ORIGINAL ARTICLE

Intelligent forecaster of concentrations (PM2.5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP)

Samaher Al-Janabi¹ · Ayad Alkaim² · Ehab Al-Janabi³ · Aseel Aljeboree² · M. Mustafa¹

Received: 18 September 2020/Accepted: 19 April 2021/Published online: 20 May 2021 © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract

Upgrading health reality is the responsibility of all, it is necessary to think about the design of a smart system based on modern technologies to reduce the time and effort exerted on the competent authorities in both health and environmental sectors furthermore making their work environment smart and easy to enable the creativity and innovation as well as to reduce the material costs granted by state of this case "environment." The process to find a solution for the problem of a triangle as shown in Figure (1) with contradictory heads is a very important and difficult issue in the field of health and environment, these are: (to optimize time utilization, and minimize the human errors, that accompany this human effort as much as possible, and to reduce material costs). Therefore, the idea of Internet technology and the Intelligent Big Data Analysis was developed to design an integrate electronic system of hardware to be developed in different and specific locations to collect information on concentrations that cause air pollution. So, it was invested an idea of Internet of things technology and intelligent data analysis ("Internet of things" and "Intelligent Data Analysis") for the construction of an integrated system of Hardware entities and Software entities placed. The aim of this work is to build a programmable system capable of predicting the pollutant concentrations within the next 48 h called intelligent forecaster of concentrations caused air pollution (IFCsAP) and making the machine the primary source of information after these concentrations are collected and stored in real time. On this basis, we will rely on modern technologies to reach this goal. The proposed design is highly efficient, cost-effective and easy to use and can be deployed in all places (environment with concentrations of air pollution). The main objective of the proposed system is to issue periodic reports (within 48 h of the future) based on the information input from different stations in real time. These reports are issued based on the readings of sensors planted at each station. Each sensor has a measurement of one or more concentrations that cause air pollution. Designed system consists of three basic phases: the construction phase of an integrated electronic circuit consisting of several devices (Modern, LoRa, Waspmate Platform, Arduino, Five sensors).

Keywords IFCsAP · DNS-PSO · DLSTM · PM2.5 · PM10 · NO2 · CO · O3 · SO2 · Air quality index

Abbreviations

DLSTM	Developed long short-term memory
LSTM	Long short-term memory
PSO	Particle swarm optimization

Samaher Al-Janabi samaher@itnet.uobabylon.edu.iq

Ayad Alkaim alkaim@iftc.uni-hannover.de

Ehab Al-Janabi Eng.aljanabi.ehab@gmail.com

Aseel Aljeboree aselo91@gmail.com

M. Mustafa musmus55@gmail.com

- SMAPE Symmetric mean absolute percentage error
 PM2.5 Particulate matter that has a diameter of less than 2.5 μm
- PM10 Particulate matter 10 µm or less in diameter
- ¹ Department of Computer Science, Faculty of Science for Women (SCIW), University of Babylon, Babylon, Iraq
- ² Department of Chemistry Science, Faculty of Science for Women (SCIW), University of Babylon, Babylon, Iraq
- ³ Babylon Electricity Distribution Branch, Electricity Distribution Company for the Middle, Ministry of Electricity, Babylon, Iraq

03	Ozone is the unstable triatomic form of oxygen						
Sox	Sulfur oxides						
CO	Carbon monoxide						
NOx	Nitrogen oxides						
\odot	Is the element-wise product or Hadamard						
	product						
\otimes	Outer products will be represented						
σ	Represents the sigmoid function						
at	Input activation						
it	Input gate						
ft	Forget gate						
ot	Output gate						
Statet	Internal state						
Out _t	Output						
W	The weights of the input						
U	The weights of recurrent connections						
V_i^t	Particle velocity i in swarm in dimension j and						
	frequency t.						
X_i^t	The location of the particle i in a swarm in						
	dimension <i>j</i> and frequency <i>t</i> .						
c_1	Acceleration factor related to Pbest.						
<i>c</i> ₂	Acceleration factor related to gbest.						
r_1^t, r_2^t	Random number between 0 and 1.						
t	Number of occurrences specified by type of						
	problem.						
$G_{\text{best},i}^t$	Gbest position of swarm						
$P_{\text{best }i}^t$	Pbest position of particle						
5050,0	- *						

1 Introduction

Air pollution is one of the most important challenges facing the world today as a result of the development of technology [1, 2], where it can be defined from several aspects in terms of pathogenesis. Pollution due to the presence of living or invisible organisms, such as bacteria and fungi, in the environment such as water, air or soil (Air pollution as chemical is the imbalance of the ecosystem by chemical effects, and these pollutants can be in the form of solid particles or liquid droplets or gases), from the scientific point of view (a change in the harmonic movement between the components of the ecosystem that paralyzes the efficiency of this system and loses its ability to perform its natural role in the self-disposal of pollutants). This research deals with intelligent predictive design to address this phenomenon [3]. There are different types of error measurement, including: Root Mean Square Error (RMSE) measures how much error there is between two data sets. In other words, it compares a predicted value and an observed or known value. It's also known as Root Mean Square Deviation and is one of the most widely used statistics in GIS [4]. RMSE = $\sqrt{\frac{\sum_{i=1}^{n} (F_i - A_i)^2}{n}}$ Where: F = forecasts (expected values or unknown results), A = observed values (known results). n =sample size. Other measures known, cross-entropy loss is another loss function mostly used in regression and classification problems. Cross-entropy loss [5] is given by $H(A) = -\sum_{i} F_{i} \log(A_{i})$ where y_{i}^{-} is the target label, and y_i is the output of the classifier. Crossentropy loss function is used when the output is a probability distribution, and thus it is preferred [6]. While, symmetric mean absolute percentage error (SMAPE) is an accuracy measure based on percentage (or relative) errors. It is usually defined as [7]: SAMPE = $\frac{1}{n} \sum_{t=1}^{n} \frac{|F_t - A_t|}{|A_t + F_t|/2}$ where At is the actual value and Ft is the forecast value. The absolute difference between At and Ft is divided by half the sum of absolute values of the actual value At and the forecast value Ft. The value of this calculation is summed for every fitted point t and divided again by the number of fitted point's n. If actual value and forecast value are both 0, we will set SMAPE score 0, too. This paper used SMAPE to evaluate the quality of a prediction, by comparing predicted to observed values.

Forecasting is one of taking decision process to find estimates values for the future based on past data [8]. There are three type of prediction [9]: First, perspective predication model indicates the task of developing a model that is aimed to predict the target's value as a work of the informative variable and the main aim of these tasks is predicting the value regarding a specific attribute according to the other attribute values. Second, Traditional Prediction: During the first half of the twentieth century, many methods used to extrapolate the future were used for decision-making. They are part of the planning process, at the same time, they have succeeded in helping planners predict and make rational decisions about the future, it is considered a traditional means of dealing with the future when compared to modern methods and techniques in this field. Traditional methods include: Method of prediction by guessing: This method depends on the intuitive way used by the individual in assessing some aspects of the future. But such predictions may fail more than success (Fig. 1).

Deep techniques are set of multi-levels learning techniques derivative from automated learning [10, 11]. A field in which the computer tests algorithms and programs by learning to improve and develop it by itself. Modern computer vision, speech recognition programs and future prediction are all the product of deep learning [12, 13]. The need for this method increases with the emergence of the concept of large data. Because of its ability to deal with these data, so the computer needs preliminary data to understand the relationship between objects, if we can say that it is a set of algorithms that allow the device to learn

Intelligent Big Data Analysis (IDA)

Fig. 2 Relationship among AI, machine learning and deep learning

from itself and events, this makes the device learns and then develops itself through the neural classes [14, 15]. The greater the number of neural classes, the greater the performance of the device. This is characterized by deep instruction in teaching the device on other techniques that have a certain level of learning, injury to develop with the increase in the volume of data. To ensure the quality of automated learning through deep learning, you must provide and enter as many data as possible and to illustrate the relationship among these terms can be conceived in the form of concentric circles as explain in Fig. 2.

In this paper, we will present new forecaster through synthesis between tow techniques LSTM and PSO after develop one of it through build DSN-PSO to enhance the performance of other LSTM to satisfy the following: highly efficient, least cost and easy to use. Before build the forecaster, we design electric circuit consisting of several devices (LoRa, Waspmate Platform, Five sensors).

LoRa is modulation technique which allows sending data at extremely low data-rates to extremely long ranges for more detail see [16].

'Waspmote platform is an architecture available as open access allow by connect devise and sensors platform, for more detail see [16, 17]. A sensor is a device, module, machine, or subsystem used in many applications to read the data for specific event or change in specific environment in the real times, for more detail see [18].

In this work, we deal with five types of sensors are Grove—Laser PM2.5 Sensor (HM3301) to measure PM2.5, PM10, MQ-7 to measure carbon monoxide (CO), MQ131 to measure Ozone, and NO2 sensor to measure nitrogen dioxide (NO2) used to collect data in real-time Fig. 3 showing the electrical circuit connects the main parts of station.

The main points attempt the achieve in this work:

- Increase accuracy in knowing the percentage of air pollution in the coming days to take precautionary measures against the risks of such pollution and try to reduce it.
- This integrated system is part of the electronic management and chemical safety of laboratories.
- Apply decisions from health and environmental communities and avoid early pollution risks by educating people.
- The system provides us with important statistical information in raw form that can contribute to the treatment of sources that cause pollution of air produced by human effort such as factories, houses or produced by nature such as burning forests and volcanoes and others and guidance.
- The system is inexpensive and therefore does not burden the Ministries of Health and Environment.
- To achieve the innovative method of safety of personnel working in laboratories that deal with these chemicals and comply with the requirements of UNESCO for the achievement of chemical safety and safety conditions.

The sensor is a device that works to detect the physical or chemical ambient state, some measure temperature, some measure pressure, some measure gases, and some measure air quality. It converts the signals incident upon it into electrical impulses that can be measured or counted by

Effort of human, Cost & Time Problems

Fig. 3 Connect the main sensors in design station through LoRa model

a device such as a computer [27]. In other words, the sensor is a device, module, or subsystem that aims to detect events or changes in its environment and send information to other electronics, often a computer processor. The sensor is always used with other electronic devices.

There are many sensors to measure the concentrations that cause air pollution, but in this paper, we will focus on the sensors specific to our work:

1.1 Sensor-Grove PM2.5 Laser (HM3301)

It is a new generation of laser dust detection sensor, which is used for continuous and real detection of dust in the air. It is used to measure PM2.5 and PM10 concentrations.

The main features of this sensor:

- High sensitivity to dust particles 0.3 µm or greater.
- Continuous detection of dust concentration in the air in real time.
- Based on laser light scattering technology, readings are accurate, stable and consistent.
- Low noise.
- Energy consumption is very low.

