).

After performing various convolutional and down-sam-

pling operations, the output features are flattened and

squashed into dense layers to perform high-level reasoning.

The proposed system is designed with two dense layers,

which connect all the neurons of the previous layer to every

single neuron it has by a learnable weight. The last fully

connected layer contains 133 units of neurons equal to the

number of classes to compute class scores (predicted

probabilities) using the softmax activation function. Also,

for every convolutional and fully connected layer output,

ReLU activation function has been applied to increase the

nonlinearity of the decision function and of the overall

network without affecting the receptive fields of the con-

volution layer. ReLU is more plausible to biological neu-

rons and makes the training significantly faster and

improves the generalization ability of the deep neural

network model.

3.5.2 CNN parameters

3.5.2.1 Learning rate The learning rate determines the

speed at which the feedforward neural network is learning.

It is denoted by a symbol α. A small value for α leads to

slow convergence and a high value for α leads to diver-

gence (i.e., the solution may not converge easily). An ini-

tial learning rate of 0.001 has been used in the proposed

model.

3.5.2.2 Backpropagation optimizer The optimizer algo-

rithm is responsible for adjusting the network weights in

order to minimize the error (loss). We have used Adam

Optimizer (Adaptive moment estimation) which is an

effective variation of stochastic gradient descent (SGD),

requires less memory space, and is appropriate for large

data with very noisy or sparse gradients. Unlike SGD

which maintains a single learning rate for all weight

updates, Adam optimizer computes individual adaptive

learning rates for each weight of the neural network.

3.5.2.3 Mini-batch Dividing the training dataset into

small subsets of instances (samples) is called a batch. The

optimizer computes the gradient for each batch and updates

the network parameters (e.g., weight etc.) to minimize the

error. This process is called an iteration (i.e., one forward

and backward pass). The number of iterations to process,

evaluate the gradient, and update the parameters of all the

batches of the training dataset is called an epoch. A model

may require many such epochs until it learns the examples

of the dataset. In our model, we have used a batch size of

256 to train our model over 30 epochs.

3.5.2.4 Dropout Dropout is a regularization technique to

deal with the problem of overfitting by ignoring randomly

selected neurons during training and thus learn multiple

internal representations of data. This means that their

contribution to activations during the forward pass is

temporarily removed and their corresponding weights are

not updated during the backward pass. Overfitting refers to

a situation where a model learns statistical regularities (i.e.,

memorizing noise) specific to the training dataset instead of

learning the actual signal and therefore, performs less well

on a subsequent new dataset. The dropout technique makes

a neural network to better generalize and less likely overfit

the training data. A dropout of 0.1 has been used in our

model.

3.5.2.5 Loss function It is a method of determining how

well specific algorithm models the given data. As a part of

the optimizer, a loss function is used to repeatedly estimate

the loss (error) for the current state of the model so that the

network weights can be updated to reduce the loss in the

next evaluation. For multi-class classification where each

sample belongs to only one class, we have used categorical

cross-entropy loss function in our model. It is also called as

a softmax loss function as it is a combination of softmax

activation function and cross-entropy loss function. The

cross-entropy (CE) loss function after the softmax activa-

tion function is applied to each of the class score is defined

as:

CE ¼ �
XN
i¼1

ti log f xið Þ

where si is the CNN score and ti is the ground truth for each

class i. Since the labels in the multi-class classification are

one-hot encoded, so only the positive class keeps its term

in the loss. Therefore, there is only one element of the

target vector which is not zero i.e., ti=tp. So, discarding the

elements of the summation which are zero due to target

labels, we can write cross-entropy for multi-class classifi-

cation as:

CE ¼ � log
expPN
k¼1 e

xk

 !

where xp is the output CNN score for the positive class.

