
ORIGINAL ARTICLE

Multi-objective hybrid genetic algorithm for task scheduling problem
in cloud computing

Poria Pirozmand1 • Ali Asghar Rahmani Hosseinabadi2 • Maedeh Farrokhzad3 • Mehdi Sadeghilalimi2 •

Seyedsaeid Mirkamali4 • Adam Slowik5

Received: 5 September 2020 / Accepted: 31 March 2021
� The Author(s) 2021, corrected publication [2021]

Abstract
The cloud computing systems are sorts of shared collateral structure which has been in demand from its inception. In these

systems, clients are able to access existing services based on their needs and without knowing where the service is located

and how it is delivered, and only pay for the service used. Like other systems, there are challenges in the cloud computing

system. Because of a wide array of clients and the variety of services available in this system, it can be said that the issue of

scheduling and, of course, energy consumption is essential challenge of this system. Therefore, it should be properly

provided to users, which minimizes both the cost of the provider and consumer and the energy consumption, and this

requires the use of an optimal scheduling algorithm. In this paper, we present a two-step hybrid method for scheduling

tasks aware of energy and time called Genetic Algorithm and Energy-Conscious Scheduling Heuristic based on the Genetic

Algorithm. The first step involves prioritizing tasks, and the second step consists of assigning tasks to the processor. We

prioritized tasks and generated primary chromosomes, and used the Energy-Conscious Scheduling Heuristic model, which

is an energy-conscious model, to assign tasks to the processor. As the simulation results show, these results demonstrate

that the proposed algorithm has been able to outperform other methods.

Keywords Cloud computing � Genetic algorithm � Scheduling duration � Task � Resource � Energy consumption

1 Introduction

Cloud computing is explained as ‘‘a structure for providing

comfort, necessary network permission to use a common

pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be

quickly supplied and released with the smallest amount of

supervision attempt or service contributor opera-

tion.’’ [1, 2]. Cloud computing presents diverse services to

the clients; however, there are some problems in these

networks, and task scheduling is one of the significant issue

of them [3, 4]. Through task scheduling, we can increase

the throughput of the system and manage our tasks to be

processed [5].

Task scheduling is one of the most significant issues in

many pieces of research works, and the main goal of

scheduling is to map several tasks to proper processors so

that it could optimize one or more objectives at an

acceptable time [6, 7]. Owing to large solution space,

scheduling is categorized as an NP-hard problem, and

consequently, it needs time for finding an optimal answer.

& Adam Slowik

aslowik@ie.tu.koszalin.pl

Poria Pirozmand

poria@neusoft.edu.cn

Ali Asghar Rahmani Hosseinabadi

ark838@uregina.ca

Maedeh Farrokhzad

farrokhzad@gmail.com

Mehdi Sadeghilalimi

msv368@uregina.ca

Seyedsaeid Mirkamali

S.Mirkamali@pnu.ac.ir

1 School of Computer and software, Dalian Neusoft University

of Information, Dalian 116023, China

2 Department of Computer Science, University of Regina,

Regina, Canada

3 Department of Computer Science, University of Science and

Technology of Mazandaran, Behshahr, Iran

4 Department of Computer Engineering and IT, Payame Noor

University (PNU), Tehran, Iran

5 Department of Electronics & Computer Science, Koszalin

University of Technology, Koszalin, Poland

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-021-06002-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-2542-9842
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06002-w&domain=pdf
https://doi.org/10.1007/s00521-021-06002-w

In general, the task scheduling problem could be regarded

and modeled as a version of the Traveling Salesman

Problem (TSP) [8, 9] or Vehicle Routing Problem

(VRP) [10, 11]. In the TSP, a salesman must travel through

all the cities and return to the city of origin, provided that it

passes through the city once and travels the shortest dis-

tance [8]. In the VRP, there is also a vehicle that must

meet all customers or cities and meet their demand, pro-

vided that customer demand should not exceed the capacity

of the vehicle and should also travel the shortest possible

distance [10]. While both TSP and VRP are NP-hard

problems, based on the proves given in [12], task

scheduling is a strongly NP-hard problem that could be

solved using a metaheuristic algorithm such as the pro-

posed GA-based algorithm.

Task scheduling causes prioritization of given tasks in a

specific time, and it tries to achieve higher Quality of

Service (QoS) [13, 14]. It also inclines to satisfy some

constraints in the problem and optimizes one or more

objective functions [15, 16]. The primary aim is to build

schedules that could process tasks and allocate them to the

existing processors. Since we have limited resources, we

must schedule tasks so as we can meet all of the require-

ments of the system [17].

Recently, task scheduling in Cloud Computing Systems

has been researched in a large-scale [15]. These kinds of

systems are widely used to process the tasks very fast, and

they are designed to meet the diverse computational user

needs [18]. In task scheduling systems, the set of tasks can

be divided into smaller subtasks so that they could process

in parallel. These smaller subtasks almost always have their

constraints and dependencies, in which some subtasks must

be run before a specific subtask [18].

This method has several advantages, namely reduction

of makespan and total run time. By dividing the compu-

tation process into smaller subtasks, these two parameters

can likely be lessened. Therefore, the primary objective of

task scheduling is to allocate subtasks to free processors to

diminish makespan and satisfy our preference con-

straints [19]. This allocation is a challenging task in the

cloud computing systems, and assigning tasks to processors

in the best optimal state is essential in these systems.

Several scheduling algorithms have been proposed to cut

down makespan and energy consumption for parallelizing

the subtasks with precedence relationships. These links are

demonstrated as a Directed Acyclic Graph (DAG), and it is

comprised of vertices that represent computations and

directed edges that represent the dependencies between

those vertices. The DAG graph is a directional graph and

does not have a path whose beginning and end are the same

and one of its important applications is in routing

algorithms [20].

Classical research about task scheduling has concen-

trated on heuristic methods, such as Heterogeneous Earliest

Finish Time (HEFT) [21] and Critical Path on A Processor

(CPOP) [21]. The main basis of the listed schedule is the

maintenance of an ordered list of subtasks by assigning

priority to each subtask in accordance with greedy

heuristics. The subtasks are chosen and sorted according to

the priority and subtask with the highest priority assigns to

a processor, which permits the earliest start time, and then

it removes from the list [21]. As it is obviously under-

standable, the efficiency of these algorithms highly relies

on the performance of the heuristics. They may not create

trustable answers for various problems, particularly when

complexity increases, their performance will reduce [21].

