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Abstract
In this paper, the problem of attitude stabilization control of spacecraft under angular velocity constraint is investigated. A

state-constrained finite-time attitude control scheme is designed by making full use of the model feature of the quaternion.

Based on the homogeneous domination approach, the finite-time stability of the closed-loop system is proved. It proves that

the angular velocity can be constrained within the limited range at any time. For the attitude loop dynamics subsystem with

external disturbances, based on a radial basis function neural network, an integral terminal sliding mode controller is

proposed. Finally, the validity and advantages of the proposed control scheme are demonstrated in the simulation section

compared with the other two control methods.

Keywords Attitude control � State constraint � Finite-time control � RBF neural network

1 Introduction

The attitude control for a high nonlinear rigid spacecraft is

a classical nonlinear control problem [1–3]. Attitude con-

trol mainly includes attitude stabilization control and atti-

tude tracking control. Here, this note focuses on the

problem of attitude stabilization control. In recent decades,

in order to solve attitude stabilization control problem more

effectively, a variety of control methods have been pro-

posed, such as optimal control [4, 5], adaptive control

[6, 7], backstepping control [8–10], and sliding mode

control [11–18]. In [4], the inverse optimal control method

was employed, and bypassing the task of solving the

Hamilton-Jacobi equation obtains a meaningful cost func-

tional optimal controller. The work [7] developed an

adaptive controller for attitude stabilization of a rigid

spacecraft with model uncertainties, external disturbances.

In [11], a discrete-time super-twisting-like control

scheme based on the sliding-mode control technique for

robotic fishes was proposed, aiming at improving steering

performance.

However, note that all above control schemes can only

produce exponential convergence with infinite convergence

time at most. Obviously, it would make sense if we could

achieve a faster convergence speed in the control process

[19, 20]. The control problem of attitude stabilization with

finite convergence time has aroused wide attention

[21–23]. Besides faster convergence rate, the control

method has better robustness and disturbance rejection

performance [24–29]. As a consequence, the results of

finite-time control were applied to spacecraft attitude sta-

bilization. In [30], two sliding mode controllers were

employed to force that the state variables of the closed-loop
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system will converge to the origin in a finite time. Based on

homogeneous method and switching method, a global

saturated finite-time control method was developed in this

work [31].

It is worth mentioning that angular velocity is necessary

for attitude stabilization control of spacecraft. In practice,

the value of angular velocity cannot be arbitrarily changed.

Saturation limits for low rate gyro and task specifications

requirement are usually caused angular rate constraint. An

example is the X-ray timing probe spacecraft, which needs

to maneuver within the saturation limit of the rate gyro

[32]. In industrial applications, the performance of airborne

equipment is seriously affected by the excessive angular

velocity. Therefore, it is valuable to study the attitude

control algorithm under the constrained angular velocity of

spacecraft.

In recent years, some control strategies have been pre-

sented to discuss the problem of angular velocity constraint

in control domain. In the work [33], on the basis of

parameterized attitude constraint region of unit quaternion,

a global minimum quadratic potential function was estab-

lished. And another logarithmic potential function was

designed to limit the angular velocity. By using these two

potential functions and sliding mode control technique, a

nonlinear attitude control law was obtained to ensure the

stability of closed-loop system with external disturbance

and attitude and angular velocity constraints. In [34], a

smooth adaptive fault-tolerant constrained controller was

given which can guarantee the uniformly bounded stability

of the closed-loop system. This paper [35] utilizes the

barrier Lyapunov function in the analysis of the Lyapunov

direct method, and the constrained behavior of the system

is provided in which the rotor speed, its variation, and

generated power remain in the desired bounds. The work

[36] is based on the direct Lyapunov method, which by use

of the Nussbaum-type function provides an adaptive con-

trol scheme that can handle the effect of unknown control

direction.

