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Abstract
Facial expression recognition (FER) in-the-wild is challenging due to unconstraint settings such as varying head poses,

illumination, and occlusions. In addition, the performance of a FER system significantly degrades due to large intra-class

variation and inter-class similarity of facial expressions in real-world scenarios. To mitigate these problems, we propose a

novel approach, Discriminative Attention-augmented Feature Learning Convolution Neural Network (DAF-CNN), which

learns discriminative expression-related representations for FER. Firstly, we develop a 3D attention mechanism for feature

refinement which selectively focuses on attentive channel entries and salient spatial regions of a convolution neural

network feature map. Moreover, a deep metric loss termed Triplet-Center (TC) loss is incorporated to further enhance the

discriminative power of the deeply-learned features with an expression-similarity constraint. It simultaneously minimizes

intra-class distance and maximizes inter-class distance to learn both compact and separate features. Extensive experiments

have been conducted on two representative facial expression datasets (FER-2013 and SFEW 2.0) to demonstrate that DAF-

CNN effectively captures discriminative feature representations and achieves competitive or even superior FER perfor-

mance compared to state-of-the-art FER methods.

Keywords Facial expression recognition � Salient features � Metric learning � Convolution neural network �
Attention mechanism

1 Introduction

Facial expression recognition (FER) plays a crucial role in

non-verbal communication among humans by providing

profuse information related to their emotions. Many studies

have been conducted on FER due to its extensive appli-

cations, e.g., human–computer interaction, medical treat-

ment, driver fatigue surveillance [1], etc. Although many

advances have been made, achieving accurate FER is still

very challenging due to the subtlety, complexity, and

variability of facial expressions.

Much progress has been made on extracting discrimi-

native features to represent facial patterns in order to boost

the performance of a FER system. In general, feature

extraction methods can be categorized into extracting

handcrafted features and deeply-learned features. Hand-

crafted methods obtain facial features with prescribed

descriptors, such as Local Binary Patterns (LBP) [2],
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Histogram of Oriented Gradients (HOG) [3], Gabor

wavelet [4], etc. These methods have achieved impressive

performance on several benchmarks collected under con-

trolled laboratory settings including CK ? [5] and MMI

[6].

However, the handcrafted descriptors require manual

selection of facial features and depend much on prior

knowledge. In addition, such handcrafted methods are not

robust and thus lack generalization ability when faced with

unconstrained settings and real-world scenarios. Recently,

deep learning techniques, especially the success of Con-

volution Neural Network (CNN), have yielded excellent

performance on a wide range of image classification tasks

[7–10]. It has also been shown that various CNN archi-

tectures can achieve promising results in FER [11–13].

However, employing CNN in FER is not always satisfac-

tory due to the design of its receptive fields. Since these

receptive fields are local, the information of input images is

processed within a restricted neighborhood. Thus, the

network fails to capture long-range contextual correlations

that are of crucial importance for better recognition per-

formance. In addition, the performance of a FER system,

especially in real-world scenarios, often suffers from

unconstrained challenges (e.g., varying illumination and

head poses), preventing the CNN from extracting useful

(e.g., expression-related) features.

Therefore, directly exploiting convolutional features to

perform recognition of expression can lead to sub-optimal

results because of the local operators and various chal-

lenges. Recently, self-attention emerges as a potential

solution and has achieved promising results in sequence

modeling and semantic segmentation [14]. By exploiting

global operators (such as global max pooling), this atten-

tion mechanism has been used [15] to extract useful

information which is contained in local descriptors to

enhance global representations. These attention-based

methods shed much light on the spatial aspect of

enhancement.

Nevertheless, there exist other aspects of attention that

are worth investigating, which can be analyzed via a CNN

architecture. The pipeline of a CNN starts from a convo-

lution layer which scans the input images with a collection

of filters and outputs a series of response maps that are

further processed sequentially by the subsequent convolu-

tional layers. During this process, the channel axis is

introduced to extend the CNN feature from two-dimen-

sional (2D) into three-dimensional (3D) domain. Since the

convolution filter performs as a pattern detector which

captures both the low-level visual cues (e.g., edges and

corners) and high-level semantic pattern, each 2D channel

slice of 3D feature maps spatially encodes the information

related to a certain pattern. Hence, the CNN features are

inherently 3D representations.

However, most existing attention-based methods merely

focus on the spatial dimension while limited work has paid

attention to both aspects [16, 17]. Therefore, to fully

exploit the information within a feature map, in this paper,

we introduce a dual-facet attention mechanism for FER

which performs both spatial and channel-wise feature

recalibration.

