
ORIGINAL ARTICLE

Deep autoencoders for feature learning with embeddings
for recommendations: a novel recommender system solution

Kiran Rama1 • Pradeep Kumar1 • Bharat Bhasker1,2

Received: 12 July 2020 / Accepted: 19 April 2021 / Published online: 6 June 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
We propose ‘‘Deep Autoencoders for Feature Learning in Recommender Systems,’’ a novel discriminative model based on

the incorporation of features from autoencoders in combination with embeddings into a deep neural network to predict

ratings in recommender systems. The work has two major motivations. The first is to engineer features for recommender

systems in a domain-agnostic way using autoencoders. The second is to develop a method that sets a benchmark for

predictive accuracy. In our proposed solution, we build a user autoencoder and item autoencoder that extract latent features

for the users and items, respectively. The additional features engineered are the latent features for the users and items, and

these come from the bottleneck activations of the autoencoder. Our method of feature engineering is domain agnostic, as

the inner-most activations would differ for domains without any additional effort required on part of the modeler. Next, we

then use the activations of the inner-most layers of the autoencoders as features in a subsequent deep neural network to

predict the ratings along-with user and item embeddings. Our method incorporates additional linear and nonlinear latent

features from the autoencoders to improve predictive accuracy. This is different from the existing approaches that use

autoencoders as full-fledged recommender systems or use autoencoders to generate features for a subsequent supervised

learning algorithm or without using embeddings. We demonstrate the out performance of our solution on four different

datasets of varying sizes and sparsity, namely MovieLens 100 K, MovieLens 1 M, FilmTrust and BookCrossing datasets,

with strong experimental results. We have compared our DAFERec method against mDA-CF, TrustSVD, SVD variants,

BiasedMF, ItemKNN and I-AutoRec methods. The results demonstrate that our proposed solution beats the benchmarks

and is a highly flexible model that works on different datasets solving different business problems like book recom-

mendations, movie recommendations and trust.

Keywords Autoencoders � Recommender systems � Feature engineering � BookCrossing � User autoencoder �
Item autoencoder

1 Introduction

In the world of rapid advancements in technology and

Internet adoption, an increasing number of devices and

exponentially growing data, recommender systems are

becoming increasingly important to enable users to tackle

the increasing information overload in order to make the

right choices. Recommender Systems form a very useful

mechanism to improve the quality and efficacy of decisions

by users. Increased number of products and services,

increased competition for the customer’s wallet share and

mind share, focus on personalized products, services and

communications to the customers have been the focus of

almost all companies. There are various definitions of

& Kiran Rama

efpm04013@iiml.ac.in

Pradeep Kumar

pradeepkumar@iiml.ac.in

Bharat Bhasker

bhasker@iimraipur.ac.in

1 Department of Information Technology and Systems, Indian

Institute of Management Lucknow, IIM Road, Prabandh

Nagar, Mubarakpur, Lucknow, Uttar Pradesh 226013, India

2 Indian Institute of Management Raipur, Naya Raipur, India

123

Neural Computing and Applications (2021) 33:14167–14177
https://doi.org/10.1007/s00521-021-06065-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-1366-3423
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06065-9&domain=pdf
https://doi.org/10.1007/s00521-021-06065-9

recommender systems (RS) in the literature and we will not

attempt to go through them but make a broad statement that

they provide a rating to a user-item pair. A popular cate-

gorization of recommender system techniques is into the

Content-based, Collaborative Filtering based and Hybrid

techniques. The differences between these methods have

been covered in literature in detail [1], and we will not go

into the semantics in this paper. Deep learning methods

have seen increasing adoption due to the advancements in

Graphical processing unit hardware that speeds up neural

network training, advancements in software algorithms and

the availability of automatic differentiation enabling soft-

ware like PyTorch [2], MXNet [3] and TensorFlow [4].

Deep learning methods have seen huge success in struc-

tured dataset RSes like the DNNRec [5] method.

We now describe the motivation of the study. Hybrid

recommender systems that combine collaborative filtering

(that only looks at user-item interactions) and content-

based methods (that look at user and item features) are

popular as they address the cold-start problem. However,

they require feature engineering that is domain-specific.

Manual Feature Engineering requires domain expertise and

is not scalable across domains and requires maintenance

over time. The criticism of CF methods is that while they

capture latent user and item features that are linear in

nature, they fail to capture subtle factors. In light of the

above, the first motivation for this study is to engineer

subtle nonlinear features automatically in a domain-ag-

nostic way. A novel deep learning method called autoen-

coders is a self -supervised method that creates a nonlinear

high-dimensional representation in the innermost layer and

have multiple hidden layers of lower dimensions in

between. In other words, they attempt to learn an identity

function with a compressed set of the input layer in

between and the network is trained using gradient descent

like in other deep neural network methods like in DNNRec,

the loss here being the squared loss. The innermost layer of

the autoencoder, also referred to as the bottleneck layer,

has been used to engineer features as it represents a lower-

dimensional representation of the input features [6]. The

second motivation of this study is to leverage the features

learned for the users and items by autoencoders in a deep

learning solution for rating prediction and thereby address

the gap in CF methods that do not learn nonlinear latent

factors.

We describe a novel solution called DAFERec (Deep

Autoencoders for Feature Learning for Recommendations)

that uses the inner-most layer activations of a deep

autoencoder as features in a Deep Neural Network for

recommendations. Our key contributions are as follows.

