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Abstract
An explicit challenge for mine productivity and personnel’s safety in mechanized underground mines is to envisage the

uncontrolled roof displacements, usually occurred in underground roadways. For this purpose, support systems are to be

installed to guarantee the proper functionality of underground structures during mining operations. Roof displacement is a

reliable indicator to examine stability conditions of tunnels or roadways, which are driven in underground coal mines. In

this research, a neuro-fuzzy-based method, namely hierarchical local model tree (HiLoMoT), was employed to predict the

roof displacements and consequently indicate the unstable zones in a tailgate roadway. In this regard, the geomechanical

and instrumentation information measured from a longwall panel at Tabas coal mine was employed to validate the

developed HiLoMoT model. According to the results, the proposed HiLoMoT model could predict roof displacements in

reasonable conformity when compared with measured ones. In order to examine the prediction capability of the HiLoMoT

model, three indices of the coefficient of determination (R2), variance accounted for (VAF), and root mean square error

(RMSE) were used. Introducing unseen test data, R2, VAF, and RMSE were, respectively, obtained as 0.952, 95.13, and

0.0193, which showed high goodness of fit and low error for the proposed model. In comparison with ANFIS as a common

fuzzy-based model, HiLoMoT could predict the roof displacement by a nonlinear partitioning based on the incremental

tree-construction, which improves the quality of the model without further iteration loops or trial and error. Therefore, the

HiLoMoT model may be implemented as a new applicable tool for predicting roof displacements ahead of time in

mechanized longwall mining.
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1 Introduction

Nowadays, there is a huge demand for coal consumption

with a substantial gradual increase, and longwall mining is

the most responsible method of coal extraction. Mecha-

nized longwall mining is highly productive for coal

exploitation against other underground mining methods

[1]. However, the frequency of injuries and fatalities rela-

ted to roof failure has correspondingly been increased by

production rising in longwall coal mines [2].

Designing sustainable and functional tunnels in a long-

wall panel is indispensable to provide the mining safety

and maximize the recovery rate. The longwall mining will

be commenced at the coalface through creating a slot, and

then, coal is extracted by parallel cutting in narrow slices.

A schematic perspective for a longwall panel along with

the two side tunnels is presented in Fig. 1.

Essentially, two tunnels are excavated in a single-entry

longwall panel; each serves a particular function. One of

the tunnels is excavated for haulage of extracted material,

personnel’s passageway, and transportation of supplies

called the headgate roadway. The other one is mainly used

for egress, and outby ventilation named the tailgate road-

way [1]. These tunnels are derived on either side of a

longwall panel off the maingate roadway.

One of the primary goals in designing a longwall mine is

to gain an accurate prediction of tunnel stability and
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support requirements [3]. The longwall roadways may

endure tremendous loading conditions, because of stress

concentration around coalface and T-junctions. However,

there are currently no reasonable proved solutions available

to tackle with roof instabilities in longwall mining. The

first stage in designing a longwall mine is, therefore, to

perform a geotechnical assessment of the site. This issue

may lead to identifying geological structures, which chiefly

influence the tunnels’ stability [4]. Besides, a suit-

able monitoring program is emphasized to be implemented

in order to collect the information of strata displacements

recorded from the under-loading tunnels at the longwall

panel. In this regard, remote reading telltales are the reli-

able real-time monitoring systems for recording displace-

ments in longwall coal mines [5].

Excessive displacements of the roof strata at the vicinity

of a rock structure in longwall mining can cause roof

instability or roof failure at workings, which may be

redounded some irrecoverable safety problems. Unsta-

ble roof strata may also result in unwanted collapses,

damages to equipment, production delays, etc. Therefore,

implementing a monitoring program for measuring roof

displacements is a practical technique to cope with unde-

sirable disasters in longwall mining [6, 7].

However, it is impossible to accurately predict any

parameters related to rock structures due to inherent com-

plexity and uncertainty associated with the geological

conditions. Nonetheless, it is feasible to derive a reasonable

judgment for stability prediction, provided that the trends

of the displacements are recorded, and their changes could

be related to the geomechanical information. This issue

may also be used as a precise and timely predictor model,

which will be updated by introducing new historical data.

Literature survey shows that the application of compu-

tational intelligence (CI) approaches in analyzing under-

ground rock structures are recently attracted much interest.

Among them, artificial neural networks (ANNs) [8, 9],

support vector machines (SVMs) [10, 11], and fuzzy logic

systems [12, 13] are more commonly used CI methods,

which were applied for solving regression and function

approximation problems.

Nonetheless, ANNs rather suffer from some deficiencies

such as local extrema, slow convergence, inability to cover

uncertainty, and difficulty to understand, which may be

deficient in practice [14]. Nonetheless, fuzzy rule-based

(FRB) systems are capable of presenting human-like rea-

soning based on the expert knowledge. Also, FRB systems

are composed of a set of IF–THEN rules, implying the

uncertainty associated with complex geomechanical prob-

lems, in which the IF-part is the antecedent (premise), and

the THEN-part is the consequence (conclusion). The

antecedent part of fuzzy rules consists of some fuzzy sets

determining the Membership Degree (MD) of input pat-

terns [15].

The theory of fuzzy was developed to embody the

vagueness and imprecise information in scientific problems

[15]. Thereafter, fuzzy logic on the basis of the fuzzy set

theory and approximate reasoning was extensively

employed to handle the imprecision and ambiguity related

to engineering problems.