With respect to the channel-wise attention, it helps to

highlight the usefulness of expression-related patterns

encoded in specific channel maps. Given a CNN feature

map, not all the feature channels are of equal importance

for expression recognition. Some channels of high

numerical values correspond to their related expressions,

enabling the capture of expression-related feature repre-

sentations and facilitating the expression recognition.

While other entries are neither informative nor expression-

related, some of which may even cause interference,

degrading the discriminability of the extracted features.

Thus, to obtain salient feature representations, it is neces-

sary to perform channel-wise attention, where attentive

feature channels are emphasized, and non-informative

channels are suppressed. Also, by explicitly modeling the

interdependencies among channels, the proposed method is

able to gather long-range contextual correlations. The

refined feature maps generated by channel attention unit

can be further exploited for better recalibration, noting that

not all partial regions along the spatial dimension are

informative. Some facial sub-regions are critical to emo-

tion recognition due to their high response to certain

expressions.

For example, raised cheeks are expressive and can

thereby be easily identified in happy faces, referred as

expression-related features. While other spatial areas such

as irrelevant facial parts and non-informative background

only generate low responses that are not expression-related.

Motivated by the above observations, we further incorpo-

rate spatial attention to selectively focus on expression-

related localities out of an emphasized feature channel.

With the enhancement of these salient features, richer

contextual abstractions within the spatial dimension could

further be captured. Moreover, since both the background

and irrelevant facial regions are suppressed, the proposed

method is able to disentangle non-informative factors and

generate more discriminative feature representations.

With respect to feature classification, some effort has

been made on designing effective classifiers for FER,

which is also crucial to achieve good FER results. Con-

ventionally, most deep learning methods minimize cross-

entropy loss and employ the softmax activation function

for prediction. Despite its popularity, the softmax loss is

not capable of dealing with the problems existing exclu-

sively in FER, i.e., images for FER tend to have both high

intra-class variation and high inter-class similarity.
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For example, surprise expression can be either positive

with a wide-open smile or negative with a tensed mouth,

revealing the high intra-class variation, while fearful and

disgusted faces are often confused due to the similar dis-

played patterns, e.g., curved mouth and tensed eyes, indi-

cating the high inter-class similarity. Since the softmax loss

only focuses on seeking a decision boundary to keep dif-

ferent classes apart, it merely encourages the separateness

of learned features. As a result, in the embedding feature

space, clusters of different classes are likely to be over-

lapped while features of the same class are scattered within

one individual cluster.

Thus, features learned by softmax loss are not discrim-

inative and robust in nature. As the key task of FER

requires dealing with high intra-class variation and inter-

class similarity, softmax-based features are not sufficient

for accurate predictions, necessitating the CNN network to

learn more effective and discriminative representations.

More recently, the emerging deep metric learning

methods have been investigated for image retrieval and

person re-identification with large intra-class variations.

This suggests that deep metric learning may offer more

pertinent representations for FER. The triplet loss [18] and

center loss [19] are two representative losses used in deep

metric learning methods, the former develops a triplet

constraint to reduce the intra-class variation and inter-class

similarity, while the latter learns a center for each class to

obtain compact features. Both of them aim at learning

discriminative feature representations.

Inspired by these two losses, Triplet-Center loss (TC

loss) is proposed for 3D object retrieval in [20]. By com-

bining the merits of both triplet loss and center loss, TC

loss targets directly on addressing intra-class variation and

inter-class similarity by minimizing the intra-class distance

and maximizing inter-class distance at the same time.

Motivated by these approaches, to further enhance the

discriminative power of the expression representations and

address the similar intra- and inter-class problems in FER,

we employ TC loss to enhance the discriminability and

robustness of feature representation. Unlike existing work

[21–26] that only consider feature extraction or feature

classification stage separately, we propose a novel

approach with discriminative feature learning in both

stages which combines the attention mechanism and deep

metric learning into an end-to-end fashion.

In the feature extraction stage, 3D attention mechanism

is augmented to exploit global information within the

feature map to emphasize salient and meaningful expres-

sion-related features that are more discriminative. In the

feature classification stage, TC loss is integrated to

explicitly target on intra-class and inter-class distances to

learn compact and separate features. Thus, the discrimi-

native power of the refined features is further enhanced.

Extensive experiments have been conducted to evaluate

our method on two well-known in-the-wild datasets, i.e.,

FER2013 and SFEW. Promising accuracy results have

been achieved that surpass most of the existing methods,

demonstrating the effectiveness of the proposed method.

In summary, the major contributions of this paper are as

follows:

(1) We propose a novel framework augmented with 3D

attention mechanism, which highlights the usefulness

of both expression-related features and emotional

salient regions to generate more discriminative

representations.

