
S. I . : MACHINE LEARNING APPLICATIONS FOR SECURITY

APAE: an IoT intrusion detection system using asymmetric parallel
auto-encoder

Amir Basati1 • Mohammad Mehdi Faghih1

Received: 31 December 2020 / Accepted: 1 April 2021 / Published online: 29 April 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
In recent years, the world has dramatically moved toward using the internet of things (IoT), and the IoT has become a hot

research field. Among various aspects of IoT, real-time cyber-threat protection is one of the most crucial elements due to

the increasing number of cyber-attacks. However, current IoT devices often offer minimal security features and are

vulnerable to cyber-attacks. Therefore, it is crucial to develop tools to detect such attacks in real time. This paper presents a

new and intelligent network intrusion detection system named APAE that is based on an asymmetric parallel auto-encoder

and is able to detect various attacks in IoT networks. The encoder part of APAE has a lightweight architecture that contains

two encoders in parallel, each one having three successive layers of convolutional filters. The first encoder is for extracting

local features using standard convolutional layers and a positional attention module. The second encoder also extracts the

long-range information using dilated convolutional layers and a channel attention module. The decoder part of APAE is

different from its encoder and has eight successive transposed convolution layers. The proposed APAE approach has a

lightweight and suitable architecture for real-time attack detection and provides very good generalization performance even

after training using very limited training records. The efficacy of the APAE has been evaluated using three popular public

datasets named UNSW-NB15, CICIDS2017, and KDDCup99, and the results showed the superiority of the proposed

model over the state-of-the-art algorithms.

Keywords Internet of things � IoT � UNSW-NB15 � KDD � CICIDS2017 � IDS � Intrusion detection � Asymmetric auto-

encoder � Convolutional neural networks � Attention module

1 Introduction

Despite the dramatically growing popularity of IoT net-

works [1, 2], the devices used in these networks are vul-

nerable to many security threats [3]. Therefore, the need for

security in the context of IoT networks has become a

prerequisite. To this end, the use of network intrusion

detection systems (NIDS) has become a rational choice [4].

On the other hand, NIDSs need a lot of processing

resources for inspection of the network flow to be able to

detect attacks in real-time. However, current IoT devices

have very limited processing capabilities, and the pro-

cessing resources are very scarce in IoT networks. There-

fore, real-time attack detection in IoT networks is a

challenging task for NIDSs. In recent years, the high effi-

ciency and accuracy of powerful deep learning algorithms

dramatically increased their application in NIDS [5–8] and

various other fields [9]. However, deep learning-based

methods need a lot of processing resources, and therefore,

they are not suitable for real-time detection of attacks in

IoT networks. In addition, almost all of them have weak

attack detection results in situations that there are few

training data, because they need lots of training data.

Various datasets exist for training a NIDS [10–12], but

almost all of them suffer from the lack of training records

in at least some classes of attacks. Therefore, almost all

previous NIDS have weak classification results on these

minority classes even if they have excellent overall clas-

sification accuracy on the dataset. Although some

& Mohammad Mehdi Faghih

m.faghih@kgut.ac.ir

Amir Basati

a.basati@student.kgut.ac.ir

1 Department of Electrical and Computer Engineering,

Graduate University of Advanced Technology, Kerman, Iran

123

Neural Computing and Applications (2023) 35:4813–4833
https://doi.org/10.1007/s00521-021-06011-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-5011-3703
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06011-9&domain=pdf
https://doi.org/10.1007/s00521-021-06011-9

researchers [13] have tried to augment these classes with

some generated records and trained their model using

augmented datasets, the generated records are synthetic and

very similar to existing records. Therefore, this technique

biases the network and makes it over-fit on training data. In

addition, this technique does not solve the main problem,

and the problem is still there: whenever some minority

class exist the current models fail to extract the required

information for generalization and, therefore, have weak

performance in attack detection.

Convolutional neural networks (CNNs) are a subset of

deep learning models that became a major trend in many

deep learning tasks, specifically in NIDS [14]. However,

current CNN-based NIDSs require many processing

resources and training data and they are not appropriate for

real-time attack detection in IoT networks in which there

are inherent limitations in energy, memory, and processing

resources. Some methods were recently used to lower the

complexity of a deep model, including convolution fac-

torization [15] and network compression [16]. Although

current NIDSs have used various methods to decrease their

complexity and increase their classification performance,

they still suffer from two weaknesses: the heavy need for

processing resources and weak performance in minority

classes. This paper presents a novel CNN-based NIDS

named APAE that solves the problem of IoT real-time

attack detection even in minority classes. It has a light-

weight architecture that can be used in IoT devices with

limited capabilities. In addition, it provides very good

generalization performance in minority classes after train-

ing using very limited training records. It also has very

high accuracy and a low error rate that makes it suitable for

real-time detection of malicious network packets.

The main contributions of this paper are as follows:

• Novel use of 2D representation for the input vectors of

intrusion detection neural network that, unlike popular

1D representations, brings the individual parameters of

input vectors close together and allows the convolu-

tional filters to extract discriminative features from

minority classes.

• Novel use of dilated convolution filters that (unlike

standard convolutional filters) allows the network to

have good generalization performance on minority

classes by aggressively extracting spatial information

across the inputs with fewer layers.

• Novel asymmetric auto-encoder named APAE that

provides unsupervised feature learning by combining

channel and position attention modules with dilated and

standard deep auto-encoders and achieves high classi-

fication accuracy while maintaining compact architec-

ture with very few numbers of parameters.

The rest of the paper is organized as follows: Sect. 2

presents relevant background information and examines

existing research. Section 3 describes the proposed

approach that is subsequently evaluated using various

experiments in Sect. 4. Finally, the paper concludes in

Sect. 5.

2 Background

2.1 Deep learning

Deep learning is an advanced field among machine learn-

ing subjects. It recently becomes too popular because of its

superiority over previous machine learning techniques. It

has made machine learning closer to true artificial intelli-

gence by modeling complex relationships using multiple

hierarchical levels of abstraction.

2.1.1 Convolutional neural networks

Convolutional neural networks (CNNs) are a subset of deep

neural networks. They are also known as space invariant

artificial neural networks and are most commonly used in

analyzing visual images because of their translation

invariance characteristics and shared-weight architecture

[17]. They are inspired by the visual cortex of the brain in

which individual neurons respond to stimuli only in a

restricted region of the visual field known as the receptive

field. CNNs have a major advantage over traditional neural

networks: unlike traditional neural networks that need

human effort in preprocessing and feature design, CNNs

need little preprocessing and achieve independence from

prior knowledge by learning the convolutional filters as

part of network trainable parameters.

CNNs typically have multiple successive layers, and the

type of each layer is one of these three types: convolution

layer, pooling layer, and fully connected layer [18]. The

convolution layer is the core building block of CNNs. It has

a set of kernels as learnable weights and convolves each

kernel with its input to produce the output of the layer as a

set of stacked activation maps. Formally, the kth activation

map of a convolution layer can be represented as shown in

Eq. (1):

hk ¼ f X �Wk þ bk
� �

ð1Þ

where Wk corresponds to the weight vector, X is the input

vector of the convolution layer, and bk represents the bias.

The function f represents the activation function that can

be of different types such as rectified linear unit (ReLU),

hyperbolic tangent function, sigmoid, and so on. The

4814 Neural Computing and Applications (2023) 35:4813–4833

123

symbol � also indicates the convolution operation that can

be formally represented as shown in equation

X �Wð Þ pð Þ ¼
X

sþt¼p

X sð ÞW tð Þ ð2Þ

2.1.2 Auto-encoder

Auto-encoder (AE) is an unsupervised neural network [19].

Figure 1 shows a typical structure of an AE. The aim of

training an AE is to achieve a network that produces its

output layer as close to its input layer as possible. In other

words, AE learns the best parameters to approximate the

identity function and reconstruct its output as its input.

The auto-encoder has been used in anomaly detection by

many researchers [20–22]. The idea is to use an AE that

has been trained by some data representing normal states of

a system. Having such an AE, a new unseen state of the

system can be classified as the normal or anomaly as fol-

lowing: feeding AE with the new state as input, the new

state is classified as normal if the AE can accurately

reconstruct it in its output. On the other hand, the new state

is classified as an anomaly if the reconstruction error is

high (above some threshold).

Another way of using auto-encoder in intrusion detec-

tion has also been used in some researches [23]. Here, the

idea is to use the auto-encoder as a dimensionality reduc-

tion tool. To explain that, the AE can be divided into two

main parts: encoder and decoder. In general, the encoder

transforms the input data into a lower-dimensional space,

and then, the decoder expands it to reproduce the initial

input data. The training procedure forces the AE to capture

the most prominent features of the data distribution as a

lower-dimensional representation at the heart of the hidden

layers. Ideally, this lower-dimensional feature vector pro-

vides a better representation of the data points than the raw

data itself and can be used as a compressed feature vector

for classification.

