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Abstract
This paper proposed a two-stage Voxel-based 3D Object detector which named GVnet. Voxel-based method mainly relies

on sampling and Grouping point in voxel and the feature map generated by subsequent 3D CNN to control the quality of

detection. Moreover, traditional voxel feature encoder (VFE) methods cannot adjust the quality of feature map through

reasonable sampling. Therefore, the method we propose is an improvement to the existing VFE. The specific operations

are: First calculate the corresponding Gaussian distribution of the original point cloud data, and then sampling any number

of points by controlling the confidence value to improve the performance of voxel encoder and further improve the quality

of the feature map output by the 3D CNN. In addition, a voxel ROI pooling method is proposed in stage two. In ROI

Pooling, the receptive field in the original space and the corresponding raw point are obtained through the mapping

relationship between feature and ROI, then change the raw point to adjust the receptive field to improve the performance of

classification and regression. Finally, the experimental results on the KITTI, nuScenes and Waymo dataset show that the

performance of GVnet under most of the evaluation indexes is better than the current detection methods, at the cost of only

a small amount of inference time.

Keywords 3D detection � Voxel-based detector � Gaussian-voxel feature encoding � Voxel-ROI pooling

1 Introduction

Three-dimensional detection is one of the most important

issues in the environment perception of autonomous driv-

ing, and many outstanding researches have emerged. These

tasks are usually divided into the types of sensors used:

Lidar-based and multi-sensor fusion (usually

RGB ? Lidar).

Some representative works based on multi-sensor fusion

such as: Chen et al. [1] use a compact multi-view repre-

sentation to encode sparse 3D point clouds, and propose a

multi-layer fusion strategy. Ku et al. [2] further extend [1],

by inputting RGB image and BEV (Bird’s Eye View) Map,

using FPN [3] network to obtain the full resolution feature

map of the two, and then extracting two feature map cor-

respondences through crop&resize Feature crops are inte-

grated to achieve 3D inspection. Liang et al. [4] Proposed

Continuous Fusion Layer to fuse multi-scale image fea-

tures into radar features. Qi et al. [5] use the combination of

dimensionality reduction technology and mature 2D object

detectors to complete the detection process. Liang et al. [6]

can achieve a fully integrated feature representation by

using the fusion between point-wise and ROI-wise fea-

tures. Xu et al. [7] process the image data and original point

cloud data separately with CNN and PointNet architec-

tures, and then combine the output obtained by the new

fusion network. Wang et al. [8] designed a dense pixel-

level fusion method to integrate the features of RGB data

and point cloud in a more appropriate way. Vora et al.

[9]project each lidar point into the output of the image

semantic segmentation network, and connects the channel

direction activation with the intensity measurement of each
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lidar point to strengthen the point cloud through the image

semantics.

For detection methods based on multi-sensor fusion,

most of the work is to project point clouds onto RGB

images to obtain dense expression, although in principle

they can combine the advantages of multiple sensors to

further improve the detection result, but the specific fusion

method still needs further research and development,

including how to improve the fusion effect and reduce the

processing time.

Some representative works of Lidar-based detection

methods such as: Zhou et al. [10] cooperate with BEV and

perspective drawing, effectively using the information of

the two to complement each other, and proposes the con-

cept of dynamic voxelization, so that each point can be

different Perspective learning integrates contextual infor-

mation. Yang et al. [11] proposed a point-based spherical

anchor point cloud target detection scheme generation

model, which is universal to achieve high recall. And put

forward the PointsPool layer, which integrates the advan-

tages of point-based and voxel-based methods to achieve

efficient and effective prediction. Lang et al. [12] use [13]

to learn the characteristics of the point cloud in the vertical

columnar organization, and convert the complex three-di-

mensional point cloud space into a two-dimensional plane

space. Shi et al. [14] detect 3D objects from the original

point cloud, and directly generates a 3D scheme from the

point cloud, which has a higher recall rate than the previous

scheme generation method. Yang et al. [15] use a BEV to

represent the scene to estimate three-dimensional objects

based on pixel-level neural networks. Ali et al. [16]use the

method of deconvolution and connect the features layer by

layer, so that the network can retain location information

when acquiring deeper feature information. Shi et al. [17]

further expand [14] and makes better use of box label

information.Kuang et al. [18] improved [19], processed

voxel of multiple scales, and improved detection accuracy

by fusing with feature maps of different layers. Chen et al.