1.2 Sensor-MQ-7

The MQ-7 gas sensor has high sensitivity to carbon monoxide. The sensor can be used to detect different gases that contain carbon dioxide, so it is low in cost and suitable for different applications.

The main features of this sensor:

- High sensitivity to combustible gas (CO) in a wide range.
- Stable performance, long life, and low cost.
- Simple drive circuit.

1.3 Sensor-MQ131

The MQ131 gas sensor is highly sensitive to ozone. The main features of this sensor:

- Good sensitivity to ozone in a wide range of gases.
- Long life and low cost.
- Simple drive circuit.

1.4 Sensor-WSP1110 nitrogen dioxide sensor

Low-cost electrochemical nitrogen dioxide sensors provide exciting new opportunities for rapid and distributed outdoor air pollution measurements. This type of sensor is stable, long lasting, requires little energy, and is capable of accurately measuring parts per billion (parts per billion).

The main features of this sensor:

- High sensitivity, stable performance and long-life time
- Small in size and light in weight
- 5 V voltage, low consumption
- Quick response reset function, simple drive circuit
- Long-term stability (50 ppm overload).

1.5 Sensor-SO2

SO2 sensor is designed to measure sulfur dioxide for applications in: air quality monitoring, industrial safety and air purification monitoring.

The main features of this sensor:

- Small in size with low profile $(15 \times 15 \times 3 \text{ mm})$.
- Long life (10 years life expectancy).
- Fast response (15 s typical).

2 Related works

The issue of air quality prediction is one of the critical topics related to human lives and health. The aim of the work presented herein is to develop a new method for such prediction based on the huge amount of data that is available and operating on data series. This section first reviews previous studies by researchers in this area and compares them based on the database used in each case, the methods applied to assess the results, the advantages of each method, and its limitations.

Li et al. [19] used a long short-term memory extended (LSTME) neural network model with combined spatialtemporal links to predict concentrations of air pollutants. In that approach, the LSTM layers automatically extract potential intrinsic properties from historical air pollutant and accompanying data, while meteorological data and timestamp data are also incorporated into the proposed model to improve its performance. The technique was evaluated using three measures (RMSE, MAE, and MAPE) and compared with the STANN, ARMA, and SVR models. The work presented herein is similar in its use of the LSTM approach as part of a recurrent neural network structure but differs in its use of another evaluation measure.

Lifeng et al. [20] reported that the best predictions of air quality could be obtained using the GM model (1.1) with fractional order accumulation, i.e., FGM (1.1), to find the expected average annual concentrations of PM2.5, PM10, SO2, NO2, 8-h O3, and O-24 h. The measure used in that work was the MAPE. Application of the FGM (1.1) method

resulted in much better performance compared with the traditional GM model (1.1), revealing that the average annual concentrations of PM2.5, PM10, SO2, NO2, O8–O3, and O3 24-h will decrease from 2017 to 2020. That work presented herein is similar in that it predicts the concentration of air pollutants and finds ways to address them, but differs in its use of the LSTM method for the predictions.

Wen et al. [21] combined a convolutional neural network (CNN) and LSTM neural network (NN), as well as meteorological and aerosol data, to refine the prediction performance of the model. Data collected from 1233 air quality monitoring stations in Beijing and the whole of China were used to verify the effectiveness of the proposed model (C-LSTME). The results showed that the model achieved better performance than state-of-the-art technologies for predictions over different durations at various regional and environmental scales. The technique was evaluated using three measures (RMSE, MAE, and MAPE). In comparison, the LSTM approach is also applied in a RNN in this work, but after having identified the best structure for the network. In addition, another evaluation measure is used herein.

Shang et al. [22] described a prediction method based on a classification and regression tree (CART) approach in combination with the ensemble extreme learning machine (EELM) method. Subgroups were created by dividing the datasets using a shallow hierarchy tree through the CART approach. At each node of the tree, EEL models were constructed using the training samples of the node, to minimize the verification errors sequentially in all of the subtrees of each tree by identifying the number of hidden intestines, where each node is considered to be a root. Finally, the EEL models for each path to a leaf are compared with the root of each leaf, selecting only the path with the smallest error to check the leaf. The measures used in that work were the RMSE and MAPE. This experimental measurement results revealed that such a method can address the issue of globallocal duplication of the prediction method at each leaf and that the combined CART-EELM approach worked better than the random forest (RF), v-(SVR), and EELM models, while also showing superior performance compared with EELM or k-means EELM seasonal. The work presented herein is similar in that it uses the same set of six air pollution indexes (PM2.5, O3, PM10, SO2, NO2, CO) but differs in terms of the mechanism applied to reduce air pollutants, applying the RNN method.

Li et al. [23] applied a new air quality forecasting method and proposed a new positive analysis mechanism that includes complex analysis, improved prediction units, data pretreatment, and air quality control problems. The system analyzes the original series using an entropy model and a data processing process. The multiobjective multiverse optimization (MOMVO) algorithm is used to achieve the required performance, revealing that the leastsquares (LS)SVM achieved the best accuracy in addition to stable predictions. Three measures were used for the evaluation in that work, viz. RMSE, MAE, and MAPE. The results of the application of the proposed method to the dataset revealed good performance for the analysis and control of air quality, in addition to the approximation of values with high precision. The work presented herein uses the same evaluation measures but differs in its use of the LSTM approach in the RNN after identifying the best structure for the network.

Kim et.al. [24] aim to build annual-average integrated empirical geographic (IEG) regression models for the contiguous USA for six criteria pollutants during 1979–2015; explore systematically the impact on model performance of the number of variables selected for inclusion in a model; and provide publicly available model predictions. We compute annual-average concentrations from regulatory monitoring data for PM10, PM2.5, NO2, SO2, CO, and ozone at all monitoring sites for 1979–2015.

3 Building IFCsAP

The model presents in this paper consist of two phases, the first including build the station as electrical circuit to collect the data related to six concentrations in real time and saved it on the master computer to preparing and processing in next phase. The second phase focuses on processing dataset after splitting it based on station identifier, the processing phase pass on many levels of learning to product forecaster can deal with hug/big dataset. All the actives of this researcher summarization in Fig. 5 while the algorithm of IFCsAP model described in main algorithm. To making the model more understanding, we explain the first phase on it in Fig. 3 while the second phase in Fig. 4. The main constructions used.

- PM2.5: 10 μg/m³ (average allowable value per year), 25 μg/m³ (average allowable value in 24 h).
- PM10: 20 μg/m³ (average allowable value per year), 50 μg/m³ (average allowable value per year).
- o3: 100 μ g/m³ (average allowable value in eight hours). The recommended maximum value, previously set at 120 μ g/in eight hours, has been reduced to 100 μ g/m³ based on recent findings of relationships between daily mortality and ozone levels in locations where the concentration of the substance is less than 120 μ g/m³.
- No2: 40 µg/m³ (average allowable value per year), 200 µg/m³ (average allowable value per hour).
- SO2: 20 µg/m³ (average allowable value in twenty-four hours), 500 µg/m³ (average allowable value in 10 min).

Fig. 4 Block diagram of IFCsAP model

Main Algorithm: IFCsAP Model								
Input: Datasets of all Stations								
Output: 1.	Determined the rate of air index quality Building the hardware part based on six subsystems (i.e. Sensors, Processor, Arduino, Communication, Real- Time Clock, Power subsystem)							
2.	For each record in original dataset							
3.	Divide dataset based on Stations-id							
4.	For each construction in original dataset							
5.	Handle missing value by drop record							
6.	Make all the values in the same rage through Normalize							
7.	End for							
8.	End for							
9.	For each station recognition through id							
10.	For all samples in this station							
11.	Divide samples into training and testing dataset based on 10- Cross-Validation							
12.	End for							
13.	For each not used training part							
14.	Import DSN-PS							
15.	Import DLSTM							
16.	End for							
17.	For each not used Testing part							
18.	Investigation the stopping conditions							
19.	Compare if Emax less than max error generation							
20.	Jump to 25							
21.	Else							
22.	Jump to 10							
23.	End IF							
24.	End for							
25.	End for							
<i>26</i> .	Import Evaluation SMAPE							
E	ind IFCsAP Model							

Dataset collection through two types of resources (i.e., directory web site represents by KDD cup 2018 dataset and by building station have multi-sensors to caption concentrations). That dataset needed to handle it before building the predictor as follows.

- Split the dataset for each station and save it in separated file hold the name of this station.
- After that, treatment missing values through drop each row have one or more missing values.
- Finally, apply the normalization for each column in dataset related to each station to make the value of that concentration in the range [0, 1].

3.1 Develop long short-term memory (DLSTM)

This paper presents how can employ PSO through build new algorithm called DSN-PSO as explained in algorithm 2 to enhance the performance of one of deep learning algorithm LSTM (i.e., for more detail see **Main steps for training LSTM-RNN** in "Appendix") through determined the structure and parameters of it. This explains with details in Algorithm 3 (Table 1).

Table 1 The parameters utilize in models

Parameter	Value			
Learning coefficients: c1, c2	Uniformly distributed between [0, 4]			
Maximum number of iterations	150			
Number of hidden layers	Within the range [1, 10]			
Number of neurons in each layer	Within the range [1, 257]			
Number of weights in the memory cell and each gate	Based on the number of nodes in each hidden layer			
Number of bias in the memory cell and each gate	Based on the number of nodes in each hidden layer			
Particle dimensions	Represents the number of hidden layers and the number of neurons in each layer			
rand1, rand2	Random numbers that are in the range [0, 1]			
Calculate velocity and position of hidden layers	vh = vh + c1 * rand * (phBest-h) + c2 * rand * (ghBest-h)(1)			
	h = h + vh (2)			
Calculate velocity and position of nodes in each hidden layer	vn = vn + c1 * rand * (nBest-n) + c2 * rand * (gnBest-n)(3)			
	n = n + vn (4)			
Calculate velocity and position of number of weights in memory cell and	vw = vw + c1 * rand * (wBest-w) + c2 * rand * (gwBest-w)(5)			
in each gate	w = w + vw (6)			
Calculate velocity and position of number of bias in memory cell and in	vb = vb + c1 * rand * (bBest-b) + c2 * rand * (gbBest-b)(7)			
each gate	b = b + vb (8)			
Calculate velocity and position of activation function	vaf = vaf + c1 * rand * (afBest-af) + c2 * rand * (gafBest-af)(9)			
	af = af + vaf (10)			