Also, there are several metaheuristic methods for solv-

ing task scheduling problems, and they attain near-optimal

solutions within a rational time. In general, mapping tasks

onto limitless computing resources in cloud computing is

for a classification of problems recognized as NP-hard

problems [22]. There are no algorithms which may make

optimal solution within the polynomial time for these

issues. Metaheuristic techniques such as Ant Colony

Optimization (ACO) [23], Genetic Algorithm (GA) [24],

and Particle Swarm Optimization (PSO) [25] could create

answers which improve some criteria like energy con-

sumption, run time, etc. Metaheuristics have been preva-

lence recently, principally by reason of its efficiency and

efficacy in solving large and intricate issues [15]. On the

other hand, there is a guided-random-search-based algo-

rithm that incorporates a combinatoric process in the search

for solutions, and it is less effective and has a higher

computational cost in comparison with the heuristic-based

algorithms. Hence, a proper scheduling algorithm should

balance makespan against the speed of convergence.

The task scheduling problem can be expressed as the

search for an optimal allocation of a set of subtasks onto a

set of processors. It has been proven that this problem is an

NP-hard problem [22, 26]. Therefore, heuristic methods

could be used to find reasonable solutions concerning

problem constraints, and it can find a near-optimal solution

in polynomial time [2, 27].

In this paper, we solve the problem of multi-objective

task scheduling in cloud computing using a Genetic

Algorithm and Energy-Conscious Scheduling Heuristic

(GAECS). The purpose of solving the above problem is to

provide an effective and optimal way to schedule tasks

with the aim of reducing makespan and energy

consumption.

In the following, the structure of the paper is organized

as follows: In Sect. 2, the related works about task

scheduling in cloud computing are discussed. In Sect. 3,

the proposed algorithm for solving the above problem is

Neural Computing and Applications

123

fully explained. The simulation and conclusion results are

shown in Sects. 4 and 5, respectively.

2 Related works

In recent years, several types of research have been done to

schedule tasks in cloud computing systems, some of which

we will discuss as follows. Each of these methods has its

benefits and drawbacks.

Awada et al. in 2015 [28] proposed a model with a PSO

in the opinion of schedule and allocation for cloud com-

puting that takes into account trustworthiness, run time,

makespan, round trip time, transmission cost and load

stabilizing between tasks and Virtual Machine (VM). They

reduced execution time and increased environment relia-

bility by contemplating the resources unoccupied and

reschedule tasks that failed to assign.

A multiple objective task scheduling technique for a VM

was proposed by Lakraa and Yadav [29] and considered

different measures such as run time, cost, the bandwidth of

client, and so forth despite single criteria.

In [30], a Dynamic Tasks Scheduling algorithm based

on the Weighted Bi-graph model (DTSWB) is introduced.

This method consists of four parts and, compared to other

scheduling schemes, has better efficiency.

Kashikolaei et al. [31] presented a new hybrid algorithm

based on the Imperialist Competitive Algorithm (ICA) and

the Firefly Algorithm (FA) to solve the problem of

scheduling tasks in cloud computing. The authors intro-

duced test data to evaluate the proposed algorithm

(ICAFA) and compared it with five examples of other

algorithms. The simulation results of the ICAFA and the

compared algorithm show that the algorithm presented by

the authors has been able to solve the problem well and

compete with the compared algorithms. It is noteworthy

that the authors simulated various parameters such as

Makespan, load balancing, stability, CPU time, and effi-

ciency to show the performance of the ICAFA and com-

pared their simulation results with other algorithms and as

mentioned, the ICAFA was able to compete with compa-

rable algorithms and solve the problem properly. It is

noteworthy that the ICAFA has been able to reach the

optimal answer in less time than the compared algorithms.

Zhu et al. [32] focused on computation energy in cloud

computing systems and tried to balance computation

energy minimization and user-defined deadlines. They

proposed a heuristic method that included a task sequenc-

ing method and a virtual machine searching strategy.

Results show that it outperforms the other algorithms.

Alworafi [33] considered the load on resources and

proposed a Hybrid-SJF-LJF (HSLJF) algorithm, which

synthesizes the Shortest Job First (SJF) and Longest Job

First (LJF) algorithms. First, this algorithm sorts the tasks

in ascending order, and then, it chooses one task. Eventu-

ally, it chooses a VM that has the least accomplishment

time to run the selected task. The outcomes confirmed the

advantage of this method in diminishing the makespan and

response time.

In [34], a discrete edition of the PSO algorithm called

Integer-PSO is proposed, and it can order tasks in the cloud

computing environment and can be utilized for optimizing

a single target function and multiple target functions.

Practical findings show that this strategy has better con-

vergence and load balancing. To show the superiority of

the Integer-PSO algorithm presented by the authors, the

above algorithm has been compared with the two algo-

rithms rounding-off (RND-PSO) and smallest position

value (SPV-PSO). Based on the simulation results, the

integer-PSO algorithm has been able to excel in terms of

cost-optimal scheduling and makespan in comparison with

two other algorithms and solve the problem well. To show

this superiority, the authors tested the algorithms with

different tasks 512, 1024, and 2048.

Reddy and Kumar [35] presented a modified ACO

algorithm to improve task scheduling. Their main aim was

to diminish makespan and design a multi-objective task

scheduling algorithm with high functioning. They could

reduce the makespan and balance workload in the network

without any effect on other fundamental parameters. In this

algorithm, all ants are presented on processors by chance.

Next, ant creates pheromone, and according to the pher-

omone values, ants are permitted to move.

Abd Elaziz et al. [36] proposed a metaheuristic algo-

rithm based on the boost of the Moth Search Algorithm

(MSA) with the Differential Evolution (DE). MSA is a

nature-inspired method for the behavior of moths to fly to

the light source and uses the phototaxis for exploration and

levy flights for exploitation. Since exploitation ability had

some drawbacks, DE dealt with a Local Search (LS)

method. The results of the experiments showed that it

performed better than other ways on grounds of more

acceptable performance measures.