Different from the existing results of [33–36], this paper

considers not only attitude stabilization control of space-

craft under angular velocity constraint but also disturbance

rejection control. The main difficulties lie in two aspects:

(1) How to employ the model structure feature to design a

state-constrained finite-time attitude control scheme. (2)

How to employ RBF neural network and design a finite-

time attitude controller for the attitude loop dynamics

subsystem with external disturbances.

The main contributions of this paper are three aspects.

(1) Compared with the existing control methods for quad-

rotor aircraft, the proposed control algorithm in this paper

not only guarantees that the attitude stabilization in a finite

time but also in the design process the angular velocity

constraint is under consideration. (2) Compared with the

other finite-time control algorithms, the proposed finite-

time control algorithm in this paper is mainly based on the

homogeneous system theory rather than the back-stepping

design. As a result, the new control algorithm has a simpler

structure, which implies that it is easy to design and adjust

the control parameters. (3) In addition, compared with

other finite-time control algorithms, the finite-time control

algorithm proposed in this paper proposes an integral ter-

minal sliding mode controller based on RBF neural net-

work for attitude loop dynamics subsystem with external

disturbance, which effectively improves the ability of dis-

turbance rejection.

In this paper, a finite-time stability control algorithm

based on quaternion is proposed for the rigid spacecraft

attitude system with angular velocity constraint. The new

idea is to employ the state-dependent time-varying gain by

replacing the constant gain in the traditional finite-time

attitude controller. However, the resulting closed-loop

system is a time-varying system that makes finite-time

stability analysis challenging. In order to overcome the

technical problem of finite-time stability of time-varying

nonlinear closed-loop system, the whole closed-loop sys-

tem is proved to be stable in a finite time by employing the

idea of homogeneous domination. Based on the proposed

control strategy, the spacecraft attitude can converge to the

equilibrium point in a finite time and the angular velocity

cannot exceed the constraint region. In order to investigate

the finite-time attitude stabilization control in the presence

of external disturbances, the RBF neural network algorithm

is used to estimate the uncertainties of the system and an

integral terminal sliding mode controller is designed. At

the end, some simulation results are shown to verify the

effectiveness and availability of the theoretical results.

2 Problem description

2.1 Notations

Making the equation clear in concept, denote

sigaðxÞ ¼ signðxÞjxja, where a� 0; x 2 R, signð�Þ is the

standard sign function.

2.2 Spacecraft attitude kinematics and dynamics

To describe the space rotation orientation of the spacecraft,

the unit quaternion is employed in this paper. Specifically

speaking, define U as the principal angle and

e ¼ ½e1; e2; e3�T

represents the principal axis associated with Euler’s
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theorem, where eTe ¼ 1. The quaternion representation can

be described as

q0 ¼ cos
U
2
; qv ¼ ½qv;1; qv;2; qv;3�T ¼ esin

U
2
; ð1Þ

which satisfies that

q20 þ qTv qv ¼ 1: ð2Þ

By [37], we know the kinematic equation of spacecraft

attitude is

_q ¼ 1

2
EðqÞx; ð3Þ

where

EðqÞ ¼
�qTv

q�v þ q0I3

 !
;

and I3 denotes the 3� 3 identity matrix. Here, the notation

q�v denotes the skew symmetry matrix, i.e.,

x� ¼
0 � x3 x2

x3 0 � x1

�x2 x1 0

2
64

3
75 ; 8x 2 R3:

In addition, the dynamic equation of spacecraft attitude is

given by

J _x ¼ �x�Jxþ sþ dðtÞ; ð4Þ

where

• J ¼ JT is the positive definite inertia matrix,

• x ¼ ½x1;x2;x3�T is the angular velocity vector,

• s ¼ ½s1; s2; s3�T is the control torque vector,

• d(t) denotes the unknown time-varying external

disturbances.

Furthermore, we have ETðqiÞEðqiÞ ¼ I3:

2.3 Control objectives

Different from the existing finite-time attitude control

algorithm, not only the finite-time attitude stabilization can

be achieved but also the angular velocity constraint is

guaranteed.