Algorithm #1: Pre-Processing					
Input: Air pollution dataset include multi-station and six concentration of					
(PM2.5, PM10, NO2, CO, O3, and SO2)					
<i>Output: Split station [id_station] have clean data in range [0, 1]</i>					
// Split air pollution dataset according [id_station]					
For all samples in air pollution dataset					
IF station_name = id_station					
create a file called station_name					
Put all the concentrations related to station_name in that file					
End IF					
End for					
// Treatment missing values					
For each row in air pollution dataset					
For each column in air pollution dataset					
IF value of column = null					
dropping the row contains that columns					
End IF					
End for					
End for					
// Apply normalization					
For each row in air pollution dataset					
For each column in air pollution dataset					
$Compute MinMaxScaler // MinMaxScaler = \frac{x - min x}{max x - min x}$					
End for					
End for					
End pre-processing					

<u>Algo</u> Inpu Outp Initi	 brithm#2: DSN-PS brithm#2: DSN-PS brithm#2: DSN-PS brit: Training part of dataset based on [station-id] after complete preprocessing brit: Best Structure and parameters of DLSTM brit: Position of population, problem size, Population Size, f: Objective function, vi: Velocity of population,
	J(phBest), J(pnBest), J(pwBest), J(pbBest), J(paJBest)=0
1:	For i in rang(1 to Max_interation)
2:	For node of hidden layer h in H do
3:	Calculate fitness function as equation (1)
4:	<i>IF</i> fph is better than f(phBest)
5:	phBest = ph
6:	End IF
7:	End for
8:	For the number of the nodes of each hidden layer n in N do
9:	Calculate fitness function as equation (2)
10:	IF for is better than f(onBest)
11:	mRest = m
12.	Find IF
12.	Find for
13.	Entry for the second se
15.	Calculate fitness function
15;	LE form is bottom them (formPost)
10:	if jpw is belier than j(pwbest)
1/:	pwbesi - pw
18:	
19:	Ena for
20:	For random bias b in B do
21:	Calculate fitness function
22.	$IF A := h_{eff}(a, b_{eff})$
22:	IF jb is belier indi j(bbesi) pbBase = pb
23.	popesi - po
25.	Enterna Find for
26:	Call activation function of in AF
27:	Calculate fitness function
28:	IF fpaf is better than f(pafBest)
29:	pafBest = paf
30:	End IF
31:	ghBest = best h in H
32:	For the number of hidden layer h in H do
33:	Calculate hidden layers velocity as equation (3)
34:	Calculate hidden layers position as equation (4)
35:	End for
30:	gildesi – vesi il ili iv For the number of nodes in each hidden laver n in N do
38.	For the number of nodes in each number h index h in the up of a calculate the valority of nodes in each bidden layer as equation (5)
39:	Calculate the position of nodes in each hidden layer as equation (6)
40:	End for
41:	gwBest = best w in W
42:	For random weights w in W do
43:	Calculate the velocity of weight in the memory cell and each gate as equation (7)
44:	Calculate the position of weight in the memory cell and each gate as equation (8)
45:	End for
46:	gbBest = best b in B
47:	For random bias b in B do
48:	<i>Calculate the velocity of bias in</i> the memory cell and each gate as equation (9)
49:	<i>Calculate the position of blas in the memory cell and each gate as equation (10)</i>
50:	$\frac{E\pi u}{a \sigma f Rest} = best af in AF$
52.	<i>Equipesi – Jesi up in Ar</i> Calculate the velocity of the activation function as equation (11)
53:	Calculate the position of the activation function as equation (12)
54:	End for
End	DNS-PS

3.2 Running the IFCsAP model

worse over time. The algorithm is shown how execution the IFCsAP model.

We will train and predict concentrations movements for several epochs and see whether the predictions get better or

Al	gorthim#4: Execution of IFCsAP MODEL
Inj	put: Datasets split into part training and testing
Out	tput: Average values of AMAPE to 25 days
1:	For each iteration
2:	For all samples in the training dataset
3:	Unroll a set of num_unrollings batches
4:	Train the DLSTM with the unrolled batches
5:	Compute the average training loss
6:	End for
7:	For each record in the testing dataset
8:	Update the IFCSAP MODEL state
	Found num_unrollings data points
9:	Make forecasting for forecaster _once steps continuously,
	Current input is previous prediction
10:	End for
11:	End for
End Ev	equition of IFCs AP MODEL
Lnu LA	

3.3 Evaluation stage

The symmetric mean absolute percentage error (SMAPE) is used in this paper as measured to determine the accuracy and robust of the predictor.

SAMPE =

N: number of samples. : forecast value.: Actual value. t: every fitted point.

Set SMAPE score as 0. If both values predict and actual are 0 actual value and forecast value are both 0. In each station forecasting the concentration levels "PM2.5, PM10, NO2, CO, O3 and SO2" to the next 48 h. We can calculate the values of this measure daily contagious through one moth then sort these values and compute the average of 25 lowest daily SMAPE scores. The main steps of evaluation shown with details in algorithm 5.

4.1 Pre-processing

This stage consists of multi-steps performance on the dataset after collecting it, each step handles the dataset from one problem as we will be discussed later.

4.1.1 Split station

The second column of Table 4 shows the result of splitting the dataset based on the name of station, where each station saves in a separated file hold the name of it.

4.1.2 Missing values [8]

Missing values one of the problem effect in the final results of any model. Spatially the prediction model, where all

<u>Algort</u> Input:	thim#5: Evaluation Testing dataset							
Output	Output: Average error rate based on SMAPE for 25 days							
1:	For number (id_station)							
2:	<i>For</i> 1 to 30 // 30 represent the total number of days							
3:	<i>For 1 to 24</i> // 24 represent the total number of hours							
4:	SMAPE (actual, predicted):							
	dividend= np.abs (np.array (actual) - np.array (predicted))							
	denominator = np.array (actual) + np.array (predicted)							
	np.mean (np.aiviae (aiviaena, aenominator)							
5:	End for							
6:	End for							
7:	S = the summation of SMAPE in less 25 days							
8:	Average of $SMAPE = S/25$							
9:	End for							
End Evaluation								

4 Results of IFCsAP model

The results and justification of it will explain with details in this section.

researches know the result of predictor become more accuracy of that predictor build based on true values otherwise the results become not truest. Therefore, in that model, we will drop any record have missing values in each station. In general, the station has different rate of missing value as explained in Table 2 column three and Fig. 5.

Table 2 explains the dataset after split it into 35 stations have the same number of record 8886 and six features.

No	Name of station	# Record after drop	Ratio
1	Daxing_Aq	6806	23%
2	Mentougou_Aq	6639	25%
3	Badaling_Aq	6566	26%
4	Fangshan_Aq	6536	26%
5	Dongsi_Aq	6520	27%
6	Tiantan_Aq	6470	27%
7	Fengtaihuayuan_Aq	6385	28%
8	Gucheng_Aq	6419	28%
9	Pingchang_Aq	6381	28%
10	Yungang_Aq	6385	28%
11	Guanyuan_Aq	6284	29%
12	Wanliu_Aq	6284	29%
13	Aotizhongxin_Aq	6134	31%
14	Yizhuang_Aq	6092	31%
15	Dingling_Aq	6003	32%
16	Miyun_Aq	6005	32%
17	Wanshouxigong_Aq	6068	32%
18	Nongzhanguan_Aq	5977	33%
19	Yanqin_Aq	5994	33%
20	Beibuxinqu_Aq	5842	34%
21	Shunyi_Aq	5893	34%
22	Huairou_Aq	5815	35%
23	Tongzhou_Aq	5660	36%
24	Xizhimenbei_Aq	5554	37%
25	Qianmen_Aq	5389	39%
26	Yongdingmennei_Aq	5275	41%
27	Yongledian_Aq	4997	44%
28	Pinggu_Aq	4905	45%
29	Yufa_Aq	4832	46%
30	Nansanhuan_Aq	4726	47%
31	Dongsihuan_Aq	4638	48%
32	Miyunshuiku_Aq	4604	48%
33	Liulihe_Aq	4411	50%
34	Donggaocun_Aq	3956	55%
35	Zhiwuyuan_Aq	3945	56%

Also show the dataset after handle the missing values with the rate of dropping. Also, Fig. 6 shows the percentage of records have missing values in each station.

4.1.3 Normalization

Normalization dataset based on MinMaxScaler scales to become in the range [0 and 1] [20, 25]. This is a necessary step for the proposed predictor. The main purpose of the normalization stage is to make all the values in the same range with save the natural of each feature in that dataset.

4.1.4 Split the dataset

Cross-validation is the best techniques for evaluating the performance of a given model. Because badly selected samples for training and testing affects the performance badly, cross-validation has different methods for wisely selecting the best samples for training and testing a given model. As shown in Table 3 as attached in "Appendix" and Fig. 7.

Table 4 shows idea of cross-validation which, in this paper, used ten cross-validation for each station to determine the best number of samples will used from training dataset to build model and from testing dataset to evaluation of the model.

We note that the station with the highest percentage of missing values has a very high SMAPE score compared to stations with the lowest percentage of missing values. We conclude that using the drooping process will make the predictor results more accurate compared to other methods used to process missing values (Fig. 8).

4.2 DSN-PS

Select the suitable parameters of any deep learning algorithm is consider one of the main challenges in the science, in general, all known LSTM take a very long time in implementation to give the result; therefore, this section shows how DSN-PS solve this problem and exceed this challenge. The optimal structure with main parameters was find to DLSTM.

In other words, values determined as hidden layers number, nodes in each hidden layer, weights among layers, the bias, and activation function type of the deep learning network are essential parameters that fundamentally affect DLSTM performance. In general, all the network based on the try and error principle in select the parameters of it, while this led to long time on implementation that network. Therefore, the main parameters of DLSTM result from DSN-PS as shown in Table 5. While Table 6 shows the best parameters that represent the structure of DLSTM and compare with the parameters of traditional LSTM.

Table 6 shows best parameters (# hidden layers, #nodes in each hidden layer, weights, bias, and activation function) resulted from the DSN-PS algorithm that represents the initial structure of the DLSTM (Table 7).

4.3 DLSTM

DLSTM is mainly based on the LSTM algorithm, which is capable of handling large data and retains data for long periods because each cell contains memory. In this stage, forward the parameters result from DNS-PS to DLSTM that represent the structure of it with the dataset of that

Fig. 5 Flowchart of research work activities

Fig. 6 Percentage of records have missing values in each station

station generated from the best split of ten cross-validations to represent training of DLSTM. Compute the prediction values for each station (Station #1... Station #35) based on the best split result from ten cross-validations. The best parameters result from DNS-PSO as structure of DLSTM represent one input layer have six nodes each node represent one of six constructions; one hidden layer contain 250 nodes, one output layer. All other parameters and activation function described in Table 8. Also, we used 150 iteration in each iteration we enter batch size 24.