Sanaj and Prathap [37] suggested a Chaotic Squirrel

Search Algorithm (CSSA) optimize multi-objective task

scheduling in a cloud atmosphere. The methods continu-

ously work to be more profitable, and to support greater

global convergence, the early ecosystem was produced

with untidy optimization for an competent ecosystem. The

recommended CSSA was eventually synthesized with the

messy LS to enable the exploring authority to complement

Squirrel Search (SS) algorithm.

Another nature-inspired metaheuristic algorithm for task

scheduling is Crow Search Algorithm (CSA) [19]. As it is

obvious, it is inspired by the behavior of crow and the food-

collecting habits of it. In nature, the crow usually follows

Neural Computing and Applications

123

other crows to discover a better food source. Similarly, the

CSA algorithm tries to find a proper VM to cut down

makespan. In comparison with other methods, this method

could reduce the makespan value.

Sobhanayak et al. [20] presented a combined method

using GA and the Bacterial Foraging (BF) algorithms in the

computing cloud. This algorithm has two main objectives.

First, it minimizes the makespan, and then, it decreases the

use of energy. The simulation results show the primacy of

this algorithm over other algorithms. There is a Hybrid

Artificial Bee Colony and Ant Colony Optimization

(HABCACO) load balancing algorithm, which has some

advantages of these algorithms. For instance, it used the

speed of the ACO algorithm in finding good solutions

swiftly and shared interaction of bees and sharing infor-

mation by waggle dancing from Artificial Bee Colony

(ABC). Simulation results showed a good improvement in

makespan, execution time, and so on [38].

Amalarethinam and Kavitha [39] proposed a

Rescheduling Enhanced Min-Min (REMM) algorithm for

meta-task scheduling in cloud computing. The speed of

resources in the cloud system is the most significant mea-

sure in this method. The resources are sorted according to

their velocity, and a task with a smaller amount of run time

is to be designated and allocated to the fastest resources.

Then, it removes from task set.

Huang et al. [40] solved the problem of scheduling tasks

in cloud computing. They used the PSO algorithm to solve

the above problem. Their proposed algorithm has been

compared with three other optimization algorithms, and

they have shown in the simulation results that the algorithm

provided by them has a relative advantage over the com-

pared algorithms.

In [41], the authors present a new optimization method

based on the Whale Optimization Algorithm (WOA) to

solve the problem of assigning tasks in Mobile Cloud

Computing (MCC). They considered several criteria to

solve this problem, one of which is the reduction of energy

in mobile cloud computing. The simulation results of their

proposed method show that the makespan and energy

consumption in the mobile cloud computing environment

have been optimal and have performed very well compared

to the compared methods and have been able to solve the

problem well.

Basu et al. [42] presented a hybrid algorithm called

GAACO to solve the problem of scheduling tasks in cloud

computing for IoT applications. The algorithm presented at

each step uses the best combination of tasks and avoids

getting stuck in the local optimal. The algorithm provided

is a combination of GA and ACO and is compatible in

environments with multiple heterogeneous processors.

Alwonafi et al. [43] developed a Deadline Budget

Scheduling (DBS) model for scheduling tasks in cloud

computing that they also considered virtual machines. They

suggested that tasks be assigned to virtual machines and

that the limitations offered in the proposed method were

ultimately considered at the request of users until user

satisfaction was met. In the method provided by the

authors, makespan, and the cost to evaluate the above

model are calculated. The results show that the proposed

DBS model has been able to be more cost-effective than

other algorithms and reduce costs.

Raju and Devarakonda [44] used a fuzzy clustering

method along with the ACO algorithm to solve the task of

scheduling tasks in cloud computing. In their paper, they

were able to optimize the load balance for the problem and

also schedule tasks well and provide them to users.

2.1 Problem statement

The cloud environment is a complicated system with many

shared resources and unpredictable requests and is influ-

enced by uncontrollable external events. The machines are

also located in cloudy environments in different areas and

have different processing capabilities and specifications

and different costs. In this case, the cost and duration of the

schedule and the resources allocated are important and

cannot be neglected. Therefore, in order to provide an

optimal schedule, there must be coordination between the

task schedule and allocation of resources. In this way, we

can achieve an optimal schedule by reducing costs (the cost

considered in this paper is the price of energy consumed)

and the duration of the schedule. Multi-objective opti-

mization for cloud resources requires complex policies and

decisions. Among the important issues in the cloud com-

puting, energy consumption and makespan are the most

important ones. Therefore, we must be able to achieve the

optimal schedule in time and energy usage by balancing the

desired goals.

2.2 System model

The cloud computing network discussed here is composed

of a set p of m diverse processes that are altogether con-

nected with a high-speed network. Each processor is

Dynamic Voltage Scaling (DVS) enabled; in other words,

each processor is capable of working with various voltages

scales as a set v which can set with regard to the input task.

As clock frequency transition overheads take an insignifi-

cant amount of time (about 10ls� 15ls) [45], these

overheads are not taken into consideration in our paper,

and the inter-processor communications are conducted

with the same speed on all links.

Neural Computing and Applications

123

3 The proposed algorithm

Parallel programs have implementation priority, including

programs utilized in technological and engineering scopes.

These programs can be established in homogeneous or

heterogeneous systems such as cloud infrastructure. The

concept of cloud computing is derived from heterogeneous

distributed computations, greed computations, useful

computations, and automated computations. Users of cloud

systems do not own any part of the infrastructure and can

easily access the services provided through the internet and

pay for the service used, and such a system can provide any

kind of service to its users, including computing resources,

web services, social networks and communication services.

Many specifications indicate the quality of the services

provided, and the highlights include the cost of producing

the service and, ultimately, the cost the user has to pay,

makespan, and the energy expended to perform the service.