Definition 2.1 (Finite-time stability [38]) For a continuous

nonlinear system

_u ¼ uðpÞ; uð0Þ ¼ 0; u 2 Rn; ð5Þ

where uð�Þ : Rn ! Rn is a continuous vector function, if

system (5) satisfies the conditions Lyapunov stable and

finite time convergent, then we can say it is finite-time

stable. It means that there exists a function T(p(0)) such

that limt!Tðpð0ÞÞ uðtÞ ¼ 0 with uðtÞ � 0; 8t� Tðpð0ÞÞ.

Definition 2.2 (Homogeneity [39]) Define dilation

ðg1; . . .; gnÞ 2 Rn with gi [ 0; i ¼ 1; . . .; n. The function

u(p) defined in (5) can be said to be homogeneous with

degree . 2 R with respect to ðg1; . . .; gnÞ provided that for

any given e[ 0,

uiðeg1p1; . . .; egnpnÞ ¼ e.þgiuiðpÞ; i ¼ 1; . . .; n; 8p 2 Rn;

ð6Þ

where .[ �minfgi; i ¼ 1; . . .; ng:

2.4 Related lemmas

Lemma 2.1 [40, 41] If homogeneous system (5) is globally

asymptotically stable and

lim
e!0

buiðeg1p1; . . .; .gnpnÞ
e.þgi

¼ 0; i ¼ 1; 2; . . .; n; 8p 6¼ 0; ð7Þ

following system (8)

_u ¼ uðpÞ þ buðpÞ; uð0Þ ¼ buð0Þ ¼ 0; p 2 Rn; ð8Þ

is also globally finite-time stable.

Lemma 2.2 [42] For any 1[ 0; p 2 R, djpj1þ1=dp ¼
ð1þ 1Þsig1ðpÞ, d½sig1þ1ðpÞ�=dp ¼ ð1þ 1Þjpj1.

3 Main results

4 Design of constrained finite-time attitude
controller

4.1 Case 1: case of no external disturbance

Define matrix

GðqvÞ ¼ ðq�v þ q0I3Þ; ð9Þ

substituting (9) into (3), it can be obtained the following

relation

_qv ¼
1

2
ðq�v þ q0I3Þw ¼ 1

2
GðqvÞw: ð10Þ

Theorem 4.1 For attitude control systems (4) and (10), if

the controller s is designed as

s ¼ � k1G
TðqvÞsiga1ðqvÞ �

k2M
1þa2

jM1þa2 � vðxÞj sig
a2ðxÞ;

ð11Þ

where k1 [ 0, k2 [ 0, 0\a1\1, a2 ¼ 2a1=ð1þ a1Þ,
vðxÞ ¼ jx1j1þa2 þ jx2j1þa2 þ jx3j1þa2 , then

• jxiðtÞj\M for all time,

• ðqv;xÞ ! 0 in a finite time,
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Proof The proof contains three parts. h

4.1.1 First part: state boundedness

Choose the Lyapunov function:

W ¼ 2k1
1þ a1

�X3
j¼1

jqv;jj1þa1
�
þ 1

2
xTJx: ð12Þ

It follows from Lemma 2.2 that

_W ¼ 2k1
X3
j¼1

siga1ðqv;jÞ _qv;j þ xTJ _x

¼ k1x
TGTðqvÞsiga1ðqvÞ þ xT

�
� x�Jxþ s

�
:

ð13Þ

Here, the term x�Jx can be cancelled based on the model

structure feature. Based on the skew symmetry, one obtains

that

xTx�Jx ¼ 0; ð14Þ

which leads to

_W ¼ k1x
TGTðqvÞsiga1ðqvÞ þ xTs

¼� k2
M1þa2

jM1þa2 � vðxÞjx
Tsiga2ðxÞ

� 0:

ð15Þ

Hence, the system state ðqv;xÞ is always bounded.

