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Abstract
Breast cancer is the most common among women that leads to death if not diagnosed at early stages. Early diagnosis plays

a vital role in decreasing the mortality rate globally. Manual methods for diagnosing breast cancers suffer from human

errors and inaccuracy, and consume time. A computer-aided diagnosis (CAD) can overcome the disadvantages of manual

methods and helps radiologists for accurate decision-making. A CAD system based on artificial neural network (ANN)

optimized using a swarm-based approach can improve the accuracy of breast cancer diagnosis due to its strong prediction

capabilities. Artificial bee colony (ABC) and whale optimization are metaheuristic search algorithms used to solve

combinatorial optimization problems. This paper proposes a hybrid artificial bee colony with whale optimization algorithm

(HAW) by integrating the exploitative employee bee phase of ABC with the bubble net attacking method of whale

optimization to propose an employee bee attacking phase. In the employee bee attacking phase, employee bees use

exploitation of humpback whales for finding better food source positions. The weak exploration of standard ABC is

improved using the proposed mutative initialization phase that forms the explorative phase of the HAW algorithm. HAW

algorithm is used in simultaneous feature selection (FS) and parameter optimization of an ANN model. HAW is imple-

mented using backpropagation learning that includes resilient backpropagation (HAW-RP), Levenberg–Marquart (HAW-

LM) and momentum-based gradient descent (HAW-GD). These hybrid variants are evaluated using various breast cancer

datasets in terms of accuracy, complexity and computational time. HAW-RP variant achieved higher accuracy of 99.2%,

98.5%, 96.3%, 98.8%, 98.7% and 99.1% with low-complexity ANN model when compared to HAW-LM and HAW-GD

for WBCD, WDBC, WPBC, DDSM, MIAS and INbreast, respectively.

Keywords ANNs � Artificial bee colony � Multilayer perceptron � Levenberg–Marquardt � Resilient backpropagation �
Momentum-based gradient descent backpropagation � Whale optimization algorithm

1 Introduction

Early-stage diagnosis plays a major role in increasing the

chance of recovery from breast cancer. World Health

Organization (WHO) has reported that WHO estimates that

there may be an increase in the cancer incidence of 27.5

million in the year of 2040, with 16.3 million deaths due to

cancer [1]. Currently, the average risk of a woman in the

USA developing breast cancer sometime in her life is about

13%. According to the American Cancer Society, in the

USA in the year 2021, invasive breast cancer expected is

281,550 of new cases, and about 43,600 women are esti-

mated to die because of breast cancer [2]. In metropolitan

cities in India such as Mumbai, Chennai, Delhi, Bangalore,

Ahmadabad and Bhopal, noninvasive breast cancer has
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affected 28% to 35% of the women population [3]. Thus,

breast cancer has become a serious health issue around the

globe and early detection is essential in reducing life

fatalities [4]. Early detection can be done using various

scanning methods such as magnetic resource imaging,

ultrasound imaging, self-check-up, mammography and

biopsies [5]. Traditionally followed breast cancer methods

consume more time for diagnosis and they fail because of

inaccurate diagnosis caused by human errors. Automated

computer-based diagnosis schemes overcome the demerits

of manual diagnosis, and hence, unnecessary surgeries and

biopsies can be avoided [6]. Expert systems based on ANN

have strong predictive capabilities which makes it suit-

able for building medical diagnosis systems [7]. ANN-

based decision-making systems have outperformed the

traditional technique used for classifying patterns.

Metaheuristic-based swarm intelligence approach is

used for real-time optimization problem-solving [8–10].

Commonly used swarm intelligence approaches are the ant

colony optimization (ACO) [11] and the particle swarm

optimization (PSO) [12] inspired by the foraging behavior

of ants and social behavior of birds, respectively. The

echolocation capability of the microbats available in nature

forms the basis of the bat algorithm (BA) [13]. A popula-

tion-based swarm technique introduced based on the for-

aging behavior of honey bees [14]. The dynamic and static

behavior of dragonflies forms the basis of a new meta-

heuristic algorithm called dragonfly algorithm (DA) [15].

Based on the herding behavior of krill, another swarm

technique is proposed called krill herd (KH) algorithm

[16].

A technique based on migration behavior, called the

monarch butterfly optimization (MBO), is introduced [17].

The foraging behavior for the survival of E. coli bacteria

forms the basis of the bacterial foraging optimization

(BFO) [18]. Another swarm technique called the artificial

immune system (AIS) is inspired by the biological immune

system of the human body [19]. An algorithm for global

optimization based on interior design and decoration [20].

A salp swarm algorithm (SSA) based on the swarming

behavior of the salp in the ocean is introduced that can be

used to solve multidimensional optimization problems

[21]. Based on the Brownian movements and Levy

movements of the predators during their foraging process,

another swarm technique called marine predictor algorithm

(MPA) was proposed [22]. This paper focused on

hybridizing artificial bee colony optimization with the

whale optimization algorithm to introduce the HAW

algorithm. The proposed HAW algorithm integrates the

employee bee phase of the ABC with the encircling prey/

bubble net attacking method to have an enhanced

exploitative phase called the employee attacking phase. In

the employee attacking phase, the bees follow the bubble

net attacking method of the whales to find out better food

sources. The explorative phase of the HAW is driven by a

mutative initialization phase of the standard ABC

algorithm.