In this paper, the proposed algorithm (GAECS), which is a

combination of GA and ECS model, is a time and energy-

conscious method for scheduling tasks in cloud computing

systems and includes two steps. Since tasks have priority

and must be performed in a specific order, we used the GA

to prepare the appropriate sequence for performing tasks

based on their priority. Therefore, the first phase of the our

method is dependent upon the GA, and the role of the GA

is to generate the chromosome genes. In fact, the GA

completes the tasks of T1; T2; . . .; Tn. At this stage, the tasks

are based on their genes. In order to make optimal use of

resources and reduce energy consumption, the ECS

method, which is a conscious method of energy, has been

used to assign tasks to processors. In fact, in the second

phase, the processor part and the gene voltage are com-

pleted. Whenever the first part of the chromosome is

complete, the ECS pattern is called. In other words, ECS

completes the remaining parts of the chromosome, namely

PðT1Þ;PðT2Þ; . . .;PðTnÞ and VðT1Þ;VðT2Þ; . . .;VðTnÞ.
Whenever the working part, the processor, and the voltage

of the genes are completed, the function of the GA eval-

uator is called, and the role of this operator is to compute

the energy usage and the schedule duration of each chro-

mosome. In the mutation, the genes are changed so that

their priority is not violated. In practice, the combination of

the two parents is chosen at random and is divided into left

and right. The child consists of the right part of the two

parents.

3.1 GAECS for task scheduling in cloud
computing

In this paper, we use the GA to find a solution to

scheduling. In the following, the algorithm operators,

including chromosome display, initial population genera-

tion, selection, crossover, mutation, are fully explained.

In the GA, the variables are coded into elements called

genes, and the answers to the problem are strings of genes,

each of which is called a chromosome. The elements in this

paper are the tasks related to a program that is arranged on

the chromosome according to their priority. In each itera-

tion of the algorithm, the value of genes can be changed.

Also, by applying mutation and crossover operators, the

value of genes is changed again, and a new chromosome

(scheduling) is obtained.

Table 1 shows a sample of a chromosome for an eight-

function program and three processors. It shows the

information about the makespan on each processor and the

energy consumption. For instance, in this chromosome, the

task of T1 is on the P2 processor and V3 voltage.

3.2 Initial population

To improve the task speed and achieve the desired result,

we choose the initial population as smartly as possible, in

fact, to produce the initial population, we act as follow:

First, using the three prioritization methods, including

the upward priority, the downward priority, and the com-

bination of these two methods, the first three chromosomes

are produced, and the rest of the initial population chro-

mosomes are replaced by these three chromosomes.

Upward priority The upward priority of a task is equal

to the average cost remaining until all tasks related to the

current task are completed, which must be performed after

the completion of the current task. The upward priority is

shown as RankbðTiÞ and is calculated based on Eq. 1.

RankbðTiÞ ¼ W Tið Þ þ max C Ti þ Tj
� �

þ Rankb Tj
� �� �

ð1Þ

In Eq. 1, Ti and Tj represent the tasks of i and j, respec-

tively. W is the weight of each task. C is the capacity of

each task. Rankb shows that which task is performed sooner

or later.

In this Equation, Tj 2 SuccðTiÞ and SuccðTiÞ are sets of

successor tasks of Ti. The upward priority of the graph

starts the tasks from the last task (Texit) and upward.

Table 1 Chromosome sample with eight tasks on three processors

T1 T2 T4 T5 T3 T6 T7 T8

P2 P1 P2 P3 P3 P1 P2 P3

V3 V2 V1 V1 V2 V1 V2 T3

Neural Computing and Applications

123

Downward priority Similar to the upward priority, the

downward priority of tasks is shown as RanktðTiÞ and is

calculated as Eq. 2.

RanktðTiÞ ¼ max W Tið Þ þ C Tj; Ti
� �

þ Ranki Tj
� �� �

ð2Þ

In Eq. 2, Tj 2 PredðTiÞ and PredðTiÞ are the sums of the

predecessor tasks of Ti. The downward priority is calcu-

lated by navigating the task graph, starting from the first

task (Tentry). In this method, the priority of the first task is 0.

RanktðTiÞ is equal to the largest distance from the first task

to the desired task (Ti) except for the computational cost of

the Ti task.

Combining priorities To schedule a Directed Acyclic

Graph (DAG), we can perform tasks based on upward

priority or downward priority or a combination of them. In

the combination of priorities, one level is defined for each

task based on Eq. 3 and it shows the level of the task in the

graph.

Level Tið Þ ¼
0; if Ti ¼ Tentry

max Level Tj
� �

þ 1
� �

; otherwise

�
ð3Þ

3.3 Parent selection

In the GA, two generations are needed to produce chro-

mosomes in the next generations, and the choice of the

parent is based on different algorithms, but the algorithm

used to pick the parent here is the roulette wheel selection.

After calculating the fitness of each chromosome, chro-

mosomes with a better fitness value with a ratio that is not

constant, for example, we can copy 20% of the best

members of the original population and enter to the new

population. In this way, we give more chances to members

with different fitness values. Then, we randomly select the

number of pairs we want to combine in the next phase.

3.4 Crossover operator

This operator combines the information of the two selected

parents’ chromosomes and produces the child’s chromo-

somes. Given how the information used in this issue is

displayed, we are looking to produce two children from

each combination and try to make one of these two children

better than the parents. The crossover operator in our

problem is that two parents are selected at random, and in

each of them, we select a random point called the crossover

point. We insert the first part of the two parents in two

separate chromosomes, and the information in the second

part of the chromosomes will be similar to the information

in the second part of the parent information.

Father and mother mean two parent chromosomes,

which are divided into left and right, and the left part is

copied directly to the left part of the child’s chromosomes,

i.e., daughter and son, and the second part of the child’s

chromosomes is similar to the right part of one of the

parents’ chromosomes. Figure 1 shows how to perform a

crossover operation.

3.5 Mutation operator

This operator ensures population diversity through random

changes in gene information and aims to prevent the

chromosomes from becoming very similar over several

generations. The mutation in our problem is based on the

displacement of independent genes at the same level as the

graph. In this way, first, a mutation point is selected ran-

domly, and the information of that gene is replaced by the

first independent gene (task) after it, and thus a new

chromosome is produced. Figure 2 shows how the muta-

tion operation works.

In this Figure, as shown in the example chromosome, we

first find the first Ti substitute from the chosen point to the

end of the priority queue (Tj) and then exchange Ti with the

Fig. 1 Crossover operation

Fig. 2 Mutation operation

Neural Computing and Applications

123

first predecessor Tj called Tk. These two colors (yellow and

pink) are the point of exchanging of genes.

3.6 Fitness function

In the GA, the fitness function determines the fitness of a

solution to the problem and shows the extent to which the

constraints and optimization levels are met.