All the network hyper-parameters are often selected

empirically and need a validation process to determine

each of them ideally for the data at hand.
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4 Experimental results

This section presents the results of experiments carried out

to study the effectiveness of the proposed CNN model. We

also investigated the improvement of performance with

respect to different CNN hidden layers and compared the

realized results with the latest recognition systems pro-

posed for the Urdu script. As discussed earlier, the pro-

posed CNN model was trained on a dataset of 74, 285

samples from the earlier mentioned values of CNN hyper-

parameters over 10, 20, and 30 consecutive epochs in order

to discover the best accuracy that can be obtained from our

model. After applying all these runs incrementally, we

found that the best accuracy of our model can be obtained

at epoch 30. The curves for the accuracy and error rates

(loss) over 30 epochs for training and cross-validation

datasets are illustrated in Fig. 25. Classification rates after

30 epochs read at 99.60% and 98.83% on training and

cross-validation datasets, respectively. Once the network

was trained, the model was tested on the dataset compris-

ing of 21, 223 samples and the test accuracy of 98.82% was

achieved. In our study, we also performed experiments on

different CNN layer models such as 2 layer CNN, 3 layer

CNN and 4 layer CNN, however, the best recognition rates

were observed with the CNN model having 4 hidden lay-

ers. Table 1 summarizes the accuracy and loss for training,

validation, and test datasets on different layer CNN

models. It can be seen from Table 1, the more the hidden

layers the better the recognition accuracy, however, with

more hidden layers, the more complex the neural network

and more computational time is needed to produce the

results. For the purpose of this study, the recognition rate of

98.82% is adequate, and adding more layers would only

result in increasing the complexity of the system.

To evaluate the overall performance of the proposed

CNN model, various performance measures have been

evaluated and summarized in Table 2.

In addition to various performance measures, Table 2

also shows the numbers of samples present and the number

of samples that have been misclassified in each class. It is

quite interesting to observe that most of the character

classes (97 classes) have misclassified only 0 to 2 samples,

33 out of 133 classes have misclassified 3 to 6 samples and

only 3 classes have misclassified 8, 9, and 13 samples each.

The character ‘Khai Final’ tops the list with 13 misclas-

sifications, this is followed by the character ‘Seen Final’

(س) with 9 misclassifications. The third position is

occupied by the character ‘Seen Initial’ (س) with 8

misclassifications. The misclassification is primarily due to

writer-dependent variations or due to the similarity in the

way in which different isolated Urdu characters or different

positional characters are written. Examples of such prob-

lem include the characters:

● Ayn Isolated (ع) and Hi Final

Fig. 25 Accuracy and loss curves for training and validation dataset over 30 epochs

Table 1 Accuracy and loss for

different layer CNN models
Model Proposed 4 layer CNN 3 layer CNN 2 layer CNN

Accuracy Training 99.60% 99.43% 99.39%

Validation 98.83% 98.67% 97.57%

Test 98.82% 98.56% 97.05%

Loss Training 0.0113 0.0183 0.0183

Validation 0.0487 0.0567 0.1147

Test 0.0504 0.0630 0.1324
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Table 2 Performance measures of each class

Class Samples TP FN TPR/Recall FPR/Fall Out FNR/Miss Rate Precision F1 Score ROC_AUC