Appropriate selection of ANN topology design param-

eters such as the number of hidden layers, numbers of

hidden nodes, initial weight values between the connec-

tions, learning rate and algorithm plays a vital role in

building a successful ANN model [23]. The convergence of

the backpropagation learning process can be affected by

the improper selection of weights making the learning

process to be trapped in the local optimal locations

[24, 25]. Improper selection of the hidden nodes may make

the ANN classifier to deal with the problems of under fit-

ting and over fitting. If the usage of hidden nodes in an

ANN model is not appropriate to the amount of learning

required for accurate diagnosis, then the ANN classifier

may be either overtrained where the ANN model can give

accurate results in case of training and fails with inaccurate

results in the case of testing or undertrained where the

prediction rate decreases. Based on the above discussion,

this paper focuses on optimal selection of the value of

initial weights and the optimal selection of the hidden node

sizes of an ANN model using HAW algorithm with the

help of a wrapper architecture such that work aims at

improving the learning performance of an ANN avoiding

the problems of overfitting and underfitting with increased

predictive capabilities.

FS deals with the deletion of irrelevant, redundant and

noisy features present in the input dataset of a classifier. FS

improves the generalization of an ANN classifier system

with reduced computational time, as demonstrated in

[26, 27]. Hence, simultaneously optimizing the input fea-

tures and design parameters of ANN such as the initial

weights and hidden node size can increase the pre-

dictability of the ANN classifier. Swarm-based intelligent

systems are used for coupled optimization of input features

and ANN design parameters [28]. Due to the importance of

simultaneous optimization of ANN design parameters and

FS process, the ANN topology optimization can be coupled

with ABC optimization due to its powerful local and global

search capabilities in finding out global optimal solutions.

This paper focuses on the following objectives:

(i) A hybrid ABC-WOA optimization (HAW) that

integrates the encircling prey and the bubble net

attacking method of WOA with the employee bee

phase of standard ABC to form an employee

attacking phase.

(ii) To make HAW to escape from local optimum

locations, the proposed employee attaching phase

uses the simulated annealing technique.
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(iii) To get a diversified set of solutions, exploration of

the HAW is enhanced using the proposed mutative

exploration phase of ABC.

(iv) HAW is implemented for optimal feature subset

selection and ANN parameter optimization using

Wisconsin breast cancer dataset. HAW-optimized

ANN model is evaluated in terms of accuracy,

complexity and computational time.

1.1 Artificial bee colony (ABC) optimization

A metaheuristic swarm-based search mechanism called

ABC is introduced by Karaboga in 2005. It is a population-

based approach, inspired by the foraging nature of honey

bees that solves multidimensional and multimodal real-

time optimization problems for different applications, as

demonstrated in [29]. ABC is based on a stochastic process

that is robust and highly flexible with a lesser number of

control parameters that make it simple. The algorithmic

steps of the ABC optimization process are described in

Algorithm (1):

Algorithm 1: Artificial bee colony algorithm

Step 1: Initialization:

Food sources are randomly produced using Equation (1).

Al
k ¼ Al

k þ random 0; 1ð Þ � Al
max � Al

min

� �
ð1Þ

Al
k represents kth food source with lth parameter and

j = 1, 2………N, in which N represents maximum food

sources. l = 1, 2……dim, in which ‘dim’ represents the

dimension representing the number of parameters in the

optimization problem. Al
max and Al

min are the minimum

and maximum bound of the lth parameter of the

optimization problem, respectively.

Step 2: Quality Evaluation of food source:

The fitness values are identified for each food source Ak.

Step 3: Employed bee Phase:

Food sources are assigned to employee bees or worker

bees. The employee bees use Eq. (2) to search neigh-

borhood food sources surrounding the current food

sources Al
k.

El
k ¼ Al

k þ random �1; 1½ � � Al
k � Al

d

� �
ð2Þ

Ad is a random food source where d [ {1, 2…, N}. ‘l’ is

a random integer, and i = {1, 2…, dim} and ‘d’ should

not be equal to ‘l’ for proper exploitation. If the quality

of El
k is greater than A

l
k, then bee discards A

l
k saving E

l
k or

vice versa.

Step 4: Onlooker Bee Phase:

Information regarding the selected food sources is shared

with the onlooker bees. The probability value Zk of each

food source received from the employee bee is calcu-

lated using Eq. (3).

Zk ¼
fitness Akð Þ

PN
k¼1 fitness Akð Þ

ð3Þ

The quality of the food source Ak is represented as

fitness Akð Þ. The value Zk of food source is compared

with a random 0; 1ð Þ. Food sources with a Zk value

greater than random 0; 1ð Þ are selected by the onlooker

bees.

Step 5: Food source memorization:

The food source with the highest fitness Akð Þ is selected
and memorized.

Step 6: Scout bee phase:

In the scout bee phase, unimproved food sources are

identified based on a counter value and they are replaced

by a randomly generated food source according to

Equation (1).