In this case, the fitness of the solution is calculated based

on energy consumption and makespan and on the founda-

tion of the fitness function, and the task is gave to the

processor and voltage, which has higher fitness.

Due to the fact that a significant part of the energy use of

data centers is connected to the processing of computing

and storage disks, networks, and cooling systems, the

energy consumption considered in this paper is the energy

consumption of processors.

As we know, the energy expending of CMOS processor

batteries is comprised of static and dynamic consumption,

and because dynamic consumption is more important than

static, only dynamic consumption is considered in this

paper. Thus, by reducing power consumption, we can

increase system efficiency.

Power battery consumption is calculated by Eq. 4:

P ¼ A � C � V2 � f ð4Þ

In this Equation, A is equal to the number of switches in

each clock cycle, C is the capacitance, V is the voltage, and

f is equal to the frequency.

Energy consumption is directly related to the square of

voltage and frequency. Therefore, reducing these two fac-

tors will have a significant effect on reducing energy

consumption, and because the frequency is directly related

to voltage, the dynamic energy consumption of processors

will be in the form of Eq. 5:

P ¼ A � C � V3 ð5Þ

And the run time of the i-th task is in the form of Eq. 6:

Ti ¼ EST þ wij ð6Þ

In this Equation, EST is the starting time of a task, and w is

the time required to perform task i on the processor j.

Based on the obtained Equations, the energy use for

each operation on each processor is as Eq. 7:

E ¼ P � wij) E ¼ A � C � V3 � wij ð7Þ

In this Equation, wij is the time needed to run task i-th on

the processor j-th, and the total energy is calculated as

Eq. 8:

E ¼ P � wij) E ¼
Xn

i¼1

A � C � V3 � wij ð8Þ

And assigning a task to the processor is measured by Eq. 9.

The symmetry of the sum of the energy distinction

between the present and former state to the current energy

and the ratio of the distinction between the current and

previous completion time to the current time difference and

Table 2 Computing power of

VMs
VM ID (1-10) 1 2 3 4 5 6 7 8 9 10

Computing power (kBps) 20 25 30 50 55 60 65 66 70 73

VM ID (11-20) 11 12 13 14 15 16 17 18 19 20

Computing power (kBps) 75 80 85 90 35 40 45 50 58 82

Table 3 Makespan performance comparison for all approaches with

30 tasks

Algorithm Average SD ACT

GSA 1782.8995 94.0909 1.3694

ABC 1657.3083 56.5111 1.1077

DA 1824.5682 130.4172 9.6238

Linear-PSO 1640.4564 76.7758 1.3092

Sigmod-PSO 1651.6592 99.0259 1.2898

Chaotic-PSO 1619.4062 72.0869 1.2992

Simulated-PSO 1601.0727 76.6309 1.2852

Logarithm-PSO 1588.7585 98.883 1.2968

GAECS 1567.3214 54.618 2.7927

Table 4 Makespan performance comparison for all approaches with

50 tasks

Algorithm Average SD ACT

GSA 2871.1385 150.2514 1.7026

ABC 2679.8311 127.0006 1.2681

DA 2926.4281 249.6792 15.2899

Linear-PSO 2619.7364 149.7841 1.3844

Sigmod-PSO 2615.6082 149.8076 1.3651

Chaotic-PSO 2595.0782 136.3308 1.3722

Simulated-PSO 2615.6865 129.9891 1.3514

Logarithm-PSO 2561.1159 111.5794 1.3648

GAECS 2371.5648 108.6831 2.1124

Neural Computing and Applications

123

the minimum current and previous start time should be

equal to the maximum value:

Fitness ¼ � Ec � Ep

Ec
þ EFTc � EFTp

EFTc � min ESTc � ESTp
� �

" #

ð9Þ

In this Equation, the task is first given to the first processor

with the initial frequency, and for the next step, that is, for

the different frequencies of that processor, it calculates this

formula. If this value is better than the previous state, it

will assign the task to the processor with the new fre-

quency. In this Equation, Ec equals to current energy, Ep is

the previous energy, EFTc is the current completion time,

EFTp is the previous completion time, ESTc is the current

starting time, and ESTp is the previous starting time.

3.7 ECS method

This method is an energy-based, voltage-based method for

scheduling tasks that first calculates and compares different

allocation modes to schedule tasks and finally assigns the

task to the best option (processor and voltage). The purpose

of this method is to schedule tasks on processors with the

criterion of reducing time and energy consumption. First,

the tasks are organized descendingly and for each task, the

amount of consumed energy and the time of doing it are

calculated on each processor and voltage, and the task is

assigned to the processor and voltage, which these two

criteria should be minimal [46].

3.8 Termination condition

The condition for ending the algorithm here is to achieve

maximum iteration. Whenever the algorithm attains its

maximum iteration, the algorithm finishes. The maximum

number of iterations in this algorithm is 100.

4 Simulation results

The proposed algorithm (GAECS) is described in the for-

mer part, and in this part, we will discuss the results of

simulating and comparing the results obtained using pro-

posed algorithm with the results obtained using other

methods. As mentioned, we used the GA and the ECS

model in the proposed method for optimal resource

scheduling and energy saving. In this method, the chro-

mosomes are first sorted according to their priority so that

we have optimal primary chromosomes. In practice, the

crossover and mutation of genes are based on their priority,

and thus their order of execution is never violated. In the

process of allocating tasks to the processor, it is also tried

to assign tasks to a processor that has both a minimum time

and energy factor.