First is that we use the activations of the inner-most bot-

tleneck layer of the autoencoder as features in a deep

neural network (DNN) based recommender system in

combination in combination with embeddings. Second is

that we demonstrate that this combination enables learning

of sophisticated features that have nonlinearity from the

user autoencoder and the item autoencoder, in addition to

the user and item embeddings. We explain that the out-

performance is achieved as our method can learn nonlinear

latent representations of features from the autoencoder in

the DNN. Third contribution is that this approach of

incorporating nonlinear latent features leads to a powerful

feature map that beats the comparative techniques results in

CF. We demonstrate the outperformance of DAFERec on

multiple datasets like BookCrossing, MovieLens 100 k,

MovieLens 1 M, and FilmTrust datasets. Our model beats

the previous best results reported for predictive accuracy

on these datasets in literature. The scope of our study is for

the RS case where the goal is to predict numerical ratings

and not for the case where the output is a polarity score or

for the case where the output is a ranking of items for a

user.

We organize the paper into five sections. Section 1

introduces the study and explains the motivation for this

study from a business and technical perspective and also

highlights the key contributions of the work. Section 2

looks at work related to the solution proposed in this paper

and also looks at the comparative methods in this field. The

third section describes our DAFERec solution and algo-

rithmic aspects with a mathematical foundation. Section 4

contains the details of the experimental setup and evalua-

tion metrics. The fourth section has a results discussion

and. The final section highlights the opportunities for fur-

ther research.

2 Past work

We look at related work in literature to our solution and

describe how our work is different from or extends each of

these works, in this section.

CF methods have been hugely successful in recom-

mender systems with matrix factorization (MF) approach

heavily employed to find latent factors of users and items.

Several methods have been used for MF, including Sin-

gular Value Decomposition (SVD), variants of SVD like

SVD?? and other methods like Non-Negative Matrix

Factorization (NMF) [7], Bayesian form of Probabilistic

Matrix Factorization (BPMF) [8], etc. Latent Factor

methods specifically combine user and item latent factors

into the same latent factor space, making them directly

comparable and explain ratings by characterizing them on

these factors. Singular Vector decomposition (SVD) cap-

tures linear relationships between users and items in a

compressed form [9]. Addition of bias term to SVD, that is

independent of the interactions results in SVD?? .

14168 Neural Computing and Applications (2021) 33:14167–14177

123

SVD?? is a very powerful method and has one of the best

RMSEs on the ML-1M dataset. TrustSVD extends

SVD?? with trust information [10] using both the explicit

and implicit influence of user-item ratings to generate

predictions. Deep Learning methods have been success-

fully applied DNNRec [5], RBMs [11], NCFs [12], DCNs

[13], etc. It was shown that wide linear models [14] a

combination of wide and deep networks allows the mem-

orization of sparse feature interactions and generalization

as well. CNN and RNNs have been used to extract features

about users and items to solve the cold-start problem.

Examples of CNNs include image feature extraction [15],

speech feature extraction [16], text feature extractions [17],

etc. For textual data, RNNs have been employed to learn

the language model and then use these features learned in

the modeling process, with variants like LSTM, GRU,

QRNN etc. [18].These methods have been used in a family

of models called Collaborative Sequencing Models [19].

Audio features have been engineered using LSTM-based

networks and also using CNNs [20].

Autoencoders have been employed as stand-alone rec-

ommender systems both at a user level and at an item level.

[6, 21, 22] are good examples of the application of

autoencoders. Autoencoders have been stacked to form

powerful ensembles. An example of such a novel technique

is called AutoRec [23]. The I-AutoRec method [24] has the

best benchmark RMSE on the ML-1M dataset. There have

been variations of stacked autoencoder approaches that add

Gaussian noise to make them generalize better [25]. This

helps discover more robust features versus simply learning

the identity function. Deep collaborative filtering (DCF)

[26] leverages side information for outperformance with

the treatment of dense and categorical features into a

powerful network. This method uses a user autoencoder

and an item autoencoder to learn a compressed represen-

tation of the user and item features, respectively. These are

used alongside the latent features learned from matrix

factorization of the rating matrix. Side information inte-

gration [27] has been accomplished by extending the

construction of embeddings by neural networks to a col-

laborative filtering setting. COFILS, Collaborative Filter-

ing to Supervised Learning [28] uses the values of the

compressed representation of users and items resulting

from CF into a subsequent model as features, to further

achieve outperformance. A-COFILS [29] extended

COFILS to use autoencoders to generate user and item

features but in a way that is similar to the DCF technique

that was explained earlier. Combining matrix factorization

methods and autoencoders [30] has been used as a way to

learn effective latent representations using deep learning. It

models the mappings between the latent factors used in CF

and the latent layers in deep models. This has the best-

reported benchmarks on the BookCrossing and ML 100 K

datasets.