2.2 Related works

Using a lightweight neural network, reference [24] pro-

posed an IDS for resource-constrained mobile devices. The

model, which is called IMPACT, uses a stacked auto-en-

coder (SAE) to reduce the length of the feature vector,

besides using an SVM classifier for the detection of only

impersonation attacks.

Reference [25] uses a deep neural network named FC-

Net to detect attacks when only a few malicious samples

are available for training. The method performs two

operations: feature extraction and comparison. It learns a

pair of feature maps from a pair of network traffic samples

for classification and then compares the resulting feature

maps to infer whether that pair of samples belongs to a

particular class or not.

Reference [26] presents a variational auto-encoder-

based method for intrusion detection. This method is an

anomaly detection approach that detects network attacks

using reconstruction error of auto-encoder as an anomaly

score. However, like any other anomaly detection method,

this method is only capable of distinguishing between good

and bad packets and cannot detect different attack types.

Another hybrid anomaly detection system is proposed in

reference [27]. This system also has two stages: the first

stage uses a classical auto-encoder to extract features from

the input vector, and the second stage applies a deep neural

network to the output of the first stage with the aim of

anomaly detection.

In reference [28], a two-stage deep learning model is

used as an intrusion detection system that includes a

stacked auto-encoder and a soft-max classifier. The first

stage is to detect normal or abnormal packets, and in the

second stage, the method classifies between normal and

other classes of attacks. The authors reported a good

classification accuracy on KDD99 and UNSW-NB15

datasets, but their method is not suitable for IoT networks

due to the need for powerful processing resources.

Enocder

Encoder Decodercode

Convolution Layer + ReLU Pooling Layer Up-sample layer

Fig. 1 A typical structure for an

auto-encoder

Neural Computing and Applications (2023) 35:4813–4833 4815

123

Yet another auto-encoder-based method is presented in

reference [29]. It is named the SAVAER-DNN method and

uses Wasserstein GAN with gradient penalty (WGAN-GP)

to augment the training data. It synthesizes samples of low-

frequent and unknown attacks, and as a result, it has better

accuracy in the detection of low-frequent attacks.

In reference [30], an anomaly detection algorithm is

presented that uses an auto-encoder together with a random

forest. It also uses feature selection and feature grouping to

decrease training time. The feature grouping also helps in

increasing the accuracy of the trained model by placing the

features with similar orders of magnitude into the same

group.

Reference [31] developed an improved deep auto-en-

coder named memory-augmented auto-encoder (MemAE)

that incorporates a memory module. The idea here is that a

normal auto-encoder may generalize so well that it can

reconstruct anomalies with small error, leading to miss-

detection of anomalies. To mitigate this drawback, this

method augments the auto-encoder with a memory module

to capture the prototypical elements of the normal data in

the training stage. Then at the test stage, the learned

memory will be fixed, and the reconstruction is obtained

from a few selected memory records of the normal data.

The reconstruction will thus tend to be close to normal

samples, and the reconstructed errors on anomalies will be

strengthened for anomaly detection.

Reference [32] proposed a multi-layer classification

approach to identify minority-class intrusions in highly

imbalanced data. The method first classifies incoming data

into normal or attack class. If the data point is an attack, the

method then tries to classify it into sub-attack types. The

method used a random forest classifier together with a

cluster-based under-sampling technique to deal with the

class-imbalanced problem.

Reference [33] introduced a collaborative intrusion

detection system-based deep blockchain network for the

identification of cyber-attacks in IoT networks. The paper

also proposed a hybrid privacy-preserving method to pro-

vide confidentiality of smart contracts by combining

blockchain with a trusted executed environment. The

authors have evaluated their BiLSTM based intrusion

detection method on the UNSW-NB15 dataset and showed

that it has good accuracy and detection rate in classifying

attack events exploiting cloud networks.

Reference [34] used deep learning together with shallow

learning. It proposes to use a non-symmetric deep auto-

encoder (NDAE) for non-symmetric data dimensionality

reduction alongside a random forest for classification. The

model has a light architecture and archives good classifi-

cation accuracy on KDDCup99 and NSL-KDD datasets.

Due to its lightweight architecture, this method is a good

candidate for doing intrusion detection in IoT networks.

Reference [35] presented an intrusion detection frame-

work named MSML (multilevel semi-supervised machine

learning) that includes four modules: pure cluster extrac-

tion, pattern discovery, fine-grained classification, and

model updating. The pure cluster module tries to find all

pure clusters using a hierarchical semi-supervised k-means

algorithm. The aim of the pattern discovery module is to

find unknown patterns and to label the test samples as

either labeled known patterns or unlabeled unknown pat-

terns. The fine-grained classification module determines

the class for unknown pattern samples, and the model-up-

dating module provides a mechanism for retraining. The

method is evaluated using the KDDCup99 dataset, and the

evaluation results showed that the MSML could provide

good accuracy and F1-score.

An IoT ensemble IDS is presented in [36] that mitigates

particular botnet attacks against DNS, HTTP, and MQTT

protocols. In this work, new statistical flow features from

the protocols are generated using the UNSW-NB15 dataset,

and an AdaBoost learning method is developed using three

machine-learning techniques: decision tree, naive Bayes,

and artificial neural network. The authors have evaluated

their ensemble technique and showed that the generated

features have the potential characteristics of malicious and

normal activity using the correntropy and correlation

coefficient measures.

Reference [37] proposed an intrusion detection system

based on a stacked auto-encoder and a deep neural net-

work. In this work, the stacked auto-encoder decreases the

dimensionality of the input vector in an unsupervised

manner, and the deep neural network is trained in a

supervised manner to extract deep-learned features for the

classifier. The neural network in this paper has two or three

layers of which each one contains a fully connected, a

batch normalization layer, and a dropout layer. The authors

have evaluated their proposed method using the

KDDCup99 and two other datasets and have reported the

results of binary and multiclass classification for their

work.

A dew computing as a service (DaaS) for improving the

performance of intrusion detection in edge of things (EoT)

ecosystems has been proposed in [38]. It acts as a cloud in

the local environment that collaborates with the public

cloud to reduce the communication delay and cloud server

workload. The paper improved deep belief network (DBN)

by a modified restricted Boltzmann machine (RBF) and

applied it in the real-time classification of attacks. The

authors used the UNSW-NB15 dataset to evaluate their

work and showed that their proposed method gives good

classification accuracy while improving communication

latency and reducing the workload of the cloud.

Although various state-of-the-art NIDSs exist, there are

still some technical gaps among them, and almost all of

4816 Neural Computing and Applications (2023) 35:4813–4833

123

existing NIDSs suffer from the weak performance in

minority classes and the heavy need for processing

resources. Therefore, to fill these gaps, better NIDSs are

still needed that can give better classification results in

minority classes. To this end, this paper presents a novel

NIDS named APAE that has a lightweight architecture, and

provides very good classification performance in minority

classes even after training using very limited training

records.

3 Proposed approach

This section presents various aspects of the proposed

approach. In the following, Sect. 3.1 explains the idea

behind using 2D data representation. Section 3.2 presents

the dilated convolution concept and compares it with nor-

mal convolution. In Sect. 0, the proposed idea of using

asymmetric parallel auto-encoder has been explained, and

finally, Sect. 3.5 describes the proposed classification

method for network intrusion detection.

3.1 Preprocessing and input data representation

The aim of NIDS is to detect intrusion by monitoring data

obtained from network traffic. Therefore, NIDSs usually

capture network traffic and, based on some 1-dimensional

feature vector extracted from network packets, decide

whether to raise the intrusion alarm or not. This feature

vector usually includes parameters like protocol type, ser-

vice type, number of failed logins, and so on. Current

public datasets like KDDCup’99 [11] and CICIDS2017

[10] are also of this form. To the best of our knowledge, all

deep learning-based state-of-the-art NIDSs also use 1D

feature vectors as their network input. However, this 1D

representation creates an obstacle to achieving high clas-

sification accuracy with convolutional neural networks. To

explain that, extracted 1D feature vectors from network

packets are not like voice or any other type of signal. In the

classification of voice signals, the class of a signal corre-

lates with extracted information from local changes of

consecutive points as well as the global shape of the signal.

Therefore, the order of the points in a voice signal (or any

other type of signal) is fixed and cannot be changed.

However, the order of individual parameters in the input

vector of a CNN-based NIDS is important and can highly

affect the network complexity and classification accuracy.

Consider A and B as two individual parameters in the input

vector of a CNN, and if the class of an input vector has a

correlation with the information extracted from the relation

between values of A and B, to achieve a simple and

accurate CNN, it is important for A and B to be as close as

possible. This is because the convolution filters can only

extract information from neighboring parameters in the

feature vector, and if A and B be far from each other in the

input vector, larger filters or more layers of filters are

needed to extract this information.

In a 1D feature vector, each parameter has only two

direct neighbors, while in a 2-dimensional feature vector,

each parameter has eight direct neighbors. Therefore, as

shown in Fig. 2, a 2D filter can extract more neighborhood

information than a 1D filter. Although it is possible to add

more layers to the network or increase the size of the 1D

filter in order to extract correlation information from far-

away parameters, this increases the network complexity

and decreases the accuracy of the network due to the need

for more training data and time.