1.2 Whale optimization algorithm (WOA)

WOA is a population-based swarm intelligence meta-

heuristic algorithm introduced by Mirjalili and Lewis [30]

which is inspired by the foraging behavior of humpback

whales. The humpback whales’ hunts group of krill or

fishes using shrinking circle and producing bubbles in a

circle ‘90-shaped path. The exploitation phase is carried out

using encircling prey and bubble net attacking based on the

spiral. A random search of prey is used for exploration. The

exploitation phase of WOA is explained in Algorithm (2).

Algorithm 2: Encircling prey/bubble net attacking of

WOA

To hunt the prey for survival, humpback whales encircle

around the prey which can be mathematically represented

using Eqs. (4) and (5).

Y ¼ L~:A� tð Þ � A tð Þ
�� �� ð4Þ
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A~ t þ 1ð Þ ¼ A��!
tð Þ �M~ � Y ð5Þ

where t represents the current iteration, A� represents the

best solution found so far, A gives the position vector, | |

represents the absolute value, and L and M represents the

coefficient vectors that can be obtained using Eqs. (6 and

7).

M~ ¼ 2m~ � r~� m~ ð6Þ

L~¼ 2 � r~ ð7Þ

where m is reduced linearly starting from 2 till 0 as the

iteration proceeds. r represents a random vector from a

uniform distribution between [0,1]. Each whale that rep-

resents a solution updates its position using Eq. (5) where

the updated new position of the whale depends on the best

position (prey) found so far. The position of the whales can

be controlled by the adjustment of vectors L and M. The

value of m is decreased to achieve the shrinking encircling

behavior using Eq. (8).

m ¼ 2� t
2

MaxIterat
ð8Þ

where t represents the current iteration and MaxIterat

represents maximum iterations. The new position of the

whale on the spiral path can be calculated using Eq. (9);

A~ t þ 1ð Þ ¼ Y 0 � ews � cos 2plð Þ þ A~ � tð Þ ð9Þ

where Y 0 ¼ A~
�
tð Þ � A~ tð Þ

���
��� which indicates the distance of a

whale and the best solution (prey). w is a constant that

represents the shape of the logarithmic spiral. s is the

random number generated between [- 1,1]. Hence, the

updated new position of the whale is calculated using 50%

probability using a random number Pi generated between

[0,1] as represented by Eq. (10).

A~ t þ 1ð Þ ¼ A~ t þ 1ð Þ ¼ A��!
tð Þ �M~ � Y if ðPi\0:5Þ

A~ t þ 1ð Þ ¼ Y 0 � ews � cos 2plð Þ þ A~ � tð Þ if Pi � 0:5ð Þ

(

ð10Þ

1.3 Comparative Investigation of ABC and WOA
in terms of exploration and exploitation

In the context of exploration, WOA uses the search of prey

phase for exploration that completely depends on a random

search agent which is a stochastic strategy. In the same

way, ABC incorporates scout bees for exploration with the

help of a random search. This makes both the algorithms to

produce solutions concentrated in a local area at the ini-

tialization phase, losing its diversification. Hence, the

search process prematurely converges returning sub-

optimal solutions in both of the algorithms. Hence, both

ABC and WOA are weak at exploration.

In the context of exploitation, the local search process is

incorporated using the encircling prey and the bubble net

attacking method. The WOA exploitative phase guarantees

convergence since positions of the whale are updated using

the best solution (prey) obtained so far. Hence, proper

exploitation is guaranteed by the encircling prey and the

bubble net attacking method in the direction toward the

prey since the search process is always guided by the best

solution found so far. Comparatively, ABC exploitation is

carried out using the employee bee phase and the onlooker

bee phase where the positions of the food sources are

updated by changing the single parameter of the old solu-

tion (food source) that causes the existence of similar food

sources that converge at the same optimum locations. Also,

the local search of ABC cyclically revisits the same solu-

tions that create the problem of looping making the search

converge prematurely. Hence, WOA is better at exploita-

tion as compared to ABC.

1.4 Problems that are addressed
by the proposed HAW

Many researchers have used ABC and WOA to develop

optimal classifiers that can be used for medical diagnosis

purposes, but still, the standard ABC suffers from the

following issues which HAW addresses.

(i) The local search by the employee and onlooker

bee cyclically revisits similar solutions inducing

the problem of looping making the search process

converge prematurely.

(ii) ABC optimization makes the solutions to be

concentrated in local regions due to a lack of

diversified solutions at initialization.

(iii) The food source positions are updated by changing

the single parameter of the old solution (food

source) which causes the existence of similar food

sources that converge at the same optimum

locations.

(iv) Exploitation is performed by two phases, namely

the employee bee phase and the scout bee phase,

whereas the exploration process is done only by

scout bees, which leads to an imbalance in

exploration and exploitation.

HAW that is capable of resolving the above issues can

be used for generating an optimized ANN classifier that

can accurately and efficiently be used for breast cancer

diagnosis.
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2 Related works

P. Shunmugapriya and S. Kanmani proposed an integrated

algorithm of ABC and ACO for finding optimal feature

subsets of medical datasets [31]. The global search fol-

lowed by ABC is improved by using feature subsets gen-

erated by ACO to the ABC optimization process. The

approach yielded an accuracy of 99.07% using Wisconsin

breast cancer dataset (WBCD). The exploitation uses tra-

ditional greedy selection making algorithm to prematurely

converge at the local optimal locations. The algorithm is

only used for FS and no parameter optimization. Zorarpacı
and Ozel introduced a hybrid algorithm of DE and ABC for

optimal binary subsets selection [32]. The algorithm

combines the high exploration property of DE with an

improved onlooker bee phase of the ABC. The approach

achieved F-measure of 92.2, 96.4 and 97.6 for decision tree

classifier, naive Bayes classifier and RBF networks clas-

sifier, respectively, using WBCD. The algorithm is only

used for FS and no parameter optimization.