The existing approaches have several drawbacks. Stand-

alone autoencoder based recommender systems suffer from

poor predictive accuracy. That is the reason they have not

seen adoption to the levels of collaborative filtering

methods. Deep collaborative filtering is able to generate

high predictive accuracy but the features engineered from

the side information tend to be domain-specific. COFILS

approach does not make use of embeddings and therefore

misses out on rich representations that can be learned by

these embeddings. Our approach has several differences to

prior approaches like [23–28]. Instead of using AutoRec

for rating prediction, we take the activations of the bot-

tleneck layers for the user autoencoder and the item

autoencoder and use them as features in a subsequent deep

neural network along-with embedding. Our method differs

from the DCF approach as we do not make use of any side

information and the user and item autoencoders in our

model are based on the user and item identifiers only. That

said and done, our approach is scalable enough to take

advantage of side information and is domain agnostic in the

sense that no domain-specific information are engineered

using the side information. The semantic similarity of

COFILS with our approach is that our method uses latent

features that are learned by the autoencoders as features in

a particular instance of supervised learning, namely a deep

neural network. The differences with COFILS are that our

approach is based on an autoencoder that can learn non-

linear latent features, and we also make use of embeddings.

Further we use a DNN which was not used in COFILS.

Further, these features were combined using a random

forest technique in A-COFILS and not using a DNN, like in

the proposed DAFERec solution.

As we see, autoencoders have been employed as stand-

alone recommender systems, and the activations from the

inner-most layer have been used as features in non-rec-

ommender system applications. Based on our research, we

believe this is the first time that the activations from the

innermost layer of the user and item autoencoders have

been used as features in a DNN solution in combination

with embeddings for recommender systems to achieve

outperformance. While autoencoders have been employed

in recommender systems in a stand-alone way, there is no

study to the best of our knowledge that uses the features

learned by the autoencoders in a recommender system.

Neural Computing and Applications (2021) 33:14167–14177 14169

123

3 Proposed solution DAFERec (deep neural
network with autoencoder features
and embeddings for RS)

We present a framework for rating prediction by a rec-

ommender system. The solution has two major parts,

namely extraction of features using an autoencoder and

prediction in a DNN incorporating these features. The

extraction of features is achieved by training a user

autoencoder and an item autoencoder for recommenda-

tions. Prediction involves combining the activations of the

bottleneck layer of the user autoencoder and item autoen-

coder along-with the embeddings for the user and item

identifiers into a deep neural network. Table 1 has the

symbol list and their corresponding meanings.

3.1 Feature extraction using item autoencoder
and user autoencoder

The first step in our solution is to build an autoencoder to

predict the ratings. The first step in the solution is to create

a rating matrix from the list of user; item; ratingh i tuples.

The pivot operation is standard in several programming

languages, and we will not go into the intricacies of the

data preparation. The explanations below are for the item

autoencoder. The same holds true for the user autoencoder

except that the rating matrix will be the user-item matrix

instead of the item-user matrix that is used for the item

autoencoder. As in Table 1, R 2 Rm�n is an observed user-

item rating matrix, U ¼ fU1;U2;U3:::::Umg is a list of

users, I ¼ fI1; I2; I3:::::Ing is a list of items, r
ðuÞ
U ¼

ðRu1;Ru2; :::::RunÞ 2 Rn and r
ðiÞ
I ¼ ðRi1;Ri2; :::::RimÞ 2 Rm

refer to the individual rows of the user-item rating matrix

and the item-rating matrix respectively. Given that we refer

to R as the rating matrix, the simple transpose operation of

R, denoted by, RT is the item-rating matrix. Clearly, the

user autoencoder has the user identifiers as inputs and the

item identifiers as features, while the item autoencoder has

the item identifiers as inputs and the user identifiers as

features. The inputs to the user autoencoder and the item

autoencoder are denoted by EU and EI respectively and

shown in Eqs. (1) and (2) below.

EU ¼
r
ð1Þ
U

rð2ÞU
. . .
r
ðmÞ
U

0
BB@

1
CCAis the input to the user autoencoder ð1Þ

And

EI ¼
r
ð1Þ
I

r
ð2Þ
I

. . .
r
ðmÞ
I

0
BB@

1
CCAis the input to the item autoencoder ð2Þ

Table 1 Notations and

meanings
Symbol Meaning

U, I;ri;j;t Number of users and items; rating to an item j by user i at time t

R 2 Rm�n User-item rating matrix

rðuÞu
Row of ratings to items by user u

Ruy Rating to item y by user u

r
ðiÞ
i

Row of ratings given by users to item i

Rix Rating to item x by a user i

WH , bH Weight matrix and bias of the affine portion of the layer

hi Hidden nodes in the i th layer

ReLUðxÞ Keeps the positive values as-is and transforms the non-0 values to 0

p Dropout probability

concatðv1; v2Þ Combine vectors v1 and v2 into a single vector

n batch Number of batches

rðxÞ rðxÞ ¼ 1
1þe�x

xt One-hot vector for the levels in the categorical variable

V � xt Embedding for the categorical variable

KU User factors

KI Item factors

n emb Number of embeddings

f ðr; hÞ Reconstruction of input r 2 Rd

14170 Neural Computing and Applications (2021) 33:14167–14177

123

The item-based autoencoder takes as input the values of

r
ðiÞ
U for each user and attempts to recreate the values at the

output, after passing these values through a low-dimen-

sional latent space. The item autoencoder architecture is

shown in Fig. 1.