For example, to extract the relative information between

the values of x6 and x18 of the 1D feature vector in Fig. 2a,

a filter of size 1 9 13 is needed while this information can

be extracted from the 2d feature vector of Fig. 2b using a

2d filter of the size 3 9 3. For this reason, the proposed

approach uses a 2D representation of feature vectors as

network input. In the preprocessing phase, the proposed

approach transforms the feature vectors to their 2D repre-

sentation with equal width and height while padding the

end of them with the necessary number of zeros.

In addition, some extracted parameters from network

packets (like protocol type) are in categorical form, and

they should be encoded to integer numbers in order to be

possible to use them as network input. To this end, the

proposed approach uses ‘‘Label Encoding’’ in which each

parameter of categorical type is replaced by its corre-

sponding integer index in an array containing all unique

values of that parameter.

3.2 Dilated convolution

Standard convolution filters (Eq. 2) can extract spatial

information only from neighboring parameters. Therefore,

to extract spatial information from distant parameters,

larger filters or more successive layers of filters are

required that makes the network more complex. To over-

come this problem, dilated convolution [39] can be used as

a generalized form of convolution. It adds one hyper-pa-

rameter to the convolution filter called dilation. Figure 3

shows the difference between standard convolution and

dilated convolutions. As it can be seen, the dilation

parameter represents the space between neighboring

parameters. In other words, an L-dilated convolution filter

considers cells with the distance of L as neighbors and

extracts their relative spatial information.

Equation (1) shows the formal definition of dilated

convolution. As you can see, dilated convolution is a

generalization of standard convolution, and choosing the

Neural Computing and Applications (2023) 35:4813–4833 4817

123

value of L = 1, makes Eq. (1) equal to the equation of

standard convolution (Eq. 2).

X �L Wð Þ pð Þ ¼
X

sþLt¼p

X sð ÞW tð Þ ð3Þ

In the case of the proposed approach, dilated convolu-

tion is very useful because it allows the proposed approach

to extract relative spatial information across the inputs

much more aggressively and with fewer layers.

3.3 Attention modules

Convolution operations have a local receptive field;

therefore, the obtained features by a convolution operation

may have some differences for input vectors with the same.

These differences introduce intra-class discrepancy and

affect the classification accuracy. To overcome this issue, it

is necessary to obtain global contextual information from

input feature vectors by building associations among long-

range features. Attention modules can do this. An attention

module maps a query and a set of key-value pairs to an

output, where the query, keys, values, and output are all

matrices [40]. The output is computed as a weighted sum

of the values, where the weight assigned to each value is

computed by a compatibility function of the query with the

corresponding key. A special type of attention module is

the self-attention module in which all of the keys, values,

and queries come from the same place. The self-attention

module can extract the global contextual information from

long-range input features, and hence, the proposed

approach uses two types of self-attention modules (pro-

vided in [41]) as explained in the next two subsections.

3.3.1 Positional self-attention module

It has been shown that local features obtained by convo-

lutional filters lead to misclassification [41]. Therefore,

long-range contextual information is necessary for dis-

criminant feature representation. To this end, the proposed

approach uses the positional self-attention module (Fig. 4)

to enhance the representation capability of local features by

encoding a wider range of contextual information into

them.

As shown in Fig. 4, the positional self-attention module

takes a local feature A [RC9H9W as its input and feeds it

into a convolution layer to generate two new feature maps

B and C where {B, C} [RC9H9W (C, H, and W are,

respectively, the number of channels, height, and width of

the input). Then, B and C are reshaped to RC9N where

N = H 9 W and a softmax layer is applied on the result of

multiplication of B and transpose of C to obtain the

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25

X1

X6

X2

X7

X3 X4

X8 X9

X5

X10

X11

X16 X17

X12 X13 X14

X18 X19 X20

X15

X21 X22 X23 X24 X25

(b)

(a)

Fig. 2. 1D feature vector versus 2D feature vector

(a) 3 × 3 Kernel
Dilated = 1

(Standard Convolu�on) (b) 3 × 3 Kernel
Dilated = 2

(c) 3 × 3 Kernel
Dilated = 3

Fig. 3 Dilated convolution versus standard convolution

4818 Neural Computing and Applications (2023) 35:4813–4833

123

attention map S [RN9N. This way, each value of Sij
measures the ith position impact on the jth position and can

be obtained by Eq. (4):

Sij ¼
eBi:Ci

PN
i¼1 e

Bi:Ci

ð4Þ

In the meantime, a new feature map D [RC9N is gen-

erated by applying a convolution layer on the A and

reshaping the result to RC9N. The output E [RC9H9W of

the position attention module is then obtained by reshaping

the result of the following formula to RC9H9W:

Ej ¼ a
XN

i¼1

SijDij

� �
þ Aj ð5Þ

Here, a is a learnable scaling parameter. Equation (3)

shows that E at each position is equal to a weighted sum of

the features across all positions and original features.

Therefore, it has a global contextual view and can improve

intra-class consistency by selectively aggregating contexts

according to the spatial attention map [41].

3.3.2 Channel self-attention module

Each channel map of input features can be seen as a class-

specific response, and different semantic responses relate to

one another. Therefore, the interdependencies between

channel maps can be used to emphasize interdependent

feature maps and improve the representation capability of

features. Hence, the proposed approach uses a channel self-

attention module (shown in Fig. 5) to explicitly model

interdependencies between channels.

As illustrated in Fig. 5, the channel attention map

X [RC9C is directly calculated from the original input

features A. First, A is reshaped to RC9N, and then, X is

obtained by applying a softmax layer on the multiplication

of A with its transpose as in Eq. (4):

Xij ¼
eAi:Ai

PN
i¼1 e

Ai:Ai

ð6Þ

Here, each Xij measures the impact of the ith channel on

the jth channel, and the final output E [RC9H9W can be

obtained by reshaping the result of multiplying a learnable

scaling factor b by the element-wise sum of the outcome of

multiplication of A and the transpose of X as illustrated in

Eq. (5):

Ej ¼ b
XC

i¼1

XijDAij

� �
þ Aj ð7Þ

From Eq. (7), it can be inferred that each final value of

the channel attention module is a weighted sum of the

features of all channels and the original features and can be

used to model the long-range semantic dependencies

between feature maps.

3.4 Asymmetric parallel auto-encoder

A deep auto-encoder can be used to reduce the dimension

of the input vector using the encoder-decoder paradigm

described in Sect. 2.1.2. This way, one can extract the most

descriptive features for classification and discard deceptive

information in the input vector that misleads the classifier.

However, standard deep auto-encoders have their limita-

tions in NIDS. They use standard convolution filters, and

therefore, to achieve good accuracy in extracting discrim-

inative features, multiple numbers of them should be

stacked together. This results in complex deep networks

that are not suitable for IoT devices. In addition, standard

auto-encoders are symmetrical, i.e., the encoder and

decoder have an equal number of layers, and each layer in

the decoder exactly does the reverse operations of its cor-

responding layer in the encoder as shown in Fig. 1. How-

ever, as explained in [42], having more units in fewer

layers of the encoder and meanwhile having more layers in

the decoder helps the auto-encoder to achieve a better

B

C

D

reshape &
transpose

C× H×W

Softmax

(H×W)×(H×W)

C×H×W

A

E

S

Fig. 4 The structure of

positional self-attention module

Neural Computing and Applications (2023) 35:4813–4833 4819

123

reconstruction of the input data. The more units in fewer

layers of encoder allow finding a robust abstract repre-

sentation, while the more layers of decoder help it to

reconstruct the input data from the abstract representation.

Therefore, the proposed approach uses an advanced auto-

encoder called asymmetric parallel auto-encoder (APAE).

Figure 6 shows the overall structure of an APAE. As you

can see, APAE is an asymmetric auto-encoder that com-

bines two encoders and a decoder together. The input to

APAE is the 2D representation of the input vector obtained

by applying the preprocessing procedure described in

Sect. 3.1. Generally, APAE consists of a transfer layer and

three other major parts: encoder, latent feature, and deco-

der. The transfer layer has eight standard convolution filters

transferring the input to eight representation channels.

These channels then split into two equal parts to feed the

encoder.

The encoder contains two feature extractors: a long-

range feature extractor and a local feature extractor. The

long-range feature extractor is the encoder part of an auto-

encoder with dilated convolutional filters of size 3 9 3.