Compare the actual and prediction values results from DLSTM for first station shown in Fig. 9.

Compare the prediction values Station #18 based on the best split result from ten cross-validation and compare with the real values shown in Fig. 10.

Compare the prediction values Station #34 based on the best split result from ten cross-validation and compare with the real values shown in Fig. 11.

4.4 SMAPE evaluation

After, build the DLSTM based on the training dataset for each station, the model evaluated through compute SMAPE for testing dataset.

The result score of each concentration is the average of 25 lowest daily SMAPE scores. If a concentration misses a day, the score of this concentration on that day will be imputed by the baseline score. As shown in "Appendix" under Table 8.

5 Compare between traditional LSTM and IFCsAP based on the values of SMAPE

To explain the successful of IFCsAP model, we compare the result values of SMAPE come from the traditional LSTM and IFCsAP. As shown in Table 9.

The above table showed the result of SMAPE of IFCsAP Model, in comparison with the result of SMAPE of traditional LSTM. Which used the same dataset from the

Name of station	Training-testing								
	Sample #1 90%-10%	Sample #2 80%-20%	Sample #3 70%-30%	Sample #4 60%-40%	Sample #5 50%-50%	Sample #6 40%-60%	Sample #7 30%-70%	Sample #8 20%-80%	Sample #9 10%-90%
Aotizhongxin_Aq	5520-613	4907-1226	4293-1840	3680-2453	3066-3067	2453-3680	1840-4293	1226-4907	613–5520
	SMAPE								
	0.34833	0.32599	0.35920	0.34913	0.36971	0.35780	0.33877	0.32898	0.31553
Badaling_Aq	5909–656	5252-1313	4596-1969	3939–2626	3283-3282	2626–3939	1969–4596	1313-5252	656- 5909
	SMAPE								
	0.22043	0.24514	0.27469	0.32280	0.30192	0.30951	0.28630	0.30145	0.29601
Beibuxinqu_Aq	5256-585	4673-1168	4088-1753	3504-2337	2920-2921	2336-3505	1752-4089	1168-4673	584-5257
	SMAPE								
	0.37632	0.37849	0.42684	0.42765	0.39135	0.39482	0.38102	0.39621	0.33604
Daxing Aq	6125-680	5444-361	4764-2041	4083-2722	3403-3402	2722-4083	2041-4764	1361–5444	680- 6125
6- 1	SMAPE								
	0.38115	0.34451	0.37958	0.37754	0.36309	0.38190	0.35811	0.36822	0.34966
Dingling_Aq	5402-600	4802-1200	4202-1800	3601-2401	3001-3001	2401-3601	1800-4202	1200-4802	600- 5402
	SMAPE								
	0.48551	0.52657	0.56950	0.56276	0.56138	0.57259	0.51382	0.47585	0.48068
Donggaocun Aq	3560-395	3164–791	2769–1186	2373-1582	1978–1977	1582-2373	1186-2769	791–3164	395-3560
<i>cc</i> = 1	SMAPE								
	0.56709	0.47908	0.47250	0.49197	0.51633	0.49115	0.49124	0.51901	0.49028
Dongsi Aq	5868-651	5216-1303	4564-1955	3912-2607	3260-3259	2608-3911	1956-4563	1304-5215	652–5867
0 - 1	SMAPE								
	0.37109	0.32762	0.34534	0.33234	0.31108	0.39653	0.73601	0.38420	0.39063
Dongsihuan Aq	4174-463	3710-927	2782-1855	2782-1855	2319-2318	1855-2782	1955-4564	927-3710	463-4174
8	SMAPE								
	0.30586	0.25909	0.34534	0.32434	0.31514	0.36185	0.37994	0.37932	0.32896
Fangshan Ag	5881-654	5228-1307	4574-1961	3921-2014	3267-3268	2614-3921	1960-4575	1307-5228	653-5882
8	SMAPE								
	0 34521	0 37708	0 40295	0 39091	0 42268	0 35006	0 42037	0 34782	0 35412
Fengtaihuavuan Ag	5745_639	5107_1277	4468_1916	3830_2554	3102_3102	2553_3831	1915_4469	1276_5108	638- 5746
r engunnuay uun_r iq	SMAPE	5107 1277	4400 1910	5050 2554	5172 5172	2000 0001	1713 4407	1270 5100	050 5740
	0.41832	0 44171	0 44235	0 55864	0 44715	0 47422	0 41944	0 42332	0 42002
Guanyuan Aa	5654 620	5026 1257	/308 1885	3760 2514	31/1 31/2	2513 3770	188/ /300	1256 5027	628 5655
Ouanyuan_Aq	5054-029 SMADE	5020-1257	4590-1005	5709-2514	5141-5142	2313-3770	1004-4399	1250-5027	020-5055
	0.68366	0 45748	0 54017	0.47553	0 /3307	0 44676	0 48002	0 45837	0 48204
Guahang Ag	5776 642	5124 1284	4402 1026	2850 2568	2200 2200	0.44070	1025 4403	1282 5125	0.46204 641 5777
Oucheng_Aq	5770-042 SMADE	5154-1264	4492-1920	3830-2308	5209-5209	2307-3831	1923-4493	1265-5155	041-3777
	0 20820	0 21746	0 20620	0 20060	0 22755	0 20655	0 20722	0 20715	0 22808
Uneiron A.a	0.29639	0.51/40	4060 1745	2499 2226	0.52755	0.50055	1744 4070	1162 4652	0.33000
Huairou_Aq	5252–582 SMAPE	4031-1103	4009–1743	3488-2320	2907-2907	2323-3489	1744-4070	1102–4032	381- 3233
	0.50856	0.47332	0.46545	0.46634	0.45716	0.47513	0.49482	0.48409	0.46173
Liulihe_Aq	3969-441	3528-882	3087-1323	2646-1764	2205-2205	1764–2646	1323-3087	882- 3528	441- 3969
	SMAPE								
	0.29100	0.30342	0.34089	0.35732	0.35035	0.33702	0.33319	0.34248	0.34783
Mentougou_Aq	5974–664 SMAPE	5310-1328	4646–1992	3982–2656	3319–3319	2655–3983	1991–4647	1327–5311	663- 5975
	0.33704	0.31976	0.34966	0.38730	0.32720	0.34968	0.32988	0.32414	0.32786
Miyun_Aq	5403-601	4803-1201	4202-1802	3602-2402	3002-3002	2401-3603	1801-4203	1200-4804	600- 5404
•									

Table 3	Apply	cross-validation	for	each	station
---------	-------	------------------	-----	------	---------

Table 3 (continued)

Name of station	Training-testing									
	Sample #1 90%-10%	Sample #2 80%-20%	Sample #3 70%-30%	Sample #4 60%-40%	Sample #5 50%-50%	Sample #6 40%-60%	Sample #7 30%-70%	Sample #8 20%-80%	Sample #9 10%-90%	
	SMAPE									
	0.43071	0.42796	0.44320	0.41744	0.41894	0.43518	0.47480	0.49351	0.42136	
Miyunshuiku_Aq	4142-461	3682-921	3222-1381	2761-1842	2301-2302	1841-2762	1380-3223	920- 3683	460- 4143	
	SMAPE									
	0.58134	0.55469	0.63117	0.59486	0.56510	0.55728	0.55989	0.56633	0.57948	
Nansanhuan_Aq	4252-473	3780–945	3307-1418	2835-1890	2362-2363	1890–2835	1417-3308	945- 3780	472- 4253	
	SMAPE									
	0.34222	0.32792	0.37368	0.22149	0.45042	0.40474	0.35022	0.31506	0.33891	
Nongzhanguan_Aq	5378-598	4780-1196	4183-1793	3585-2391	2988-2988	2390-3586	1792–4184	1195–4781	597- 5379	
	SMAPE									
	0.35150	0.32463	0.38396	1.2097	0.34598	0.34410	0.33725	0.32831	0.34449	
Pingchang_Aq	5742-638	5104-1276	4466–1914	3828-2552	3190-3190	2552-3828	1914–4466	1276-5104	638–5742	
	SMAPE									
	0.38221	0.39623	0.41118	0.42677	0.39948	0.43234	0.39079	0.41750	0.41457	
Pinggu_Aq	4413-491	3923-981	3432-1472	2942-1962	2452-2452	1961–2943	1471–3433	980–3924	4414-490	
	SMAPE									
	0.42887	0.35100	0.45153	0.41323	0.38462	0.38099	0.36968	0.35607	0.35181	
Qianmen_Aq	4849–539	4310-1078	3771–1617	3232-2156	2694–2694	2155-3233	1616-3772	1077- 311	538- 4850	
	SMAPE									
	0.53473	0.48188	0.45428	0.89437	0.39968	0.40737	0.50851	0.40141	0.40571	
Shunyi_Aq	5302-590	4713–1179	4124-1768	3535-2357	2946-2946	2356-3536	1767-4125	1178–4714	589- 5303	
	SMAPE									
	0.40456	0.42718	0.39915	0.45804	0.39386	0.39555	0.47355	0.39463	0.39796	
Tiantan_Aq	5822-647	5175-1294	4528-1941	3881-2588	3234-3235	2587-3882	1940–4529	1293-5176	646-5823	
-	SMAPE									
	0.53815	0.48985	0.46503	0.43918	0.43291	0.43770	0.43587	0.48286	0.49288	
Tongzhou_Aq	5093-566	4527-1132	3961-1698	3395-2264	2829-2830	2263-3396	1697–3962	1131-4528	565-5094	
	SMAPE									
	0.32452	0.30688	0.75632	0.34207	0.33272	0.37680	0.31931	0.31494	0.31636	
Wanliu_Aq	5654–629	5026-1257	4398-1885	3769–2514	3141-3142	2513-3770	1884–3499	1256-5027	5655-628	
	SMAPE									
	0.45249	0.41911	0.45745	0.38290	0.43135	0.41561	0.38329	0.38339	0.38896	
Wanshouxigong_Aq	5460-607	4853-1214	4246-1821	3640-2427	3033-3034	2426-3641	1820-4247	1213-4854	606- 5461	
	SMAPE									
	0.43756	0.37226	0.37845	0.39268	0.38290	0.37232	0.37923	0.37357	0.82641	
Xizhimenbei_Aq	4997–556	4442-1111	3887-1666	3331-2222	2776-2777	2221-3332	1665–3888	1110-4443	555- 4998	
	SMAPE									
	0.27052	0.27459	0.28166	0.31190	0.27692	0.27862	0.27753	0.27397	0.27912	
Yanqin_Aq	5393-600	4794–1199	4195-1798	3595-2398	2996–2997	2397-3596	1797–4196	1198–4795	599–5394	
	SMAPE									
	0.33129	0.31195	0.33281	0.38399	0.36814	0.35996	0.37810	0.37346	0.37667	
Yizhuang_Aq	5481-610	4872–1219	4263-1828	3654-2437	3045-3046	2436-3655	1827–4264	1218-4873	609- 5482	
	SMAPE									
	0.59806	0.51447	0.64442	0.19580	0.55716	0.36780	0.30094	0.44786	0.45168	
Yongdingmennei_Aq	4746–528	4219–1055	3691-583	3164–2110	2637-2637	2109-3165	1582-3692	1054-4220	527-4747	
	SMAPE									