[20] effectively integrate the coordinate and index convo-

lution features of each point with the attention mechanism,

which not only retains accurate positioning information,

but also retains context information. Yang et al. [21]de-

signed a new SA module and discarded the FP module

[22], making the detection time up to 25FPS.

For Lidar-based detection, part of the work uses the

Point-based method to directly process each point. The

advantage of this method is that the information obtained is

more sufficient, and the experience field is flexible and

variable, but the disadvantage is that for the large scene of

unmanned driving, the number of points is often very large,

and the point-based method will encounter the challenge of

huge amount of calculation. Another part of the work uses

the voxel-based method, which uses 3D CNN to reduce

computing time by converting the original data space into a

series of voxels, but the disadvantage is that the quality of

the voxel feature directly affects the detection results, and

the receptive field cannot be flexibly changed.

In response to the above problems, this paper proposes a

Voxel-based method that only uses Lidar information as

input. Grouping raw points by establishing a Gaussian

model, by sampling and grouping to generate high-quality

feature map and further improve the detection accuracy.

2 Our method

This paper proposes a two-stage detector Gaussian-Voxel

Detection Network (GVnet). In stage one, Gaussian-Voxel

Feature Encoding is used for the raw point cloud, then

voxelization is carried out, next, 3D CNN is used to gen-

erate high-quality feature maps, the feature map is passed

as input to the RPN network [23] to generate a series of 3D

proposals.

In stage two, voxel-ROI pooling was used to improve

the RPN performance. The corresponding receptive field is

obtained through the mapping relationship between raw

point and feature map in voxel. Then, the receptive field is

regulated by sampling any point of the Gaussian model

corresponding to the raw point. This makes the features

corresponding to the proposal stronger, and improves the

effect of classification and regression tasks.

The overall framework of GVnet is shown in Fig. 1.

2.1 Gaussian-voxel feature encoding

Traditional VFE [17] first needs grouping and sampling

raw point, and these two steps directly affect the quality of

subsequent refinement. The usual operation in Sampling

processing is to unify the number of points contained in

each voxel. Suppose we set the number of points contained

in each voxel to k. If the number of points actually con-

tained in the Voxel is j, when j[ k, the points in voxel are

randomly dropout. If j\ k, add a certain amount of points

to this voxel. The supplement methods include: (1) Add a

series of points with a value of 0. (2) Copy some points in

voxel. Obviously, there is a gap between the characteristics

of the point and the raw point obtained after sampling using

the above method, which is not conducive to the subse-

quent 3D CNN for feature extraction.

In response to the above problems, this article proposes

a new VFE method. First, perform Gaussian clustering on

the raw data to obtain a series of Gaussian models that the

class obeys, and then voxelize the overall data. When

sampling each non-empty voxel, use the Gaussian model

corresponding to the voxel to perform this operation. This

can keep the generated point and raw point features similar
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to the greatest extent, and improve the effect of the enco-

der. For the disorder of point cloud data, the Gaussian

mixture model(GMM) [24] can be used for a good

description.