The user autoencoder architecture is very similar to only

input differences, as explained earlier and is shown in

Fig. 2. The autoencoder learns the identify function

through various order feature interactions that are com-

bined in its innermost layers. This can be formally

expressed as Eq. (3), where f ðr; hÞ is the reconstruction of

the input r 2 Rd

min
X
r2S

jjðr � f ðr; hÞÞjj
2

ð3Þ

The equations for the user autoencoder are given by

Eqs. (4) to (6). As we see, the encoder E follows an affine

transformation RU with a nonlinear sigmoid transformation

in (4), which is followed by a lower-dimensional affine and

nonlinear sigmoid transformation in (5). The decoder is the

exact mirror image of the encoder in the opposite direction,

meaning the number of hidden nodes increases, as we see

in Fig. 2. The parameters h are learned through back-

propagation. To ensure efficient autoencoder training, a

batch normalization step is added after each hidden layer.

We have not explicitly shown the regularization term in the

autoencoder equation, as the same is achieved by a com-

bination of the weight decay parameter in the Adam

Optimizer and dropouts in the different layers of the

encoder and the decoder as shown in Fig. 2. The weight

decay and the dropouts are used to regularize the weights

so that the approach generalizes.

E ¼ r W2: r W1:R
I þ b1

� �� �
þ b2

� �
ð4Þ

D ¼ rðW3:E þ b3Þ ð5Þ
f ðr; hÞ ¼ W4:Dþ b4 ð6Þ

For the item autoencoder, the equations are given in (7)

to (9), and they are similar to the equations in (4) to (6).

E ¼ r W2: r W1:R
U þ b1

� �� �
þ b2

� �
ð7Þ

D ¼ rðW3:E þ b3Þ ð8Þ
f ðr; hÞ ¼ W4:Dþ b4 ð9Þ

3.2 DNN integrating user and item embeddings
with user and item autoencoder features

In Step 2 of the solution, the activations of the bottleneck

layers of the user autoencoder and item autoencoder are

used as features in a Deep Neural Network (DNN) as

shown in the solution flow diagram in Fig. 4. The

autoencoder features are used in combination with

embeddings for the users and items, all together as inputs

into a DNN. Figure 3 contains the overall architecture of

Step 2 of the solution. Embeddings are an alternate rep-

resentation of the one-hot encoding or dummy variable

coding in traditional machine learning. They are dense

lookup matrices that return a dense array for each identifier

instead of a single one-hot encoded vector. They are able to

learn a richer representation of the identifier in multiple

dimensions. The weights of these embeddings are learned

like any other features, similar to the autoencoder derived

features in our solution.

Figure 4 presents the overall solution architecture.

Fig. 1 Item autoencoder architecture—Example for ML1M dataset (Step 1)

Neural Computing and Applications (2021) 33:14167–14177 14171

123

Our proposed solution has two hidden layers that are

basically an affine followed by a ReLU transformation.

Dropouts enable regularization and help in a generalized

solution. The batch normalization ensures that similar to

the inputs being on the same scale, which helps in faster

convergence, the intermediate layers also have the same

benefit. While our proposed solution has encompassed two

hidden layers, an arbitrary number of hidden layers might

be added to create a deeper neural network. Figure 4

depicts the overall flow of the solution.

The outputs of each of the hidden layers in the DNN are

shown in Eqs. (10) to (12) below. As we see, each of the

hidden layers perform an affine and nonlinear ReLU acti-

vation in consecutive order. The output of the innermost

Fig. 2 User autoencoder architecture for ML-1M dataset. Similar to item autoencoder

Fig. 3 DAFERec architecture: proposed solution

14172 Neural Computing and Applications (2021) 33:14167–14177

123

layer is passed through a sigmoid activation function, as

shown in Eq. (13). The resulting output, which is a real

number between 0 and 1, is then transformed to the rating

scale, as shown in (14). (15) shows the entire list of

operations performed on the input

X1 ¼ dropout1ðReLUðW1 � X0 þ b1ÞÞ ð10Þ
X2 ¼ dropout2ðReLUðW2 � X1 þ b2ÞÞ ð11Þ
X3 ¼ dropout3ðReLUðW3 � X2 þ b3ÞÞ ð12Þ
routput ¼ rðX3Þ ð13Þ

output ¼ min
rating

þroutput � max
rating

� min
rating

� �
ð14Þ

routput ¼ r dropout3 ReLU W3 � dropout2ððð
ReLU � W2 � dropout1 ReLUðW1 � X0 þ b1ð Þð Þð Þ þ b2ð ÞÞ þ b3ÞÞ

ð15Þ

Considering a motivational example of ML 100 K

dataset, that has 100,836 ratings from 6000 users for 4000

items. The first step of DAFEREC will create an user

autoencoder that has 4000 features at the input and the

same is attempted to be replicated at the output. The second

step of DAFEREC will create an item autoencoder that has

6000 features at the input and the same are attempted to be

replicated at the output. The inner-most layers of the user

autoencoder and item autoencoder have 25 features each,

say, for example. The third step of DAFEREC uses a Deep

Neural Network with the 25 user autoencoder features

combined with the 25 item autoencoder features, along-

with the user and item embeddings, thus learning a very

rich representation from incorporating multiple

nonlinearities.

4 Experimental setup, results and discussion

This section presents the dataset, holdout dataset creation

methodology, criteria for evaluation and describes how the

comparative methods were implemented.