Name of station	Training-testing									
	Sample #1 90%-10%	Sample #2 80%-20%	Sample #3 70%-30%	Sample #4 60%-40%	Sample #5 50%-50%	Sample #6 40%-60%	Sample #7 30%-70%	Sample #8 20%-80%	Sample #9 10%-90%	
	0.34736	0.34834	0.34725	0.33133	0.32434	0.33073	0.33132	0.32926	0.33506	
Yongledian_Aq	4496-500	3996-1000	3497-1499	2997-1999	2498-2498	1998–2998	1498–3498	999–3997	499–4497	
	SMAPE									
	0.43421	0.43423	0.44739	0.45287	0.45177	0.44419	0.44299	0.44033	0.44038	
Yufa_Aq	4347–484	3864–967	3381-1450	2898-1933	2415-2416	1932–2899	1449–3382	966-3865	483-4348	
	SMAPE									
	0.40199	0.36498	0.36876	0.39849	0.39930	0.39239	0.45638	0.41923	0.39684	
Yungang_Aq	5745-639	5107-1277	4468–1916	3830-2554	3193-3192	2553-3831	1915–4469	1276-5108	638–5746	
	SMAPE									
	0.28616	0.28983	0.26099	0.28553	0.29743	0.29826	0.29826	0.28685	0.28849	
Zhiwuyuan_Aq	3549–395	3155–789	2760-1184	2366-1578	1972–1972	1577-2367	1183–2761	788–3156	394–3550	
	SMAPE									
	0.57043	0.66970	0.60734	0.61349	0.54953	0.55605	0.55614	0.54986	0.55225	

Table 3 (continued)

Fig. 7 Distribution of dataset based on five cross-validation

pre-processing stage (i.e., the dropping, normalization and the same split of training and testing resulting from ten cross-validation) were applied at each station. We found that the results SMAPE of IFCsAP model are better than traditional LSTM as shown in Fig. 12.

6 Summary

Air quality index dataset is a huge data needed to intelligent and deep computation to extract a useful pattern from it. The advantage of this data set is diverse and large in size, resulting in accurate and reliable decisions. In addition, the data used in this thesis were obtained from more than one station and this in itself is considered a challenge

No. station	Best split based on training and testing	Number of samples	SMAPE	No. station	Best split based on training and testing	Number of samples	SMAPE
1	80%-20%	4907-1226	0.32599	19	80%-20%	4780–1196	0.32463
2	90%-10%	5909–656	0.22043	20	90%-10%	5742-638	0.38221
3	90%-10%	5256-585	0.37632	21	80%-20%	3923-981	0.351
4	80%-20%	5444-361	0.33451	22	50%-50%	2694-2694	0.39968
5	90%-10%	5402-600	0.48551	23	50%-50%	2946-2946	0.39968
6	30%-70%	2769-1186	0.4725	24	50%-50%	3234-3235	0.43291
7	50%-50%	3260-3259	0.31108	25	80%-20%	4527-1132	0.30688
8	80%-20%	3710-927	0.25909	26	60%-40%	3769-2514	0.3829
9	90%-10%	5881-654	0.34521	27	80%-20%	4853-1214	0.37726
10	90%-10%	5745-639	0.41832	28	90%-10%	4997-556	0.27052
11	50%-50%	3141-3142	0.43397	29	80%-20%	4794–1199	0.31195
12	30%-70%	4492-1926	0.29639	30	60%-40%	3654-2437	0.1958
13	50%-50%	2907-2907	0.45716	31	50%-50%	2637-2637	0.32434
14	90%-10%	3969-441	0.291	32	90%-10%	4496-500	0.43421
15	80%-20%	5310-1328	0.31976	33	80%-20%	3864–967	0.36498
16	60%-40%	3602-2402	0.41744	34	30%-70%	4468-1916	0.26099
17	80%-20%	3682-921	0.55469	35	50%-50%	1972-1972	0.54953
18	60%-40%	2835-1890	0.22149				

Fig. 8 SMAPE based on the traditional LSTM

Table 5	The	parameters	of	DSN-PS
---------	-----	------------	----	--------

Parameter	Value
Learning coefficients: c1, c2	C1 = 0.87 while $C2 = 2.53$
Maximum number of iterations	30
<i>r</i> , <i>r</i>	R1 = 0.6, While, $R2 = 0.4$

in building a stable prediction system for behaviors. Limitation of this dataset contains on concentrations that cause air pollution are usually unequal and unknown to non-experts, which contain missing value and taken from different stations in terms of the environment assigned to those stations.

DSN-PS is determined the parameters and activation function of DLSTM, the advantage of DSN-PS is the time of execution LSTM will be reduced, limitation of DSN-PS will increase complex of LSTM.

DLSTM is a develop of LSTM by DSN-PS, POS used to determine the optimal (number of hidden layers, number of nodes in each hidden layer, weight, bias, and activation function), the advantage of DLSTM capable to deal with huge data and contain memory cell to save information at the long term, the limitation of DSTM contain on huge number of parameters.

Evaluation is the process of calculating the amount of error from the actual value and its predicted value, there are different types of error measures: including prediction (i.e., MSE, RMSE, MAE, MAPE and, etc.) and coefficient matrix (i.e., accuracy, F, FP, etc.). While in this research, use SMAPE Evaluation. How particle swarm can be useful in building a recurrent neural network (RNN)?

PSO works to modify the behavior of each in a particular environment gradually, depending on the behavior of their neighbors until they are obtained the optimal solution.

On the other hand, the neural networks use the principle of the try and error in the selection of the basic parameters of their own and modified gradually to reach the values accepted for those parameters.

Depending on the PSO and neural networks of the above subject, we used the PSO principle to find the optimal parameters and the activation function of the neural network.

• How to build a multi-layer model with a combination of two technologies LSTM-RNN with particle swarm?

Through, building new predictor called IFCsAP that combining between the DSN-PS and the DLSTM. Where DSN-PS used to find the best structure with parameter to LSTM while DLSTM used to predict the rate Concentrations of air pollution.

 IS SMAPE measure enough to evaluate the results of suggesting predictor?

Yes, The SMAPE is sufficient to evaluate the results of the predictor within the next 48 h.

• What is the benefit result from building predictor by combination between DSN-PS and DLSTM?

By combining DNS-PS and DLSTM, reduce the execution time by defining network parameters but at the same time will increase the computational complexity.

Parameter	DLSTM	Traditional LSTM
# Hidden layers	1	1
# Nodes in each layer	250	300
Weights in the memory cell and each gate	$ \begin{bmatrix} -0.08035341, 0.0914277, -0.06338812, \dots, 0.02485519, 0.00429418, 0.0344343]. \\ \begin{bmatrix} -0.05277034, 0.02425835, -0.08560476, \dots, -0.02298651, -0.09942206, -0.0467921], \\ \begin{bmatrix} 0.05811697, -0.13458245, 0.04627861, \dots, 0.05916523, 0.00762758, -0.05373584], \\ \begin{bmatrix} -0.07273816, 0.01714688, -0.07424279, \dots, 0.02360445, -0.0214516, -0.04725956], \\ \begin{bmatrix} -0.189624, 0.03846086, -0.17703873, \dots, 0.06055506, -0.34405658, -0.03180493] \end{bmatrix} $	Random[0,1]
Values of bias in the memory cell and each gate	[0.288068231, 0.591661602,, 0.881674013, 0.169572993]	Random [0,1]
Activation function	Tanh	Sigmoid

Table 6 The best parameters of DLSTM results from apply DSN-PS compare with the parameters of traditional LSTM

Table 7The difference betweenthe actual and predict valuesresults from IFCsAP

Prediction	Real	Prediction	Real	Prediction	Real	Prediction	Real	Prediction	Real
34.78846	34	1.654528	6	0.412588	2	50.41773	55	5.379044	5
36.38553	30	3.649623	3	2.326372	3	53.51553	56	4.743274	2
31.60161	25	2.1188	5	2.995598	17	55.01352	61	1.813982	5
26.55325	24	3.294672	5	14.30497	15	60.96044	73	3.000923	4
24.87279	24	3.630794	5	13.25146	20	73.41774	83	3.21601	4
25.24641	15	4.681115	7	18.33691	17	83.69789	83	3.298047	3
15.45882	9	5.680358	3	14.43699	11	83.75974	95	2.078313	4
9.5449	29	3.437556	4	9.669064	16	95.12534	87	2.111361	3
28.41048	14	2.975373	1	15.17606	18	87.58269	78	2.043313	5
16.5466	22	1.773691	9	18.48347	22	78,78084	65	3.205268	4
24.23592	22	10.19336	6	22.88976	23	65.98693	69	3.030475	4
25.24196	23	8.201811	5	24.72486	26	69.61816	70	2.987229	4
25 29594	32	6 642761	7	27 65177	29	71.06481	75	2 978535	2
34 24964	42	7 6741	6	30 22101	25	75 3206	70	1 952308	0
44 80105	30	7 13583	2	26 2059	29	69 69443	80	0 756842	3
42 0159	23	1 330396	0	20.2037	23	78 8698	90	2 196755	3
23 99235	25	0 381249	4	22.40177	23	89 99757	81	2.190755	7
28.95255	26	2 030040	3	22.00221	25	81 68404	85	4 945067	6
28.50837	20	2.553466	4	25.50057	32	84 06477	01	3 985456	7
31.03500	41	3.600404	3	20.34300	24	80 88517	95	1 544375	3
44 04221	42	2 070682	1	22.10259	18	02 27846	95	2 505146	1
45.6130	42	1 033346	+ 5	17 60336	18	95.578 4 0	92	4 050315	3
49.0139	40	2 851621	2	17.09550	21	04 44212	90 80	4.050515	1
52 2008	49 20	2 225847	3	21 44226	21	94.44313 81.20444	62 67	4.000912	1
31.00407	29 16	2.233647	4	21.44230	26	66 7011	58	2 210084	1
51.99407 15 16957	5	2.370062	2	22.06579	30	57 02221	30	4.69211	0
5 010002	5	0.017021	6	22 55621	32 28	21 5201	10	4.06211	0
6.510222	2	4.550767	5	20.94226	20	0 729421	0	0.010000	0
4 109956	5	4.330707	5 7	29.64520	30 42	9.730421	0 5	9.072071	5
4.198830	2	4.972332	0	52.7985 42.71229	42	0./94109	5	8.40341 6.794654	3
2.002224	<i>з</i>	3.791204 7.266145	0 5	45./1558	32 22	4.917324	4	0./84034 5.644741	4
3.092324 2.124006	2	1.300143	3	55.5445 24.66425	33 26	3.302827	5	3.044741	0
2.134996	2	4.8/3405	4	34.00435	30 25	5.593081	10 5	8.241902	15
2.781274	5	3.555575	2	38.0/1/0	33 27	0.502742	3	15.23003	15
4.230802	2	2.621237	2	30.50181	37	3.220106	4	16.4319	16
4.488424	2	2.093416	0	38.63866	36	2.988119	8	18./3105	14
3.9/4105	3	0.965981	1	37.45735	38	5.080526	7	16.41976	14
2.544927	3	0.803582	0	39.6337	46	4.939282	5	16.81065	16
2.262641	4	-0.09835	0	46.94368	47	4.804131	9	20.46926	30
2.646403	2	0.366863	0	47.38444	51	8.219869	6	32.6177	20
20.58939	15			2.75937	3			13.14352	3
14.81529	15		•••	2.542484	4			5.996005	2
13.59985	15			3.10115	5			4.986648	3
13.1015	19			3.68614	2			4.329667	5
18.86283	28			3.029632	3			4.925473	7
30.94416	35			3.647518	1			6.279548	7
37.03983	26			2.466094	5			6.513453	8
28.33052	32			5.201499	4			7.796238	7
34.42123	35			3.394094	7			6.190157	5
37.83168	35			5.388619	3			4.798513	5
37.46481	35			2.641306	2			4.556856	5