First define xj to represent the No.j data, where

j ¼ 1; 2; 3; :::;N . K is the number of Gaussian models

included in the GMM. ak is the probability that a certain

data belongs to the No.k Gaussian model, where

ak � 0;
PK

k¼1 ak ¼ 1. uðx hkj Þ is the distribution function of

the No.k Gaussian model. cjk is the probability that the No.j
data belongs to the No.k Gaussian model. Hence, the dis-

tribution of the Gaussian mixture model is:

Pðx hj Þ ¼
XK

k¼1

akuðx hkj Þ ð1Þ

When calculating h. Use Maximum Log-Likelihood to

calculate. Specifically:

log LðhÞ ¼
XN

j¼1

logPðxj hj Þ ¼
XN

j¼1

log
XK

k¼1

akuðx hkj Þ
 !

ð2Þ

By initializing the model parameters, iteratively calcu-

lates all the parameters in the model. Each iteration

includes two steps. The first step is to calculate the prob-

ability that each data j comes from the model k based on

the current parameters:

cjk ¼
akuðxj hkj Þ

PK
k¼1 akuðxj hkj Þ

ð3Þ

Then calculate the model parameters for the new

iteration:

lk ¼
PN

j ðcjkxjÞ
PN

j cjk

Rk ¼
P

cjkðxj � lkÞðxj � lkÞT
PN

j cjk

ak ¼
PN

j¼1 cjk
N

ð4Þ

Repeat the above steps until the parameters converge to

get the Gaussian mixture model corresponding to the

original point cloud, as shown in Fig. 2.

It can be seen from Fig. 2 that the data processed by

GMM obey their respective distributions, and the blue

point is the center of the class. By sampling within the

corresponding Gaussian distribution, the quality of the

points that are subsequently sent to the MLP network to

extract features is improved, and a high-quality feature

map is further obtained for use in stage two.

2.2 Voxel-ROI pooling

In order to obtain higher accuracy, the feature map gen-

erated by 3D CNN is first sent to the RPN network to

generate a series of 3D proposals, and then the space size is

the same through ROI Pooling [23], and the corresponding

ROI vector is output to complete the classification and

return. The overall process is shown in Fig. 3:

Fig. 1 GVnet framework
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G Point refers to a point with high confidence that obeys

the corresponding Gaussian distribution.3D sparse convo-

lution is chosen as the backbone of 3D CNN model. The

voxelization of point cloud will generate about 5 K * 8 K

voxels and about 0.005 sparse degree. Direct use of 3D

convolution will consume huge computing time and

memory, which can be avoided by sparse convolution. [25]

limits the sparsity of output through the sparsity of input

data, thus greatly reducing the computational amount of

subsequent convolution operations.

A major disadvantage of using voxel-based detection is

that it cannot flexibly adjust the receptive field. In response

to this problem, this paper designs a pooling method with

better feature acquisition performance, named voxel-ROI

Pooling. The specific method is to map the feature corre-

sponding to the 3D proposal back to Voxel before pooling

processing, and obtain the Gaussian distribution informa-

tion of the corresponding point. The mapping relationship

is similar to the mapping relationship between feature and

ROI in 2D CNN [26], as shown in Fig. 4.

As shown in Fig. 4, ðx; yÞ represents the coordinate point
on the feature map, and ðx0

; y
0 Þ represents the coordinate

point in the original space corresponding to the point. The

conversion relationship between the two is:

Fig. 2 GMM result comparison

Fig. 3 Stage two work process

Fig. 4 ROI to raw data mapping relationship

6640 Neural Computing and Applications (2022) 34:6637–6645

123



ðx0
; y

0 Þ ¼ ðSx; SyÞ ð5Þ

S ¼
Yi

0

si ð6Þ

s represents the stride size of the middle layer. After

obtaining the feature representation in raw data, this article

further uses the sampling m points with the highest confi-

dence in the raw point corresponding to each proposal as

feature points to control the size and characteristics of the

receptive field. The specific principle is shown in Fig. 5:

When controlling the receptive field, according to the

formula:

Q ¼ ðW � K þ 2PÞ=Sþ 1 ð7Þ

whereas Q is the feature size, W is the input size, K is

the convolution kernel size, P is padding, and S is stride.