(2) We introduce TC loss for FER, to learn discrimina-

tive features that are both compact and separate in

the feature space, explicitly addressing the problem

of high inter-class similarity and intra-class

variation.

(3) We develop a Discriminative Attention-augmented

Feature Learning Convolution Neural Network

(DAF-CNN) integrated with the proposed 3D atten-

tion and TC loss for discriminative feature learning,

unifying the expression-related feature learning, and

deep metric learning to jointly boost the performance

of FER.

2 Related work

During the transition of FER from laboratory-controlled to

unconstrained in-the-wild conditions, deep learning tech-

niques have, in recent years, been increasingly applied to

FER that have achieved promising results. The winning

system of the FER-2013 Challenge [11] uses SVM classi-

fier as an alternative to the cross-entropy loss, which shows

that switching from traditional softmax layer to a linear

SVM top layer is beneficial for some deep architectures. To

disentangle interfering factors in face images such as head

pose, illumination, and facial morphology, the following

methods were proposed. Rifai et al. [27] proposed a multi-

scale contractive CNN to obtain local-translation-invariant

representations, and designed auto-encoders to separate

discriminative expression information from subject identity

and pose, while Reed et al. [28] constructed a Bolzman

machine to model high-order interactions of expression and

put forward training strategies for disentangling. Ge et al.

[29] addresses the occlusion problem for face recognition

in the wild as a related task. Besides, representation

learning and metric learning for FER have gained much

interest from researchers recently [30–32].

Attention has been widely adopted for modeling

sequences due to its ability to capture long-range interac-

tions. Bahdanau et al. [33] first combined attention with
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Recurrent Neural Network for alignment in neural machine

translation (NMT). To further improve the effectiveness of

NMT, Luong et al. [34] proposed an effective attention-

based method which introduced two different classes of

mechanisms, i.e., global attention and local attention. In

addition, various attention mechanisms have been proposed

for visual tasks such as image captioning, visual question

answering, and image classification.

Visual attention was first proposed by Xu et al. [35] in

image captioning, where both soft and hard attention

mechanisms are exploited. As for visual question answer-

ing, Yang et al. [36] introduced Question-guided image

attention to solve the task. Considered as an effective

solution, attention model has also been applied to classi-

fication task. Wang et al. [37] proposed Residual Attention

Network employing a hourglass network to generate 3D

attention maps for intermediate features, which demon-

strated its robustness to noisy labels. Hu et al. [15] pro-

posed Squeeze-and-Excitation network to perform channel-

wise attention via modeling the inter-channel relationship,

while Jetley et al. [38] measured spatial attention by con-

sidering the feature maps at various layers in the CNN and

produce a 2D matrix of scores for each map. These

attention mechanisms [15, 38] aimed to specifically address

the weakness of convolutions.

In order to learn more robust and discriminative fea-

tures, deep metric learning has been widely adopted. Much

attention has been paid to two representative losses, i.e.,

center loss and triplet loss. Center loss [19] was proposed

as an auxiliary for softmax loss to learn more discrimina-

tive features. In the training process, center loss learns a

center for the features of each class and pulls features of the

same class to its corresponding center. Through the joint

supervision of softmax loss, center loss is able to learn

compact features that are close to their centers.

However, center loss does not consider the inter-class

reparability explicitly, which may lead to inter-class

overlap. Alternatively, triplet loss [18] was proposed for

face recognition, using triplets as input, each of which

consists of an anchor, and a positive and a negative

examples. Specifically, the triplet loss optimizes a con-

straint function which forces the distance between positive

and negative pairs to be larger than a fixed margin. With

deep embedding, it is capable of learning both compact and

separate clusters in the feature space. The effectiveness of

triplet loss has been demonstrated in [18, 39]. However,

due to the complexity of triplet construction and ineffi-

ciency of hard-sample mining, the training process can be

unstable and slow in convergence.

In order to face sophisticated problems related to facial

expressions in real-world scenarios, this paper proposes a

novel DAF-CNN architecture, which learns discriminative

expression-related representations for FER. This approach

is based on a 3D attention mechanism for feature refine-

ment and on a deep metric loss (TC loss) which further

enhances the discriminative power of the deeply-learned

features, using an expression-similarity constraint. The

introduced novel approach, simultaneously minimizes the

intra-class distance and maximizes the inter-class distance

in order to learn both compact and separate features. It is an

efficient model that combines integration of an attention

mechanism with deep metric learning, in order to capture

more discriminative expression-related features and to lead

to the significant improvement of FER accuracy.