Table 7 continued

Prediction	Real								
37.58238	34			2.734388	2			4.461099	8
36.37764	11			2.734388	2			6.501226	6
10.23542	9			2.734388	4			5.729152	12
8.121566	7			4.790839	4			9.008903	7
6.889425	9			4.790839	4			6.113952	7
7.617704	8			4.790839	3			6.130835	7
6.952367	9			3.052802	3			6.884548	9
6.659528	6			3.052802	3			8.843928	7
5.295295	19			3.052802	5			7.665394	5
15.6793	5			5.437168	5			8.618543	3
4.46329	3			5.437168	5			6.016447	3
3.284891	4			5.437168	3			4.275283	5
3.44795	5			3.98441	3			5.054852	3
3.93688	5			3.98441	3			4.867091	3
3.832801	6			3.98441	3			5.389075	6
4.107695	7			3.630408	3			6.002992	10
4.831041	1			3.630408	3			8.479732	12
1.740836	1			3.630408	4			11.1085	14
1.953708	6			5.40837	4			13.16331	15
7.004609	8			5.40837	4			16.6575	11
6.897416	6			5.40837	7			9.834305	11
6.147143	10			8.283098	7			9.502816	10
8.156958	5			8.283098	7			8.462688	12
6.251345	3			8.283098	15			9.795081	18
5.074443	4			15.73539	15			15.50082	16
4.809223	2			15.73539	15			14.20437	16
4.110103	5			15.73539	16			15.19242	17
6.547019	6			14.8975	16			17.55351	19
6.262792	3			14.8975	16			20.86999	26
4.403266	1			14.8975	30			28.61033	35
3.218214	6			30.47908	30			38.3054	45
6.983045	8			30.47908	30			48.51104	47

7 Conclusions

We can summarize the main point performance in that paper as the follows: Building an integrated platform based on physical and program entities in the form of an integrated station ((H/W, S/W) used for essential needs only and reduces the damage resulting from air pollution; thus, this platform saves effort and cost through sensor programming and activating its role to read data on concentrations that cause pollution real-time air, increasing performance, reducing effort, reducing time and cost. Building a special station to measure the concentrations that cause air pollution, which depends on the principle of

 Table 8
 SMAPE evaluation

Name of station	Best spilt	Average le	est 25 day			Average SMAPE
Aotizhongxin_Aq	80%-20%	0.275028				0.275028
Badaling_Aq	90%-10%	0.213261				0.213261
Beibuxinqu_Aq	90%-10%	0.389191				0.389191
Daxing_Aq	80%-20%	0.250382				0.250382
Dingling_Aq	90%-10%	0.503017				0.503017
Donggaocun_Aq	70%-30%	0.371363				0.371363
Dongsi_Aq	50%-50%	0.221675	0.243422	0.248539	0.255356	0.322998
Dongsihuan_Aq	80%-20%	0.20021				0.20021
Fangshan_Aq	90%-10%	0.327049				0.327049
Fengtaihuayuan_Aq	90%-10%	0.415505				0.415505
Guanyuan_Aq	50%-50%	0.252592	0.266669	0.435113	0.290471	0.414948
Gucheng_Aq	70%-30%	0.24183	0.218693			0.230262
Huairou_Aq	50%-50%	0.267197	0.389582	0.360311		0.33903
Liulihe_Aq	90%-10%	0.359926				0.359926
Mentougou_Aq	80%-20%	0.235393				0.235393
Miyun_Aq	60%-40%	0.145556	0.390907	0.334637		0.290367
Miyunshuiku_Aq	80%-20%	0.43973				0.43973
Nansanhuan_Aq	60%-40%	0.008667	0.231882			0.120275
Nongzhanguan_Aq	80%-20%	0.258566				0.258566
Pingchang_Aq	90%-10%	0.38889				0.38889
Pinggu_Aq	80%-20%	0.277051				0.277051
Qianmen_Aq	50%-50%	0.225878	0.300921	0.342506		0.289768
Shunyi_Aq	50%-50%	0.270642	0.277362	0.31922	0.352798	0.406674
Tiantan_Aq	#50%-50%	0.254859	0.272096	0.37626	0.343996	0.415737
Tongzhou_Aq	80%-20%	0.244239				0.244239
Wanliu_Aq	#60%-40%	0.278961	0.151714	0.419545		0.182264
Wanshouxigong_Aq	80%-20%	0.273609				0.273609
Xizhimenbei_Aq	90%-10%	0.273067				0.273067
Yanqin_Aq	80%-20%	0.235258				0.235258
Yizhuang_Aq	60%-40%	0.028439	0.493526	0.252461		0.159835
Yongdingmennei_Aq	50%-50%	0.238054	0.270327	0.262902		0.257095
Yongledian_Aq	90%-10%	0.438046				0.438046
Yufa_Aq	80%-20%	0.267881				0.267881
Yungang_Aq	70%-30%	0.232745	0.199965			0.216355
Zhiwuyuan_Aq	50%-50%	0.31876	0.507681			0.275481

Intelligent Data Analysis (IDA). Where data are collected from the stations which are considered as Class Node by the wireless network that was built represented (LoRa & Waspmate) on the calculator which is considered as Master Node. The IFCsAP is fed with the data collected in real time and the preliminary processing is performed on it, after which the predictor results are evaluated using a symmetric mean absolute percentage error (SMAPE). Through this scale, we will evaluate the levels of PM2.5, PM10, NO2, CO and O3. And SO2 for the next 48 h for each station. Often the data contain a proportion of missing or incomplete data, which causes an increase in the prediction or classification error of that data. Therefore, this problem can be addressed by deleting the entries that

Fig. 9 Shown actual and prediction values for the first station

Fig. 10 Shown actual and prediction values for Station Number 18

Fig. 11 Shown actual and prediction values for Station Number 34

contain that data to create a more accurate forecast. The purpose of the Normalization process is to convert data within a specified range of values to be dealt with more accurately in the subsequent stages of processing. In our work, the data were converted within the range [0, 1], because the activation function deals with data within that range. The designed IFCsAP to dealt with one of the most important problems facing the environment at the present time as a result of increased pollution due to electronic waste, factories and laboratories, and the lack of real projects in Iraq to reduce air pollution rates. The designed model proved its accuracy and efficiency in predicting the concentrations that cause air pollution. The designed model is distinguished by the construction of a new tool called DLSTM, which is characterized by its ability to deal with large-size data as well as containing memory that enables it to retain data for long periods. Experiments have shown that the combination of the two technologies that have been designed, which are both DLSTM and DSN-PS, achieve more accurate results and reduce implementation time. The first tool that was designed, DSN-PS, used it to select the best parameters (parameters) to determine the structure of the second tool that was built called DLSTM, thus improving the performance of deep learning models and resulting in the production of a IFCsAP predictor that displays more accurate and efficient results.

The following point gives good idea for features works; Through explore the PSO, to tune other LSTM parameters such as: the learning rate, max error and the number of epochs, instead of based on trial-and-error principles that take too long to find the optimal parameters for the LSTM network. PSO with other deep learning models to find the

 Table 9
 Compare SMAPE
 between the traditional LSTM and IFCsAP

Name of station	SMAPE of traditional LSTM	SMAPE of IFCsAP
Aotizhongxin_Aq	0.386716	0.275028
Badaling_Aq	0.23147	0.213261
Beibuxinqu_Aq	0.721064	0.387191
Daxing_Aq	0.50419	0.25038
Dingling_Aq	0.50749	0.503017
Donggaocun_Aq	0.50846	0.371363
Dongsi_Aq	0.44601	0.322998
Dongsihuan_Aq	0.26456	0.20021
Fangshan_Aq	0.40249	0.327049
Fengtaihuayuan_Aq	0.83241	0.415505
Guanyuan_Aq	0.80799	0.414948
Gucheng_Aq	0.32947	0.230262
Huairou_Aq	0.46668	0.33903
Liulihe_Aq	0.41120	0.359926
Mentougou_Aq	0.32229	0.235393
Miyun_Aq	0.31023	0.290367
Miyunshuiku_Aq	0.55767	0.43973
Nansanhuan_Aq	0.24794	0.120275
Nongzhanguan_Aq	0.35385	0.258566
Pingchang_Aq	0.43291	0.38889
Pinggu_Aq	0.50706	0.277051
Qianmen_Aq	0.33930	0.289768
Shunyi_Aq	0.44912	0.406674
Tiantan_Aq	0.509151	0.415737
Tongzhou_Aq	0.32800	0.244239
Wanliu_Aq	0.45925	0.182264
Wanshouxigong_Aq	0.27640	0.273609
Xizhimenbei_Aq	0.31788	0.273067
Yanqin_Aq	0.49895	0.235258
Yizhuang_Aq	0.66446	0.159835
Yongdingmennei_Aq	0.55448	0.257095
Yongledian_Aq	0.80791	0.438046
Yufa_Aq	0.32257	0.267881
Yungang_Aq	0.28951	0.216355
Zhiwuyuan_Aq	0.56176	0.275481

best parameters and activation functions, instead of based on trial-and-error principles to find the optimal of network structure. Other type of swarm optimization such as (ant colony optimization, cuckoo search algorithm and glowworm swarm optimization) or a genetic algorithm can be used to find the best parameters and activation functions for LSTM.