The local feature extractor is also the encoder part of an

auto-encoder with standard 3 9 3 convolutional filters. In

each feature extractor, there are three layers of successive

convolutional filters that each one (together with down-

sampling), extracts some lower dimension features from its

input and feed them to the next layer. The final parts of the

two feature extractors are also different. The local feature

extractor has a positional self-attention module, and the

long-range feature extractor has a channel self-attention

module. Using a positional self-attention module as the last

Softmax

reshape &
transpose

C×H×W

C×H×W

C×C
A

E

Reshape Reshape

Reshape

X

Fig. 5 The structure of channel

self-attention module

DeocderLatent FeaturesEncoder

Long-range feature extractor Locally feature extractorDilated Conv LayerSatndard Conv Layer

Conv
Layer(Transfer)

Posi�on A�en�on
Module

Channel A�en�on
Module Pooling Layer

Conv Transpose Layer

Fig. 6 The overall structure of an asymmetric parallel auto-encoder

4820 Neural Computing and Applications (2023) 35:4813–4833

123

part of the local feature extractor is because the positional

self-attention module can enhance the representation

capability of local features, as explained in Sect. 3.3.1. The

channel self-attention module, as the last part of the long-

range feature extractor, is to emphasize interdependent

feature maps and to enhance the extracted long-range

features, as described in Sect. 3.3.2. At the end of each

feature extractor, there are compressed features with lower

dimensions that together make the latent features that are

used to feed the decoder.

Typically, a symmetric auto-encoder uses convolutional

layers together with pooling layers in the encoder to reduce

the dimensionality of the inputs and obtain a lower-di-

mensional representation. The decoder part also uses up-

sampling layers (the reverse of pooling layer) together with

convolutional layers to regenerate the original inputs using

the output of the encoder. However, as explained in pre-

vious paragraphs, the APAE encoder generates the lower-

dimensional representation of input data by combining the

outputs of two parallel feature extractors that each one uses

a different type of convolutional layers. Therefore, the

APAE decoder should be able to reverse the operation of

both dilated and standard convolution layers. To this end,

the APAE uses a robust decoder containing transposed

convolution layers. Unlike the up-sampling layer that has

no learnable parameter, the transposed convolution has

learnable parameters and, on its own, can do the job of both

up-sampling and convolution layers. By stacking eight

transposed convolution layers, the APAE decoder can

effectively regenerate the APAE inputs with high accuracy

(as shown in the evaluation results in Sect. 4).

Like normal auto-encoders, the aim of training an APAE

is to approximate the identity function. In addition, the

latent features of a trained APAE can also be used as a

compressed and lower dimension form of its inputs.

However, the difference between APAE and normal auto-

encoders is that the APAE is more robust and can effi-

ciently produce the lower dimension representation of its

input with a smaller number of layers and parameters. In

addition, APAE is more suitable for NIDS because it acts

more aggressively in extracting the relative spatial infor-

mation of its input parameters comparing to normal auto-

encoders.

3.5 Network intrusion detection

The proposed approach is a deep learning model for

detecting intrusion in IoT networks. Because IoT devices

have limited processing resources, the model should be as

lightweight and with few parameters as possible. To this

end, the proposed model uses the encoder part of an APAE

(outlined in the previous section) as an efficient tool to

extract the most descriptive low dimension features for

accurate classification.

In the proposed model, an APAE is first trained on a

dataset to estimate the identity function for the training

data. Then, the final model (as shown in Fig. 7) is obtained

by concatenating a fully connected classifier layer at the

end of the first parts (transfer layer, encoder, and latent

features) of the trained APAE. After that, the final model is

trained again using the training data to obtain the classifier

weights while fine-tuning the weights of the APAE encoder

for accurate classification.

Note that, in deep learning research, the success of a

model is dictated by its structural architecture. Existing

deep learning approaches typically use 1-dimensional input

vector and they also have sequential structures that use

only standard convolution layers in sequence. Therefore,

they need to have many layers to achieve good classifica-

tion accuracy, and as a result, they require many processing

resources, which make them not suitable for real-time

attack detection in IoT networks. In contrast, the structure

of the proposed model has resulted from rational decisions

together with experimenting with several structural com-

positions to achieve the best results. The proposed model

uses a parallel structure that have two feature extractors,

each having few sequential layers with different types of

convolutional filters. It also uses 2-dimensional input

vector which brings the long-range features close together

and allows the convolutional filters of the local feature

extractor to extract more useful information. In addition,

the long-range feature extractor uses dilated convolutional

filters that can extract more information from long-range

features. The proposed model also uses a positional self-

attention module to enhance the representation capability

of local feature extractor, and a channel self-attention

module to enhance the extracted long-range features by the

long-range feature extractor. Therefore, as the results of

experiments in the next section shows, the proposed model

is highly superior comparing to the current state of the art

NIDSs as it has an efficient and lightweight architecture

with very few parameters and also, it can accurately dis-

cern normal network traffic and different classes of attacks

(even minority classes) from each other.

4 Results and experiments

The proposed model is implemented with python using the

Pytorch library. The Adam optimizer with a learning rate

equal to 0.001 has been used to train the proposed model in

40 epochs on Google Colab infrastructure. This section

presents the results of experiments and compares the pro-

posed approach with the works presented in [33–38, 43, 44]

using three public datasets: CICIDS2017, UNSW-NB15,

Neural Computing and Applications (2023) 35:4813–4833 4821

123

and KDDCup99. Two types of experiments have been done

on each dataset. In the first type of experiment (Sect. 4.3),

the proposed model has been used as an anomaly detector

(binary classification) on each dataset, and in the second

type of experiment (Sect. 4.4), the proposed method is used

to distinguish between different classes of attack (multi-

class classification) in each dataset. Note that the authors of

the compared related works did not provide all the needed

information for the comparisons with the proposed

approach. However, some of them (NDAE [34] and

MemAE [44]) made the source code of their works pub-

licly available (NDAE source code [45], MemAE source

code [46]). Therefore, we used these source codes to obtain

the required results for the NDAE and MemAE algorithms

while comparing the proposed approach with other algo-

rithms using only the provided results in their corre-

sponding papers. Note that in the following sections, the

‘‘N/A’’ (Not Available) symbol is used in cases that the

source code for a method is not available and the required

results for that method have not been provided in the

corresponding paper.

4.1 Datasets

4.1.1 NSW-NB15

The UNSW-NB15 dataset [12, 47] has been created in the

Cyber Range Lab of the Australian Centre for Cyber

Security (ACCS) by generating a hybrid of real normal

activities and synthetic contemporary attack behaviors.

This dataset has 257,673 records that 175,341 of these

records are in the training set, and the remaining 82,332

records are in the testing set. This train and test split

configuration is used for the experiments in this paper in

order for the results of our work on this dataset be com-

patible with the results of previous works. Among the

records in this dataset, 63.9% belongs to network flows that

represent nine types of attacks (Generic, Exploits, Fuzzers,

DoS, Reconnaissance, Analysis, Backdoor, Shellcode,

Split
Channel

Long-range feature extractor Locally feature extractorDilated Conv LayerSatndard Conv Layer

Classifier

Conv Layer(Transfer) Posi�on A�en�on Module Channel A�en�on Module Pooling Layer

Enocder

Fig. 7 The proposed model: network intrusion detection using an APAE together with a classifier

4822 Neural Computing and Applications (2023) 35:4813–4833

123

Worms), and the remaining 37.1% of the dataset records

represent normal network connections. Each record of this

dataset contains 49 features that two of which are for multi-

class and binary labels. From the remaining 47 features, 42

features are numeric, and five features are categorical.

After applying the preprocessing that is explained in

Sect. 3.1, each record of this dataset can be represented by

a 2D matrix of the size 8 9 8.

4.1.2 CICIDS2017

The CICIDS2017 dataset [10] is one of the most popular

databases IDS research that has been collected at the

Canadian Cyber Security Institute. This dataset contains

2,830,473 records that each one has 80 features. 80.30% of

the data in this dataset represent benign network connec-

tions, and the remaining 19.70% of dataset records are

network flows that represent six types of common attacks

(Dos, Portscan, Infiltration, Web Attack, Bot, and Brute

force) and 14 types of sub-attacks. The dataset includes two

networks: attack network and victim network. The attack

network is a separated infrastructure that has a router, a

switch, and a set of attacker PCs with different operating

systems executing the attack scenarios. The victim network

is a secured network with a firewall, router, switches, and

some PCs that each one executes a benign behavior agent.

The records of this dataset also need preprocessing, and

after applying the mentioned preprocessing in Sect. 3.2,

each record is represented by a 2D matrix of the size

9 9 9. In the experiments of the next sections, a random

subset of this dataset with the size of about 65% of the

dataset has been used as the train set, and the remaining

35% has been used as the test set.

4.1.3 KDDCup99

KDDCup99 dataset is a known benchmark dataset in IDS

research [35, 37]. This dataset is obtained by processing

about 4 gigabytes of compressed tcpdump data collected

from 7 weeks of DARPA network traffic. It contains about

5 million feature vectors that each one represents a single

connection record with 41 features, including both numeric

and categorical features. From these 41 features, three of

them are in categorical form and require to be preprocessed

with ‘‘Label Encoding’’ as described in Sect. 3.1. After

encoding, the feature vectors are padded with zeros and

reshaped (as explained in Sect. 3.1 to produce the 2D

representation of the size 8 9 8. Each vector is labeled as

Normal or as one of four attack types: Dos, Probe, R2L,

U2R. There are also 22 sub-attack types, and each record

has labeled with one of them.