In recent decades, the fuzzy-based models emerge as

suitable tools in various fields of mining engineering for

encountering with uncertainties in earth sciences. In this

regard, adaptive neuro-fuzzy inference system (ANFIS)

[16] is extensively employed in different subjects related to

underground rock structures to identify the Membership

Functions (MFs) through combining fuzzy logic and

ANNs.

Rangel et al. [17] developed a neuro-fuzzy system to

appraise the stability of tunnels during excavation. Adoko

et al. [18] predicted the tunnel convergence using the

Mamdani fuzzy system. Adoko and Wu [6] proposed an

ANFIS model to predict the tunnel convergence. Farid

et al. [19] also developed a neuro-fuzzy model to predict

the roof fall phenomenon in underground coal mines.

Song et al. [20] proposed a coal mine intelligent system

based on the ANFIS for safety management through fore-

casting and optimizing the released gases in the mine

environment. Ghasemi and Ataei [21] developed a fuzzy

model to predict roof fall rate in coal mines. Bouayad and

Emeriault [22] proposed a hybrid ANFIS method to predict

the surface settlements in shield tunneling on the basis of

operational and geological parameters. Felka and Brodny

[23] employed ANFIS to predict hazardous zones in

longwall coal mines. Chen et al. [24] proposed an ANFIS

system for structural safety evaluation of in-service

tunnels.

In order to enhance some deficits in ANFIS, the local

linear models (LLMs) were developed [25, 26]. In this

respect, two applicable local linear neuro-fuzzy models are

the local linear model tree (LoLiMoT) and the hierarchical

local model tree (HiLoMoT). In fact, the LLMs generate a

fuzzy system to solve nonlinear problems by breaking them

down into several more convenient subproblems.

Fig. 1 Longwall panel along with tailgate and headgate roadways
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The LLMs are developed based on the input–output data

pairs without necessity to the predetermined settings by

experts [27]. Moreover, the convergence speed and per-

formance of the LLMs are recently enhanced through a

nonlinear relationship in the hierarchical algorithm of the

HiLoMoT model [28]. The LoLiMoT and HiLoMoT

models are innovative in mining engineering and earth

sciences, and there are no research works in these fields.

However, much interest is newly drawn toward them in

various fields of sciences.

Aflakian et al. [29] proposed an intelligent algorithm

based on the LoLiMoT for kinematic controlling of the

cable-suspended parallel robots. Du et al. [30] developed a

new model on the basis of the HiLoMoT for rapid cali-

bration test of diesel engines. Razavi et al. [31] employed

the LoLiMoT in an updatable prognosis methodology.

Oliaee et al. [32] proposed an incremental algorithm by

combining the genetic and LoLiMoT methods for nonlin-

ear fault detection and identification in industrial gas tur-

bines. Rastegarmanesh et al. [33] employed LoLiMoT to

develop a fuzzy model for prediction of rockburst in

underground rock structures. Malekizadeh et al. [34]

employed LoLiMoT as an ensemble neuro-fuzzy model to

extract the short-term load profile trends. Salmanpour et al.

[35] predicted the motor outcome using a machine learning

method trained with LoLiMoT. Shahsavari et al. [36]

proposed a LoLiMoT model to identify the geochemical

anomalies.

This research is conducted to predict the roof displace-

ments in longwall tailgates based on the local model net-

works for considering the uncertainties associated with

geomechanical and geological conditions. Three models of

HiLoMoT, LoLiMoT, and ANFIS are developed to predict

roof displacements based on the geomechanical informa-

tion. The prediction capabilities of the proposed models are

examined through comparing the results with actual mea-

sured data.

2 Case description

Tabas mine is a mechanized underground coal mine loca-

ted in the northeast of Iran, which was commissioned in

2007 to produce about 1.7 Mt coking coal from each panel.

This mine is situated about 85 km south of Tabas

County, South Khorasan Province (Fig. 2). Tabas mine is

geologically placed in the Parvadeh coal basin, which is

developed in the central part of an asymmetrical anticline

in an area of 1200 km2, as shown in Fig. 2 [37]. The

northern boundary of the mine is bounded with the Rostam

fault, a reverse fault with a displacement of up to 700 m.

Therefore, rock formations in the vicinity of the Rostam

fault endure a severe deformation due to tight folding and

numerous minor faults.

The rock strata in the Tabas coal basin are typically

mudstone, limestone, siltstone, and sandstone sequences.

The main coal seams are within a 50-m section of the

central strata. The seam C1 is now extracting, which was

developed from its outcrop on the south side of the Par-

vadeh anticline. The seam C2 proximately lies above the

seam C1 at a distance of less than 1 m in the southwest to

18 m in the northeast, having the potential to augment the

risk of roof failure due to thin bedding and weak strengths.

Due to that, many roof failures were taken place during

mining operations in panel E2, causing several delays and

downtimes in the production plan. The plan view of the

longwall panels at Tabas coalfield is shown in Fig. 3, in

which the panel E2 considered in our research has been

hatched. The width and length of the panel E2 are,

respectively, 212 m and 1200 m. The depth of mine is in

the range of 300 m. The seam thickness in panel E2 varies

from 1.5 to 2 m. The strata gradients in the tailgate road-

way vary from 1 in 5 to 1 in 2 [37].

The catastrophic instabilities in panel E2 are more

severe than other longwall panels such that many roof

failures have occurred during exploitation of this panel.