1 299 298 1 0.99666 0.000096 0.00334 0.99333 0.99499 0.99828

2 143 142 1 0.99301 0.000047 0.00699 0.99301 0.99301 0.99648

3 153 153 0 1 0.000047 0 0.99351 0.99674 0.99998

4 149 148 1 0.99329 0.00019 0.00671 0.97368 0.98339 0.99655

5 150 146 4 0.97333 0 0.02667 1 0.98649 0.98667

6 142 141 1 0.99296 0 0.00704 1 0.99647 0.99648

7 150 150 0 1 0 0 1 1 1

8 150 150 0 1 0 0 1 1 1

9 152 150 2 0.98684 0.000142 0.01316 0.98039 0.98361 0.99335

10 150 150 0 1 0 0 1 1 1

11 149 149 0 1 0.000095 0 0.98675 0.99333 0.99995

12 150 147 3 0.98 0.000047 0.02 0.99324 0.98658 0.98998

13 150 147 3 0.98 0.000047 0.02 0.99324 0.98658 0.98998

14 143 141 2 0.98601 0.000047 0.01399 0.99296 0.98947 0.99298

15 150 150 0 1 0.000095 0 0.98684 0.99338 0.99995

16 150 146 4 0.97333 0 0.02667 1 0.98649 0.98667

17 150 147 3 0.98 0.000237 0.02 0.96711 0.97351 0.98988

18 142 139 3 0.97887 0 0.02113 1 0.98932 0.98944

19 150 150 0 1 0.000047 0 0.99338 0.99668 0.99998

20 148 146 2 0.98649 0.00019 0.01351 0.97333 0.97987 0.99315

21 148 148 0 1 0.000095 0 0.98667 0.99329 0.99995

22 143 143 0 1 0.000095 0 0.98621 0.99306 0.99995

23 150 150 0 1 0.000047 0 0.99338 0.99668 0.99998

24 150 150 0 1 0 0 1 1 1

25 150 150 0 1 0.000095 0 0.98684 0.99338 0.99995

26 149 148 1 0.99329 0 0.00671 1 0.99663 0.99664

27 149 148 1 0.99329 0 0.00671 1 0.99663 0.99664

28 147 146 1 0.9932 0.000047 0.0068 0.9932 0.9932 0.99657

29 146 144 2 0.9863 0 0.0137 1 0.9931 0.99315

30 149 149 0 1 0 0 1 1 1

31 151 151 0 1 0.000047 0 0.99342 0.9967 0.99998

32 148 146 2 0.98649 0.000047 0.01351 0.9932 0.98983 0.99322

33 150 148 2 0.98667 0.000047 0.01333 0.99329 0.98997 0.99331

34 146 140 6 0.9589 0.000237 0.0411 0.96552 0.9622 0.97933

35 148 148 0 1 0 0 1 1 1

36 150 148 2 0.98667 0.000047 0.01333 0.99329 0.98997 0.99331

37 148 144 4 0.97297 0 0.02703 1 0.9863 0.98649

38 148 139 9 0.93919 0.00019 0.06081 0.97203 0.95533 0.9695

39 152 151 1 0.99342 0.000095 0.00658 0.98693 0.99016 0.99666

40 145 145 0 1 0 0 1 1 1

41 150 148 2 0.98667 0.000047 0.01333 0.99329 0.98997 0.99331

42 148 144 4 0.97297 0.000047 0.02703 0.9931 0.98294 0.98646

43 146 142 4 0.9726 0.000095 0.0274 0.98611 0.97931 0.98625

44 142 139 3 0.97887 0.000047 0.02113 0.99286 0.98582 0.98941

45 199 199 0 1 0 0 1 1 1

46 139 139 0 1 0.00019 0 0.97203 0.98582 0.99991

47 184 182 2 0.98913 0.000428 0.01087 0.95288 0.97067 0.99435

48 123 122 1 0.99187 0 0.00813 1 0.99592 0.99593
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Table 2 (continued)

Class Samples TP FN TPR/Recall FPR/Fall Out FNR/Miss Rate Precision F1 Score ROC_AUC