The calculation formula of the input size can be further

obtained:

W ¼ ðQ� 1Þ � S� 2Pþ K ð8Þ

W here is the receptive field corresponding to the fea-

ture, and the point in the receptive field directly affects the

output feature. Therefore, when doing pooling, the Voxel-

ROI Pooling method can effectively adjust the receptive

field and further enhance the characteristics of Voxel.

Finally, these features are sent to a layer of MLP net-

work to output a fixed-size one-dimensional vector to

further obtain the feature expression for detection.

2.3 Loss function

The loss function of the network is divided into two parts.

The first part is used for classification. Because the clas-

sification of positive and negative samples of point cloud

data is more uneven, so Focal Loss [27] is selected as the

solution, as shown in the formula:

Lcls ¼ �atð1� ptÞc logðptÞ ð9Þ

For the negative sample ð1� ptÞc with a larger proba-

bility to approach 0, its loss value can be reduced, thereby

effectively suppressing it. For positive samples with low

probability, ð1� ptÞc has little effect on its loss, so we can

increase the contribution of difficult samples to the gradient

by reducing the loss of simple samples. Through the

experiment of the paper, it was found that when c ¼ 2,

a ¼ 0:25, GVnet has the best performance.

For the second part, smoothL1 [28]is used for bounding

box regression:

Lregðtl; vÞ ¼
X

i2 x;y;z;l;w;hf g
smoothL1ðtli � viÞ ð10Þ

In which:

SmoothL1ðxÞ ¼ 0:5x2; if xj j\1

xj j � 0:5; otherwise

�

ð11Þ

Further, the total loss function can be obtained:

Ltotal ¼ Lcls þ Lreg ð12Þ

The total loss function is the sum of the above two parts

without any weighting. The training details of the loss

function will be explained in the experiment part.

3 Experiment

This part introduces some details of GVnet training and the

specific experimental performance on KITTI [29], nuSce-

nes [30], Waymo [31] dataset, and compares the effects

with some other commonly used 3D detection models. At

the end, an ablation experiment was carried out, which

showed that the G-VFE and Voxel-ROI pooling proposed

in this paper can effectively improve the accuracy of the

model.

3.1 Training step

The KITTI dataset contains real image data collected from

scenes such as urban areas, rural areas, and highways. Each

image can contain up to 15 cars and 30 pedestrians, with

various degrees of occlusion and truncation. In addition,

KITTI dataset is also one of the important data sets in the

field of autonomous driving at present, so this experiment

chooses to use KITTI as the data set for network perfor-

mance evaluation and Average Precision (AP) as the

evaluation index [32]. And divide 40% of the training set

into a validation set to monitor the performance of the

model in real time to prevent over-fitting.

The nuScenes dataset consists of 1000 scenes, each of

which is 20 s long and contains a variety of scenarios. In
Fig. 5 Correspondence between receptive field and raw point
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each Scenes, there are 40 key frames, that is, 2 key frames

per second, and the other frames are sweeps. Key frames

are manually annotated, and there are several annotations

in each frame in the form of bounding box. Not only size,

range, but also category, visibility, and so on.

The Waymo dataset contains 1000 driving segments,

each consisting of 20 s of continuous driving footage.

Images of vehicles, pedestrians, bicycles, signage, etc.,

were carefully tagged, with a total of 1200 3D tags and 1.2

million 2D tags captured.

The network framework GVnet proposed in this paper is

trained on a single NVIDIA RTX3090, and the training

time is about 15 h for KITTI, 20 h for nuScenes, 30 h for

Waymo.