Compare SMAPE between the Traditional LSTM and IFCsAP Model

Appendix

Main steps for training LSTM-RNN

In this section, we will show the main steps required to take the decision based on LSTM-RNN, also show how can update variables.

Step 1: The forward components

Step 1.1: Compute the gates

Memory cell:

$$a_t = \tanh(W_a \cdot X_t + U_a \cdot \operatorname{out}_{t-1} + b_a)$$
(1)

Input gate:

$$i_t = \sigma(WI \cdot X_t + U_i \cdot \operatorname{out}_{t-1} + b_i)$$
(2)

Forget gate:

$$f_t = \sigma \left(Wf \cdot X_t + U_f \cdot \operatorname{out}_{t-1} + b_f \right)$$
(3)

Output gate:

$$o_t = \sigma(Wo \cdot X_t + U_o \cdot \operatorname{out}_{t-1} + b_o)$$
(4)

Then fined:

Internal state:

 $\text{State}_t = a_t \odot i_t + f_t \odot \text{state}_{t-1} \tag{5}$

Output:

$$\operatorname{out}_t = \operatorname{tanh}(\operatorname{state}) \odot \operatorname{ot}$$
 (6)

where

Gate
$$S_t = \begin{bmatrix} a_t \\ i_t \\ f_t \\ o_t \end{bmatrix}$$
, $W = \begin{bmatrix} W_a \\ W_i \\ W_f \\ W_o \end{bmatrix}$, $U = \begin{bmatrix} U_a \\ U_i \\ U_f \\ U_o \end{bmatrix}$, b
$$= \begin{bmatrix} b_a \\ b_i \\ b_f \\ b_o \end{bmatrix}$$

Step. 2: The backward components:

Step 2.1. Find

 Δt the output difference as computed by any subsequent. ΔOUT the output difference as computed by the next time-step

$$\delta \text{out}_t = \Delta_t + \Delta \text{out}_t \tag{7}$$

$$\delta \text{state}_{t} = \delta \text{out}_{t} \odot o_{t} \odot \left(1 - \tanh^{2}(\text{state}_{t})\right) + \delta \text{state}_{t+1}$$
$$\odot f_{t+1} \tag{8}$$

$$\delta a_t = \delta \text{state}_t \odot i_t \odot \left(1 - a_t^2\right) \tag{9}$$

$$\delta i_t = \delta \text{state}_t \odot a_t \odot i_t \odot (1 - i_t) \tag{10}$$

$$\delta f_t = \delta \text{state}_t \odot \text{state}_{t-1} \odot f_t \odot (1 - f_t) \tag{11}$$

 $\delta o_t = \delta \operatorname{out}_t \odot \operatorname{tanh}(\operatorname{state}_t) \odot o_t \odot (1 - o_t)$ (12)

 $\delta x_t = W^t \cdot \delta \text{state}_t \tag{13}$

 $\delta \text{out}_{t-1} = U^t \cdot \delta \text{state}_t \tag{14}$

Step 3: update to the internal parameter

$$\delta W = \sum_{t=0}^{T} \delta \text{gates}_t \otimes x_t \tag{15}$$

$$\delta U = \sum_{t=0}^{T} \delta \text{gates}_{t+1} \otimes \text{out}_t \tag{16}$$

$$\delta b = \sum_{t=0}^{T} \delta \text{gates}_{t+1} \tag{17}$$

Example of LSTM

This example will show calculations performed in LSTM. Assume the out internal weights:

$$W_{a} = \begin{bmatrix} 0.45\\ 0.25 \end{bmatrix}, \quad U_{a} = [0.15], \quad b_{a} = [0.2]$$
$$W_{i} = \begin{bmatrix} 0.95\\ 0.8 \end{bmatrix}, \quad U_{i} = [0.8], \quad b_{i} = [0.65]$$
$$W_{f} = \begin{bmatrix} 0.7\\ 0.45 \end{bmatrix}, \quad U_{f} = [0.1], \quad b_{f} = [0.15]$$
$$W_{o} = \begin{bmatrix} 0.6\\ 0.4 \end{bmatrix}, \quad U_{o} = [0.25], \quad b_{o} = [0.1]$$

Let input data:

$$X_0 = \begin{bmatrix} 1\\ 2 \end{bmatrix} \text{ with label : } 0.5$$
$$X_1 = \begin{bmatrix} 0.5\\ 3 \end{bmatrix} \text{ with label: } 1.25$$

Forward t = 0

$$a_{0} = \tanh(W_{a} * x_{0} + U_{a} * \operatorname{out}_{-1} + b_{a})$$

= $\tanh\left([0.45 \quad 0.25]\begin{bmatrix}1\\2\end{bmatrix} + [0.15][0] + [0.2]\right)$
= 0.81775

$$i_{0} = \sigma(W_{i} * x_{0} + U_{i} * \text{out}_{-1} + b_{i})$$

= $\sigma\left(\begin{bmatrix} 0.95 & 0.8 \end{bmatrix} \begin{bmatrix} 1\\ 2 \end{bmatrix} + \begin{bmatrix} 0.8 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 0.65 \end{bmatrix} \right) = 0.96083$

$$f_0 = \sigma (W_f * x_0 + U_f * \text{out}_{-1} + b_f)$$

= $\sigma \left(\begin{bmatrix} 0.7 & 0.45 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0.1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 0.15 \end{bmatrix} \right) = 0.85195$

$$o_0 = \sigma(W_o * x_0 + U_o * \text{out}_{-1} + b_o)$$

= $\sigma\left(\begin{bmatrix} 0.6 & 0.4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0.25 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 0.1 \end{bmatrix} \right) = 0.81757$

state₀ =
$$a_0 * i_0 + f_0 * \text{state}_{-1}$$

= 0.81775 * 0.96083 + 0.85195 * 0 = 0.78572

$$out_0 = tanh(state_0) * o_0 = tanh(0.78572) * 0.81757$$

= 0.53631

$$a_{1} = \tanh(W_{a} * x_{1} + U_{a} * \operatorname{out}_{0} + b_{a})$$

= $\tanh\left([0.45 \ 0.25]\begin{bmatrix}0.5\\3\end{bmatrix} + [0.15][0.53631] + [0.2]\right)$
= 0.84980

$$i_{1} = \sigma(W_{i} * x_{1} + U_{i} * \text{out}_{0} + b_{i})$$

= $\sigma\left([0.95 \ 0.8]\begin{bmatrix}0.5\\3\end{bmatrix} + [0.8][0.53631] + [0.65]\right)$
= 0.98118

$$f_{1} = \sigma(W_{f} * x_{1} + U_{f} * \text{out}_{0} + b_{f})$$

= $\sigma\left(\begin{bmatrix} 0.7 & 0.45 \end{bmatrix} \begin{bmatrix} 0.5 \\ 3 \end{bmatrix} + \begin{bmatrix} 0.1 \end{bmatrix} \begin{bmatrix} 0.53631 \end{bmatrix} + \begin{bmatrix} 0.15 \end{bmatrix} \right)$
= 0.87030

$$o_{1} = \sigma(W_{o} * x_{1} + U_{o} * \text{out}_{0} + b_{o})$$

= $\sigma\left(\left[0.6 \ 0.4\right] \begin{bmatrix} 0.5\\3 \end{bmatrix} + \left[0.25\right] \left[0.53631\right] + \left[0.1\right]\right)$
= 0.84993

state₁ =
$$a_1 * i_1 + f_1 * \text{state}_0$$

= 0.84980 * 0.98118 + 0.87030 * 0.78572 = 1.5176

$$out_1 = tanh(state_1) * o_1 = tanh(1.5176) * 0.84993$$

= 0.77197

Backward t = 1 Compute the different between outputs

$$\partial_x E = x - \hat{x}$$

So,
$$\Delta_1 = \partial_x E = 0.77197 - 1.25 = -0.47803.$$

 $\Delta out_1 = 0$ Because there is no future time – steps
 $\delta out_1 = \Delta_1 + \Delta out_1 = -0.47803 + 0 = -0.47803$
 $\delta state_1 = \delta out_1 * o_1 * (1 - tanh^2(state_1)) + \delta state_2 * f_2$
 $= -0.47803 * 0.84993 * (1 - tanh^2(1.5176))$
 $+ 0 * 0 = -0.07111$

$$\partial a_1 = \partial \text{state}_1 * \iota_1 * (1 - a_1^2) \\ = -0.07111 * 0.98118 * (1 - 0.84680^2) = -0.01938$$

$$\delta i_1 = \delta \text{state}_1 * a_1 * i_1 * (1 - i_1) \\ = -0.07111 * 0.84980 * 0.98118 * (1 - 0.98118) \\ = -0.00631$$

$$\delta o_1 = \delta \text{out}_1 * \tanh(\text{state}_1) * o_1 * (1 - o_1)$$

= -0.47803 * tanh(1.5176) * 0.84993
* (1 - 0.84993)
= -0.05538

$$\delta x_1 = W^T * \delta \text{gates}_1$$

$$= \begin{bmatrix} 0.45 & 0.95 & 0.70 & 0.60 \\ 0.25 & 0.80 & 0.45 & 0.40 \end{bmatrix} \begin{bmatrix} -0.01938 \\ -0.00112 \\ -0.00631 \\ -0.05538 \end{bmatrix}$$
$$= \begin{bmatrix} -0.04743 \\ -0.03073 \end{bmatrix}$$

 $\Delta \text{out}_0 = U^T * \delta \text{gates}_1$

$$= \begin{bmatrix} 0.15 & 0.80 & 0.10 & 0.25 \end{bmatrix} \begin{bmatrix} -0.01938 \\ -0.00112 \\ -0.00631 \\ -0.05538 \end{bmatrix}$$
$$= -0.01828$$

- - - - - -

At this time need return to back our Δ out and forwarding on calculation.