4.1 Datasets used

In this paper, we considered MovieLens data. The bench-

mark MovieLens 100 K (ML100k) and MovieLens 20 M

(ML 0M) datasets are used for experimentation. Of the

different MovieLens datasets, the ML20M dataset and

ML100K datasets are employed for this study. ML20M

dataset has 20 million ratings while the ML100k dataset

has 100,000 ratings. These datasets do not include any

demographic data, include tagging features, and map the

MovieLens movies to IMDB and YouTube. ML20M

dataset is employed as it is the suggested dataset for

research. ML100K dataset has a smaller set of users but is

similar in format and structure to the ML20M dataset and is

the dataset that is recommended for research and devel-

opment. Both these datasets are provided by GroupLens. In

addition to movie recommendation datasets, we also con-

sidered book recommendations. The BookCrossing [31]

dataset was utilized for book recommendation that consists

Fig. 4 DAFERec overall flow: proposed solution

Neural Computing and Applications (2021) 33:14167–14177 14173

123

of book ratings provided by users. It is a relatively large

dataset as we see in Table 2 with over a million ratings. In

addition to the above three datasets, we also considered the

FilmTrust dataset [32] that also contains side information.

The characteristics of these datasets are in Table 2.

4.2 Side information

The use of side information in algorithm construction has

been employed in several studies, and they also present a

way of addressing the cold-start issue. The experiments

were performed without using side information. Side

information was not considered as these are not available

for all the datasets, and the goal is to achieve the state-of-

the-art considering just the user; item; ratingh i tuples. Fur-

ther, most of the benchmark papers on these datasets have

state-of-the-art scores for the datasets without side infor-

mation. So, while DAFERec has the capability to incor-

porate side information, the same was not attempted in this

paper. Additional information available about the user and

item profiles was not considered for reasons already stated.

The BookCrossing dataset contains attributes of books like

author, title, ISBN, publisher and also attributes of authors

like title, gender, age, location, etc. Incorporating side

information into DAFERec is actually very straightforward

and just involves stacking the features from the side

information as input into the first hidden layer in Fig. 3.

Incorporating these would further improve the results of

DAFERec, but a comparison against the state-of-the-art in

the benchmark papers would not be possible. TrustSVD is

not comparable to our proposed solution as it uses side

information about the users and items. We include a ref-

erence to this method as the best-reported RMSE on the

FilmTrust dataset is using this method. Only for the pur-

poses of comparison, our solution has been tested with side

information for the FilmTrust cases to ensure an apple-to-

apple comparison.

4.3 Evaluation metrics

To be able to benchmark the solution against existing

papers, multiple evaluation criteria were considered like

the L1-error (also called MAE, that penalizes the absolute

deviation), the L2-error (also called MSE, that penalizes

larger errors more severely) and a penalization that is in

between like the RMSE. Equations (15) to (17) contain the

forms of RMSE, MSE and MAE respectively.

RMSE ¼

ffi
Xm;n
i;j

Tij ractual
ij � rpredicted

ij

� �2

vuut ð16Þ

MSE ¼
Xm;n
i; i

Tij ractual
ij � r

predicted
ij

� �2

ð17Þ

MAE ¼
Xm;n
i;j

Tij ractual
ij � rpredicted

ij

� �			
			 ð18Þ

4.4 Comparison with existing approaches

Other than these, the best scores reported by recommender

system packages like LibRec, LensKit, MyMediaLite, and

Surprise were also considered.The same cross-validation

methodology that was used in the benchmark papers and

software systems was used in our study. The set of

benchmark papers considered in our study are in Table 3.

5 Results and discussion

Before we discuss the results, we present our testing pro-

cess and validation approach.

5.1 Testing process and validation approach

To be able to compare our solution against the reported

benchmarks on the six datasets, it is important to use the

same evaluation metric that was used in the papers that

reported the benchmark results. Since different papers used

different metrics like MSE, RMSE, and MAE, we used the

same metrics to evaluate algorithm performance. The

existing approaches test environment is similar to the

benchmark reference papers in Table 3.

5.2 Results

Here, we discuss the results that are presented. We see that

the proposed solution in the paper, DAFERec, outperforms

on all the benchmark datasets. The proposed solution is

benchmarked against some key papers in the area and the

software tools that are listed in Table 3. As already men-

tioned, to ensure comparability, the validation and training

split for the datasets were chosen to be the same as that in

the benchmark papers. The tenfold cross-validation tech-

nique that we used ensures the reliability of the obtained

results.The MSE, RMSE, and MAE metrics for the dif-

ferent methods are tabulated in Table 4. We have made our

implementation available for reproducing the results.1 The

DAFEREC hyper-parameters and architecture for each of

the datasets is optimized on the respective datasets using

the holdout dataset.

1 https://github.com/efpm04013/experiment3.

14174 Neural Computing and Applications (2021) 33:14167–14177

123

https://github.com/efpm04013/experiment3

5.3 Performance delta against existing methods

Table 5 shows the extent of outperformance of DAFERec

against the comparative studies.

We see that DAFERec beats the benchmarks reported in

the literature for the four datasets of varying sizes. We have

demonstrated the outperformance of DAFERec on different

datasets. Based on the results, we see that the outperfor-

mance is on datasets of varying sizes and sparsity. Note

that the outperformance on the BookCrossing dataset is

rather stark, and the reason for the same is that there are not

many benchmarks available for the BookCrossing recom-

mendation dataset. The explanation of the outperformance

is that it is due to the nonlinear latent features about users

and items that are captured by the user autoencoder and the

item autoencoder, respectively.