In order to prevent over-fitting, a certain data augmen-

tation method is used. First, the raw data are randomly

flipped along the x-axis, and then rotated by � p
4
; p
4

� �
along

the z-axis, and finally the raw data are scaled by a certain

proportion, and the zoom range is 0:95; 1:05½ �.
For each class sample in voxel, 15 points are used as

features, and the threshold of NMS is set to 0.8, voxel size

is 0:1 0:1 0:2½ �, for KITTI, the number of cluster sets is

10, 20 for nuScenes and Waymo. Adam is used as the

optimizer, batch size is 4, total epoch is 80, and the initial

learning rate is set to 0.01. In the 30th–50th epoch, the

learning rate is gradually changed to 0.0001. The conver-

gence of the loss function is shown in Fig. 6:

As can be seen from Fig. 6, because GVnet uses G-VFE

and uses a more reasonable sampling operation, the initial

Loss value is lower than other methods, which helps the

model to converge quickly and can further improve

performance.

Performance on dataset.

Table 1 shows the performance of GVnet and other

network models under the KITTI test set. Through com-

parison, it can be seen that in terms of 3D detection, the

performance of GVnet has a certain accuracy improvement

compared with other methods. In the case of AP70, the

three modes of easy, moderate and hard have increased by

0.3, 0.46, and 0.82, respectively. In terms of BEV detec-

tion, GVnet has also improved to varying degrees.

Table 2 shows the performance of GVnet on the val set.

It can be seen that GVnet is a two-stage network frame-

work. Although a part of the inference time is added, the

gain is an increase in accuracy, which is consistent with the

design concept of the two-stage detector.

Table 3 shows the performance of GVnet and other net-

work models under the nuScenes dataset. It can be seen that

our method has a good performance in most class, and mAP

improved by 2.07 compared to Point Pillars.For datasets of

such large scenarios, GVnet can still achieve good perfor-

mance by increasing the number of clusters sets.

Table 4 shows the performance of GVnet and other

detection methods under the Waymo dataset. For 3D

detection task, GVnet improved mAP by 3.78 compared to

other methods, for BEV detection, GVnet improved mAP

by 0.45.

In terms of point cloud visualization, each frame of

KITTI dataset contains a large number of points, so the use

of Meshlab and other software can not display the scene

details well. Therefore, in order to better demonstrate the

detection effect of GVnet, this experiment visualized the

detection results on KITTI Viewer Web [23], and some of

the results are shown in Fig. 7.

It can be seen from Fig. 7 that GVnet has a good per-

formance in terms of recall rate and accuracy, but the price

is that more complicated sampling operations lead to false

detection of some plausible targets.

3.2 Ablation experiment

In order to better explain the rationality of the G-VFE and

V-ROI Pooling operations, this paper carried out an abla-

tion experiment using KITTI dataset. G-VFE and original

VFE are used as the encoder method of the network

backbone, and then the original ROI Pooling and V-ROI

Pooling are used for feature extraction, respectively. The

combined experimental results are shown in Table 5.

It can be seen from Table 5 that the network using

G-VFE ? V-ROI Pooling performs best under the Mod.-

mAP indicator. The network that only uses G-VFE ? ROI

Pooling generates a higher-quality feature map, so its

performance is 1.47 higher than the original VFE ? ROI

Pooling mAP. In summary, it can be seen that the G-VFE

and V-ROI Pooling modules proposed in this article can

effectively improve the overall accuracy of the network

model by adjusting the performance of the corresponding

parts, and fully demonstrate its rationality. However, per-

forming GMM clustering before feature extraction willFig. 6 Comparison of Loss convergence with different models
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cause additional computational burden. This shortcoming

has been reflected in the inference time, and a high-per-

formance GPU is required to run this method.

4 Conclusion

This paper proposes a two-stage 3d detection network. The

original Voxel Feature Encoder is optimized in stage one.