Because training a network with this large number of

records requires a lot of computational time and resources,

it is a common practice to use 10% of the full-size dataset

that contains 494,021 training records and 311,029 testing

records. However, these sets have very different distribu-

tion of records, i.e. the test set has many records with labels

that do not exist in the train set. Therefore, we have split

the 494,021 records of the training set into two subsets of

321,113 and 172,908 records, and in the experiments, we

have used these new subsets as the train set and the test set,

respectively.

4.2 Comparison criteria

To justly compare the efficiency and accuracy of the pro-

posed model with other NIDSs, the following four criteria

have been used:

1. Overall classification accuracy:

Considering N as the total number of records in the

test set and T as the total number of correct classifi-

cations made by a classifier, the overall accuracy of

the classification (shown in equation (6)) can be

calculated as the ratio between T and N multiplied by

100.

accuracy ¼ T

N
� 100 ð8Þ

Confusion matrix:

A confusion matrix is a squared table that allows visu-

alization of the performance of a classification algorithm. It

makes it easy to see if the algorithm confused between two

classes and mislabeled each one as another. In this table,

each row and column represent a class. The value of a cell

at the index (i, j) shows the number of data instances that

actually belong to the ith class, but the algorithm predicted

them as members of the jth class. It is easy to visually

inspect the prediction errors using this table as all the

correct predictions are on the diagonal of the table, and the

values outside the diagonal represent the prediction errors.

Precision, recall, and F-Score:

These criteria are useful for class-wise evaluation of the

output of the classifier. To define these criteria, the fol-

lowing definitions are also needed for each class c:

• True positive (TP): number of records that are properly

classified into the class c.

• False positive (FP): number of records that are mistak-

enly classified into the class c.

Neural Computing and Applications (2023) 35:4813–4833 4823

123

• False negative (FN): number of records from class

c that are mistakenly classified into other classes.

Having previous definitions, the precision, recall, and F

score for each class can be obtained using the following

formulas:

Precision ¼ TP

TPþ FP
ð9Þ

Recall ¼ TP

TPþ FN
ð10Þ

F � score ¼ 2� Precision � Recall

Precision þ Recall
ð11Þ

The F score is the harmonic mean of the recall and the

precision. The highest possible value of the F score is 1,

which indicates perfect precision and recall, and the lowest

possible value is 0, if either the precision or the recall is

zero. In the case of classes with uneven distribution, the F

score is a better criterion comparing to the accuracy.

The Number of parameters:

Since IoT devices have very limited processing capa-

bilities, it is important for an IoT NIDS to be as compu-

tationally efficient as possible. Therefore, a highly CPU

intensive NIDS is not suitable for IoT networks even if it

provides a perfect classification of different attack types.

From this point of view, a better NIDS for IoT is the one

that has low computational complexity while providing

good classification results. The number of parameters is a

good criterion to measure the computational complexity of

deep learning methods, and therefore, it is used in this

paper to compare the proposed approach (which is a deep

learning method) with other methods.

4.3 Anomaly detection

This section presents the results of the anomaly detection

experiment. In this experiment, the records of all attack

types are combined into a single attack class for each

dataset, and each record of the three datasets is labeled as

either Normal or Attack. Section 4.3.1 shows the results of

this experiment on the UNSW-NB15 dataset, and the cor-

responding results for the CDCIDS2017 dataset are also

presented in Sect. 4.3.2. Section 4.3.3 also presents the

results of this experiment on the KDDCup99 dataset.

4.3.1 UNSW-NB15 dataset

The anomaly detection results of the proposed approach

against the other algorithms using the UNSW-NB15 data-

set are shown in Table 1. As you can see, all algorithms

(the ones whose corresponding papers have provided the

anomaly detection results on this dataset or their source

codes are available) have good binary classification

accuracy on this dataset. The reason is that the binary

classification on this dataset is easy. Reference [43] has

calculated the first and second principal components of this

dataset and showed that the level of intertwining between

the two classes of this dataset is very low, which makes the

binary classification of this dataset very easy.

The proposed approach is highly superior to both NDAE

and MemAE in terms of efficiency and performance. The

proposed model has only 1162 parameters that show about

65% and 90% decrease in network complexity comparing

to NDAE and MemAE, respectively. This is very important

as the proposed model can be used in devices with low

processing power, and hence, it better suits to IoT networks

comparing to other NIDSs.

4.3.2 CICIDS2017 dataset

Table 2 presents the evaluation results of anomaly detec-

tion performance of the proposed approach against other

algorithms using the CICIDA2017 dataset outlined in

Sect. 4.1.1. The results on this dataset also confirm the

superiority of the proposed approach over almost all other

methods. Again, the classification accuracy is higher than

the NDAE and MemAE. The proposed method achieved

about 4% superiority over the NDAE method while its

accuracy is a little higher than the MemAE algorithm and

is slightly lower than the accuracy of the presented method

in reference [43].

In the case of performance, the proposed method is

again highly superior to the other two methods. The

number of parameters of the proposed method is about

12% and 77% lower than the number of parameters in

NDAE and MemAE algorithms, respectively, which makes

the proposed method to be more suitable for anomaly

detection in IoT networks comparing to the other two

algorithms. It should be noted that in order to obtain the

results shown in Table 2, the dataset has been split into two

parts. The first part is a random subset of the dataset con-

taining 65% of the total data and has been used for training

all three algorithms. The second part also contains the

remaining 35% of the data and has been used as the test set

for the evaluation of all algorithms.

4.3.3 KDDCup99 dataset

This section evaluates the anomaly detection performance

of the proposed APAE approach against other algorithms

using the KDDCup99 dataset outlined in Sect. 4.1.3. The

results obtained from anomaly detection on the KDDCup99

dataset by APAE and the other algorithms are presented in

Table 3. By comparing the results of all algorithms, it is

obvious that the accuracy of the proposed model is better

than other algorithms. In terms of classification accuracy,

4824 Neural Computing and Applications (2023) 35:4813–4833

123

the proposed model is 1% better comparing to the NDAE

algorithm, while it is almost comparable to the MemAE

algorithm and is far better than the results of reference [37].

This is while the proposed approach is highly superior to

the MemAE in terms of efficiency and performance. The

proposed model has 3,274 parameters that show about a

67% decrease in network complexity comparing to

MemAE. However, in terms of performance, NDAE beats

the APAE by a small margin because APAE has 2% more

parameters.

4.4 Multi-class classification

This section presents the results of the multi-class classi-

fication experiment. In this experiment, the algorithms are

compared based on their ability to predict the true classes

of dataset records. Section 4.4.1 shows the results of this

experiment on the UNSW-NB15 dataset that has ten clas-

ses: a class of Normal records and nine attack classes of

Reconnaissance, Backdoor, Dos, Exploit, Analysis, Fuz-

zers, Worms, Shellcode, and Generic. The results for the

Table 1 The results of anomaly

detection for UNSW-NB15

dataset

Precision (%) Recall (%) F score (%)

NDAE MemAE APAE NDAE MemAE APAE NDAE MemAE APAE

Normal 99.92 99.99 100 99.92 100 100 99.92 99.99 100

Attack 99.94 100 100 99.94 99.99 100 99.94 100 100

APAE MemAE NDAE [43] [35] [37] [38] [33] [36]

Overall performance

Accuracy (%) 100 99.99 99.92 100 N/A N/A N/A N/A N/A

Total parameters 1162 11,621 3372 N/A N/A N/A N/A N/A N/A

The values with the bold text are the ones that are maximum of their correponding rows in the sub-

tables (Precision, Recall, and F-Score)

Table 2 The results of anomaly

detection for CICIDS2017

dataset

Precision (%) Recall (%) F score (%)

NDAE MemAE APAE NDAE MemAE APAE NDAE MemAE APAE

Normal 98.57 99.70 99.38 93.99 96.20 98.04 96.23 97.92 98.71

Attack 94.45 96.46 98.13 98.69 99.72 99.41 96.52 98.06 98.77

APAE MemAE NDAE [43] [35] [37] [38] [33] [36]

Overall performance

Accuracy (%) 98.73 98.19 94.64 99.9 N/A N/A N/A N/A N/A

Total parameters 3274 14,621 3732 N/A N/A N/A N/A N/A N/A

The values with the bold text are the ones that are maximum of their correponding rows in the sub-

tables (Precision, Recall, and F-Score)

Table 3 The results of anomaly

detection for KDDCup99

dataset

Precision (%) Recall (%) F score (%)

NDAE MemAE APAE NDAE MemAE APAE NDAE MemAE APAE

Normal 95.37 99.30 99.86 98.86 99.91 99.94 97.09 99.90 99.86

Attack 99.72 99.98 99.98 98.83 99.83 99.97 99.27 99.97 99.97

APAE MemAE NDAE [37] [35] [43] [38] [33] [36]

Overall performance

Accuracy (%) 99.95 99.84 98.83 93.8 N/A N/A N/A N/A N/A

Total parameters 3274 9996 3177 N/A N/A N/A N/A N/A N/A

The values with the bold text are the ones that are maximum of their correponding rows in the sub-

tables (Precision, Recall, and F-Score)

Neural Computing and Applications (2023) 35:4813–4833 4825

123

CDCIDS2017 dataset are also presented in Sect. 4.4.2, in

which there are a total number of seven classes: a single

class of Benign records beside six attack classes of Dos,

PortScan, Infiltration, Web Attack, Bot, and Brute Force.