4.1.2 Second part: velocity constraint

In this part, we will show that jxiðtÞj\M; i ¼ 1; 2; 3; for all

time. Construct the function:

U ¼ 1

1þ a2

X3
j¼1

jxjj1þa2 ¼ 1

1þ a2
vðxÞ; ð16Þ

whose derivative is

_U ¼
X3
j¼1

siga2ðxjÞ _xj

¼ siga2ðxÞTJ�1
�
� x�Jxþ s

�
:

ð17Þ

Under the proposed controller, one obtains that

_U ¼ siga2ðxÞTJ�1
�
� x�Jx� k1G

TðqvÞsiga1ðqvÞ
�

� k2M
1þa2

jM1þa2 � vðxÞj sig
a2ðxÞTJ�1siga2ðxÞ:

ð18Þ

Based on the first part’s proof, the first term in (18) is

bounded, i.e., there is a constant C1 that makes

���siga2ðxÞTJ�1
�
� x�Jx� k1G

TðqvÞsiga1ðqvÞ
�����C1:

ð19Þ

However, for the second term in (18), if vðxðtÞÞ ! M1þa2

then

� k2M
1þa2

jM1þa2 � vðxÞj sig
a2ðxÞTJ�1siga2ðxÞ ! �1: ð20Þ

Next, a contradiction proof can be used to show that

vðxÞ ¼ M1þa2 is impossible. Suppose there exists a time T	

such that vðxðT	ÞÞ ¼ M1þa2 . As a result, based on (19) and

(20), before the time T	, there exists a time interval

½T		; T	Þ such that

vðxðtÞÞ\M1þa2 and _UðtÞ� 0; 8t 2 ½T		; T	Þ: ð21Þ

In other words,

UðT	Þ�UðT		Þ: ð22Þ

By the definition of U in (16), one further gets that

vðxðT	ÞÞ� vðxðT		ÞÞ\M1þa2 ; ð23Þ

which conflicts the previous assumption that

vðxðT	ÞÞ ¼ M1þa2 .

Hence, the conclusion can be made that vðxðtÞÞ\M1þa2

and jxiðtÞj\M; i ¼ 1; 2; 3 for any time t.

4.1.3 Third Part: finite-time stability

Substituting proposed controller (11) into (4) to obtain the

closed-loop system which can be described as:

_qv ¼
1

2
ðq�v þ q0I3Þw ¼ 1

2
GðqvÞw;

J _x ¼ �x�Jx� k1G
TðqvÞsiga1ðqvÞ

� k2M
1þa2

jM1þa2 � vðxÞj sig
a2ðxÞ:

ð24Þ

The finite-time stability of system (24) is proved in two

steps.

Step 1 Asymptotically stable

Based on the proof procedure in first part, it can be

concluded which ðqv;xÞ ! 0 as t ! 1 follows from

LaSalle’s invariant principle [43].

Step2 Locally finite-time stable

System (24) can be reformed as

_qv ¼
1

2
Gð0Þxþ /1ðqv;xÞ;

J _x ¼� k1G
Tð0Þsiga1ðqvÞ � k2sig

a2ðxÞ þ /2ðqv;xÞ;
ð25Þ

where

5110 Neural Computing and Applications (2022) 34:5107–5117

123



/1ðqv;xÞ ¼
1

2

�
GðqvÞ � Gð0Þ

�
x;

/2ðqv;xÞ ¼ �x�Jx� k1

�
GTðqvÞ � GTð0Þ

�
siga1ðqvÞ

�
� k2M

1þa2

jM1þa2 � vðxÞj � k2

�
siga2ðxÞ:

ð26Þ

First, consider the nominal part of (25), i.e.,

_qv ¼
1

2
Gð0Þx;

J _x ¼� k1G
Tð0Þsiga1ðqvÞ � k2sig

a2ðxÞ:
ð27Þ

Construct Lyapunov function as

V ¼ 2k1
1þ a1

�X3
j¼1

jqv;jj1þa1
�
þ 1

2
xTJx: ð28Þ

By a calculation, we have

_V ¼ 2k1
X3
j¼1

siga1ðqv;jÞ _qv;j þ xTJ _x

¼� k2x
Tsiga2ðxÞ

� 0:

ð29Þ

As with the above proof, system (27) can be proved to be

asymptotically stable. And by Definition 2.2, it can be

proved that system (27) has a homogeneous of degree

k ¼ ða1 � 1Þ=2\0 with respect to the dilation

ðk1; k1; k1; k2; k2; k2Þ, where k1 ¼ 1; k2 ¼ ð1þ a1Þ=2.