Shanthi and Bhaskaran presented a modified ABC for

FS [33]. The exploitation of the employee bees is improved

where the neighborhood search process is improved using

the global best solution. The modified ABC is used for FS

using benchmark datasets called mammographic image

analysis society (MIAS) and digital database for screening

mammography (DDSM) for breast cancer diagnosis.

Classification is carried out using self-adaptive resource

allocation network. The accuracy was evaluated as 96.89%

and 97.17% for MIAS and DDSM, respectively. The

algorithm has not focused on the explorative phase and it

has used only randomized initial solutions with loss of

diversification. Rao et al. applied a FS algorithm using

ABC and decision trees based on the gradient boosting

model [34]. The features are selected from the Wisconsin

breast cancer dataset and Haberman’s survival dataset. A

regression tree is used as the classifier where gradient

descent finds the direction of the gradient of residuals. The

classification accuracy is 74.3% for Haberman’s cancer

dataset and 92.8% for WBCD. It has not been evaluated in

terms of complexity.

An efficient ABC is proposed by Badem et al., for

optimal learning of deep neural networks (DNN) [35]. This

algorithm used ABC and Broyden–Fletcher–Goldfarb–

Shannon (BFGS) with limited memory. This proposed

ABC tuned the parameters of DNN with cascaded

autoencoder layers. The classification accuracy using

WBCD is 73.03%. The step size of the neighborhood

search is kept static throughout the entire search process

affecting the convergence. Garro presented an optimized

classification of DNA microarrays using ABC [36]. The

optimal feature subsets from breast cancer datasets are

selected using ABC. Then the selected optimal feature

subsets are given to MLP, radial basis function neural

network and support vector machine (SVM). The accuracy

attained is 94.7% for MLP, for SVM accuracy is 89.5% and

for RBF it is 73.7%. The algorithm used standard ABC

without any improvement. Palanisamy and Kanmani pro-

posed ABC-based FS for UCI datasets [37]. The system

chooses 2 features from 9 attributes from WBCD and

yielded an accuracy of 96.69%. The system is simple but

used only the standard ABC.

Optimal FS using ABC for UCI repository datasets is

proposed [38]. The employee bee phase is modified using a

modification rate where the feature is selected if the ran-

dom number is greater than the modification rate. The

classification accuracy is 75.87%. The algorithm has not

focused on the explorative phase and it has used only

randomized initial solutions with loss of diversification.

Two hybrid algorithms are proposed based on ABC and

PSO [39]. In the first algorithm, the employee bee phase is

hybridized with PSO to find new velocity position updates.

In the second algorithm, the onlooker and scout bee phase

are improved using mutations of the genetic algorithm.

Both of the algorithms have the highest accuracy of

99.14% with an optimal selection of 13 features using

WBCD. The algorithm is only used for FS and no

parameter optimization. A hybrid algorithm for FS using

branch and bound approach and ABC is proposed [40]. The

algorithm first applies the branch and bound and finds the

first set of features. Then, it applies ABC to identify the

second set of features. A union operation is done to form a

new set of optimal features. The algorithm has not focused

on classification.

Schiezaro and Pedrini used an optimal FS using whale

bubble net hunting strategy for UCI repository datasets

[41]. The algorithm handles exploitation using the bubble

net attacking method phase. Further, a global search is

carried out by the search for the prey phase. During the

evaluation, the SVM classifier attained an accuracy of

98.77%, precision of 99.15%, recall of 98.64% and f-score

of 98.9%. This algorithm is only used for FS and no

parameter optimization. J. Jona and N. Nagaveni presented

an optimal FS using the integration of ACO and cuckoo

search [42]. Local search behavior of ACO is improved

using the exploitation of cuckoo search. The algorithm

selected feature set that is optimal from the set of 78 tex-

ture features derived using GLCM. The input is taken from

the MIAS dataset. In this approach, 5 features were

selected with 94% accuracy. The algorithm uses the SVM

classifier for prediction. This algorithm showed increased

performance of 4% and 2% when compared with PSO and

ACO, respectively.

A novel hybrid whale–artificial bee colony optimizer

framework is introduced by Siddavaatam and Sedaghat for
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cross-layer optimization for Internet of Things (IoT) [93].

An efficient MAC for IoT has been designed to minimize

energy consumption with extended network lifetime. The

novel hybrid whale–artificial bee colony optimizer frame-

work is used to obtain optimal nodes and the communi-

cation parameters in the IoT. It saves computation

resources of the resource constrained IoT devices.