The major factor affecting strata instabilities and huge roof

collapses is found to be the incontrollable roof displace-

ments. The idea behind this study is to develop a fuzzy-

based model to indicate the unstable zones according to the

corresponding geomechanical and monitoring information.

Moreover, since the risk of encountering minor faulting is

high in the region, especially in the southwestern margins,

the timely prediction of roof displacements is a funda-

mental measure in controlling roof instabilities.

3 Methodology

The LLMs are developed based on the assumptions of the

fuzzy theory. Therefore, the fuzzification procedure and the

fuzzy system’s design are briefly mentioned at first.

In fuzzy mathematics, the fuzzifier module at the first

step maps the crisp input patterns to the fuzzy sets char-

acterized by an MF (l 2 0; 1½ �). The MFs are selected on

the basis of the problem nature and can be varied in dif-

ferent types of triangular, trapezoidal, Gaussian, sigmoidal,

etc. The FRB is then constructed according to a collection

of IF–THEN rules, which can be expressed:

< j :
IF x1isAj

1 AND x2 is A
j
2 AND . . .AND xn isAj

n

THEN y j ¼ Bj

�

ð1Þ
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where < j is the jth fuzzy rule for j ¼ 1; . . .;R including the

IF-part for the antecedent and the THEN-part for conse-

quent of a rule. Also, xk is the kth input variable of the n-

dimensional input vector x ¼ x1; x2; . . .; xnð Þ, and the lin-

guistic term, Aj
k, is the fuzzy MF associated with xk in the

jth rule. Furthermore, the output of the jth fuzzy rule is

derived by Bj.

In order to aggregate the IF–THEN rules, a fuzzy

inference engine should be applied, which uses fuzzy rules

to implement the input–output mapping. Finally, the last

step of the fuzzy modeling is defuzzification, in which the

fuzzy set output would be converted to the crisp or numeric

value. Figure 4 depicts a block diagram of the fuzzification

process.

Among various types of FRB models, there are two

more common models, namely Takagi–Sugeno (TS) and

Mamdani systems. Since the consequent parts of the rules

in the Mamdani inference system are defined based on the

linguistic variables, such systems can only use the fixed

MFs, which are predetermined by an expert. In contrast, the

TS models, which are interpreted as local models, have

been proposed by considering a mathematical function in

the consequent part of each rule [38, 39]. Therefore, a TS

fuzzy rule can be rewritten as [40]:

Fig. 2 Location and geological structure of the mine, South Khorasan, Iran

Fig. 3 Location of panel E2 in

Tabas mine [37]

Fig. 4 Block diagram for fuzzification process
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< j :
IF x1isAj

1 AND x2isAj
2 AND . . .AND xnisA

j
n

THEN y j ¼ f xð Þ

�
ð2Þ

where y j ¼ f xð Þ is a crisp function in the consequent part.

In Eq. (2), each rule’s consequent will be constructed

through an arbitrary function associated with the input data

partitions, and consequently, the output of the system is

obtained by weighted averaging. In general, the defuzzifi-

cation step is more convenient in the TS model in com-

parison with the Mamdani model. In addition, the TS

models are more applicable in approximating the nonlinear

systems with fewer rules. Therefore, the learning capability

of the TS systems made it more reliable than the Mamdani

type [41].

3.1 Fuzzy system design

There are different choices for MFs in the antecedent part

of a fuzzy rule to convert the crisp input patterns to their

fuzzy values. One of the most applicable MFs is the

Gaussian function, in which the unknown parameters can

be estimated by differentiable gradient-based methods.

Herein, the Gaussian membership function (GMF) has

been considered for specifying the fuzzy sets. Therefore,

each input variable, xk, is first fuzzified through the GMF

as follows:

gAj
k
¼ exp �0:5

xk � c j
k

r j
k

 !2
2
4

3
5 ð3Þ

where c j
k and r j

k stand for the center and the width of the jth

GMF considered in the kth input variable. Afterward, by

using the product inference method as the AND operation,

the output of each rule can be obtained:

l j ¼
Yn
k¼1

gAj
k

ð4Þ

Taking into account the whole fuzzy rules, the normal-

ized output of the jth rule is given as:

l̂ j ¼ l jPR
j¼1 l

j
ð5Þ

where l̂ j is the firing strength employed for determining

the contribution degree of each rule in the whole network.

Finally, the output of the fuzzy system is calculated:

ŷ ¼
XR
j¼1

l̂ jy j ð6Þ

3.2 ANFIS

ANFIS is a kind of ANNs which was developed based on

the TS fuzzy inference system. In an ANFIS model, non-

linear functions are approximated through defining a set of

IF–THEN rules. Therefore, the structure of an ANFIS

model is similar to that of the ANNs (Fig. 5), in which

neurons in hidden layers are replaced with the fuzzy rules

[16].

The neuro-adaptive techniques can provide a learning

strategy for the FRB models to learn proper rules. There-

fore, ANFIS is capable of adjusting MFs and consequent

parameters, which allows the TS system to learn from the

dataset. Mathematically, an arbitrary linear function is

considered in the consequent part of the fuzzy rules as [42]:

< j :
IF x1 isAj

1 AND x2isAj
2 AND . . .AND xnisA

j
n

THEN y j ¼ a j
0 þ a j

1x1 þ � � � þ a j
nxn

�
ð7Þ

where a j
0; a

j
1; . . .; and a j

n are the linear parameters of the

consequent part of the jth rule.