Based on the definition of GðqvÞ, we know it is a con-

tinuously differentiable function. It can be obtained via the

mean inequality that

Gðek1qvÞ � Gð0Þ ¼ Oðek1qvÞ; ð30Þ

and

GTðek1qvÞ � GTð0Þ ¼ Oðek1qvÞ: ð31Þ

Next, we prove that lime!0
/iðek1qv;ek2xÞ

ekiþk ¼ 0, i ¼ 1; 2, for all

ðqv;xÞ 6¼ 0. According to the definition of function

/1ðqv;xÞ, we have

lim
e!0

/1ðek1qv; ek2xÞ
ek1þk

¼ lim
e!0

1
2

�
Gðek1qvÞ � Gð0Þ

�
ek2x

ek1þk

¼ Oðek1qvÞek2�k1�kx:

ð32Þ

Because r2 � r1 � k ¼ 0, then

lim
e!0

/1ðek1 _qv; ek2xÞ
ek1þk

¼ Oðek1qvÞx ¼ 0 ð33Þ

Similarly, based on the definition of function /2ðqv;xÞ, we
have

lim
e!0

/2ðek1qv; ek2xÞ
ek2þk

¼ lim
e!0

�e�k2�k
h
x�Jxþ k1

�
GTðek1qvÞ � GTð0Þ

�
siga1ðek1qvÞ

þ
� k2M

1þa2

jM1þa2 � vðxÞj � k2

�
siga2ðek2xÞ

i
¼ � lim

e!0

�
k1Oðek1qvÞek1a1�k2�ksiga1ðqvÞ þ e�k2�kx�Jx

þ
� k2M

1þa2

jM1þa2 � vðxÞj � k2

�
ek2a2�k2�ksiga2ðxÞ

�
:

ð34Þ

Obviously, k1a1 � k2 � k ¼ 0, k2a2 � k2 � k ¼ 0, then

lim
e!0

/2ðek1qv; ek2xÞ
er1þk

¼0 ð35Þ

Therefore, by Lemma 2.1, the local finite-time stability and

the global finite-time stability of the closed-loop system

can be guaranteed, i.e., ðqv;xÞ ! 0 in a finite time. h

Remark 4.1 Note that in Theorem 4.1, if the fractional

powers in novel finite-time controller (11) are chosen to be

1, i.e., a1 ¼ a2 ¼ 1, then the control torque will reduce to

PD with the angular velocity constrained, i.e.,

s ¼ �k1G
TðqvÞqv �

k2M
2

jM2 � vðxÞjx:
ð36Þ

In the simulation section, the dynamic performance of the

proposed control strategy can be shown by comparison

with traditional PD controller as well as improved PD

controller.

4.2 Case 2: case of exist external disturbances

The external disturbance in system (4) dðtÞ is bounded. To
deal with lump disturbance dðtÞ, an RBF neural network is

employed to estimate dðtÞ [44]. Assume that an optimal

weight W	 satisfies

dð�Þ ¼ W	ThdðxÞ þ ed; ð37Þ

where x ¼ ½qv;x�T is the input, hdðxÞ is the radial basis

function of the neural network, ed is the network approxi-

mation error, and jedj � eMd with a constant eMd. According

to the model, the output of the neural network is
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d̂ðxÞ ¼ Ŵ
T
hdðxÞ; ð38Þ

where Ŵ is an estimate value of the ideal weight W	. The
disturbance estimation error is

dð�Þ � d̂ðxÞ ¼W	ThdðxÞ þ ed � Ŵ
T
hdðxÞ

¼ ðW	T � Ŵ
TÞhdðxÞ þ ed

¼WThdðxÞ þ ed;