Section 4.4.3 also shows the results for the KDDCup99

dataset that has five classes: a single class of normal

records, beside four attack classes of U2R, Dos, R2L, and

Probe.

4.4.1 UNSW-NB15 dataset

Table 4 shows the classification results for the 10-class

attack detection experiment on the UNSW-NB15 dataset

for the APAE against other algorithms. As you can see, the

APAE defeats the NDAE and MemAE in almost all criteria

for individual classes. It should be noted that the distri-

bution of records in this dataset is unbalanced. For exam-

ple, the Worms and Shellcode classes are minority

comparing to other classes. The total number of records in

the Exploits class is 44,525 records, while the Worms class

has only 130 records in the train set and 44 records in the

test set. The Shellcode class also contains only 1133

records in train set and 378 records in test set. Therefore, as

it can be seen from Table 4, the NDAE and the MemAE

have poor classification performance in these classes. This

is while the APAE classification performance on these

classes is very significant. These differences are better

shown in Fig. 8. As it can be seen, the APAE precision and

recall for all classes are higher than the other two algo-

rithms. The NDAE has the worse results in almost all

classes; its precision and recall for the Worms and

Shellcode classes are equal to zero. Also, the NDAE pre-

cision and recall for the Exploits and Analysis classes are

also very bad and almost equal to zero. The situation for

the MemAE is better than the NDAE in the Exploits,

Analysis, and Shellcodes classes. However, in the Worms

class, the MemAE has very false positives, and therefore,

its precision is very low. In the case of the Dos class, the

MemAE has high number of false negatives, and as a

result, it has very low recall. The confusion matrixes of

Fig. 9 are also show the NDAE incorrectly classified all the

records of the Worms and Shellcodes classes. The MemAE

has a good recall on the Worms class: it has correctly

classified 37 records from 44 test records of this class.

However, MemAE has very bad precision on this class

because of its high false positive on this class: it has

incorrectly classified 415 (sum of the Worms column in

Fig. 9 minus 37) records of other classes into the Worms

class. The MemAE results for the Shellcode class are also

bad: it has correctly classified only 19 records of all 378

records in the test set of this class, which makes it have

very bad precision and recall on this class.

In terms of the number of parameters, the APAE beats

the MemAE and loses to NDAE. The number of parame-

ters for APAE is about 68% lower than the MemAE. The

number of parameters of NDAE is about 12% less than the

APAE; however, the classification accuracy of APAE is

fare better. Comparing the classification accuracy of APAE

with other methods in Table 4 also shows that the APAE is

superior to all of them.

Table 4 The results of

multiclass classification for

UNSW-NB15 dataset

Precision (%) Recall (%) F score (%)

NDAE MemAE APAE NDAE MemAE APAE NDAE MemAE APAE

Normal 68.78 99.81 99.96 94.91 100 100 79.76 99.91 99.98

Reconnaissance 17.64 100 100 3.03 96.28 99.80 5.17 98.11 99.90

Backdoor 12.66 88.08 98.31 8.23 91.25 100 9.98 89.64 99.15

Dos 15 85.84 99.46 12.74 98.26 99.56 13.78 91.63 99.51

Exploit 2.21 98.91 100 0.04 93.70 99.53 0.07 96.24 99.77

Analysis 3.12 90.35 96.98 5.47 99.56 99.56 3.97 94.73 98.25

Fuzzers 16.07 99.77 99.69 16.58 98.14 99.84 16.32 98.94 99.76

Worms 0 8.19 91.67 0 84.09 100 0 14.92 95.65

Shellcode 0 52.78 100 0 5.03 100 0 9.18 100

Generic 98.84 99.89 100 95.95 99.88 100 97.37 99.89 100

APAE MemAE NDAE [38] [33] [36] [35] [37] [43]

Overall performance

Accuracy (%) 99.89 98.23 66.73 85.71 99.41 99.5 N/A N/A N/A

Total parameters 3794 12,061 3372 N/A N/A N/A N/A N/A N/A

The values with the bold text are the ones that are maximum of their correponding rows in the sub-

tables (Precision, Recall, and F-Score)

4826 Neural Computing and Applications (2023) 35:4813–4833

123

4.4.2 CICIDS2017 dataset

Table 5 shows the results of the 7-class attack detection

experiment on the CICIDS2017 dataset for APAE against

other algorithms. Note that references [33, 35–38, 43] did

not evaluate their works on this dataset, and their source

codes are also not publicly available. However, the source

code for the MemAE and the NDAE algorithms are pub-

licly available and we used their source codes to obtain the

results of this experiment for these algorithms. Therefore,

Table 5 only shows the results of this experiment for the

APAE, the MemAE, and the NDAE algorithms, which

their source codes are publicly available. As you can see in

Table 5, the results show that the APAE has dominance

over the other methods in almost all evaluated parameters.

The APAE has achieved the overall accuracy of 99.5%,

which is about 1% and 2% higher than MemAE and

NDAE, respectively. This is while the APAE is highly

efficient comparing to the MemAE algorithms, and the

number of parameters in the APAE is significantly lower

than the number of parameters in the MemAE algorithms.

The APAE has only 3599 parameters, which shows 76%

improvement in efficiency comparing to the MemAE that

has 15,016 parameters. The APAE is also more efficient

Fig. 8 Precision and recall comparison on UNSW-NB15 dataset

Neural Computing and Applications (2023) 35:4813–4833 4827

123

than the NDAE, and it has about 3% lower number of

parameters than the NDAE, which has 3732 parameters.

This again verifies the superior performance of the APAE

and its true effectiveness for multi-class attack detection in

IoT networks.

Almost all class-wise parameters for APAE are also

higher than the other two algorithms. Nevertheless, the

results for Infiltration class are substantial. Note that the

data distribution between various classes of this dataset is

also different. For example, the Infiltration class has only

36 records at all, while the Portscan class has 158,930

records. Therefore, almost all previous NIDSs, including

the NDAE and the MemAE, have poor classification

accuracy on the Infiltration class. As you can see in

Table 5, the classification performance of the proposed

APAE algorithm on the Infiltration class is very high

comparing to the other two methods. The precision and

recall charts in Fig. 10 and confusion matrixes shown in

Fig. 11 also confirm that both the NDAE and MemAE

incorrectly classified all 12 records in the test set of

Fig. 9 Multiclass confusion matrix for a APAE, b MemAE, and c NDAE algorithms on UNSW-NB15 dataset

4828 Neural Computing and Applications (2023) 35:4813–4833

123

Infiltration class, while the classification results of the

proposed APAE are correct in 7 cases of total of 12 test

records. The results for the Bot and Web Attack classes are

also notable. In the Web Attack class, the MemAE has

better precision comparing to the APAE. Both the NDAE

and the MemAE also slightly outperform the APAE in

terms of precision in the Bot class. However, in both of

these classes, the recall for the APAE is significantly higher

than the recall for both the other two algorithms. Also, the

APAE beats the two other algorithms in terms of the

Table 5 The results of

multiclass classification for

CICIDS2017 dataset

Precision (%) Recall (%) F score (%)

NDAE MemAE APAE NDAE MemAE APAE NDAE MemAE APAE

Benign 98.48 99.39 99.81 96.58 97.23 99.21 97.52 98.30 99.51

DoS 98.40 98.90 99.47 99.25 99.77 99.84 98.82 99.34 99.65

PortScan 93.42 93.99 99.58 98.03 99.83 99.88 95.67 96.82 99.73

Infiltration 0 0 38.89 0 0 58.33 0 0 46.67

Web Attack 56.74 88.24 64.37 53.73 9.48 96.84 55.19 17.12 77.33

APAE MemAE NDAE [35] [37] [43] [38] [33] [36]

Overall performance

Accuracy (%) 99.50 98.26 97.56 N/A N/A N/A N/A N/A N/A

Total parameters 3599 15,016 3732 N/A N/A N/A N/A N/A N/A

The values with the bold text are the ones that are maximum of their correponding rows in the sub-

tables (Precision, Recall, and F-Score)

Fig. 10 Precision and recall comparison on CICIDS2017 dataset

Fig. 11 Multiclass confusion matrix for a APAE, b MemAE, and c NDAE algorithms on CICIDS2017 dataset

Neural Computing and Applications (2023) 35:4813–4833 4829

123

F-Score, which is a better criterion in the case of classes

with uneven distribution.