Table 5 Makespan performance comparison for all approaches with

100 tasks

Algorithm Average SD ACT

GSA 5688.6096 201.5961 3.0662

ABC 5560.9419 286.2516 1.812

DA 5805.9244 427.2967 35.1305

Linear-PSO 4897.1396 218.0289 1.7437

Sigmod-PSO 5108.8297 111.9476 1.702

Chaotic-PSO 4907.816 175.8923 1.7129

Simulated-PSO 5019.1349 273.517 1.5996

Logarithm-PSO 4838.3595 198.5673 1.6597

GAECS 4611.5380 112.4317 3.7639

Table 6 Makespan performance comparison for all approaches with

200 tasks

Algorithm Average SD ACT

GSA 11702.2816 346.5467 3.9206

ABC 12214.6315 710.2963 1.6917

DA 11010.5597 868.8301 86.3467

Linear-PSO 9647.5628 412.1729 1.8739

Sigmod-PSO 9823.4108 308.8059 1.842

Chaotic-PSO 9536.7212 311.8092 1.8727

Simulated-PSO 9790.0579 314.9119 1.8398

Logarithm-PSO 9463.4511 243.2355 1.8742

GAECS 8136.8792 241.1193 4.4319

Table 7 Makespan performance comparison for all approaches with

300 tasks

Algorithm Average SD ACT

GSA 18307.5988 584.0432 6.7591

ABC 19421.5846 1072.29 2.9392

DA 16892.2548 1488.8774 137.098

Linear-PSO 14244.2165 862.2472 2.1473

Sigmod-PSO 14738.0963 442.2664 1.882

Chaotic-PSO 14352.9043 391.3443 1.9294

Simulated-PSO 14762.6141 741.0269 1.8726

Logarithm-PSO 14185.258 349.483 1.9063

GAECS 14181.320 347.649 4.5843

Neural Computing and Applications

123

Here, we depict the appropriate condition for evaluating

and proving the improvement of the proposed method over

other methods. In this environment, we show that using the

proposed algorithm, we will improve energy and time, and

in this environment, we compare our method with other

similar methods and show the results.

4.1 Simulation environment

We implemented and evaluated all algorithms using

MATLAB 2014a. The operating environment for running

was a personal computer with an Intel (R) Core i7 2.4GH

processor, 8GB of memory and Windows 10.

Fig. 3 Makespan convergence curve for all approaches with 30 tasks

Fig. 4 Makespan convergence curve for all approaches with 50 tasks

Neural Computing and Applications

123

In this evaluation, experiments are run with five

stochastic datasets of 30, 50, 100, 200 and 300 tasks.

For scheduling the tasks of datasets whose file size is 32

to 64 MB, 20 VMs have been used. Table 2 shows the

capabilities of these VMs.

The GAECS is compared with Gravitational Search

Algorithm (GSA) [47], ABC [48], Dragonfly Algorithm

(DA) [49], Linear-PSO [40], Sigmod-PSO [40], Chaotic-

PSO [40] and Simulated-PSO [40], Logarithm-PSO [40],

the simulation results of which can be seen in Tables 3,4,

5, 6, 7.

Fig. 5 Makespan convergence curve for all approaches with 100 tasks

Fig. 6 Makespan convergence curve for all approaches with 200 tasks

Neural Computing and Applications

123

As you can see, the GAECS has been able to solve

problems properly and compete with comparable algo-

rithms. As the GAECS is a hybrid algorithm, it has a higher

Average Computation Time (ACT) than the comparable

algorithm. All algorithms were run 20 times and then these

average results are presented in Tables. In Tables 3, 4, 5, 6,

7, Average, SD and ACT columns represent Average Value

(Mean), Standard Deviation (SD) and average computation

time, respectively.

Tables 3, 4, 5, 6, 7 show the best position as shown in

Fig. 3 for changes to the proposed algorithm (GAECS) and

compared algorithms. Comparative algorithms that have

Fig. 7 Makespan convergence curve for all approaches with 300 tasks

Fig. 8 Comparison of energy consumption of the GAECS with comparable algorithms for the number of tasks from 40 to 100

Neural Computing and Applications

123

similar differences based on Average, SD, and ACT have

been investigated. As can be seen, the GAECS has more

optimal conditions to find the Makespan, and these con-

ditions are considered for 30 tasks. As shown, the Linear-

PSO and Sigmod-PSO methods acted linearly similar to the

GAECS. In Figs. 4, 5, 6, 7, the conditions for the GAECS

are improved by increasing the number of tasks. As shown

in Figs. 3, 4, 5, 6, 7, GAECS is superior to other algorithms

in terms of accuracy. All the compared algorithms perform

very well in these cases. PSO-based approaches also work

well in all cases. Note that, as the number of tasks

increases, the DA computational time increases rapidly.

Figure 8 shows the energy results of the proposed

algorithm with other algorithms in watt per hour (Wh). All

performance metrics are evaluated for several 40–100

tasks. As can be seen in this figure, the energy increases

with increasing tasks in all algorithms. The GAECS algo-

rithm has better conditions for finding energy in different

tasks, and this operation is due to the low value of make-

span, and these 40 to 100 tasks are considered. As shown,

Linear-PSO and Sigmod-PSO methods, such as GAECS,

operate linearly. Due to the low computational complexity

(time-space), we will have an energy reduction in the

proposed method. GAECS is superior to the comparable

algorithms in terms of accuracy, and note that as the

number of tasks increases, the DA energy computation

time increases rapidly [50].

5 Conclusion

Cloud computing system is a prevailing model for clients

to use cloud resources due to the ‘‘pay for use’’ model, but

due to the high volume of resources and high requests from

users, the issue of scheduling and energy use has become

one of the important obstacle of this type of system. Much

research has been done on this topic. Scheduling is a way

to allocate resources to users, and the main goal of a

schedule is to reduce makespan. Scheduling is a way to

allocate resources to users, and the primary goal of a

schedule is to reduce makespan. In most of the methods

presented for cloud system scheduling, little attention has

been paid to the energy issue, and in some methods that

have been optimized for energy consumption, the make-

span has increased. For example, the Hybrid GA algorithm

is an energy-conscious scheduling method for dependent

tasks, but despite the fact that tasks are interdependent, the

scheduling and production of primary chromosomes have

not been optimally performed. The ECS algorithm does not

consider all possible combinations to perform tasks.

Therefore, it is better to use scheduling algorithms that can

optimize time and energy usage. In this study, a two-step

algorithms called GAECS is presented with the aim of

reducing time and energy. In the proposed GAECS algo-

rithm, we used the GA to create optimal schedules and

three ranking algorithms to create the primary chromo-

somes. We also used the ECS algorithm, which is an

energy-aware technique, to optimize the allocation of

resources to processors. In the GAECS algorithm, first

three primary chromosomes are produced using three pri-

oritization algorithms, and the primary chromosomes are

given to the GA, and the primary population is completed

in the GA. Then, using the defined crossover and mutation

operators, better chromosomes are selected, and finally, the

optimal chromosomes are selected in terms of time and

energy and are assigned to resources. The GAECS algo-

rithm is compared to eight algorithms. The results of the

evaluation of the GAECS show that the GAECS has a

better makespan and energy consumption.