49 205 199 6 0.97073 0.000143 0.02927 0.98515 0.97789 0.98529

50 144 144 0 1 0 0 1 1 1

51 194 190 4 0.97938 0.000238 0.02062 0.97436 0.97686 0.98957

52 139 137 2 0.98561 0 0.01439 1 0.99275 0.99281

53 153 151 2 0.98693 0.000664 0.01307 0.91515 0.94969 0.99313

54 159 158 1 0.99371 0.00019 0.00629 0.97531 0.98442 0.99676

55 133 127 6 0.95489 0.000047 0.04511 0.99219 0.97318 0.97742

56 145 132 13 0.91034 0.000095 0.08966 0.98507 0.94624 0.95512

57 143 143 0 1 0.000237 0 0.96622 0.98282 0.99988

58 148 140 8 0.94595 0.000285 0.05405 0.9589 0.95238 0.97283

59 146 141 5 0.96575 0.00038 0.03425 0.94631 0.95593 0.98269

60 157 153 4 0.97452 0 0.02548 1 0.9871 0.98726

61 146 145 1 0.99315 0.000142 0.00685 0.97973 0.98639 0.9965

62 146 146 0 1 0.000047 0 0.9932 0.99659 0.99998

63 150 150 0 1 0.000095 0 0.98684 0.99338 0.99995

64 149 147 2 0.98658 0.000047 0.01342 0.99324 0.9899 0.99326

65 142 137 5 0.96479 0 0.03521 1 0.98208 0.98239

66 145 144 1 0.9931 0 0.0069 1 0.99654 0.99655

67 150 148 2 0.98667 0.000095 0.01333 0.98667 0.98667 0.99329

68 148 148 0 1 0.000142 0 0.98013 0.98997 0.99993

69 300 298 2 0.99333 0 0.00667 1 0.99666 0.99667

70 293 293 0 1 0.000096 0 0.99322 0.9966 0.99995

71 296 296 0 1 0 0 1 1 1

72 302 302 0 1 0 0 1 1 1

73 152 148 4 0.97368 0.000285 0.02632 0.96104 0.96732 0.9867

74 150 146 4 0.97333 0.000237 0.02667 0.96689 0.9701 0.98655

75 150 144 6 0.96 0.000095 0.04 0.9863 0.97297 0.97995

76 147 145 2 0.98639 0.000095 0.01361 0.98639 0.98639 0.99315

77 147 141 6 0.95918 0.000427 0.04082 0.94 0.94949 0.97938

78 148 146 2 0.98649 0.00019 0.01351 0.97333 0.97987 0.99315

79 150 148 2 0.98667 0.000095 0.01333 0.98667 0.98667 0.99329

80 150 149 1 0.99333 0.000047 0.00667 0.99333 0.99333 0.99664

81 150 150 0 1 0.000095 0 0.98684 0.99338 0.99995

82 154 151 3 0.98052 0.00019 0.01948 0.97419 0.97735 0.99016

83 145 145 0 1 0.000095 0 0.98639 0.99315 0.99995

84 146 144 2 0.9863 0.000142 0.0137 0.97959 0.98294 0.99308

85 150 150 0 1 0 0 1 1 1

86 149 147 2 0.98658 0.000095 0.01342 0.98658 0.98658 0.99324

87 149 145 4 0.97315 0.000047 0.02685 0.99315 0.98305 0.98655

88 150 148 2 0.98667 0.000047 0.01333 0.99329 0.98997 0.99331

89 149 149 0 1 0.000095 0 0.98675 0.99333 0.99995

90 151 146 5 0.96689 0 0.03311 1 0.98316 0.98344

91 143 143 0 1 0.000095 0 0.98621 0.99306 0.99995

92 149 148 1 0.99329 0 0.00671 1 0.99663 0.99664

93 150 148 2 0.98667 0 0.01333 1 0.99329 0.99333

94 149 147 2 0.98658 0.000095 0.01342 0.98658 0.98658 0.99324

95 147 143 4 0.97279 0 0.02721 1 0.98621 0.98639

96 150 150 0 1 0.000047 0 0.99338 0.99668 0.99998
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● Gain Isolated (غ) and Khai Final

● Seen Initial (س) and Seen Medial (س)

● Seen Isolated (س) and Seen Final (س)

● Sheen Initial (ش) and Sheen Medial (ش)

● Sheen Isolated (ش) and Sheen Final (ش)

Also, some characters have the same shape and differ by

the number and position of nuqtas (dots) below or above

the primary character. In this case, misclassification occurs

due to the loss of the basic part of characters such as dots.

Examples of such problem include the characters:

● Beh (ب) and Peh (پ)

● Teh (ت) and Say(ث)

● Jeem ,(ج) Cheem ,(چ) Hi (ح) and Khai (خ)

● Daal (د) and Zaal (ذ)

Table 2 (continued)

Class Samples TP FN TPR/Recall FPR/Fall Out FNR/Miss Rate Precision F1 Score ROC_AUC