Since the tunable coefficients are trained based on the

gradient-based algorithm, the computational time will be

increased, when encountered with extensive input data.

Nonetheless, the more the number of rules, the more is the

occurrence probability of the overfitting [41].

3.3 LoLiMoT

LoLiMoT is one of the TS fuzzy systems, which interpo-

lates the LLMs to describe the training data in an incre-

mental learning algorithm [43, 44]. Unlike ANFIS, the

premise part of the fuzzy rules in LoLiMoT is evolved

based on the input–output data pairs without the necessity

to the predetermined settings. The LLMs generate a fuzzy

system through the divide and conquer strategy to break

down a complex identification problem into some more

convenient subproblems, which will control the procedure

of rule generation and prevent the complexity of the model

[44].

Figure 6 depicts the LoLiMoT topology, in which the

whole parts of the input space is covered by a set of neu-

rons. As seen, each neuron is responsible for a specific

zone and consists of an LLM and a validity function.

Moreover, in LoLiMoT there is just a single hidden layer

organized from neurons, and a simple adder which aggre-

gates the LLMs as the outputs of the neurons [42].

According to the topology of the network, the input–

output relationship of the LLM can be written as:
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hj xð Þ ¼ exp �0:5
x1 � c j

1

r j
1

 !2

þ � � � þ xk � c j
k

r j
k

 !2
0
@

2
4

þ � � � þ xn � c j
n

r j
n

� �2
!#

:

ð8Þ

where hj is the validity function of the jth neuron, and c j
k

and r j
k are the centroid and the standard deviation of the

Gaussian activation functions, respectively. Afterward, the

normalized validity function of the jth neuron is written as:

Uj xð Þ ¼ hj xð ÞPR
j¼1 hj xð Þ

ð9Þ

where R is the number of neurons (fuzzy rules) in a

standard FRB system. Similar to the TS models, the first-

order polynomials are considered for the LLM in each

neuron as follows:

Ôj ¼ wj
0 þ wj

1x1 þ � � � þ wj
nxn ð10Þ

where Ôj is the output of the jth LLM, and wj ¼
wj

0;w
j
1; . . .;w

j
n

� �T
is the vector of weights associated with

Ôj. Finally, the overall output of the LoLiMoT model will

be calculated as:

ŷ ¼
XR
j¼1

Uj xð ÞÔj ð11Þ

in which the unknown parameters are the weights of LLMs

(wj) and the parameters of Gaussian activation functions.

Herein, the weights wj are estimated by the weighted least-

square (WLS) method as follows:

wj ¼ XTQjX
� ��1

XTQjy; j ¼ 1; 2; . . .;R ð12Þ

where X and Q are the regression and the weight matrices,

respectively. When the given input data consists of N

samples, the aforementioned matrices can be formulated

as:

X ¼
1 x1;1 x2;1 � � � xn;1

..

. . .
. ..

.

1 x1;N x2;N � � � xn;N

2
64

3
75 ð13Þ

Qj ¼

Uj x1ð Þ 0

0 Uj x2ð Þ
. . . 0

. . . 0

..

. ..
.

0 0

. .
. ..

.

. . . Uj xNð Þ

2
6664

3
7775 ð14Þ

Fig. 5 Architecture of the ANFIS

Fig. 6 LoLiMoT topology for n input and R local models
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Although the network topology in LLMs is different

from ANFIS, it has been proved that both models have a

similar interpretation. In particular, the number of neurons

in LoLiMoT is identical to the number of fuzzy rules in

ANFIS. Moreover, LLMs in each neuron is equivalent to

the functions of the rule’s consequent. Nonetheless, the

training strategy in the LoLiMoT and ANFIS is quite dif-

ferent. ANFIS is highly dependent on the initialization of

the parameters, the number of fuzzy rules, and the topology

of the model. The model structure is also fixed during the

learning phase. In contrast, LoLiMoT begins with just one

LLM at first, and the network structure will grow based on

an incremental algorithm in order that the optimum model

is finally achieved [45]. Therefore, LoLiMoT is classified

as an incremental tree-construction algorithm that employs

the axis-orthogonal partitioning to split input data.

In general, each neuron in the LoLiMoT topology, and

its corresponding LLM will provide a linear sub-system as

a local model to find the final output. It is necessary to

increase the LLMs for improving the model performance

that is equivalent to an increase in the number of neurons.

This procedure is done by orthogonal splitting in different

axes of input space based on the selection of the worst local

model. For obtaining the worst local model, the general and

local cost function corresponding to the output of each

neuron is defined:

J ¼ 1

N

XN
i¼1

e xið Þ2¼ 1

N

XN
i¼1

y xið Þ � ŷ xið Þð Þ2 ð15Þ

Jj ¼
XN
i¼1

e xið Þ2Uj xið Þ; j ¼ 1; 2; . . .;R ð16Þ

Here e is the squared error function, J is the overall

error, and Jj is the error of the jth local model. The local

models with higher local errors are chosen in each iteration

and then are broken down into two distinctive neurons with

new LLMs. Therefore, the topology of the fuzzy networks

is increasing during the training phase. The main steps in

LoLiMoT are summarized as:

• Step 1: Starting with one neuron as the initial model,

U1 ¼ 1, and R ¼ 1. (The whole input space is covered

by the corresponding LLM and its validity function.)