ð39Þ

where

WT ¼ W	T � Ŵ
T
: ð40Þ

The radial basis function can be expressed as:

hdðxÞ ¼ exp
�
� k x� cj k2

2b2j

�
; j ¼ 1; 2; . . .; n; ð41Þ

where cj is the data center of radial basis function in the j-th

neuron of the hidden layer, and bj is the width of radial

basis function in the j-th neuron of the hidden layer.

As a result, the finite-time controller based on RBF

neural network is designed as follows.

Theorem 4.2 For attitude control subsystem (4) of quad-

rotor aircraft in the presence of external disturbances, if

the controller is designed as

s ¼ � k1G
TðqvÞsiga1ðqvÞ �

k2M
1þa2

jM1þa2 � vðxÞj sig
a2ðxÞ

� d̂ � k3signðJTsÞ;
ð42Þ

where

s ¼ Jxþ
Z l

0

f ðqv;xÞdl; ð43Þ

f ðqv;xÞ ¼ k1G
TðqvÞsiga1ðqvÞ þ

k2M
1þa2

jM1þa2 � vðxÞj sig
a2ðxÞ;

ð44Þ

where the d̂ is the output of RBF neural network given by

(38), k3 is an appropriate positive constant, the parameters

ai; ki; i ¼ 1; 2 are the same as that of Theorem 4.1, then the

attitude of aircraft can converge to the desired state in a

finite time. h

Proof First, it needs to be proven that system (4) can reach

the sliding surface in a finite time. Then, we prove that

jxiðtÞj\M.

Choose the Lyapunov function:

U ¼ 1

2
sTJs; ð45Þ

whose derivative is:

_U ¼ sTJ _s

¼ sTJ
�
J _xþ f ðqv;xÞ

�
¼ sTJ

�
� x�Jxþ sþ dðtÞ þ f ðqv;xÞ

�
� sTJ

�
dðtÞ � d̂U � k3signðJTsÞ

�
¼� sTJ

�
k3signðJTsÞ �WThdðxÞ � ed

�
� � jsTJj

�
k3 �WThdðxÞ � edÞ

�
:

ð46Þ

Since the Gaussian function hdðxÞ and the function WT are

bounded, the WThdðxÞ þ ed is bounded. As a result, if the

gain satisfies k3 �WThdðxÞ � ed, then

_U� � jsTJjc ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sTJJTs

p
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min fJ11; J22; J33gsTJs

p
c

¼�
ffiffiffiffiffiffiffi
2U

p
.;

ð47Þ

where

. ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min fJ11; J22; J33g

p
c: ð48Þ

Clearly, the sliding mode state s will converge to 0 in a

finite time and always stay there.

Once s � 0; then _s � 0: As a result, it follows from (59)

that

J _x ¼ �k1G
TðqvÞsiga1ðqvÞ �

k2M
1þa2

jM1þa2 � vðxÞj sig
a2ðxÞ:

ð49Þ

Using an almost same proof as that of Case 1, it can be

proven that the attitude will be stabilized in a finite time.

For jxiðtÞj\M, we construct the function:

P ¼ 1

1þ a2

X3
j¼1

jxjj1þa2 ¼ 1

1þ a2
vðxÞ; ð50Þ

whose derivative is

_P ¼
X3
j¼1

siga2ðxjÞ _xj

¼ siga2ðxÞTJ�1
�
� x�Jxþ sþ dðtÞ

�
:

ð51Þ

Under the proposed controller, one obtains that

_P ¼ siga2ðxÞTJ�1
�
� x�Jx� k1G

TðqvÞsiga1ðqvÞ

þWThdðxÞ þ ed � k3signðJTsÞ
�

� k2M
1þa2

jM1þa2 � vðxÞj sig
a2ðxÞTJ�1siga2ðxÞ:

ð52Þ

Since s is always bounded, then the first term in (52) is

bounded, i.e., there is a constant C1 that makes
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���siga2ðxÞTJ�1
�
� x�Jx� k1G

TðqvÞsiga1ðqvÞ

þWThdðxÞ þ ed � k3signðJTsÞ
�����C1:

ð53Þ

However, for the second term, if vðxðtÞÞ ! M1þa2 then

� k2M
1þa2

jM1þa2 � vðxÞj sig
a2ðxÞTJ�1siga2ðxÞ ! �1: ð54Þ

Next, a contradiction proof can be used to show that

vðxÞ ¼ M1þa2 is impossible. Suppose there exists a time T	

such that vðxðT	ÞÞ ¼ M1þa2 . As a result, based on (53) and

(54), before the time T	, there exists a time interval

ðT		;T	Þ such that

vðxðtÞÞ\M1þa2 and _PðtÞ� 0; 8t 2 ðT		; T	Þ: ð55Þ

In other words,

PðT	Þ �PðT		Þ: ð56Þ

By the definition of P in (50), one further gets that

vðxðT	ÞÞ� vðxðT		ÞÞ\M1þa2 ; ð57Þ

which conflicts the previous assumption that

vðxðT	ÞÞ ¼ M1þa2 .

Hence, the conclusion can be made that vðxðtÞÞ\M1þa2

and jxiðtÞj\M; i ¼ 1; 2; 3 for any time t.

The proof is completed. h

Remark 4.2 Note that in Theorem 4.2, if the fractional

powers in novel finite-time controller (42) are chosen to be

1, i.e., a1 ¼ a2 ¼ 1, then the control torque will reduce to

PD control with the angular velocity constrained that can

deal with external disturbance, i.e.,

s ¼ � k1G
TðqvÞqv �

k2M
2

jM2 � vðxÞjx� d̂ � k3signðJTsÞ;

ð58Þ

where

s ¼ Jxþ
Z l

0

f ðqv;xÞdl; ð59Þ

f ðqv;xÞ ¼ k1G
TðqvÞqv þ

k2M
2

jM2 � vðxÞjx;
ð60Þ

where the d̂ is the output of RBF neural network given by

(38), k3 is an appropriate positive constant, the parameters

ai; ki; i ¼ 1; 2 are the same as that of Theorem 4.1, then the

attitude of aircraft can converge asymptotically to the

desired state. Compared with (58), the dynamic perfor-

mance of the proposed control strategy is better, which can

make the system stable in a finite time.

5 Simulation results

To verify the proposed theoretical results in Theorems 4.1

and 4.2, some numerical simulations are given. Two cases

will be considered in this section.

For the first case, it is assumed that there are no external

disturbances. To demonstrate the advantages of the pro-

posed controller, two control strategies will be used for

comparison, i.e., PD controller, PD controller with angular

velocity constraint. In the second case, we consider the

existence of external disturbances, a finite-time controller

based on the integral terminal sliding mode control theory

and the RBF neural network is employed.

The main parameters for the spacecraft are presented as

Table 1 [45].

Table 1 The moment of inertia

for aircraft
Description parameter (kg�m2) Parameters definition Nominal values

Jxx X-axis of the rotary inertia 0.0049

Jyy Y-axis of the rotary inertia 0.0049

Jzz Z-axis of the rotary inertia 0.0088

Table 2 Controllers’ parameters

Controller Gains

Finite-time controller with angular velocity constraint (FTAC) k1 ¼ 6:11; k2 ¼ 4:98; a1 ¼ 0:5;M ¼ 0:33

PD controller with angular velocity constraint (PDAC) k1 ¼ 6:15; k2 ¼ 4:63; a1 ¼ 1;M ¼ 0:33

PD controller (PD) k1 ¼ 6:12; k2 ¼ 4:63; a1 ¼ 1
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For the simulation part, the initial state is selected as

ðq1ð0Þ; q2ð0Þ; q3ð0Þ; q4ð0Þ;x1ð0Þ;x2ð0Þ;x3ð0ÞÞT

¼ ð0:7683; 0:371; 0:384; 0:353;�0:21;�0:23;�0:25ÞT :
ð61Þ

5.1 Case 1: case of no external disturbance

Table 2 lists the parameters of the controller.