3 Methodology

3.1 Overview

As is illustrated in Fig. 1, the proposed DAF-CNN

framework consists of three components. In the feature

extraction stage, VGG style convolutional blocks from the

CNN backbone. The first two blocks comprise three con-

volution layers while each of the next three blocks com-

prises four convolution layers, each followed by a batch

normalization (BN) layer. The generated feature map is

then fed to the attention module, which performs feature

refinement by emphasizing attentive channels and salient

regions sequentially. In the feature classification stage, a

classifier (i.e., consisting of two fully connected (FC) lay-

ers) with similarity constraint learning is employed, where

a joint objective function including the TC loss and soft-

max loss is imposed to learn more discriminative expres-

sion representations during the learning process.

3.2 3D Attention mechanism

3.2.1 Channel attention

In order to exploit inter-channel discriminability, the spa-

tial information of each slice in a 3D feature map is

aggregated. In general, the channel importance can be

measured based on two criteria. The first is global average

pooling, which is adopted extensively due to its effec-

tiveness in computing spatial statistics [15].

The second is max pooling. Since max pooling units are

very sensitive to the maximum value in the neighborhood,

they are good at preserving the strongest features. We

exploit both criteria by utilizing a neural network with two

hidden layers to balance their decision power.

The network functions as a parameterized combination

of the two pooling methods, serving as a more effective

criterion for weighting the discriminability of all feature

entries. It is worth noting that the spatial information is

encoded in a learnable way, which adaptively redistribute
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the weights to get richer expression-related features and

task-oriented clues. Therefore, the representative power of

the network is enhanced.

Denote the original input features as X [ RW9H9C,

where W, H, and C denote width, height and the number of

channels, respectively. First they are forked to be max and

mean pooled in parallel and then reshaped into two channel

feature vectors Vavg [ R1919C and Vmax [ R1919C. They

are then fed to a network consisting of two hidden layers

FC1 and FC2. FC1 reduces the feature dimension to

1 9 1 9 C/r, where r is the reduction ratio. FC2 with C

units reshapes the dimension to fit the original size. Gen-

erated by the last sigmoid layer, the channel attention Ac is

Ac ¼ Sigmoid Net Vavg xð Þ
� �

� Net Vmax xð Þð Þ
� �

ð1Þ

and

Net V xð Þ½ � ¼ FC2 FC1 V xð Þð Þ½ � ð2Þ

where � denotes the element-wise summation, and Net is

the sigmoid activation function.

3.2.2 Spatial attention

Given an emphasized feature entry, not all the entire scope

of the 2D map is informative. Generally, an expression

only corresponds to part of the facial localities of an image.

Some regions are not expression-related or useless for

recognition and should be suppressed. Thus, we incorpo-

rate spatial attention mechanism for further recalibration.

Instead of considering all local spatial regions equally, the

spatial attention unit assigns more weight to attentive

regions and less to non-attentive ones.

By re-weighting the feature map where expression-re-

lated regions are assigned higher scores, the spatial atten-

tion unit helps to generate emotional salient features that

are more discriminative. Similarly, we perform both the

mean pooling and max pooling along the width to measure

the spatial importance. In general, the mean pooling

operation averages the relevant degree of spatial locations

while the max pooling selects the most attentive attributes

to enhance the sub-region importance.

We then obtain two weighed matrices Mavg and

Mmax 2 RW�H . They are concatenated along the width

dimension and fed to a convolution layer. Since the

encoded weights are spatial, it is natural to perform a

convolutional operation to fuse the information. Following

the strategy in the channel attention, emotional salient

regions can be detected in a learnable way as the weights of

receptive field are updated throughout the training process.

The spatial attention As is defined as

As ¼ sigmoid ~ Concat Mavg xð Þ;Mmax xð Þ
� �� �� �

ð3Þ

where ~ denotes the convolution operator, and Concat

denotes concatenation of its input.

3.2.3 Spatial-channel attention

Both the channel and spatial attention modules can take the

same feature map x as input and fork into two parallel

processes. However, we argue that the feature map is

enhanced if the two attention modules are cascaded.

Empirically, we perform the channel-weighted attention

and spatial-weighted attention sequentially, instructing the

network what and where to focus in order. Thus, the 3D

attention module is an effective unification of two separate

attention modules, generating the channel attention Ac and

spatial attention As, respectively. With the effective inte-

gration of two separate modules, the cascaded attention

mechanisms not only emphasize expression-related atten-

tive feature channels, but also highlight the usefulness of

expression-sensitive facial regions. Overall, the final

attention function is defined as

Fig. 1 An overview of the proposed DAF-CNN framework. The generated feature representations are learned through three stages, i.e., feature

extraction, feature refinement, and feature classification
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M0 ¼ Ac xð Þ � x ð4Þ

M ¼ As M
0ð Þ �M0 ð5Þ

where � denotes element-wise product, and M0 and M

respectively represent the intermediate and ultimate refined

feature maps.