• Step 2: Determining the worst LLM based on the

maximum local cost function (Eq. 16).

• Step 3: Breaking the worst LLM:

a. Splitting each input dimension into two different

local models.

b. Assigning the new LLMs and validity functions for

both regions, and estimating the parameters of LLM

through the WLS (Eq. 12).

c. Calculating the general cost function for the whole

model (Eq. 15).

• Step 4: Checking the stop condition and going back to

step 2.

Figure 7 depicts the orthogonal partitioning of the input

space in a 2D LoLiMoT model. As seen, the upper region

is split into two distinctive subregions. This procedure is

repeated at each iteration, and then, the worst performing

LLM would be subdivided into two new subregions to

generate the new LLMs and their validity functions. After

each division, the center of the subregions has been chosen

as the center of the Gaussian validity functions (c j
k) for the

new local models. Moreover, given the extensions of

subregions as D j
k, the standard deviation of each validity

function has been selected as r j
k ¼ 0:33 � D j

k. This proce-

dure is repeated in all dimensions based on Step 3 men-

tioned in the LoLiMoT algorithm, and finally, the highest

performance is determined.

3.4 HiLoMoT

In the partitioning strategy of the LoLiMoT, the subregion

having the maximum local cost function is determined in

each iteration and will then be broken down into two new

subregions by axis-orthogonal partitioning. Unfortunately,

the optimization approach in the LoLiMoT is linear, which

will mainly influence the convergence speed and perfor-

mance of the model [46].

In order to cope with such deficiency, Hartmann et al.

[28] based on the hinging hyperplanes [47], developed a

hierarchical model structure, namely HiLoMoT. In contrast

to the LoLiMoT with a flat axis-orthogonal method, the

direction of splitting in the HiLoMoT algorithm is neces-

sarily produced a nonlinear relationship in a hierarchical

algorithm [48].

The direction of splitting for LoLiMoT and HiLoMoT is

compared in Fig. 8. In brief, HiLoMoT is characterized by

a nonlinear oblique partitioning, which will cause to

overcome the restriction of the axis-orthogonal partitioning

Fig. 7 Orthogonal partitioning of a 2D input space in LoLiMoT
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as a significant limitation of the LoLiMoT [49]. Nonethe-

less, the nonlinear partitioning may increase the computa-

tional cost.

4 Results

The problem of roof failure is a common challenge in

Tabas coal mine, which would appear to be a more serious

trouble by increasing the depth of mining in the near future.

An unstable tailgate roadway would not only cause mining

operations to be slowed down or delayed but could also

potentially bring about incidents leading to injuries or

fatalities. Therefore, due to the high investment costs and

the safety standards, it is not satisfactory to ignore the roof

displacements during mining operations in the Tabas mine.

In our research, the three models of HiLoMoT, LoLiMoT,

and ANFIS are developed using the fuzzy toolboxes of

MATLAB software to predict roof displacements. The

procedure of the model’s development and the results are

presented in the following subsections.

4.1 Data establishment

In order to predict the roof displacement in tailgate road-

ways of Tabas longwall mine, the panel E2 was selected as

our case study. For this purpose, a dataset was gathered

from the geological reports, boreholes information, and

rock mechanics laboratory tests. In addition, maximum

roof displacements (dmax) are recorded by face advance-

ment using dual height telltale instruments installed at

specified distances along the investigated tailgate roadway.

By continually recording telltales, the displacements within

and above the bolted height will be indicated. In other

words, a telltale has two movement indicators; the ‘‘A’’

indicator that shows roof displacements about 30 cm below

the bolted height, and the ‘‘B’’ indicator that displays dis-

placements at least twice above the bolted height. Figure 9

illustrates recorded data for some selected sections from

Jul. 3, 2008, to Dec. 1, 2012.

In this research, the dmax recorded from reading the

telltales are introduced to the fuzzy-based models to find

the nonlinear relationship between geomechanical infor-

mation and dmax. The input parameters are the uniaxial

compressive strength (UCS), rock mass rating (RMR),

tensile strength (rt), shear strength (s), Young’s modulus

(E), cohesion (C), angle of internal friction (/), slake

durability index (Id2), and density (q). The statistics of the

employed data are presented in Table 1.

Fig. 8 Procedure of input space splitting for four successive iterations [46]
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4.2 Data normalization

Since the independent variables are obtained in different

units, the input data have to be normalized before intro-

ducing them to the models. Data normalization leads to

dimensionless and maintains the input data between 0

and ? 1. In addition, the learning speed and the perma-

nency of the model will be enhanced by dimensionless.

The input data in our case are normalized using Eq. (17)

[50]:

Xpq
Norm ¼ Xpq � Xq

min

Xq
max � Xq

min

ð17Þ

where Xpq
Norm is the normalized value, Xpq is the original

value in the pth row and the qth column, respectively,

Fig. 9 Roof displacements versus time for both indicators at six selected sections (‘‘A’’ indicator shows roof displacements about 30 cm below

the bolted height, and ‘‘B’’ indicator displays roof displacements at least twice above the bolted height)

Table 1 Details of the datasets applied for training the neuro-fuzzy

models

Type of data Symbol Unit Max Min Ave SD

Input UCS MPa 202.3 3.5 63.7 45.6

rt MPa 18.8 0.2 5.7 4.3

C MPa 10.2 0.1 4.2 3.2

/ deg 39.1 17.8 25.8 5.1

E GPa 11.0 0.3 5.4 2.3

s MPa 43.6 2.0 19.4 9.4

q g=cm3 2.8 1.6 2.6 0.3

Id2 % 98.0 39.0 80.5 14.4

RMR - 91.0 15.0 38.3 17.2

Output dmax mm 317.0 4.0 67.7 89.9
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Xq
minand Xq

max are, respectively, the minimum and maxi-

mum values of the related qth column.