6 Conclusion and future research

Improving the predictive accuracy of recommender sys-

tems has very useful management implications as it limits

the choice overload resulting in better choices for users and

more profits for businesses. We propose a novel solution

called DAFERec (Deep Autoencoders for Feature Learning

with Embeddings for Recommendations). DAFERec

combines the inner-most activations of the autoencoders as

features into a DNN together with the embeddings. The

higher order innermost nonlinear latent features from the

user autoencoder and the item autoencoder are employed to

enable the DNN to learn a compressed higher order rep-

resentation. The usage of latent variables in recommender

systems is to exploit the underlying user preferences or

item characteristics. This work proposes a novel approach

to feature engineering in recommender systems using fea-

tures from the bottleneck layers of the autoencoder in

combination with embeddings in a DNN to generate rec-

ommendations. This method learns linear and nonlinear

latent variables from both the autoencoder features as well

as the embeddings, resulting in a rich feature set that is

exploited by the DNN for improved system performance.

Our approach provides a useful way to learn effective

linear and nonlinear latent factors to improve recommender

system performance. We also propose a systematic and

easy way to integrate auxiliary information as additional

features into our architecture and demonstrate the outper-

formance on the FilmTrust dataset, where the existing

state-of-the-art TrustSVD method used side information.

Details about the type of side information used is in

Sect. 4.2.

There are several opportunities for further research. One

opportunity could be to understand the additional value that

side information about users and items could bring to the

predictive accuracy of the recommender systems. A study

could incorporate all the side information from each of the

datasets to publish the state-of-the-art possible with such

addition. No such study exists, and most of the studies are

concentrated on the MovieLens, Epinions, and Netflix

datasets. Part of this study could also focus on the benefits

Table 2 Datasets used for experimentation

Dataset Users Items Ratings Sparsity Scale

BookCrossing 278,858 271,379 1,149,780 99.99% [0–10]

ML100K 610 9742 100,836 93.7% [1–5]

ML1M 6000 4000 1,000,000 95.8% [1–5]

FilmTrust 1508 2071 35,497 98.86% [1–5]

Table 3 Comparative

benchmarks on the considered

datasets

Referenced data Reference paper Side information included? RMSE MAE

Book crossing mDA-CF [33] N 2.251 NA

FilmTrust TrustSVD [34] Y 0.789 0.609

BiasedMF[34] N 0.802 0.616

MovieLens 100 K mDA-CF [26] N 0.8852 0.68

ItemKNN [35] N 0.899 0.703

MovieLens 1 M I-AutoRec [24] N 0.831 NA

mDA-CF [33] N 0.8416 NA

SVD? ? [36] N 0.851 0.668

Table 4 Results of running DAFERec on the different datasets

SI# Dataset RMSE MAE

1 BookCrossing 1.6160 1.24

2 FilmTrust 0.7905 0.609

3 FilmTrust (with side information) 0.781 0.601

4 MovieLens 100 K 0.8545 0.6679

5 MovieLens 1 M 0.8268 0.643

Neural Computing and Applications (2021) 33:14167–14177 14175

123

of side information for users and items with many ratings

versus the ones with few ratings so that the utility of the

auxiliary information in several cases is comparable. The

incremental value from a denoising autoencoder could also

be incorporated. A denoising autoencoder corrupts infor-

mation randomly in the input to help increase the gener-

alization and prevent the learning of just an identity

function. Such a study could help identify if there is

incremental value and the extent of the incremental value

of denoising autoencoders. One of the limitations of the

study is that autoencoders are slow to train compared to

other linear matrix factorization methods. A part of future

work could also be to optimize the computation of our

algorithm for training time and prediction time

considerations.

Funding Not applicable.

Data availability Publicly datasets used with links below.Book-

Crossing: http://www2.informatik.uni-freiburg.de/*cziegler/BX/BX-

CSV-Dump.zip, MovieLens100K: http://files.grouplens.org/datasets/

movielens/ml-latest-small.zip, MovieLens1M: http://files.grouplens.

org/datasets/movielens/ml-1m.zip, FilmTrust: https://www.librec.net/

datasets/filmtrust.zip.

Code availability Code made available for reproducible research at

https://github.com/efpm04013/experiment3.

Declarations

Conflict of interests Not Applicable.

References

1. Aggarwal CC (2016) An introduction to recommender systems.

RecomSyst. https://doi.org/10.1007/978-3-319-29659-3_1

2. Ketkar N (2017) Introduction to pytorch. Deep learning with

python. Apress, Berkeley, pp 195–208. https://doi.org/10.1007/

978-1-4842-2766-4_12

3. Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B,

Zhang C, Zhang, Z. (2015) MXNet: a flexible and efficient

machine learning library for heterogeneous distributed systems.

https://doi.org/10.1145/2532637

4. Google (2018) Tensorflow. 2018

5. Kiran R, Kumar P, Bhasker B (2020) DNNRec: a novel deep

learning based hybrid recommender system. Expert SystAppl.

https://doi.org/10.1016/j.eswa.2019.113054

6. Lee W, Song K, Moon IC (2017) Augmented variational

autoencoders for collaborative filtering with auxiliary informa-

tion. In: Proceedings of the 2017 ACM on conference on infor-

mation and knowledge management - CIKM ’17. pp 1139–1148.