3.3 TC loss for FER

Due to high inter-subject variations introduced by person-

specific attributes such as gender, age, and various

appearances, different facial expressions are prone to share

similar personal characteristics while the same expression

may have diverse representations. Thus, intra-class dis-

tances are likely to be larger than the inter-class distances,

making it challenging to distinguish facial expressions. In

addition, the extracted features may contain subject-de-

pendent information that is not expression-related, leading

to insufficient clues to generate accurate predictions of

expressions.

Therefore, to enhance the discriminative power of the

embedded features, we further exploit deep metric losses

for expression-similarity mining in the embedding feature

space. Two representative deep metric losses (i.e., triplet

loss and center loss) have shown their superiority over the

traditional softmax loss in reducing the intra-class variation

and inter-class similarity.

However, these two losses still have a few limitations.

With respect to center loss, the learned clusters are likely to

be overlapped since center loss does not consider the inter-

class separability explicitly. Regarding the triplet loss, it is

subjected to the complexity of triplet construction and

inefficiency of hard-sample mining (i.e., active samples

that contribute to improve the model by violating the triplet

constraint). To address the above-mentioned limitations,

we introduce the Triplet-Center loss [20] for FER to mit-

igate the influence of both intra-class variation and inter-

class similarity efficiently.

3.3.1 Forward propagation

The fundamental philosophy behind TC loss is to combine

the advantages of triplet loss and center loss, i.e., to effi-

ciently achieve intra-class compactness and inter-class

dispersion of the learned features simultaneously. Given

the training dataset xi; yið Þf gNi¼1 which consists of N sam-

ples xi 2 X with the corresponding labels

p 2 1; 2; . . .; Kj jf g, these samples are mapped to d-di-

mensional vectors in the embedding feature space with a

neural network embedder denoted by E �ð Þ.
In TC loss, it is assumed that the features of 3D shapes

from the same class share one corresponding center,

thereby obtaining C ¼ c1; c2; . . .; c Kj jg
�

, where cy 2 Rd

denotes the center vector for samples with label y, and Kj j
is the number of centers. For simplicity, we adopt ei to

represent E xið Þ in this paper. In terms of triplet loss, the

input triplet xai ; x
þ
i ; x

�
i

� �
is constituted of samples. While in

TC loss, we select the i sample xi, its corresponding posi-

tive center cp, and its nearest negative center cqmin to

reconstruct the triplet input as xi; c
p; cqmin

� �
. Compared to

triplet loss in which the number of triplets is O N3ð Þ, only
N triplets will be formed for TC loss. Consequently, TC

loss avoids the complexity of triplet construction and the

necessity for hard-sample mining. Moreover, by utilizing

centers as its similarity metric, TC loss avoids direct

interaction with samples of poor quality such as mislabeled

faces and noises that are prone to perturb or dominate the

hard positives and negatives. Therefore, the stability of the

training process and the robustness of the model are

enhanced.

To measure the expression-similarity among facial

expressions, we adopt the Euclidean distance of the map-

ped i-th embedded sample ei and its positive center cp to

represent the degree of deviation among expressions of the

same class, which is formulated as

D ei; c
pð Þ ¼ 1

2
ei � cp

22
ð6Þ

The degree of resemblance among different expression

categories is similarly defined as

D ei; c
q
min

� �
¼ 1

2
ei � cq2min 2 ð7Þ

Accordingly, we develop the expression-similarity

constraint to ensure that the distance from ei to its positive

center cp is larger than that to its nearest negative center

cqmin by a fixed margin m, which is defined as

1

2
ei � cp22 þ m\

1

2
ei � cq2min2 ð8Þ

Finally, given a batch of training data with M samples,

the TC loss function is given as

Ltc ¼
XM

i¼1
max D ei; c

pð Þ þ m� D ei; c
q
min

� �
; 0

� �
ð9Þ

3.3.2 Backward propagation

To compute the back-propagation gradients of the input

feature embedding and the corresponding centers, we

assume the following notations for demonstration: d[con-
dition] is an indicator function which outputs 1 if the

condition is satisfied and outputs 0 otherwise, and ~Li rep-

resents the TC loss of i-th sample, i.e.,

~Li ¼ max D ei; c
pð Þ þ m� D ei; c

q
min

� �
; 0

� �
ð10Þ
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These cluster centers are updated based on mini-batches

similar to the practice in center loss.