3 Materials and methodologies

A wrapper-based method that eliminates the use of statis-

tical methods such as information gain or F-score is used

for implementing the proposed HAW. The proposed

architecture is depicted in Fig. 1. The input dataset is the

breast cancer dataset where the total set is divided into

three subsets. The first set that contains 50% of samples is

used for training. The next 25% of samples are used for the

validation, and the rest of 25% are used for testing. With

the help of the optimal set of input features generated by

HAW, the optimal features are selected from the three

subsets where the other features are rejected. The optimal

selected features of the training set are used for training the

underlying ANN classifier. The proposed wrapper archi-

tecture was implemented utilizing MATLAB 8.5 software.

Backpropagation training is done using a neural network

toolbox.

3.1 Breast cancer datasets used by the proposed
Wrapper architecture

HAW is evaluated using breast cancer datasets such as the

WBCD [87], Wisconsin diagnostic breast cancer dataset

(WDBC) [88], Wisconsin prognostic breast cancer dataset

(WPBC) [89], DDSM [90], MIAS [91] and INbreast

database [92]. The description of the datasets used is given

in Table 1.

The optimal initial weights and hidden node size gen-

erated by HAW are used as the initial parameter settings of

ANN. The ANN error is calculated with the help of the

validation set. If the validation error increases for six

iterations continuously, the training of ANN is stopped.

Fig. 1 Proposed wrapper architecture
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The fitness of trained ANN is calculated using Eqs. (12 and

13). The ANN with high fitness (best) is selected and tested

using the testing set with optimal feature subsets. The

complexity (number of connections) of final ANN achieved

is calculated using Eq. (11).

Connect ¼ U � V þ V �W þ V þW ð11Þ

‘U’ gives input features (size), ‘V’ indicates hidden node

size, and ‘W’ indicates output nodes (size). The resulting

ANN with the least connections guarantees less complex-

ity. Fitness of ANN is calculated by Eq. (6). A higher value

of ANNErr indicates low-fitness ANN.

ANN Err ¼ Pmax � Pmin

L � w

� �Xl

i¼1

Xw

j¼1

Ai
j � Bi

j

� 	2

ð12Þ

Fitness ¼ 1

ANNError
ð13Þ

‘l’ and ‘w’ is the size of the output nodes and validation

examples, respectively. Pmax and Pmin are maximum and

minimum actual output, respectively. Bi
j and Ai

j is the target

output and actual output, respectively.

The initial solution representation is given using Fig. 2.

I bits give the random initial weights, in which 2I different

initial weights can be explored. J bits give the hidden node

size so that 2J hidden node size can be explored. K bits give

the feature bits that represent the total features. If a feature

is selected, then ‘K’ bit is one; otherwise, it is zero. The

size of the K bits may vary based on the total number of

features available in the dataset.

3.2 Detailed description of the proposed HAW
algorithm

HAW optimization algorithm is framed by the integration

of a mutative initialization phase of ABC optimization with

the exploitation phase of the whale optimization technique.

The standard ABC is weak in exploration because of

localized initial food sources due to the poor random search

process. Hence, the HAW algorithm has used a mutative

exploration phase at its initialization such that the algo-

rithm can explore the entire problem space and finds out

new promising regions. This employee bee phase of the

ABC optimization process is integrated with the exploita-

tive of WOA such that the employee bees follow the

encircling prey/bubble attacking method of whales to

update the positions of the food sources. The best food

source found at each iteration is considered as the target

prey of WOA. The HAW involves two stages: In the first

stage, HAW uses a mutative initialization phase is pro-

posed using different mutations and it derives a possible set

of diversified solutions. In the second stage, an employee

bee attacking phase is proposed such that the optimum set

of solutions derived by the mutative initialization phase

forms the initial food source positions of the employee

attacking phase that follows the attacking method of

whales for the prey. The simulated annealing technique is

used in the employee bee attacking phase to make the

algorithm to escape from the local optimum locations and

avoid looping problems. A flowchart representation of the

HAW algorithm is shown in Fig. 3. HAW optimization is

summarized as follows:

(i) A mutative initialization phase is proposed to

derive a set of diversified solutions to expedite the

search speed at the exploration phase.

(ii) An employee attacking phase is proposed so that

the employee bees adapt the encircling prey/

bubble net attacking method of whales for updat-

ing the current food source positions during their

Table 1 Breast cancer datasets used by the proposed wrapper

architecture

Dataset Cases Features

WBCD 699—total

241—malignant

458—benign

9

WDBC 569—total

357—malignant

212—benign

30

WPBC 198—total

151—nonrecurrent

47—recurrent

32

DDSM 480—total

170—malignant

310—benign

21

MIAS 338—total

138—malignant

200—benign

21

INbreast database 275—total

95—malignant

180—benign

21-

Fig. 2 Initial solution

representation
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foraging process. The exploitation of the employee

bee attacking phase is guided by the best food

source (prey of the whales) found so far.

(iii) To escape from suboptimal location and to avoid

looping problems, simulated annealing (SA)-based

employee attacking phase is proposed.

(iv) The onlooker bee phase and scout bee phase are

followed in the same way as that of the standard

ABC optimization.

3.2.1 Initialization and fitness calculation

A food source indicates a possible solution of the under-

lying optimization problem. Each food source is generated

using the ‘dim’ number of variables that represent the

dimension of problem space considered. The generation of

the initial population is done through the random distri-

bution of food sources using Eq. (14).