4.4.3 KDDCup99 dataset

Table 6 presents the results of the 5-class classification

experiment on the KDDCup99 dataset for APAE, NDAE,

MemAE, and other algorithms. The results show that the

APAE is again superior to the other methods in almost all

evaluated parameters. The proposed method achieved

higher values in accuracy, precision, recall, and F-score for

almost all five classes. However, the remarkable results are

the ones obtained for the U2R class. Note that the data in

the KDDCup99 dataset are also unevenly distributed in

different classes. For example, the U2R class has merely 52

records at all, while the Dos class has 293582 training

records. Therefore, almost no previous NIDSs have good

classification performance on the U2R class. The NDAE

and MemAE are also not exceptions, and as you can see in

Table 6, their classification performance on the U2R class

is very bad. However, the classification performance of the

proposed APAE algorithm on the U2R class is very high

comparing to the other methods. This is also observable

from confusion matrixes shown in Fig. 12 and charts in

Fig. 13: both the NDAE and MemAE incorrectly classified

all 16 records in the test set of U2R class, while the clas-

sification results of the proposed APAE are correct in 11

cases of total 16 test records.

The overall performance results on this dataset also

confirm the dominance of the proposed approach over the

other methods in multi-class classification. The APAE

accuracy is slightly higher than the MemAE algorithm,

while it achieved about 1% superiority over the NDAE

method in terms of accuracy. Its accuracy is also far better

than the presented methods in reference [35, 37].

Table 6 The results of

multiclass classification for

KDDCup99 dataset

Precision (%) Recall (%) F score (%)

NDAE MemAE APAE NDAE MemAE APAE NDAE MemAE APAE

Normal 94.36 99.66 99.82 99.02 99.51 99.91 96.63 99.58 99.86

U2R 0 0 64.71 0 0 68.75 0 0 66.67

DoS 99.19 99.99 100 99.18 100 100 99.19 100 100

R2L 62.77 70.0 96.73 19.93 89.86 89.86 30.26 78.70 93.17

Probe 40.24 99.90 98.95 3.14 96.48 98.95 5.83 98.16 98.95

APAE MemAE NDAE [35] [37] [43] [38] [33] [36]

Overall performance

Accuracy (%) 99.94 99.83 98.13 96.6 94.2 N/A N/A N/A N/A

Total parameters 3469 10,122 3177 N/A N/A N/A N/A N/A N/A

The values with the bold text are the ones that are maximum of their correponding rows in the sub-

tables (Precision, Recall, and F-Score)

Fig. 12 Multiclass confusion matrix for a APAE, b MemAE and c NDAE algorithms on KDDCup99 dataset

4830 Neural Computing and Applications (2023) 35:4813–4833

123

Comparing to MemAE, the APAE again has a smaller

number of parameters. The number of APAE parameters is

about 65% lower than the number of parameters in

MemAE, which shows the advantage of the APAE in terms

of performance and its true effectiveness for multi-class

attack detection in IoT networks.

5 Discussion

As the results of the experiments in Sect. 4 showed, the gap

between the overall classification accuracy of the previous

works is small. The gap between the overall classification

accuracy of the proposed approach and the overall classi-

fication accuracy of previous works is also small. However,

for the comparison of intrusion detection systems, the

overall classification accuracy is not the only important

criterion. The efficiency of these systems is also very

important, particularly in the IoT world in which the

hardware devices have very limited processing capabilities.

Another important criterion for comparing intrusion

detection systems is the sub-class classification accuracy,

especially in minority classes, as this shows the ability of

the system in cases that the training samples are very

limited. An intrusion detection system may have very good

overall classification accuracy, but at the same time, it may

need many processing resources or it may have very bad

classification performance in the minority classes. There-

fore, it is necessary to look at various parameters while

comparing different intrusion detection systems. Although

the proposed method has slightly better overall classifica-

tion accuracy than the previous works, the proposed

approach is highly superior to the previous works in terms

of the classification performance in the minority classes.

Also, the proposed approach is very lightweight comparing

to the previous works, because it has fewer numbers of

parameters, as mentioned in the experimental results of

Sect. 4.

6 Conclusion and remarks

In this paper, a new and lightweight architecture based on

asymmetric parallel auto-encoder (APAE) has been pro-

posed that has used dilated and standard convolutional

filters to extract both locally and long-range information

around individual values in the feature vector. It also has a

positional self-attention and a channel self-attention mod-

ule to enhance the local and long-range features, respec-

tively. This separation of features allowed the APAE to

achieve an accurate attack detection (even in minority

classes) with a small and lightweight deep neural network

suitable for IoT devices with low processing capabilities.

The effectiveness of the proposed neural network has been

evaluated using UNSW-NB15, CICIDS2017, and

KDDCup99 datasets, and the results showed the superiority

of the proposed model over the state-of-the-art algorithms.

Funding None.

Availability of data and material None.

Declaration

Conflict of interest None.

References

1. Stoyanova M, Nikoloudakis Y, Panagiotakis S, Pallis E, Marka-

kis EK (2020) A survey on the internet of things (IoT) forensics:

challenges, approaches and open issues. IEEE Commun Surv

Tutor 22:1191

2. Al-Garadi MA, Mohamed A, Al-Ali A, Du X, Ali I, Guizani M

(2020) A survey of machine and deep learning methods for

internet of things (IoT) security. IEEE Commun Surv Tutor

22:1646

3. Popoola SI, Adebisi B, Hammoudeh M, Gui G, Gacanin H (2020)

Hybrid Deep Learning for Botnet Attack Detection in the Internet

of Things Networks. IEEE Int Things J 8:4944

Fig. 13 Precision and recall comparison on KDDCup99 dataset

Neural Computing and Applications (2023) 35:4813–4833 4831

123

4. Mbarek B, Ge M, Pitner T (2020) Enhanced network intrusion

detection system protocol for internet of things. In Proceedings of

the 35th annual ACM symposium on applied computing,

pp 1156–1163.

5. Louati F, Ktata FB (2020) A deep learning-based multi-agent

system for intrusion detection. SN Appl Sci 2(4):1–13

6. Gao M, Song Y, Xin Y (2020) Intrusion detection based on fusing

deep neural networks and transfer learning. In Digital TV and

wireless multimedia communication: 16th international forum,

IFTC 2019, Shanghai, China, September 19–20, 2019, Revised

selected papers, Springer Nature, Berlin, vol 1181, p 212.

7. Rashid A, Siddique MJ, Ahmed SM (2020) Machine and deep

learning based comparative analysis using hybrid approaches for

intrusion detection system. In: 2020 3rd International conference

on advancements in computational sciences (ICACS): IEEE,

pp 1–9.

8. Gamal M, Abbas H, Sadek R (2020) Hybrid approach for

improving intrusion detection based on deep learning and

machine learning techniques. Joint European-US workshop on

applications of invariance in computer vision. Springer,

pp 225–236

9. D. Vallejo-Huanga (2020) Empirical exploration of machine

learning techniques for detection of anomalies based on NIDS.

IEEE Latin Am Trans 100(1e)

10. Intrusion Detection Evaluation Dataset (CIC-IDS2017): https://

www.unb.ca/cic/datasets/ids-2017.html

11. KDD Cup 1999 Data: http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html

12. The UNSW-NB15 Dataset: https://www.unsw.adfa.edu.au/unsw-

canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

13. Araujo-Filho PFd, Kaddoum G, Campelo DR, Santos AG,

Macêdo D, Zanchettin C (2020) Intrusion detection for cyber-

physical systems using generative adversarial networks in fog

environment. IEEE Int Things J 1–1. doi: https://doi.org/10.1109/

JIOT.2020.3024800.

14. Chaabouni N, Mosbah M, Zemmari A, Sauvignac C, Faruki P

(2019) Network intrusion detection for IoT security based on

learning techniques. IEEE Commun Surv Tutor

21(3):2671–2701. https://doi.org/10.1109/COMST.2019.2896380

15. Li T, Wu B, Yang Y, Fan Y, Zhang Y, Liu W (2019) Com-

pressing convolutional neural networks via factorized convolu-

tional filters. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp 3977–3986.

16. Deng L, Li G, Han S, Shi L, Xie Y (2020) Model compression

and hardware acceleration for neural networks: a comprehensive

survey. Proc IEEE 108(4):485–532. https://doi.org/10.1109/

JPROC.2020.2976475

17. Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the

recent architectures of deep convolutional neural networks. Artif

Intell Rev 53(8):5455–5516

18. Scherer D, Müller A, Behnke S (2010) Evaluation of pooling

operations in convolutional architectures for object recognition.

International conference on artificial neural networks. Springer,

pp 92–101

19. Ng A (2011) Sparse autoencoder. CS294A Lecture notes 72:

1–19

20. He D et al (2019) Intrusion detection based on stacked autoen-

coder for connected healthcare systems. IEEE Netw 33(6):64–69.

https://doi.org/10.1109/MNET.001.1900105

21. Preethi D, Khare N (2020) Sparse auto encoder driven support

vector regression based deep learning model for predicting net-

work intrusions. Peer-to-Peer Netw Appl 1–11

22. Van NT, Thinh TN (2020) Temporal features learning using

autoencoder for anomaly detection in network traffic. Interna-

tional conference on green technology and sustainable develop-

ment. Springer, pp 15–26

23. Ramamurthy M, Robinson YH, Vimal S, Suresh A (2020) Auto

encoder based dimensionality reduction and classification using

convolutional neural networks for hyperspectral images. Micro-

process Microsyst 79:103280

24. Lee SJ et al (2020) IMPACT: Impersonation attack detection via

edge computing using deep autoencoder and feature abstraction.