As for the choose of controllers gains k1 and k2, by using

the trial and error method, we do a number of simulations

and then choose the better parameters for a satisfactory

performance. Although the proposed finite-time algorithm

contains the fractional power, it is not difficult to imple-

ment it based on a microcontroller (Pixhawk) with the C

program. In order to compare the three controllers conve-

niently, the response curves of the three controllers are

shown in the same figure. The quaternion response curve is

shown in Fig. 1.

The angular velocity curves under three controller are

shown in Fig. 2. In addition, in order to further illustrate

that the proposed controller has better convergence speed,

Table 3 is given, which compares the convergence time of

the three control methods. The symbol [bold] is used for

less time to highlight the effect. The convergence time is

defined as the time after which jxij\10�3; i ¼ 1; 2; 3:

As shown in Fig. 2 and Table 3, PD control has a slower

convergence rate than the proposed method, and the

angular velocity exceeds the constraint scope. Although

under the PD control with angular velocity constraint,

angular velocity can be strictly constrained, its conver-

gence rate is very slow. Compared with the first two control

methods, finite-time control method with angular velocity

constraint not only keeps the angular velocity strictly

constrained, but also has the best convergence speed.

5.2 Case 2: case of exist external disturbances

In order to verify the above theoretical results, it is shown

that the proposed controller has good robustness to external

disturbances, and the external disturbances are selected as

[46–48]

d1ðtÞ ¼ 0:002 sinðt þ 5Þ;
d2ðtÞ ¼ 0:002 cosð2t þ 3Þ;
d3ðtÞ ¼ 0:003 sinð3t þ 2Þ:

ð62Þ

Fig. 1 The quaternion response curves for case 1
Fig. 2 The angular velocity response curves for case 1
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The structure diagram of RBF neural network is shown in

Fig. 3. The parameters for radial basis function (41) are

selected as cj ¼ ½�1;�0:5; 0; 0:5; 1�; bj ¼ 1; j ¼

1; 2; 3; 4; 5; the parameter for finite-time controller (42) is

chosen as: k1 ¼ 40; a1 ¼ 0:5; k2 ¼ 55; a2 ¼ 2=3; k3 ¼ 30:

As shown in Fig. 4, it can be seen that the proposed

finite-time controller based on RBF neural network is

effective and has the capability to capture the disturbance

dð�Þ. Furthermore, from Fig. 5, it can be derived that by

employing the proposed RBF-based neural network and

terminal sliding mode control, the attitude stability control

performance of aircraft with the angular velocity constraint

and external disturbances can be further improved.

6 Conclusion

This paper has developed a finite-time attitude stabilization

control method for a angular velocity constrained quad-

rotor aircraft in the presence of external disturbances.

Firstly, a finite-time controller with angular velocity has

been proposed to ensure the constrained angular velocity

can be stabilized to the origin in a finite time. Then, a

Table 3 The convergence time

of the angular velocity under

employed controllers

Controller Convergence time (s)

x1 x2 x3

Finite-time controller with angular velocity constraint (FTAC) 8.860 8.877 8.765

PD controller with angular velocity constraint (PDAC) 12.171 12.180 12.164

PD controller (PD) 9.715 9.674 9.678

Fig. 3 The structure diagram of RBF neural network

Fig. 4 The quaternion response curves for case 2
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Fig. 5 The angular velocity response curves for case 2
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finite-time controller based on sliding mode control theory

and RBF neural network is proposed to solve the problem

of exit external disturbances. At the end, simulation results

have been given to verify the advantages of proposed

control strategies.
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