4.3 Model development

The procedure of model development in our research is

summarized in Fig. 10. The main idea behind the local

model networks is to approximate the nonlinear function

using multiple piecewise linear models. As seen, the first

step in our neuro-fuzzy model is to establish the LLMs. For

initializing the FRB system, the training procedure is

commenced with one neuron as the initial model, U1 ¼ 1,

and R ¼ 1. The related LLM and the validity function will

then cover the whole input space.

In the next step, by maximizing the local cost function,

the worst LLM is picked out and will then be split into two

new LLMs. The partitioning strategy will be implemented

in the next step in order to estimate the new LLMs and

their validity functions. The model is trained after parti-

tioning, and its validity is checked by calculating the

Fig. 10 Flowchart of the modeling process
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general cost function. Finally, the prediction capability of

the trained model is examined by introducing new data,

and comparing the predicted and measured values.

The major difference between LoLiMoT and HiLoMoT

models is related to the method of partitioning. As men-

tioned, partitioning approaches for the LoLiMoT and

HiLoMoT models are, respectively, in the forms of linear

orthogonal and nonlinear oblique partitioning. For com-

parison, the axis-orthogonal partitioning between input

variables and Id2 is shown in Fig. 11 for instance. In

addition, the partitioning methods in some selected vari-

ables during training the HiLoMoT and LoLiMoT models

are compared in Fig. 12.

As shown in Fig. 11, the partitioning of input space in

LoLiMoT is done based on the orthogonal partitioning

strategy. In this respect, increasing the number of partitions

causes to increase in the number of neurons and LLMs,

which is equivalent to growing the number of fuzzy rules.

Therefore, the new validity functions and LLMs are con-

sidered for each anew generated local model. During the

training procedure, the parameters related to each validity

function will be kept unchanged until the proper local

model is identified as the worst local model. Accordingly,

the input apace for variables presented in Fig. 11, has been

divided into four distinctive subregions on the basis of the

corresponding worst local models. As a result, the middle

of the new subregions is set as the center of the Gaussian

validity functions, in which one-third of the extension of

the subregions is devoted to their standard deviations.

On the other hand, the worst local models in HiLoMoT

are split by oblique lines, in contrast to LoLiMoT in which

the horizontal or vertical lines are employed (Fig. 12).

Actually, the position and direction of split lines in

HiLoMoT are optimized based on the nonlinear optimiza-

tion techniques. As shown in Fig. 12, the number of local

models, and consequently, the corresponding LLMs and

validity functions are quite different in the HiLoMoT

model. In this figure, input spaces in some cases such as s
and E or RMR and / were not detected as the worst

models, and the related validity functions are then includ-

ing just one Gaussian function. Equivalently, the 3D view

of the partitioning procedure for a single-partition and a

four-partition local models are presented in Fig. 13. As

seen, the centers of the 3D Gaussian validity functions are

located at the middle of subregions and expanded to cover

the whole areas of the specified subregions.

In contrast to the local model networks, the first step in

developing an ANFIS model is selecting the number of

rules. For modeling ANFIS, the MFs for the nine input

variables are generated in MATLAB environment by

subtractive clustering, and the results are presented in

Fig. 14. Visual inspection of the figure verifies that three

MFs are created in each dimension, which is equivalent to

three fuzzy rules.

After determining the fuzzy set, the network’s structure

of the ANFIS is composed of different layers, and various

sets of rules are examined, and the model with the highest

accuracy is obtained associated with the three extracted

fuzzy rules. In fact, ANFIS employs back-propagation (BP)

algorithm for tuning MFs and least-squares estimation for

training the coefficients of the conclusion parts [51]. In

other words, the consequent parameters in each training

step are estimated through a two-pass algorithm based on

the least-squares estimation in the forward phase. Then, the

MF parameters are tuned through back-propagating the

obtained error in the backward phase.

The dmax values predicted by the three employed models

are plotted versus the actually measured ones in Fig. 15. As

seen, the squared correlation coefficients (R2) calculated

between the predicted and measured values for training the

ANFIS, LoLiMoT, and HiLoMoT models are, respectively,

obtained as 0.921, 0.943, and 0.976 for the best structures

corresponding to the best performance of the models.

4.4 Prediction capability of the model

The validity and performance of the HiLoMoT model in

predicting dmax are investigated by introducing an unseen

dataset from different sections of panel E2. For this pur-

pose, three indices of the coefficient of determination (R2),

variance accounted for (VAF), and the root mean square

error (RMSE) between the measured and predicted values

of dmax are used:

R2 ¼
PN

i¼1 yi � yð Þ2
h i

�
PN

i¼1 yi � ŷið Þ2
h i

PN
i¼1 yi � yð Þ2

h i ; y ¼ 1

N

XN
i¼1

yi

ð18Þ

VAF ¼ 100 � 1 � var yi � ŷið Þ
var yið Þ

	 

ð19Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

yi � ŷið Þ2

vuut ð20Þ

where N is the number of samples, var is the variance, and

yi and ŷi are, respectively, the measured and predicted

values associated with the ith input sample. The three

measures of R2, VAF, and RMSE obtained for three

employed models of ANFIS, LoLiMoT, and HiLoMoT are

summarized in Table 2. As seen, the prediction capability

of the HiLoMoT model is superior in comparison with the

other ones.