The specific method is to solve the Gaussian distribution

Table 1 Comparison of

different network models on

KITTI test set

Easy Moderate Hard Easy Moderate Hard

3D detection-AP70 Bev detection-AP70

PointRCNN 88.68 78.50 77.66 90.08 87.70 86.29

PointPillars 86.28 77.11 74.01 89.85 87.38 85.11

DV-pointpillars 86.74 77.24 74.61 89.81 87.24 85.51

Second 87.03 77.42 74.76 89.62 87.11 85.57

Part-A2 88.59 78.68 76.93 90.09 88.15 86.09

STD 88.96 78.59 76.96 90.27 88.16 85.35

3DSSD 88.57 78.59 77.56 90.09 87.91 86.66

GVnet(Ours) 89.26 79.14 78.48 90.07 87.87 87.20

Improvement ? 0.30 ? 0.46 ? 0.82 - 0.20 - 0.29 ? 0.54

3D detection-AP50 Bev detection-AP50

PointRCNN 89.58 80.34 77.87 93.23 89.07 86.83

PointPillars 90.70 89.97 89.21 90.72 90.06 89.41

DV-pointpillars 90.66 89.69 89.01 90.67 89.77 89.23

Second 91.99 82.86 80.37 92.99 90.14 88.34

Part-A2 90.57 89.71 89.05 90.58 89.83 89.27

STD 96.27 90.06 89.16 95.84 90.11 89.29

3DSSD 95.75 89.95 89.46 95.79 90.00 89.58

GVnet(Ours) 95.79 90.07 89.07 96.33 90.43 89.23

Improvement - 0.48 ? 0.01 - 0.39 ? 0.49 ? 0.29 - 0.35

Bold represents the best performance

Table 2 Comparison on KITTI val

Method Inference time mAP

3DSSD 0.2119 78.81

Second 0.2121 77.63

PointRCNN 0.4755 78.98

STD 0.4904 79.10

GVnet (Ours) 0.3961 79.69

Bold represents the best performance

Table 3 Test on nuScenes

dataset
Method Car Ped Bus Truck Trailer Moto Bicycle Barrier mAP

Point Pillars 70.58 58.34 37.40 26.67 21.31 18.45 2.06 31.59 33.30

SECOND 74.65 58.98 33.28 21.83 13.16 17.80 0.37 32.04 31.51

GVnet(Ours) 76.20 59.16 42.33 29.74 22.08 20.66 0.83 31.98 35.37

Improvement ? 1.55 ? 0.18 ? 4.93 ? 3.07 ? 0.77 ? 2.21 - 1.23 - 0.06 ? 2.07

Bold represents the best performance

Table 4 Test on Waymo dataset
Method 3D mAP(IoU = 0.7) BEV mAP(IoU = 0.7)

Overall 0–30 30–50 30–50 Overall 0–30 30–50 50-Inf

MVF 60.84 84.17 62.46 37.66 78.40 91.59 78.13 58.57

Point Pillars 55.58 79.93 51.70 30.47 73.51 91.96 73.38 54.75

GVnet(Ours) 64.62 88.01 63.91 39.18 78.85 91.17 78.36 59.81

Improvement ? 3.78 ? 3.84 ? 1.45 ? 1.52 ? 0.45 - 0.37 ? 0.23 ? 1.24

Bold represents the best performance
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that the raw point conforms to, and then use the Gaussian

Mixture Model for voxel feature encoding, and perform 3D

CNN to obtain high-quality feature maps. In the ROI

Pooling of stage two, the feature is sampled based on the

raw point in voxel to control the change of the receptive

field and enhance the feature. This approach is designed to

focus on key points and ignore unimportant point clouds.

And then send the output feature to the fully connection

layer to complete the classification and regression of the

object. Finally, the proposed method was compared with

other methods on the dataset, and the ablation experiment

was carried out to demonstrate the rationality of GVnet

proposed in this article. However, the number of categories

of GMM clustering needs to be manually set in advance,

which leads to the failure of end-to-end training of the

entire network model, which reduces the generalization

ability of the model. For different data sets, it is necessary

to set the number of different categories in advance.

Therefore, using GMM as a module of the network and

adding it to the training process requires further research

and development.
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