https://doi.org/10.1145/3132847.3132972

7. Langville A (2005) Nonnegative matrix factorization. Matrix

25(6):1336–1353. https://doi.org/10.1109/TPAMI.2011.18

8. Salakhutdinov R, Mnih A (2008) Bayesian probabilistic matrix

factorization using Markov chain Monte Carlo. In: Proceedings

of the 25th international conference on machine learning - ICML

’08. https://doi.org/10.1145/1390156.1390267

9. Sarwar BM., Karypis G, Konstan JA, Riedl JT (2000) Applica-

tion of dimensionality reduction in recommender system - a case

study. Architecture. https://doi.org/10.1138/744

10. Guo G, Zhang J, Yorke-Smith N (2015) TrustSVD: collaborative

filtering with both the explicit and implicit influence of user trust

and of item ratings. In: Proceedings of the national conference on

artificial intelligence.

11. Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restricted

Boltzmann machines for collaborative filtering. In: Proceedings

of the 24th international conference on Machine learning - ICML

’07. pp 791–798. https://doi.org/10.1145/1273496.1273596

12. He X, Liao L, Zhang H, Nie L, Hu X, Chua T-S (2017) (NCF)

Neural collaborative filtering. https://doi.org/10.1145/3038912.

3052569

13. Catherine R, Cohen W (2017) Transnets. In: Proceedings of the

eleventh ACM conference on recommender systems - RecSys

’17. pp 288–296. https://doi.org/10.1145/3109859.3109878

14. Cheng HT, Ispir M, Anil R, Haque Z, Hong L, Jain V, et al.

(2016) Wide & deep learning for recommender systems. In:

Proceedings of the 1st workshop on deep learning for recom-

mender systems - DLRS 2016. pp 7–10. https://doi.org/10.1145/

2988450.2988454

15. van den Oord A, Dieleman S, Schrauwen B (2013) Deep content-

based music recommendation. Electron InfSyst Depart (ELIS).

https://doi.org/10.1109/MMUL.2011.34.van

16. Liang D (2014) Content-aware collaborative music recommen-

dation using pre-trained neural networks. In: ISMIR 2015: Pro-

ceedings of the 16th international society for music information

retrieval conference. pp 295–301

17. Tan J, Wan X, Xiao J (2016) A neural network approach to quote

recommendation in writings. In: Proceedings of the 25th ACM

international on conference on information and knowledge

management - CIKM ’16. pp 65–74. https://doi.org/10.1145/

2983323.2983788

18. Bansal T, Belanger D, McCallum A (2016) Ask the GRU. In

Proceedings of the 10th ACM conference on recommender

Table 5 Performance Delta of

DAFERec vs. comparative

studies

Dataset Reference Paper Side Information included? RMSE MAE

BookCrossing mDA-CF [33] N 28% NA

FilmTrust TrustSVD [34] Y 1% 1.3%

BiasedMF [34] N 1.4% 1.1%

MovieLens 100 K mDA-CF [26] N 3.5% 1.8%

ItemKNN [35] N 4.9% 5%

MovieLens 1 M I-AutoRec [24] N 0.5% NA

mDA-CF [33] N 1.8% NA

SVD ? ? [36] N 2.8% 4.1%

14176 Neural Computing and Applications (2021) 33:14167–14177

123

http://www2.informatik.uni-freiburg.de/~cziegler/BX/BX-CSV-Dump.zip
http://www2.informatik.uni-freiburg.de/~cziegler/BX/BX-CSV-Dump.zip
http://files.grouplens.org/datasets/movielens/ml-latest-small.zip
http://files.grouplens.org/datasets/movielens/ml-latest-small.zip
http://files.grouplens.org/datasets/movielens/ml-1m.zip
http://files.grouplens.org/datasets/movielens/ml-1m.zip
https://www.librec.net/datasets/filmtrust.zip
https://www.librec.net/datasets/filmtrust.zip
https://github.com/efpm04013/experiment3
https://doi.org/10.1007/978-3-319-29659-3_1
https://doi.org/10.1007/978-1-4842-2766-4_12
https://doi.org/10.1007/978-1-4842-2766-4_12
https://doi.org/10.1145/2532637
https://doi.org/10.1016/j.eswa.2019.113054
https://doi.org/10.1145/3132847.3132972
https://doi.org/10.1109/TPAMI.2011.18
https://doi.org/10.1145/1390156.1390267
https://doi.org/10.1138/744
https://doi.org/10.1145/1273496.1273596
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3109859.3109878
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1109/MMUL.2011.34.van
https://doi.org/10.1145/2983323.2983788
https://doi.org/10.1145/2983323.2983788

systems - RecSys ’16. pp 107–114. https://doi.org/10.1145/

2959100.2959180

19. Ko Y-J, Maystre L, Grossglauser M, Durrant RJ, Kim K-E (2016)

Collaborative recurrent neural networks for dynamic recom-

mender systems. JMLR 63:366–381. https://doi.org/10.1109/

ICDE.2016.7498326

20. Balakrishnan A (2014) Deepplaylist: using recurrent neural net-

works to predict song similarity. In: Stanfort University, pp 1–7.