The partial derivatives of our TC loss of Eq. 9 with

respect to the feature embedding of i-th sample oLtc
oei

and j-th

center oLtc
ocj

are determined as follows:

oLtc
oei

¼ oD ei; c
pð Þ

oei
�
oD ei; c

q
min

� �

oei

� 	
� d ~Li [ 0
� �

¼ cqmin � cp
� �

� d ~Li [ 0
� �

ð11Þ

oLtc
ocj

¼
PM

i¼1 ei � cj
� �

� d ~Li [ 0
� �

� d p ¼ j½ �
1þ

PM
i¼1 d ~Li [ 0

� �
� d p ¼ j½ �

�
PM

i¼1 ei � cj
� �

� d ~Li [ 0
� �

� d q ¼ j½ �
1þ

PM
i¼1 d ~Li [ 0

� �
� d q ¼ j½ �

ð12Þ

3.3.3 Joint supervision with softmax loss

The softmax loss directly encourages the separability of

different classes and often converges faster than deep

metric-based losses, thus providing a guidance for seeking

better centers efficiently. At the same time, deep metric

losses target at learning compact and separate representa-

tions by explicitly modeling the cross-expression relation-

ship. According to the recent work presented in [40],

softmax loss and deep metric-based loss could be com-

plementary to each other, and the combination of these two

losses could achieves more discriminative and robust

embedding. Empirically, these two losses can be combined

to achieve more discriminative and robust feature embed-

ding [20, 23, 41]. Therefore, an effective approach for

improvement is to combine the classification and similarity

constraints to form a joint optimization strategy. The final

loss function is defined as

Ltotal ¼ kLtc þ Lsoftmax ð13Þ

where k is a trade-off hyper-parameter to balance the two

terms.

4 Experiments

4.1 Experimental datasets

To evaluate the performance of the proposed method,

extensive experiments are conducted on two well-known

facial expression databases: FER2013 [42] and SFEW [43].

The FER2013 database is a large, publicly available data-

base collected automatically by the Google image search

API. It contains 28,709 training images, 3,589 validation

images, and 3,589 test images with seven expression labels

(i.e., anger, disgust, fear, happiness, sadness, surprise, and

neutral). Every image is registered and resized to 48*48

pixels after rejecting incorrectly labeled frames and

adjusting the cropped region.

The dataset is challenging since the depicted faces vary

significantly with respect to the subject’s age, face pose,

and other factors, reflecting realistic conditions. The

accuracy of expression classification by humans on this

dataset is about 65.5% [42]. The SFEW 2.0 database was

created from Acted Facial Expressions in the Wild

(AFEW) [43] using the key-frame extraction method. It

contains 891 training samples, 431 validation samples, and

372 test samples. These images are extracted from film

clips, and labeled with six basic expressions of angry,

disgust, fear, happy, sad, surprise, and the neutral class.

It targets for unconstrained facial expressions with large

variations, reflecting real-world conditions such as differ-

ent head poses, occlusions, and backgrounds. Since SFEW

2.0 is a dataset for the 2015 competition Challenges in the

Wild (EmotiW) [44], test sample labeling is private and

held back by the challenge organizer. Since we do not have

access to the testing data, the evaluation results are

reported in terms of the validation data.

4.2 Implementation details

Our experiments were conducted on a server with a Tesla

P100 GPU provided by Google Colab. As introduced in

Sect. 3.1, the structure of DAF-CNN has three parts, i.e.,

feature extraction block, 3D attention module and TC loss

classifier. The detailed network structure is illustrated in

Fig. 1. The input images are preprocessed by MTCNN,

scaled to 96*96 pixels and normalized to [0, 1] by dividing

each pixel gray level by 255. This is insufficient for

training a deep CNN with limited training data.

To avoid overfitting, a data augmentation strategy is

employed to train the CNN models both for FER2013 and

SFEW. A dropout rate of 0.5 is employed for the last two

FC layers. For the attention part, the reduction ratio r is set

to 8, and the kernel size of the convolution in Eq. 3 is set to

7*7. As to the TC loss classifier, the margin m and the

trade-off parameter A are respectively set to 11 and 0.007

for FER2013, and respectively set to 13 and 0.013 for

SFEW. We initialized the centers with a Gaussian distri-

bution, and the mean and standard deviation are (0, 0.01).

The network is trained with Adam optimizer [45] with a

min-batch of 128 for FER2013 and 32 for SFEW.

The initial learning rate was set to 0.001, while the

minimum learning rate was set to 1e-5. Each training epoch

had [N/128] batches, with the training samples randomly

selected from the training set. The trained network

parameters and accuracy at each epoch were recorded. If

the validation accuracy did not increase by at least 0.0005

for 13 epochs, the learning rate was reduced by a factor of

Neural Computing and Applications (2022) 34:925–936 931

123



0.2, and the previous model with the best accuracy was

reloaded.