97 150 150 0 1 0 0 1 1 1

98 148 146 2 0.98649 0.000047 0.01351 0.9932 0.98983 0.99322

99 150 150 0 1 0.000047 0 0.99338 0.99668 0.99998

100 150 150 0 1 0 0 1 1 1

101 149 148 1 0.99329 0.000095 0.00671 0.98667 0.98997 0.9966

102 148 147 1 0.99324 0.000047 0.00676 0.99324 0.99324 0.9966

103 147 141 6 0.95918 0 0.04082 1 0.97917 0.97959

104 147 145 2 0.98639 0.000047 0.01361 0.99315 0.98976 0.99317

105 154 154 0 1 0.000047 0 0.99355 0.99676 0.99998

106 150 149 1 0.99333 0.00019 0.00667 0.97386 0.9835 0.99657

107 150 149 1 0.99333 0.000285 0.00667 0.96129 0.97705 0.99652

108 150 148 2 0.98667 0.000095 0.01333 0.98667 0.98667 0.99329

109 150 150 0 1 0.000047 0 0.99338 0.99668 0.99998

110 147 146 1 0.9932 0.00019 0.0068 0.97333 0.98316 0.9965

111 150 147 3 0.98 0.000095 0.02 0.98658 0.98328 0.98995

112 147 142 5 0.96599 0 0.03401 1 0.9827 0.98299

113 149 149 0 1 0 0 1 1 1

114 146 146 0 1 0.000095 0 0.98649 0.9932 0.99995

115 283 277 6 0.9788 0.000143 0.0212 0.98929 0.98401 0.98933

116 300 295 5 0.98333 0.000143 0.01667 0.98993 0.98662 0.99159

117 149 144 5 0.96644 0.000332 0.03356 0.95364 0.96 0.98306

118 298 296 2 0.99329 0.000143 0.00671 0.98997 0.99162 0.99657

119 149 149 0 1 0.000142 0 0.98026 0.99003 0.99993

120 151 150 1 0.99338 0.000237 0.00662 0.96774 0.98039 0.99657

121 300 299 1 0.99667 0 0.00333 1 0.99833 0.99833

122 149 149 0 1 0.000047 0 0.99333 0.99666 0.99998

123 149 149 0 1 0.00019 0 0.97386 0.98675 0.99991

124 148 145 3 0.97973 0.000047 0.02027 0.99315 0.98639 0.98984

125 148 148 0 1 0.000047 0 0.99329 0.99663 0.99998

126 150 147 3 0.98 0 0.02 1 0.9899 0.99

127 149 148 1 0.99329 0.000047 0.00671 0.99329 0.99329 0.99662

128 145 145 0 1 0.000095 0 0.98639 0.99315 0.99995

129 148 148 0 1 0.00019 0 0.97368 0.98667 0.99991

130 149 148 1 0.99329 0 0.00671 1 0.99663 0.99664

131 150 148 2 0.98667 0.000047 0.01333 0.99329 0.98997 0.99331

132 150 149 1 0.99333 0 0.00667 1 0.99666 0.99667

133 150 150 0 1 0 0 1 1 1

Total/Macro average 21,223 20,972 251 0.98779 0.000089 0.01221 0.98797 0.98780 0.99385
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● Reh ,(ر) Zay (ز) and Cxay (ژ)

● Seen (س) and Sheen (ش)

● Suad (ص) and Duad (ض)

● Toi (ط) and Zoi (ظ)

● Ayn (ع) and Gain (غ)

● Noon (ن) and Noon-Ghunna (ں) etc.

While some positional characters have coinciding geo-

metrical shape similarity with some isolated characters

which can only be differentiated by the context in which

they are written. Examples of such type of problem include

characters:

● Ttay Initial (ٹ) and Day Isolated (ڑ)

● Ttay Medial (ٹ) and Dhaal Isolated (ڈ)

● Say Initail (ث) and Cxay Isolated (ژ)

● Zay Isolated (ز) and Noon Initial (ن)

● Zaal Final (ذ) and Noon Medial (ن)

Also, some characters like ‘Reh’ and ‘Daal’ which can

only be differentiated by writing their lower part, where the

character ‘Reh’ is elongated smoothly than the character

‘Daal’ are also responsible for misclassifications. The

above-mentioned characters are very confusing and cannot

be distinguished easily as an individual character until we

rely on the preceding characters of the same word or in

general have an overall look of the whole word. Despite of

such inherit complexities in Urdu script, the proposed

model proved to be more effective in achieving a high

accuracy rate of 98.82%, area under curve (AUC) rate of

99.39%, and low root-mean-square error rate (RMSE) of

4.24. Figure 26 shows the receivers operating characteris-

tics (ROC) curve for all the 133 classes.

Fig. 26 ROC_AUC curve for 133 classes

Table 3 Comparison with existing Urdu recognition systems

Authors (Year) Technique used Dataset, Size Highest Recognition Rate

(%)

Akram and Hussain [5] HMMs Dataset-1, 1446

Ligatures

98.37

Rizvi et al. [34] Random Forest and Logistics Algorithm 129 Instances 98.40

Naz, Ahmed, et al.