Fig. 3 Flowchart representation of the proposed HAW algorithm
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Al
k ¼ Al

min þ random 0; 1ð Þ � Al
max � Al

min

� �
ð14Þ

Al
k represents the kth variable of food source k and k = 1,

2…N where N represents the maximum size of the food

sources, where N = 1, 2…dim, and ‘dim’ represents the

dimension based on the number of parameters of the

underlying optimization problem.random 0; 1ð Þ is the ran-

dom number generated between 0 to 1. Al
max represents the

maximum bound of the lth variable of the optimization

problem and Al
min gives the minimum bound of the lth

variable of an optimization problem. The estimated tight

bound of Algorithm (3) is h(n2) where n will be the number

of food sources. The algorithm for the initial generation of

food sources is given in Algorithm (3).

Algorithm 3: Initialization of HAW

3.2.2 Proposed mutative exploration phase

The mutative exploration phase detects multiple food

sources based on its quality. Better food sources are

selected from the total population. Further, they are divided

into three subpopulations based on the fitness difference

between each food source and the best food source in the

population with the help of three different threshold values

such as limit1, limit2 and limit3. The three different sub-

populations of food sources are subjected to different

mutations where higher-fitness food sources are mutated

less and low-fitness food sources are mutated high. Thus,

the amount of mutation is inversely proportional to the

fitness value of food sources. Better food sources with high

fitness values are grouped as Ak1 food sources whose fitness

is close to the fitness of the best food source of the total

population. The Ak1 food sources are best; hence, a local

search process is facilitated around the best food sources,

which are mutated using Gaussian mutations where

Eq. (15) is utilized to make small random changes to Ak1

food sources.

A
0

k1 ¼ Ak1 þ lg:G 0; 1ð Þ ð15Þ

A
0
k1is the mutated food source, which is generated after

the Gaussian mutation; lg is the mutation rate indicating

the strength of Gaussian noise added; Ak1 is the original

food source; and G 0; 1ð Þ is the random number of Gaussian

distribution whose mean is zero and variance is one.

Intermediate food sources with intermediate fitness

values are grouped as Ak1 food sources whose fitness shares

an intermediate fitness difference from the best food source

of the total population. The Ak2 food sources are interme-

diate; hence, a uniform search process is facilitated around

the intermediate food sources and is mutated using uniform

mutations where Eq. (16) is utilized to generated uniformly

mutated food sources of the Ak2 represented as A
0
k2 in which

a random value is chosen from a solution and replaced with

a uniform random value between the user-defined upper

(Ub) and lower (Lb) limits.

A
0

k2 ¼ Ak2 ð16Þ

The worst food sources with low fitness values are

grouped as Ak3 food sources whose fitness values are at a

larger difference from the fitness of the best food source in

the population. The Ak3 food sources are worse than Ak1

and Ak2. Hence, a global search is facilitated around the

worst food sources, in which Ak3 food sources are mutated

using Levy mutations (LM) using Eq. (17) that are more

probable to escape from the local optimum.

A
0

h3 ¼ Ah3 þ lc:C 0; 1ð Þ ð17Þ

A
0
h3 is the mutated food source generated after Cauchy

mutation and lc is the Cauchy mutation rate that indicates

the strength of the mutation. The mutated food sources

along with the replaced worst food sources Ax forms the

new set of food source Anew eligible for exploitation. The

estimated tight bound of Algorithm 4 is h(n2) where n are

the number of food sources mutated in explorative phase.

The mutative exploration phase is described by algorithm

(4).
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Algorithm 4: Mutative exploration phase

3.2.3 Proposed employee bee attacking phase

The food sources generated from the mutative exploration

phase along with the replaced randomly generated food

sources form the initial food source positions of the

exploitation phase. Each food source is assigned with an

employee bee where a bee searches a better food source

around the current food source following the same way a

whale search for the prey. An employee bee follows a

circular path during searching for a neighborhood food

source where the best food source found so far is consid-

ered as the center of the circle. This exploitative mecha-

nism makes the search process to be always guided by the

best optimal locations. The step size b of the search process

is kept high at the initial stages of the iteration on the

circular path to facilitate the process of exploration,

whereas in the later iterations the step size is gradually

decreased to facilitate the process of exploitation. This

dynamic step size b of the search process makes the

employee bees to search the entire problem space such that

the bees can reach remote locations that were not reached

in the exploration phase. The problem of oscillations and

local optima can be eliminated with the dynamic step size

in the circular path. A random number ran is generated

using uniform distribution and checked against the control

variables C1 and C2. Then, if a randomly generated number

ran is less than C1 then the food source position is found

using Eq. (18).

Nl
k ¼ Al

k þ b � Al
k � Al

d

� �
ð18Þ

where b = random (- 1,1) is the step size that is

dynamically varied across the iterations. Nl
k is the new food

source. Al
k is the current food source, Al

d is the randomly

selected food source.

Then if the randomly produced number is less than C2

and a probability check is done using Pi where if Pi\0:5

then new neighborhood position is found searching around

a circular path keeping the best food source found so far A�
k

as the center of the circle using Eq. (19).

Nl
k ¼ A~

�
k �M~ � Y ð19Þ

M represents the coefficient vectors obtained using

Eq. (6 &8). Y is the distance between the current food

source and the center of the circle (best food source) rep-

resented in Eq. (20).