4.3 Results

4.3.1 Results on FER2013

The confusion matrix of the proposed DAF-CNN model on

FER2013 dataset is shown in Fig. 2, where the leading

diagonal entries represent the recognition accuracy for each

expression. Table 1 shows that surprise, happiness, and

disgust are the emotions with the three highest recognition

rates. However, confusion frequently occurs among anger,

fear, and sadness because these emotions are often pre-

sented by similar facial expressions [46].

Ablation study. To better evaluate the effectiveness of

the proposed method (i.e., DAF-CNN), we conducted an

ablation study to verify the contribution of each of its

component to the performance of its whole network. In

addition to the proposed DAF-CNN, three different meth-

ods are developed, i.e.,

1. DAF-CNN_NOatt&tcl, which denotes the proposed

network without incorporating the 3D attention module

and TC loss function (i.e., still using the softmax loss);

2. DAF-CNN_NOatt, which denotes the proposed net-

work without the attendance of the 3D attention

module; and

3. DAF-CNN_NOtcl, which denotes the proposed net-

work without the supervision of TC loss.

The results in Table 1 show that either augmenting the

proposed 3D attention or incorporating the TC loss func-

tion significantly boosts the recognition accuracy. This

demonstrates the effectiveness of the two components of

the proposed method, which can be employed individually

to improve the performance of FER.

Moreover, with the combination of these two promising

components, the proposed DAF-CNN achieves the highest

accuracy performance with a notable margin over the

DAF-CNN_NOatt&tcl. This is because each component

plays a complementary role in providing useful clues for

FER from different perspectives.

The former exploits the CNN feature map to generate

salient features while the latter attends in the embedding

feature space to learn better representations Table 2.

4.3.2 Results on SFEW

We also validated the proposed method on the SFEW 2.0

dataset. Considering that deep CNNs are prone to overfit

when they are trained with a small amount of data (891

images in SFEW training set), our strategy is to pre-train

the model on the FER2013 training set and then fine-tune

on the SFEW training set. Since there exist biases in two

different datasets, the customized hyperparameters of TC

loss for FER2013 dataset are not necessarily optimal for

SFEW dataset.

Empirically, the pre-trained model equipped with

attention module and supervised by softmax loss has a

superior generalization ability. While in the fine-tuning

Fig. 2 Confusion matrix of the proposed DAF-CNN method evalu-

ated on FER2013 test set. (The ground truth and the predicted

expression labels are given by the first column and the first row,

respectively)

Table 1 Ablation study result on the FER2013 testing set

Method Accuracy (%)

DAF–CNN_NOatt&tcl 70.41

DAF–CNN_NOatt 71.38

DAF–CNN_NOtcl 71.80

DAF–CNN 72.39

Table 2 Performance comparison on FER2013 testing set

Accuracy (%)

Method single Ensemble

Devries et al. [47] 67.21 –

Tang [11] – 71.20

Guo et al. [48] 71.33 –

Mollahosseini et al. [13] 66.40 –

Hua et al. [49] 68.18 71.91

Yu et al. [12] 70.30 72.10

Kim et al. [50] 70.58 72.72

Connie et al. [51] 72.10 73.58

Shao et al. [51] 71.14 –

Proposed method (DAF–CNN) 72.39 –
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stage, the softmax loss is replaced by TC loss to better suit

the characteristics of the SFEW dataset.

The confusion matrix of the proposed method on the

SFEW validation set is shown in Fig. 3.

The leading diagonal values shows that happiness and

neutral have the highest recognition rates, while the

recognition accuracy for disgust and fear is much lower

than the others. These results are also observed in other

published works.

Comparison with the state-of-the-art. The performance

comparisons between the proposed method and the state-

of-the-art FER methods are shown in Table 3. The

table shows the proposed DAF-CNN model outperforms

the baseline method of SFEW (35.93% on the validation

set) by a large margin.

With respect to the comparison of single network per-

formances, DAF-CNN ranks the first with an accuracy of

52.98%. Even compared with voting-based methods, the

performance of our method is still competitive or compa-

rable, demonstrating the effectiveness and robustness of the

proposed method under real-world conditions.

4.4 Visualization analysis

To further demonstrate the effectiveness of our proposed

method, we used t-SNE [54], a widely employed method

for visualizing high dimensional data, to compare feature

representations learned by DAF-CNN_NOatt&tcl, DAF-

CNN_NOtcl, DAF-CNN_NOatt, and DAF-CNN.