Backward t = 0

 $\Delta_0 = \partial_x E = 0.53631 - 0.5 = -0.03631$ $\Delta out_1 = -0.01828, \text{ passed back from } T = 1$ $\delta out_0 = \Delta_0 + \Delta out_0 = 0.03631 + (-0.01828) = 0.01803$ $\delta \text{state}_0 = \delta \text{out}_0 * o_0 * (1 - \tanh^2(\text{state}_0)) + \delta \text{state}_1 * f_1$ $= -0.01803 * 0.81757 * (1 - \tanh^2(0.78572))$

$$\delta a_0 = \delta \text{state}_0 * i_0 * (1 - a_0^2) = -0.05349 * 0.96083 * (1 - 0.81775) = -0.01703$$

+(-0.07111 * 0.87030) = -0.05349

$$\delta i_0 = \delta \text{state}_0 * a_0 * i_0 * (1 - i_0)$$

= -0.05349 * 0.81775 * 0.96083 * (1 - 0.96083)
= -0.00165

$$\begin{split} \delta f_0 &= \delta \text{state}_0 * \text{state}_{-1} * f_0 * (1 - f_0) \\ &= -0.05349 * 0 * 0.85195 * (1 - 0.85195) = 0 \end{split}$$

$$\delta o_0 = \delta \text{out}_0 * \tanh(\text{state}_0) * o_0 * (1 - o_0)$$

= 0.01803 * tanh(0.78572) * 0.81757 * (1 - 0.81757)
= 0.00176

$$\delta x_0 = W^T * \delta \text{gates}_0$$

$$= \begin{bmatrix} 0.45 & 0.95 & 0.70 & 0.60 \\ 0.25 & 0.80 & 0.45 & 0.40 \end{bmatrix} \begin{bmatrix} -0.01703 \\ -0.00165 \\ 0 \\ 0.00176 \end{bmatrix}$$

$$= \begin{bmatrix} -0.00817 \\ -0.00487 \end{bmatrix}$$

$$\Delta \text{out}_{-1} = U^T * \delta \text{gates}_1$$

$$= \begin{bmatrix} 0.15 & 0.80 & 0.10 & 0.25 \end{bmatrix} \begin{bmatrix} -0.01703 \\ -0.00165 \\ 0 \\ 0.00176 \end{bmatrix}$$

$$= -0.00343$$

After complete backward, let $\lambda = 0.1$ and update the parameters by:

$$\begin{split} \delta W &= \sum_{t=0}^{T} \delta \text{gates}_{t} \otimes X_{t} \\ &= \begin{bmatrix} -0.01703 \\ 0.00165 \\ 0 \\ 0.00176 \end{bmatrix} [1.02.0] + \begin{bmatrix} -0.01938 \\ -0.00112 \\ -0.00631 \\ -0.00631 \\ -0.05538 \end{bmatrix} [0.53.0] \\ &= \begin{bmatrix} -0.02672 & -0.0922 \\ -0.00221 & -0.00666 \\ -0.00316 & -0.01893 \\ -0.02593 & -0.16262 \end{bmatrix} \\ \delta U &= \sum_{t=0}^{T} \delta \text{gates}_{t+1} \otimes \text{out}_{t} = \begin{bmatrix} -0.01938 \\ -0.00112 \\ -0.00631 \\ -0.05538 \end{bmatrix} [0.53631] \\ &= \begin{bmatrix} -0.01039 \\ -0.0060 \\ -0.00338 \\ -0.02970 \end{bmatrix} \\ \delta b &= \sum_{t=0}^{T} \delta \text{gates}_{t+1} = \begin{bmatrix} -0.01703 \\ -0.00165 \\ 0 \\ 0.00176 \end{bmatrix} + \begin{bmatrix} -0.01938 \\ -0.00122 \\ -0.00631 \\ -0.05538 \end{bmatrix} \\ &= \begin{bmatrix} -0.03641 \\ -0.00277 \\ -0.00631 \\ -0.05362 \end{bmatrix} \end{split}$$

Depend on the SGD updating out parameters:

$$W^{\text{new}} = W^{\text{old}} - \lambda * \delta W^{\text{old}}$$

$$W_a = \begin{bmatrix} 0.45267\\ 0.25922 \end{bmatrix}, \quad U_a = [0.15104], \quad b_a = [0.20364].$$

$$W_i = \begin{bmatrix} 0.95022\\ 0.80067 \end{bmatrix}, \quad U_i = [0.80006], \quad b_i = [0.65028].$$

$$W_f = \begin{bmatrix} 0.70031\\ 0.45189 \end{bmatrix}, \quad U_f = [0.10034], \quad b_f = [0.15063]$$
$$W_o = \begin{bmatrix} 0.60259\\ 0.41626 \end{bmatrix}, \quad U_o = [0.25297], \quad b_o = [0.10536]$$

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the author.

References

- Al-Janabi S, Alkaim AF, Adel Z (2020) An innovative synthesis of deep learning techniques (DCapsNet and DCOM) for generation electrical renewable energy from wind energy. Soft Comput 24:10943–10962. https://doi.org/10.1007/s00500-020-04905-9
- Alkaim AF, Al_Janabi S (2020) Multi objectives optimization to gas flaring reduction from oil production. In: Farhaoui Y (ed) Big data and networks technologies. BDNT 2019. Lecture notes in networks andsystems, vol 81. Springer, Cham. https://doi.org/10. 1007/978-3-030-23672-4_10
- Chen B et al (2018) How do people in different places experience different levels of air pollution? Using worldwide Chinese as a lens. Environ Pollut 238:874–883. https://doi.org/10.1016/J. ENVPOL.2018.03.093
- Donahue NM (2018) Air pollution and air quality. Green Chem. https://doi.org/10.1016/B978-0-12-809270-5.00007-8
- Das HS, Roy P (2019) A deep dive into deep learning techniques for solving spoken language identification problems. Intell Speech Signal Process. https://doi.org/10.1016/B978-0-12-818130-0.00005-2
- Aunan K, Hansen MH, Liu Z, Wang S (2019) The hidden hazard of household air pollution in rural China. Environ Sci Policy 93:27–33. https://doi.org/10.1016/J.ENVSCI.2018.12.004
- Basavaraju S, Gaj S, Sur A (2019) Object memorability prediction using deep learning: location and size bias. J Vis Commun Image Represent 59:117–127. https://doi.org/10.1016/J.JVCIR. 2019.01.008
- Al-Janabi S, Alkaim AF (2020) A nifty collaborative analysis to predicting a novel tool (DRFLLS) for missing values estimation. Soft Comput 24(1):555–569. https://doi.org/10.1007/s00500-019-03972-x
- Al-Janabi S, Mahdi MA (2019) Evaluation prediction techniques to achievement an optimal biomedical analysis. Int J Grid Util Comput 10(5):512–527
- Chien J-T, Chien J-T (2019) Deep neural network. Source Sep Mach Learn. https://doi.org/10.1016/B978-0-12-804566-4. 00019-X
- 11. Al-Janabi S, Alkaim AF (2021) A comparative analysis of DNA protein synthesis for solving optimization problems: a novel nature-inspired algorithm. In: Abraham A, Sasaki H, Rios R, Gandhi N, Singh U, Ma K (eds) Innovations in bio-inspired computing and applications. IBICA 2020. Advances in Intelligent

Systems and Computing, vol 1372. Springer, Cham. https://doi. org/10.1007/978-3-030-73603-3_1

- Congcong W, Shufu L, Xiaojing Y, Ling P, Xiang L, Yuan H, Tianhe C (2019) A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. J Sci Total Environ 654:1091–1099
- Al-Janabi S et al (2015) Design and evaluation of a hybrid system for detection and prediction of faults in electrical transformers. Int J Elect Power Energy Syst 67:324–335. https://doi.org/10. 1016/j.ijepes.2014.12.005
- Bianchi FM, Maiorino E, Kampffmeyer MC et al (2017) An overview and comparative analysis of recurrent neural networks for short term load forecasting. https://doi.org/10.1007/978-3-319-70338-1
- Al-Janabi S, Salman AH (2021) "Sensitive integration of multilevel optimization model in human activity recognition for smartphone and smartwatch applications". In: Big data mining and analytics, vol 4, no 2, pp 124–138. https://doi.org/10.26599/ BDMA.2020.9020022
- Samaher AJ (2020) Smart system to create an optimal higher education environment using IDA and IOTs. Int J Comput Appl 42(3):244–259. https://doi.org/10.1080/1206212X.2018.1512460
- Al-Janabi S, Al-Shourbaji I, Shojafar M, Abdelhag M (2017) Mobile cloud computing: challenges and future research directions. In: 2017 10th international conference on developments in esystems engineering (DeSE), pp 62–67. https://doi.org/10.1109/ DeSE.2017.21
- Tebrean B, Crisan S, Muresan C, Crisan TE (2017) Low cost command and control system for automated infusion devices. In: Vlad S, Roman N (eds) International conference on advancements of medicineand health care through technology; 12th–15th October 2016, Cluj-Napoca, Romania. IFMBE Proceedings, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-52875-5_ 18
- Li X, Peng L, Yao X, Cui S, Hu Y, You C, Chi T (2017) Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation. EnvironPollut 231(Pt 1):997–1004. https://doi.org/10.1016/j.envpol.2017.08. 114
- Wu L, Li N, Yang Y (2018) Prediction of air quality indicators for the Beijing-Tianjin-Hebei region. J Clean Prod 196:682–687. https://doi.org/10.1016/j.jclepro.2018.06.068
- Wen C et al (2019) A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci Total Environ 654:1091–1099. https://doi.org/10.1016/j.scitotenv.2018. 11.086
- Shang Z, Deng T, He J, Duan X (2019) A novel model for hourly PM2.5 concentration prediction based on CART and EELM. Sci Total Environ 651:3043–3052. https://doi.org/10.1016/j.scito tenv.2018.10.193
- Li H, Wang J, Li R, Lu H (2019) Novel analysis–forecast system based on multi-objective optimization for air quality index. J Clean Prod 208:1365–1383. https://doi.org/10.1016/j.jclepro. 2018.10.129
- Kim SY, Bechle M, Hankey S, Sheppard L, Szpiro AA, Marshall JD (2020) Concentrations of criteria pollutants in the contiguous US, 1979–2015: role of prediction model parsimony in integrated empirical geographic regression. PLoS ONE. https://doi.org/10. 1371/journal.pone.0228535
- 25. Matos J, Faria RPV, Nogueira IBR et al (2019) Optimization strategies for chiral separation by true moving bed chromatography using Particles Swarm Optimization (PSO) and new

Parallel PSO variant. Comput Chem Eng 123:344–356. https:// doi.org/10.1016/J.COMPCHEMENG.2019.01.020

- 26. Al-Janabi S, Alwan E (2017) Soft mathematical system to solve black box problem through development the FARB based on hyperbolic and polynomial functions. In: 2017 10th international conference on developments in esystems engineering (DeSE), pp 37–42. https://doi.org/10.1109/DeSE.2017.23
- Zhou B-Z, Liu X-F, Cai G-P et al (2019) Motion prediction of an uncontrolled space target. Adv Sp Res 63:496–511. https://doi. org/10.1016/J.ASR.2018.09.025

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.