IEEE Access 8:65520–65529

25. Xu C, Shen J, Du X (2020) A method of few-shot network

intrusion detection based on meta-learning framework. IEEE

Trans Inf Forensics Secur 15:3540–3552. https://doi.org/10.1109/

TIFS.2020.2991876

26. Zavrak S, İskefiyeli M (2020) Anomaly-based intrusion detection

from network flow features using variational autoencoder. IEEE

Access 8:108346–108358

27. Dutta V, Choraś M, Kozik R, Pawlicki M (2020) Hybrid model

for improving the classification effectiveness of network intrusion

detection. In: Cham ÁH, Cambra C, Urda D, Sedano J, Quintián

H, Corchado E (eds) 13th international conference on computa-

tional intelligence in security for information systems (CISIS

2020), 2021//2021: Springer International Publishing,

pp. 405–414.

28. Khan FA, Gumaei A, Derhab A, Hussain A (2019) A novel two-

stage deep learning model for efficient network intrusion detec-

tion. IEEE Access 7:30373–30385. https://doi.org/10.1109/

ACCESS.2019.2899721

29. Yang Y, Zheng K, Wu B, Yang Y, Wang X (2020) Network

intrusion detection based on supervised adversarial variational

auto-encoder with regularization. IEEE Access 8:42169–42184.

https://doi.org/10.1109/ACCESS.2020.2977007

30. Li X, Chen W, Zhang Q, Wu L (2020) Building auto-encoder

intrusion detection system based on random forest feature

selection. Comput Sec 101851

31. Dong Gongl LL, Vuong L, Budhaditya Saha, Moussa Reda

Mansour, Svetha Venkatesh, Anton van den Hengel (2019)

Memorizing Normality to Detect Anomaly: Memory-augmented

Deep Autoencoder (MemAE) for Unsupervised Anomaly

Detection,‘‘ presented at the IEEE/CVF International Conference

on Computer Vision (ICCV), 2019.

32. Miah MO, Khan SS, Shatabda S, Farid DM (2019) Improving

detection accuracy for imbalanced network intrusion classifica-

tion using cluster-based under-sampling with random forests. In

2019 1st international conference on advances in science, engi-

neering and robotics technology (ICASERT), 3–5, pp 1–5, doi:

https://doi.org/10.1109/ICASERT.2019.8934495.

33. Alkadi O, Moustafa N, Turnbull B, Choo KR (2020) A deep

blockchain framework-enabled collaborative intrusion detection

for protecting IoT and cloud networks. IEEE Int Things J, pp 1–1.
doi: https://doi.org/10.1109/JIOT.2020.2996590.

34. Shone N, Ngoc TN, Phai VD, Shi Q (2018) A deep learning

approach to network intrusion detection. IEEE Trans Emerg

Topics Comput Intell 2(1):41–50. https://doi.org/10.1109/TETCI.

2017.2772792

35. Yao H, Fu D, Zhang P, Li M, Liu Y (2019) MSML: a novel

multilevel semi-supervised machine learning framework for

intrusion detection system. IEEE Int Things J 6(2):1949–1959.

https://doi.org/10.1109/JIOT.2018.2873125

36. Moustafa N, Turnbull B, Choo KR (2019) An ensemble intrusion

detection technique based on proposed statistical flow features for

protecting network traffic of internet of things. IEEE Int Things J

6(3):4815–4830. https://doi.org/10.1109/JIOT.2018.2871719

37. Muhammad G, Hossain MS, Garg S (2020) Stacked autoencoder-

based intrusion detection system to combat financial fraudulent.

IEEE Int Things J 1–1 doi: https://doi.org/10.1109/JIOT.2020.

3041184.

38. Singh P, Kaur A, Aujla GS, Batth RS, Kanhere S (2020) DaaS:

dew computing as a service for intelligent intrusion detection in

4832 Neural Computing and Applications (2023) 35:4813–4833

123

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://doi.org/10.1109/JIOT.2020.3024800
https://doi.org/10.1109/JIOT.2020.3024800
https://doi.org/10.1109/COMST.2019.2896380
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1109/MNET.001.1900105
https://doi.org/10.1109/TIFS.2020.2991876
https://doi.org/10.1109/TIFS.2020.2991876
https://doi.org/10.1109/ACCESS.2019.2899721
https://doi.org/10.1109/ACCESS.2019.2899721
https://doi.org/10.1109/ACCESS.2020.2977007
https://doi.org/10.1109/ICASERT.2019.8934495
https://doi.org/10.1109/JIOT.2020.2996590
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1109/JIOT.2018.2873125
https://doi.org/10.1109/JIOT.2018.2871719
https://doi.org/10.1109/JIOT.2020.3041184
https://doi.org/10.1109/JIOT.2020.3041184

edge-of-things ecosystem. IEEE Int Things J: 1–1. doi: https://

doi.org/10.1109/JIOT.2020.3029248.

39. Yu F, Koltun V (2015) Multi-scale context aggregation by dilated

convolutions. arXiv preprint 1511.07122
40. Vaswani A et al. (2017) Attention is all you need. In: Presented at

the 31st international conference on neural information process-

ing systems. http://arxiv.org/abs/1706.03762.

41. Fu J et al. (2019) Dual attention network for scene segmentation.

In 2019 IEEE/CVF conference on computer vision and pattern

recognition (CVPR), pp 15–20 2019, pp 3141–3149. doi: https://

doi.org/10.1109/CVPR.2019.00326.

42. Sun Y, Mao H, Guo Q, Yi Z (2016) Learning a good represen-

tation with unsymmetrical auto-encoder. Neural Comput Appl

27(5):1361–1367. https://doi.org/10.1007/s00521-015-1939-3

43. Injadat M, Moubayed A, Nassif AB, Shami A (2020) Multi-stage

optimized machine learning framework for network intrusion

detection. IEEE Trans Netw Serv Manag 1–1. doi: https://doi.org/

10.1109/TNSM.2020.3014929.

44. Gong LLD, Le V, Saha B, Mansour MR, Venkatesh S, Van Den

Hengel A (2019) Memorizing normality to detect anomaly:

memory-augmented deep autoencoder for unsupervised anomaly

detection. In: IEEE/CVF international conference on computer

vision (ICCV) 27 Oct.–2 Nov. 2019, pp 1705–1714. doi: https://

doi.org/10.1109/ICCV.2019.00179.

45. NDAE source code: https://github.com/ngoctn-lqdtu/A-Deep-

Learning-Approach-to-Network-Intrusion-Detection

46. MemAE Source code: https://github.com/donggong1/memae-

anomaly-detection

47. Moustafa N, Slay J (2015) UNSW-NB15: a comprehensive data

set for network intrusion detection systems (UNSW-NB15 net-

work data set). In: 2015 Military communications and informa-

tion systems conference (MilCIS), 10–12 Nov 2015, pp 1–6. doi:

https://doi.org/10.1109/MilCIS.2015.7348942.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2023) 35:4813–4833 4833

123

https://doi.org/10.1109/JIOT.2020.3029248
https://doi.org/10.1109/JIOT.2020.3029248
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/CVPR.2019.00326
https://doi.org/10.1109/CVPR.2019.00326
https://doi.org/10.1007/s00521-015-1939-3
https://doi.org/10.1109/TNSM.2020.3014929
https://doi.org/10.1109/TNSM.2020.3014929
https://doi.org/10.1109/ICCV.2019.00179
https://doi.org/10.1109/ICCV.2019.00179
https://github.com/ngoctn-lqdtu/A-Deep-Learning-Approach-to-Network-Intrusion-Detection
https://github.com/ngoctn-lqdtu/A-Deep-Learning-Approach-to-Network-Intrusion-Detection
https://github.com/donggong1/memae-anomaly-detection
https://github.com/donggong1/memae-anomaly-detection
https://doi.org/10.1109/MilCIS.2015.7348942

	APAE: an IoT intrusion detection system using asymmetric parallel auto-encoder
	Abstract
	Introduction
	Background
	Deep learning
	Convolutional neural networks
	Auto-encoder

	Related works

	Proposed approach
	Preprocessing and input data representation
	Dilated convolution
	Attention modules
	Positional self-attention module
	Channel self-attention module

	Asymmetric parallel auto-encoder
	Network intrusion detection

	Results and experiments
	Datasets
	NSW-NB15
	CICIDS2017
	KDDCup99

	Comparison criteria
	Anomaly detection
	UNSW-NB15 dataset
	CICIDS2017 dataset
	KDDCup99 dataset

	Multi-class classification
	UNSW-NB15 dataset
	CICIDS2017 dataset
	KDDCup99 dataset

	Discussion
	Conclusion and remarks
	Availability of data and material
	References