As illustrated in Figs. 4 and 5, the learned features are

clustered according to the seven expressions, each cluster

denoted by a different color and a numeral. Some charac-

teristics of the results can be observed from the comparison

which is worth further detailed analysis. First, among all

the evaluated models, features learned by softmax, i.e.,

(a) in Fig. 4

In Fig. 5 are the most significantly scattered and mixed

in the feature space. Since softmax does not regulate the distances between embedded features, clusters of different

classes are easily overlapped while features within the

same cluster are scattered.

Second, although the method for (b) in Figs. 4 and 5

does not explicitly perform similarity constraint to regulate

the feature distribution, it still learns better representations

that are more compact and separate than (a) in Figs. 4 and

5. As shown in Fig. 4b, learned clusters are less likely to

overlap than in Fig. 4a. This improvement of discrim-

inability can be ascribed to the effective feature refinement

performed by attention. Third, in Figs. 4 and 5, both

(b) and (c) can learn discriminative representations but they

differ from each other. TC loss can keep the learned fea-

tures compact and isolated simultaneously. As can be

observed in Fig. 5c, features are prone to aggregate to a

Fig. 3 Confusion matrix of the proposed DAF-CNN method evalu-

ated on SFEW validation set. (The ground truth and the predicted

labels are given by the first column and the first row, respectively)

Table 3 Performance comparison on SFEW validation set

Accuracy (%)

Method single Ensemble

Dhall et al. (baseline of SFEW) [44] 35.93 –

Yu et al. [12] 52.29 55.96

Ng et al. [52] 48.5 –

Mollahosseini et al. [13] 47.7 –

Levi et al. [22] 44.73 51.75

DLP–CNN [23] 51.05 –

IACNN [41] 50.98 –

IL–CNN [24] 51.83 52.52

Ji et al. [53] 51.2 –

DAF–CNN 52.98 –

Fig. 4 A visualization of deeply-learned features on FER2013

training set learned by a DAF-CNN_NOatt&tcl b DAF-CNN_NOtcl

c DAF-CNN_NOatt, and d DAF-CNN, including 512 samples from

the training data set of FER2013. Note that the features learned by

d are the most compact and separate. Best viewed in color)

Fig. 5 The distribution of deeply-learned features on the FER2013

testing set. (Best viewed in color)
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denser point, since TC loss learns a corresponding center

for each expression class. While in Fig. 5b, features are

likely to be scattered without a clear centroid, rendering its

lack of compactness.

This comparison demonstrates the effectiveness of

integrated TC loss, which explicitly forces the combined

similarity and deviation constraints to minimize the intra-

class distance and maximize inter-class distance simulta-

neously. Fourth, notably, with the integration of both

attention module and TC loss, features learned by (d) in

Figs. 4 and 5 achieve the best intra-class compactness and

inter-class discrepancy in both training and testing datasets.

Compare (c) with (c) with (d) in Figs. 4 and 5, it can be

concluded that jointly performing discriminative feature

learning by exploiting both the feature map and the

embedding feature space is effective and complementary,

thus benefits can be accumulated to greatly enhance the

representative power of the network.

5 Conclusion

This paper presents a novel deep learning approach for

FER. The approach captures more comprehensive expres-

sion-related representations through a DAF-CNN. The

proposed 3D attention mechanism not only emphasizes

expression-related attentive feature channels, but also

highlights the usefulness of expression-sensitive facial

regions. In addition, the TC loss forces a similarity con-

straint on the learned features to simultaneously minimize

the intra-class distance and maximize inter-class distance.

Overall, it can be concluded that joint integration of

attention mechanism and deep metric learning effectively

captures more discriminative expression-related features

and leading to the significant improvement of FER

accuracy.

The introduced method simulates and realistically

models a complex environment, using a small volume of

labeled data. It performs novel adjustment of its hyper

parameters based on the target data, and it achieves high-

precision classification compared to other sophisticated

methods [55, 56]. An important innovation is the

employment of attention-augmented [57, 58] to large intra-

class variation and inter-class similarity of facial expres-

sions [59, 60] in real-world scenarios. The performance of

the proposed system has been tested on a multi-dimen-

sional complex dataset. The obtained high-precision

results, greatly enhance the introduced methodology.

Future improvements of the system, should focus on

further optimizing the hyper parameters of the proposed

method. This will result in an even more efficient, accurate,

and faster classification process. Also, it will be very

important to study the extension of this method for the

analysis and classification of real-time facial expressions.

Finally, the proposed algorithm will be extended to operate

in a fully self-determined manner by self-attention network

[61, 62].
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