Declaration

Conflict of interest In the present work, we have not used any

material from previously published. So we have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Kalra M, Singh S (2015) A review of metaheuristic scheduling

techniques in cloud computing. Egypt Inf J 16(3):275–295.

https://doi.org/10.1016/j.eij.2015.07.001

2. Prasanna Kumar KR, Kousalya K (2019) Amelioration of task

scheduling in cloud computing using crow search algorithm.

Neural Comput Appl 32:5901–5907

3. Srichandan S, Ashok Kumar T, Bibhudatta S (2018) Task

scheduling for cloud computing using multi-objective hybrid

bacteria foraging algorithm. Future Comput Inf J, vol. 3, pp. 210-

230

4. Basu S, Karuppiah M, Selvakumar K, Li K, Islam SKH, Hassan

MM, Bhuiyan MZA (2018) An intelligent/cognitive model of

task scheduling for IoT applications in cloud computing envi-

ronment. Future Generat Comput Syst 88:254–261

5. Gamal M, Rizk R, Mahdi H, Elhady B (2019) Bio-inspired based

task scheduling in cloud computing. Mach Learn Paradig: Theor

Appl 801:289–308

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.eij.2015.07.001

6. George Amalarethinam DI, Kavitha S (2018) Rescheduling

enhanced Min-Min (REMM) algorithm for meta-task scheduling

in cloud computing. International Conference on Intelligent Data

Communication Technologies and Internet of Things, vol. 26,

pp. 895–902

7. Alworafi MA, Mallappa S (2019) A collaboration of deadline and

budget constraints for task scheduling in cloud computing.

Cluster Comput, pp. 1-11

8. Valarmathi R, Sheela T (2019) Ranging and tuning based particle

swarm optimization with bat algorithm for task scheduling in

cloud computing. Cluster Comput 22:11975–11988. https://doi.

org/10.1007/s10586-017-1534-8

9. Lee YC, Zomaya AY (2009) Minimizing energy consumption for

precedence-constrained applications using dynamic voltage

scaling. In: 2009 9th IEEE/ACM International Symposium on

Cluster Computing and the Grid, Shanghai, China, 2009,

pp 92–99. https://doi.org/10.1109/CCGRID.2009.16

10. Mezmaz M, Melab N, Kessaci Y, Lee YC, Talbi EG, Zomaya

AY, Tuyttens D (2011) A parallel bi-objective hybrid meta-

heuristic for energy-aware scheduling for cloud computing sys-

tems. J Parallel Distribut Comput 71:1497–1508

11. Shojafar M, Kardgar M, Hosseinabadi AR, Shamshirband S,

Abraham A (2016) TETS: A genetic-based scheduler in cloud

computing to decrease energy and makespan. The 15th Interna-

tional Conference on Hybrid Intelligent Systems (HIS 2015),

Chapter Advances in Intelligent Systems and Computing 420,

Seoul, South Korea, vol. 420, pp. 103–115,

12. Polepally V, Chatrapati KS (2017) Dragonfly optimization and

constraint measure-based load balancing in cloud computing.

Clust Comput 22:1–13

13. Sangaiah AK, Hosseinabadi AR, Shareh MB, Bozorgi Rad SY,

Zolfagharian A, Chilamkurti N (2020) IoT resource allocation

and optimization based on heuristic algorithm’’. Sensors

20(2):1–26

14. Hosseinabadi AR, Farahabadi AB, Rostami MS, Lateran AF

(2013) Presentation of a new and beneficial method through

problem solving timing of open shop by random algorithm

gravitational emulation local search. Int J Comput Sci Issues

10(1):745–752

15. Topcuoglu H, Hariri S, Wu M-Y (2002) Performance-effective

and low-complexity task scheduling for heterogeneous comput-

ing. IEEE Trans Parallel Distrib Syst 13(3):260–274

16. Raju YHP, Devarakonda N (2018) Makespan efficient task

scheduling in cloud computing. Emerging Technol Data Mining
Inf Secur, pp. 283-298

17. Farahabadi AB, Hosseinabadi AR (2013) Present a new hybrid

algorithm scheduling flexible manufacturing system considera-

tion cost maintenance. Int J Sci Eng Res 4(9):1870–1875

18. Madni SHH, Abd Latiff MS, Ali J (2019) Hybrid gradient descent

cuckoo search (HGDCS) algorithm for resource scheduling in

IaaS cloud computing environment. Cluster Comput 22:301–334

19. Kashikolaei SMG, Hosseinabadi AR, Saemi B, Shareh MB,

Sangaiah AK, Bian GB (2019) An enhancement of task

scheduling in cloud computing based on imperialist competitive

algorithm and firefly algorithm. J Supercomput, p. 1-28
20. Zhu X, Hussain M, Li X (2019) Energy-efficient independent task