Y ¼ A�
k � Al

k

�� �� ð20Þ

Another probability check, if Pi � 0:5 then new neigh-

borhood position is found searching around a circular path

keeping the best food source A�
k found so far as the center

of the circle using Eq. (21)

Nl
k ¼ Y � eaw � cos 2plð Þ þ A�

k ð21Þ

a is a constant that represents the shape of the loga-

rithmic spiral. w is the random number generated between

[- 1,1].

If fitness of Nl
k (neighborhood food source) is lesser than

fitness Al
k (current food source), the employee bee attacking

phase accepts Nl
k by accepting downhill movements to

make the search process to escape from its local optimum

in the fitness landscape. The acceptance of the worst food

sources is based on the probability value e
�DE
t where DE

represents the difference between the current temperature

and the next randomly generated temperature. This is done

using a simulated annealing-based selection mechanism

where better and worst solutions are accepted in the

employee bee attacking phase. Acceptance or rejection of

worst solutions is based on the controlling parameter called

the simulated annealing temperature where the probability

of accepting the worst solutions decreases as the iteration

proceeds where the temperature gets decreased. At the

initial stages, the simulated annealing temperature ‘t’ is set

to have a high value where the value �DE
t tends toward 0

making the probability value e
�DE
t toward 1 allowing the

acceptance of the worst solutions. As the iteration grows,

the value �DE
T tends toward 1 making the probability value
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e
�DE
t toward 0 allowing the acceptance of better solutions.

This makes the HAW algorithm to allow both the uphill

and downhill movements in the fitness landscape making

the algorithm to eliminate the problem of striking at local

optimum locations. When the iterations grow, the simu-

lated annealing temperature ‘T’ is cooled down using

Eq. (22).

T t þ 1ð Þ ¼ ; � T tð Þ ð22Þ

whereT t þ 1ð Þ is the new temperature and T tð Þ is the

temperature of the previous iteration. ‘;’ is the simulated

annealing constant which is set close to 1. The estimated

tight bound of Algorithm 5 is h(n2) where n will be the

number of the employee bees assigned to the food sources.

The employee bee attacking phase is described by algo-

rithm (5).

Algorithm 5: Proposed employee bee attacking phase

3.2.4 Onlooker bee phase

The information about the newly generated food sources

Nl
k is shared with onlooker bees. Further, onlooker bees

produce probability value Zk for a food source, and it

receives from the employee bee attacking phase using

Eq. (3). The estimated tight bound of Algorithm 6 is h(n)
where n is the number of food sources shared by employee

bees.

Algorithm 6: Onlooker bee phase

3.2.5 Scout bee phase

The abandoned food sources are replaced and new food

sources are introduced by the scout bees. In each iteration,

if the food source isn’t improved then the limit value

associated with the food source is incremented and if the

food source doesn’t improve for certain iterations and

crosses the threshold limit value, then those food sources

are replaced by the scout bees by random generation pro-

cess using Eq. (1). The estimated tight bound of Algorithm

7 is h(n) where n is the number of unimproved solutions.

The detailed description of the scout bee phase is given in

Algorithm (7).

Algorithm 7: Scout bee phase
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4 Performance evaluation of the proposed
HAW optimization

The HAW algorithm is used to generate the optimal feature

subsets, initial weights and hidden node size of an ANN

which is trained using three different learning mechanisms

based on backpropagation such as resilient backpropaga-

tion (RP), Levenberg–Marquardet backpropagation (LM)

and momentum-based gradient decent backpropagation

(GD). The HAW performance is analyzed to find out the

backpropagation variant that achieves the least ANN error

with low complexity using WBCD. Further, the best

backpropagation variant that is selected is used for training

the ANN when tested for the rest of the datasets. The

HAW-optimized ANN is analyzed for ten independent runs

using various generation sizes, and the mean accuracy,

mean connections and mean computational time are

calculated.

4.1 Parameter settings and experimental setup
using WBCD

The implementation of backpropagation is done using

default training parameters. The winner takes all approach

in output nodes is used for classification. The parameter

settings of the ANN classifier are shown in Table 2. HAW

utilized the cancer1 dataset [88] which contains prepro-

cessed WBCD samples. The values between 0 and 1 are

rescaled and attribute values that are missing are filled

using mean values of non-missing attributes. The training

dataset is formed using the first 349 samples which are

50% of the total dataset, the second 175 samples that lead

to 25% of the total dataset are used as the validation dataset

and the last 175 samples that are the remaining 25% are

used as the testing dataset.

The HAW parameter settings are shown in Table 3. The

values of thresholds limit1 and limit2 are set using trial-

and-error method. The count limit is set as 10 to enhance

global exploration. The employee bees size and the

onlooker bees size are set according to the size of the

solution space. The mutation rates of the Gaussian, uniform

and Cauchy rates were set using the trial-and-error method

to enhance the local, uniform and global search process.

The updating probability and the attacking probability

using trial-and-error method for different generation sizes

and they are set accordingly to avoid convergence at local

optimal locations.