According to the results of the ANFIS model, it appears

that the best performance is obtained when the number of
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Fig. 11 Axis-orthogonal partitioning between input variables and Id2 in LoLiMoT model
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Fig. 12 Comparison of partitioning methods in HiLoMoT and LoLiMoT for selected instances
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rules is three. In other words, ANFIS achieved the highest

R2 and the lowest RMSE for testing samples when there are

three fuzzy rules.

In contrast to ANFIS, which is affected by the number

of rules, the fuzzy structure will automatically be created in

HiLoMoT. In this research, the structures of the LoLiMoT

and HiLoMoT models are found to be composed of seven

and two local models, respectively. During generation of

the local models, only the parameters of LLMs are opti-

mized, and the parameters related to the validity functions

remained unchanged. Therefore, the number of tuning

parameters in HiLoMoT is fewer than ANFIS, since the

number of LLMs in local model networks is equivalent to

the number of fuzzy rules. Moreover, it is not necessary to

predetermine the number of LLMs by an expert. According

to Table 2, HiLoMoT indicates the best performance in

terms of R2 and RMSE, while it has a simpler structure

than the other two models.

In order to develop an ANFIS model, the premise and

consequent parameters are to be optimized at first, whereas

the learning process in HiLoMoT includes a forward and a

backward part. The consequent parameters are optimized

by the least-squares method in a forward path, and the

premise parameters are adjusted by the gradient descent

method in a backward path.

The predicted values of dmax for three models of ANFIS,

LoLiMoT, and HiLoMoT are correlated with measured

values in Fig. 16. The calculated R2 between the predicted

and measured values for ANFIS, LoLiMoT, and HiLoMoT

are, respectively, obtained as 0.8729, 0.9392, and 0.9520.

These results indicate the confident capability of the

HiLoMoT model in predicting dmax when encounters with

unseen data.

In addition, the absolute errors associated with each one

of the models are presented in Fig. 17. As seen, the pre-

diction capability of the HiLoMoT method is more

exquisite in comparison with ANFIS. Meanwhile, the local

model networks have many advantages such as: simplicity,

high flexibility, not necessity for presetting parameters, and

avoiding the risk of overfitting. Therefore, the HiLoMoT

model may be implemented as a new applicable tool for

predicting roof displacements ahead of time in mechanized

longwall coal mining.

5 Discussion

The risk of facing unstable zones in longwall coal mining is

evident due to the high-stress concentration and bulky

movements of roof strata. In this respect, the tailgate

roadway is more susceptible, which suffers a high-stress

redistribution, especially around the T-junctions due to the

superposition of the abutment stresses. Depending upon the

mine geometrical, geological, and geomechanical condi-

tions, various failure mechanisms are prone to occur in

longwall tailgates. Geological surveys in Parvadeh coal-

field show that the risk of encountering with the undetected

minor faults is high. On the other hand, there were many

roof strata instabilities in panel E2, which led to several

technical and financial problems. The uncontrolled roof

displacements may affect the mine profitability or worka-

bility, because any displacements in mechanized longwall

mining can have adverse effects on the mining operations

and the availability of equipment. Therefore, implementing

a suitable program to collect the geomechanical and

monitoring information during the development stages of

the next panels is essential. The proposed model may be

Fig. 13 GMFs associated with the LLMs resulted during training the HiLoMoT model
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used as a predictive measure for identifying roof dis-

placement ahead of time on the basis of the associated

geomechanical information. HiLoMoT, as a TS fuzzy

model, is flexible in considering the uncertainties inherent

to geological and geomechanical information. Employing

such a model is emphasized when the probability of minor

faults is beyond normal bounds in Tabas mine. Moreover,

when the poor ground conditions associated with faulting

that result in large roof displacements are inevitable, the

proposed neuro-fuzzy model is helpful to avoid or control

adverse effects on the advance rate and production

planning.

Figure 18 illustrates the predicted values of dmax for

three models of ANFIS, LoLiMoT, and HiLoMoT. As

seen, comparison of the results obtained from the HiLo-

MoT model with those of LoLiMoT and ANFIS shows that

the proposed HiLoMoT model can comparatively predict

dmax more accurately than the others. Also, the HiLoMoT

results are in good agreement with the measured ones,

signified by the closeness to the equality line and the high

goodness of fit.

The histograms of the resulted errors during procedures

of training and testing of the models are also presented in

Fig. 19. As seen, the dominant frequency of the calculated

errors has been focused in the vicinity of the zero lines,

which shows the well-trained models. However, the mini-

mum testing errors are obtained in the HiLoMoT model.