scheduling in cloud computing’’. Human Center Comput,
pp. 428–439

21. Lee YC, Zomaya AY (2009) Minimizing Energy Consumption

for Precedence-constrained Applications Using Dynamic Voltage

Scaling, Cluster Comput Grid, pp. 92-99

22. Hosseinabadi AR, Vahidi J, Saemi B, Sangaiah AK, Elhoseny M

(2018) Extended genetic algorithm for solving open-shop

scheduling problem. Soft Comput, pp. 1–18

23. Hosseinabadi AR, Kardgar M, Shojafar M, Shamshirband S,

Abraham A (2014) GELS-GA: Hybrid metaheuristic algorithm

for solving multiple travelling salesman problem In: IEEE

International Conference on Intelligent Systems Design and

Applications (ISDA), pp. 76–81

24. Rostami AS, Mohanna F, Keshavarz H, Hosseinabadi AR (2015)

Solving multiple traveling salesman problem using the gravita-

tional emulation local search algorithm. Appl Math Inf Sci

9(2):699–709

25. Hosseinabadi AR, Vahidi J, Balas VE, Mirkamali SS (2018)

OVRP_GELS: Solving open vehicle routing problem using the

gravitational emulation local search algorithm. Neural Comput

Appl 29(10):955–968

26. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a

gravitational search algorithm. Inf Sci 179(13):2232–2248

27. Delaram J, Fatahi Valilai O (2018) A mathematical model for

task scheduling in cloud manufacturing systems focusing on

global logistics. Procedia Manuf 17:387–394

28. Karaboga D, Basturk B (2007) Artificial bee colony (ABC)

optimization algorithm for solving constrained optimization

problems. In: International Fuzzy Systems Association World

Congress, pp. 789-798, Springer

29. Carballal A, Pazos-Perez RI, Rodriguez-Fernandez N, Santos I,

Garca-Vidaurrazaga MD, Rabunal J (2020) A point-based rede-

sign algorithm for designing geometrically complex surfaces. A

case study: Miralles’s croissant paradox. IET Image Process

14(12):2948–2956

30. Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: A

new metaheuristic for global optimization problems. In: Proc. of

IEEE Congress on Evolutionary Computation (CEC), Rio de

Janeiro, pp. 1–8

31. Pierezan J, Maidl G, Yamao EM, Coelho LDS, Mariani VC

(2019) Cultural coyote optimization algorithm applied to a heavy

duty gas turbine operation. Energy Convers Manage 199:1–18

32. Johnson S (2012) Emergence: the connected lives of ants, brains,

cities, and software. Scribner, New York, NY, USA

33. Alworafi MA, Dhari A, El-Booz SA, Nasr AA, Arpitha A,

Mallappa S (2018) An enhanced task scheduling in cloud com-

puting based on hybrid approach’’. Data Analyt Learn, pp. 11-25
34. Kundra V (2011) ‘‘Federal cloud computing strategy’’

35. Awad AI, El-Hefnawy NA, Abdel-Kader HM (2015) Enhanced

particle swarm optimization for task scheduling in cloud com-

puting environments. Procedia Comput Sci 65:920–929

36. Lakraa AV, Yadav DK (2015) Multi-objective tasks scheduling

algorithm for cloud computing throughput optimization. Procedia

Comput Sci 48:107–113

37. Wang T, Wei X, Liang T, Fan J (2018) Dynamic tasks scheduling

based on weighted bi-graph in mobile cloud computing. Sustain

Comput: Inf Syst 19:214–222

38. Pinedo M (2008) Scheduling: theory, algorithms, and systems.

Springer, Berlin. https://www.springer.com/gp/book/

9781489990433

39. Ajeena Beegom AS, Rajasree MS (2019) Integer-PSO: a discrete

PSO algorithm for task scheduling in cloud computing systems’’.

Evolut Intell 12:227–239

40. Hosseinabadi AR, Rostami NSH, Kardgar M, Mirkamali SS,

Abraham A (2017) A new efficient approach for solving the

capacitated vehicle routing problem using the gravitational

emulation local search algorithm. Appl Math Model 49:663–679

41. Hosseinabadi AR, Siar H, Shamshirband S et al. (2015) Using the

gravitational emulation local search algorithm to solve the multi-

objective flexible dynamic job shop scheduling problem in small

and medium enterprises. Ann Oper Res 229:451–474. https://doi.

org/10.1007/s10479-014-1770-8

42. Sangaiah AK, Suraki MY, Sadeghilalimi M, Bozorgi SM, Hos-

seinabadi AAR, Wang J (2019) A new meta-heuristic algorithm

for solving the flexible dynamic job-shop problem with parallel

Neural Computing and Applications

123

https://doi.org/10.1007/s10586-017-1534-8
https://doi.org/10.1007/s10586-017-1534-8
https://doi.org/10.1109/CCGRID.2009.16
https://www.springer.com/gp/book/9781489990433
https://www.springer.com/gp/book/9781489990433
https://doi.org/10.1007/s10479-014-1770-8
https://doi.org/10.1007/s10479-014-1770-8

machines. Symmetry 11:165. https://doi.org/10.3390/

sym11020165

43. Nategh MN, Hosseinabadi AR, Balas VE (2018) Ant_VRP: ant-

colony-based meta-heuristic algorithm to solve the vehicle rout-

ing problem. Int J Adv Intel Paradig 11(3):315–334

44. Tirkolaee EB, Hosseinabadi AR, Soltani M, Sangaiah AK, Wang

J (2018) A hybrid genetic algorithm for multi-trip green capaci-

tated arc routing problem in the scope of urban services. Sus-

tainability 10:1–21

45. Narendrababu Reddy G, Phani Kumar S (2018) Modified ant

colony optimization algorithm for task scheduling in cloud

computing systems. Smart Intel Comput Appl 104:357–365

46. Abd Elaziz M, Xiong S, Jayasena KPN, Li L (2019) Task

scheduling in cloud computing based on hybrid moth search

algorithm and differential evolution. Knowl-Based Syst

169:39–52

47. Hosseinabadi AR, Slowik A, Sadeghilalimi M, Farokhzad M,

Babazadeh M, Sangaiah AK (2019) ‘‘An ameliorative hybrid

meta-heuristic algorithm for solving the capacitated vehicle

routing problem. IEEE Access 7:175454–175465

48. Huang X, Li C, Chen H, An D (2020) Task scheduling in cloud

computing using particle swarm optimization with time varying

inertia weight strategies. Cluster Comput 23:1137–1147

49. Peng H, Wena W, Tseng M, Li L (2019) Joint optimization

method for task scheduling time and energy consumption in

mobile cloud computing environment. Appl Soft Comput

80:534–545

50. Sanaj MS, Joe Prathap PM, Jayasena KPN, Li L (2019) Nature

inspired chaotic squirrel search algorithm (CSSA) for multi

objective task scheduling in an IAAS cloud computing atmo-

sphere. Engineering Science and Technology, an International

Journal

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://doi.org/10.3390/sym11020165
https://doi.org/10.3390/sym11020165

	Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing
	Abstract
	Introduction
	Related works
	Problem statement
	System model

	The proposed algorithm
	GAECS for task scheduling in cloud computing
	Initial population
	Parent selection
	Crossover operator
	Mutation operator
	Fitness function
	ECS method
	Termination condition

	Simulation results
	Simulation environment

	Conclusion
	Open Access
	References