[28, 30]

Zoning features and 2-dimensional LSTM UPTI, 10,000 Text

Lines

93.39

K. Khan et al. [19] Hu moments for feature extraction, Decision Tree J-48 for

Classification

441 Characters 92.06

Din et al. [11] HMMs UPTI, 1525 Ligatures 92.26

Z. Ahmed et al. [3, 4] Statistical Correlation and Pattern Matching 3500 Ligatures 97.40

Kadhm and Abdul [17] DCT and HOG for feature extraction, SVM for Classification 2913 Words 96.32

Sobia T Javed et al. [16] HMMs 1500 Ligatures 92.00

I. Ahmad et al. [1] GBLSTM UPTI, 10,063

Sentences

96.71

N. Javed et al. [14, 15] CNN 18,000 Ligatures 95.00

Naz et al. [31] CNN and RNN for Feature Extraction, MDLSTM for

Classification

UPTI, 10,000 Text

Lines

98.12

Naz, Umar, et al.

[28, 30]

MDLSTM 10,000 Text Lines 96.40

Pal and Sarkar [32] Topological, Contour and Water reservoir concept NA 97.80

Proposed Technique CNN 106,120 Characters 98.82
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4.1 Comparison with existing systems

The recognition rate achieved by the proposed CNN

algorithm reached up to 98.82% is the bestever result

obtained by any technique proposed for handwritten Urdu

as the best to our knowledge because of the complex nature

of the Urdu language. If compared with existing Urdu

character datasets, this study introduced a much diverse

Nasta’liq Urdu dataset written by 750 Urdu writers than the

existing ones. Also, the proposed dataset contains a large

number of character classes (133) than the existing datasets

where classes may range from 30 to 50 character classes

and includes all the individual, positional as well as

numeral characters. Furthermore, if compared on the basis

of dataset samples, our dataset has 101,620 samples which

is also higher than any other existing Urdu character

datasets where samples may range from 441 to 41,228.

Apart from the introduction of a new Urdu character

dataset, this study also proposed a current state-of-the-art

deep learning model (CNN) which is best known for its

achievements in the field of image classification and

computer vision. Therefore, this study will be very helpful

for the development of future OCR systems of Urdu lan-

guage. Table 3 demonstrates the comparison between the

performance of the proposed OCR system with the existing

systems evaluated on different datasets and including both

analytical and holistic approaches.

5 Conclusion and future recommendations

In this paper, we proposed a new and comprehensive

handwritten dataset for Nasta’liq Urdu script named

Handwritten Urdu Character dataset (HUCD). The data

have been gathered from 750 individuals of Kashmir valley

covering isolated and positional characters as well as

numerals. The main motive for preparing the HUCD offline

dataset is to make it publicly available to the Urdu lan-

guage research community for free of cost. Since no pub-

licly available benchmark dataset is available for the

Nasta’liq Urdu script, we also proposed a novel deep

learning model based on CNN for the recognition of

handwritten Urdu characters and numerals. The proposed

analytical model achieved a state-of-the-art recognition

accuracy of 98.82% with a root-mean-square error rate of

4.24. It was observed that the deeper the network the better

the recognition result, however, with more hidden layers

the complexity of the model also increases. It was also

observed the maximum number of misclassifications

occurs due to the similarity in geometrical shapes of vari-

ous isolated and positional characters as well as the char-

acters that were badly written or have some basic parts

missing. The purpose of using the deep learning model was

to take full advantage of CNN, which has achieved

breakthroughs in many fields of image recognition and

does not need explicit feature engineering and extraction.

In our further study, we intend to extend the model to

recognize Urdu ligatures or words including all the dia-

critics (Aerabs) which play an important role in the pro-

nunciation of Urdu words. The proposed recognition model

can also be applied for recognition of other Urdu like

scripts like Kashmiri, Persian, Arabic, Turkish, etc. as well

as other Urdu writing styles like Naskh, Kofi, Riqa, Aswad,

Taleeq, Batool, Baghdadi, Jabeen, etc. by preparing an

appropriate dataset. Special characters can also be included

to increase dataset range.
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