The proposed HiLoMoT model has many advantages in

comparison with the ANFIS method as a commonly used

neuro-fuzzy model. At first, since ANFIS employed the BP

for tuning the parameters associated with the MFs, the

convergence speed is relatively slow. The results of ANFIS

are mainly depended on the initial selection of the

parameters. Moreover, ANFIS suffers from significant

limitations such as trapping in local extrema and overfitting

[41, 51].
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Fig. 14 GMFs associated with the nine input entries in the ANFIS model

Neural Computing and Applications (2021) 33:14909–14928 14923

123



In contrast, the HiLoMoT model receives some benefits

such as local optimization, least-squares estimation, and

incremental tree-construction [46]. Incremental tree-con-

struction leads to subdividing the input space into each

iteration to choose the number of neurons (rules or LLMs)

in order to improve the quality of the model without further

iteration loops or trial and error procedures, while the MFs

in ANFIS are empirically chosen by trial and error. In

addition, the validity functions are fixed in the HiLoMoT

model to estimate the parameters of local models using

local optimization in each LLM. This issue results in

neglecting the overlap of the validity functions that sig-

nificantly reduces the risk of overfitting. Although the

number of MFs is to be kept fixed during the learning

process in ANFIS, there is no limit for MFs to be fixed in

HiLoMoT. Therefore, in contrast to ANFIS, which needs

the presetting parameters, the incremental partitioning of

HiLoMoT does not require prior knowledge. A major

weakness of LoLiMoT is the restriction to axis-orthogonal

partitioning, which can be removed through oblique par-

titioning strategy in HiLoMoT.

Therefore, the HiLoMoT model is proved to be

extraordinarily flexible and eligible in industrial applica-

tion for successfully identifying both linear and nonlinear

systems [43]. Despite widespread progress in mechanized

longwall mining, there is presently no unique technique

that can provide information concerning roof instabilities

during mining operations. Uncontrolled roof displacements

are responsible for many downtimes and delays in the

Tabas longwall mine, which certainly cause to calamitous

consequences, especially in the tailgate roadway and

T-junctions. The proposed model may be useful to timely

detect unstable zones by predicting roof displacements.

The immediate roof in this panel is composed of a weak

listric mudstone with a thickness of 0.2 m, separated from

the overlying mudstones by a polished bedding plane. The

interval to seam C2 is less than 3 m, the roof measures are

predominantly of weak seatearth mudstone. The overhead

mudstone layer has been well bedded with several bedding

planes forming well-defined partings, which indicates more

serious conditions for the next panels.

In retreat longwall mining, the geological conditions and

geomechanical information are confirmed during panel

development. Introducing such information, the proposed

model is practically functional in predicting unstable zones

by identifying the ranges of dmax changes. The risk of

encountering catastrophic roof failure and unexpected

disasters is therefore significantly reduced, although not

entirely removed.
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Fig. 15 R2 resulted from training three models of ANFIS, LoLiMoT,

and HiLoMoT

Table 2 R2, VAF, and RMSE for three models of ANFIS, LoLiMoT,

and HiLoMoT

Model R2 VAF RMSE

Train Test Train Test Train Test

ANFIS 0.9206 0.8729 92.06 83.41 0.0096 0.0374

LoLiMoT 0.9429 0.9392 94.24 93.06 0.0077 0.0230

HiLoMoT 0.9760 0.9520 97.57 95.13 0.0050 0.0193
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6 Conclusion

The phenomenon of roof displacement as an indicator for

predicting unstable zones in longwall tailgates is identified

through a TS fuzzy-based HiLoMoT method. The purpose
is to predict the nonlinear relationship between geome-

chanical information and roof strata displacements. The
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Fig. 16 R2 resulted from testing three models of ANFIS, LoLiMoT,

and HiLoMoT

Fig. 17 Errors associated with three models of ANFIS, LoLiMoT, and

HiLoMoT
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displacements were monitored using dual height telltales,

installed at specific distances in the under-question tailgate

roadway at Tabas longwall mine. Due to the high-stress

concentrations in longwall tailgates, timely prediction of

any roof strata displacements is vital to safe and well-or-

ganized mining operations. Problematic tailgate instabili-

ties in the Tabas coal mine are recognized as the serious

concerns with adverse consequences, varying from

production delays to catastrophic roof failures. The results

were compared with those of ANFIS to examine the pre-

diction capability of the proposed model. Performance

evaluation of the three models of ANFIS, LoLiMoT, and

HiLoMoT are fulfilled by calculating three indices of R2,

Fig. 18 Comparing the dmax values for measured (blue) and predicted

(red) samples (Color figure online)
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Fig. 19 Comparison of the error histograms for training and testing

samples
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VAF, and RMSE. Accordingly, the R2 measure resulted

from training the HiLoMoT, LoLiMoT, and ANFIS models

is, respectively, obtained as 0.976, 0.943, and 0.921 for the

best structures corresponding to the best performance of

the models. Introducing unseen data, the R2 resulted from

testing the three models of HiLoMoT, LoLiMoT, and

ANFIS is found to be 0.952, 0.939, and 0.873, respectively.

The maximum value for VAF and minimum value for

RMSE are also obtained for the proposed HiLoMoT model

as 97.57 and 0.0050 for training, and 95.13 and 0.0193 for

testing data. According to the results, the proposed HiLo-

MoT model can comparatively predict dmax more accurate

than the others, and its results are in agreement with the

measured ones signified by a high goodness of fit. How-

ever, it is impossible to accurately predict any parameters

related to rock structures due to inherent complexity and

uncertainty associated with the geological conditions.

Nonetheless, if the trends of the displacements are recor-

ded, and their changes are related to the geomechanical

information through an intelligent model, it is feasible to

derive a reasonable judgment for stability prediction in

similar conditions at the mine. This issue may also be used

as a precise and timely predictor model, which will be

updated by introducing the new historical data.
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