Retrieved from https://cs224d.stanford.edu/reports/Balakrishnan

Dixit.pdf

21. Wu Y, DuBois C, Zheng AX, Ester M (2016) Collaborative

denoising auto-encoders for top-N recommender systems. In:

Proceedings of the ninth ACM international conference on web

search and data mining - WSDM ’16. pp 153–162. https://doi.org/

10.1145/2835776.2835837

22. Li X, She J (2017) Collaborative variational autoencoder for

recommender systems. In: Proceedings of the 23rd ACM

SIGKDD international conference on knowledge discovery and

data mining - KDD ’17. pp 305–314. https://doi.org/10.1145/

3097983.3098077

23. Sedhain S, Menon AK, Sanner S, Xie L (2015) Autorec:

autoencoders meet collaborative filtering. In: WWW 2015 com-

panion: proceedings of the 24th international conference on world

wide web. pp 111–112. https://doi.org/10.1145/2740908.2742726

24. Sedhain S, Menon AK, Sanner S, Xie L (2015) Autorec:

autoencoders meet collaborative filtering. In: 24th international

conference on world wide web. https://doi.org/10.1145/2740908.

2742726

25. Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008)

Extracting and composing robust features with denoising

autoencoders. In: Proceedings of the 25th international confer-

ence on machine learning - ICML ’08. https://doi.org/10.1145/

1390156.1390294

26. Li S, Kawale J, Fu Y (2015) Deep collaborative filtering via

marginalized denoising auto-encoder. In: Proceedings of the 24th

ACM international on conference on information and knowledge

management - CIKM ’15. pp 811–820. https://doi.org/10.1145/

2806416.2806527

27. Strub F, Gaudel R, Mary J (2016) Hybrid recommender system

based on autoencoders. In: proceedings of the 1st workshop on

deep learning for recommender systems - DLRS 2016. pp 11–16.

https://doi.org/10.1145/2988450.2988456

28. Braida F, Mello CE, Pasinato MB, Zimbrão G (2015) Trans-

forming collaborative filtering into supervised learning. Expert

SystAppl. https://doi.org/10.1016/j.eswa.2015.01.023

29. Barbieri J, Alvim LGM, Braida F, Zimbrão G (2017) Autoen-

coders and recommender systems: COFILS approach. Expert

SystAppl 89:81–90. https://doi.org/10.1016/j.eswa.2017.07.030

30. Strub F, Mary J, Strub F, Mary J, Filtering C, Autoencoders D,

Strub F (2015) Collaborative filtering with stacked denoising

autoencoders and sparse inputs. In: NIPS workshop on machine

learning for ecommerce, December 2015

31. Ziegler CN, McNee SM, Konstan JA, Lausen G (2005)

Improving recommendation lists through topic diversification.

https://doi.org/10.1145/1060745.1060754

32. Guo G, Zhang J, Yorke-Smith N (2013) A novel bayesian simi-

larity measure for recommender systems. In: IJCAI international

joint conference on artificial intelligence

33. Li S, Kawale J, Fu Y (2015) Deep collaborative filtering via

marginalized denoising auto-encoder. https://doi.org/10.1145/

2806416.2806527

34. LibRec - Examples & Comparison with Other Recommendation

Libraries (n.d.). Retrieved 24 Nov 2018, from https://www.librec.

net/release/v1.3/example.html

35. LibRec - Examples & comparison with other recommendation

libraries. (n.d.). Retrieved 27 July 2019, from https://www.librec.

net/release/v1.3/example.html

36. MyMediaLite: Example Experiments. (n.d.). Retrieved 24 Nov

2018, from http://www.mymedialite.net/examples/datasets.html

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:14167–14177 14177

123

https://doi.org/10.1145/2959100.2959180
https://doi.org/10.1145/2959100.2959180
https://doi.org/10.1109/ICDE.2016.7498326
https://doi.org/10.1109/ICDE.2016.7498326
https://cs224d.stanford.edu/reports/BalakrishnanDixit.pdf
https://cs224d.stanford.edu/reports/BalakrishnanDixit.pdf
https://doi.org/10.1145/2835776.2835837
https://doi.org/10.1145/2835776.2835837
https://doi.org/10.1145/3097983.3098077
https://doi.org/10.1145/3097983.3098077
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/2806416.2806527
https://doi.org/10.1145/2806416.2806527
https://doi.org/10.1145/2988450.2988456
https://doi.org/10.1016/j.eswa.2015.01.023
https://doi.org/10.1016/j.eswa.2017.07.030
https://doi.org/10.1145/1060745.1060754
https://doi.org/10.1145/2806416.2806527
https://doi.org/10.1145/2806416.2806527
https://www.librec.net/release/v1.3/example.html
https://www.librec.net/release/v1.3/example.html
https://www.librec.net/release/v1.3/example.html
https://www.librec.net/release/v1.3/example.html
http://www.mymedialite.net/examples/datasets.html

	Deep autoencoders for feature learning with embeddings for recommendations: a novel recommender system solution
	Abstract
	Introduction
	Past work
	Proposed solution DAFERec (deep neural network with autoencoder features and embeddings for RS)
	Feature extraction using item autoencoder and user autoencoder
	DNN integrating user and item embeddings with user and item autoencoder features

	Experimental setup, results and discussion
	Datasets used
	Side information
	Evaluation metrics
	Comparison with existing approaches

	Results and discussion
	Testing process and validation approach
	Results
	Performance delta against existing methods

	Conclusion and future research
	Code availability
	References