4.2 Evaluation of Proposed HAW using WBCD
with respect to accuracy, complexity
and computational time

The HAW is evaluated for the complexity in terms of the

number of connections and accuracy using ten runs for

generation sizes 10, 20 and 30 as given in Table 4. HAW-

RP achieved the highest mean accuracy of 99.25% at the

20th generation size. The mean connections were 10.40 for

HAW-RP, which is low when compared to HAW-LM and

HAW-GD. HAW gained the less complexity ANN trained

with RP. The validation error convergence of the optimized

ANN for RP, LM and GD for various generations is

depicted in Fig. 4.

Followed by HAW-RP, HAW-GD is 98.57% accurate,

with average connections of 14.21 in the 30th generation.

Next to HAW-GD, HAW-LM achieved high accuracy of

98.22% in the 30th generation with average connections of

15.46. The classification accuracy of the optimized ANN

for RP, LM and GD for various generations is depicted in

Table 2 Parameter settings of ANN using WBCD dataset

Parameter Value

Training Backpropagation

Input node size 9

Output node size 2

Initial weights (number of bits) 15

Hidden node size (number of bits) 2

Input features (number of bits) Vary based on the feature size

Activation function (hidden node) Hyperbolic tangent

Activation function (output node) Pure linear

Training set (no. of samples) 349 (50%)

Validation set (no. of samples) 175 (25%)

Testing set (no, of samples) 175 (25%)

Table 3 Parameter settings of HAW using WBCD dataset

Parameter Value

Employee bees (size) 30

Onlooker bees (size) 30

Scout bees (size) 1

Total colony (size) 60

Count limit ðCountmaxÞ 10

Better food source selection ðAkÞ 80%

Worst food source selection ðAx) 20%

Control threshold (limit1Þ 0.0001

Control threshold (limit2Þ 0.5

Mutation rate ðlgÞ 0.4

Mutation rate ðlcÞ 0.6

Updating probability by the bees in the spiral 0.5

Attacking probability 0.5
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Fig. 5. The accuracy of HAW-RP was 1.05% more than

HAW-LM and 0.69% more than HAW-GD.

The confusion matrix based on the true positive, true

negative, false positive and false negative of HAW-RP,

HAW-LM and HAW-GD for the best network achieved is

shown in Table 5. Figure 6 gives the complexity of the

ANN achieved in terms of the number of connections for

various generation sizes. HAW-RP achieved lower com-

plexity with lesser connections, followed by HAW-GD and

HAW-LM. The mean hidden node count of HAW-RP was

22.5% less than HAW-LM and 20.78% less than HAW-

GD. HAW-RP produced ANN complexity of having

28.08% fewer connections than HAW-LM and 26.81%

fewer connections than HAW-GD.

The performance metrics of the optimized ANN gen-

erated using HAW-RP, HAW-LM and HAW-GD are

shown in Table 6. HAW-RP showed higher sensitivity and

specificity, followed by HAW-GD and HAW-LM. Figure 7

shows the hidden node count for HAW-RP, HAW-LM and

HAW-GD over generation sizes.

Table 7 gives the importance of FS on the performance

of the HAW-optimized ANN in terms of classification.

Table 7 shows that HAW-optimized ANN with FS

improved prediction accuracy with less complexity when

compared with the performance without the FS.

Table 8 shows the confusion matrix for best network

achieved using HAW-RP, with selected features such as

uniformity of cell size, single epithelial cell size and bare

nuclei.

The evaluation of HAW-optimized ANN with respect to

computational time is given in Table 9. The mean com-

putational time for 10 runs was estimated for various sizes

of 10, 20 and 30. The computational time of ANN opti-

mized using HAW-LM was low in comparison with the

computational time of HAW-RP and HAW-GD.

Figure 8 compares HAW with PSO, DE, ABC, BA,

ACO, BFO, DA, GA, AIS, MBO, WOA and SSA using the

WBCD. HAW attained highest accuracy, which was

9.67%, 7.53%, 10.89%, 12.27%, 12.78%, 8%, 10.03%,

0.97%, 8.83%, 9.91%, 5.03% and 3.39%, respectively,

higher than when compared to above-mentioned algo-

rithms. This time complexity of the proposed ANN archi-

tecture is calculated to be O(n * t * (ij ? jk)) where n is

the number of epochs, t is the number of training examples

and i, j and k are the number of nodes in the first, second

and third layers of ANN architecture.

Figure 9 compares HAW and existing hybrid algorithms

that are ABC-based using WBCD, which includes ABC-

ACO [31], ABC-DE [32], ABC-DA [97] and ABC-gradi-

ent decision tree [34]. The accuracy of HAW was 0.07%,

1.58%, 2.36% and 2.02%, respectively, higher when

compared to the above-mentioned algorithms.
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Table 10 gives a comparison of the HAW-optimized

classifier with existing breast cancer diagnosis schemes

using WBCD datasets. Table 10 shows that optimized

ANN classifier using HAW outperformed existing breast

cancer diagnosis schemes.

4.3 Performance evaluation of HAW using
different breast cancer datasets

The HAW-RP yielded the best ANNs with high accuracy

and low complexity. Hence, HAW-RP was tested for the

rest of the breast cancer datasets taken for investigation.

Table 11 shows the performance of the. Table 11 shows the

performance of the HAW-RP-optimized ANN for different

Fig. 4 Convergence of validation error for HAW

Fig. 5 Performance of HAW with respect to classification accuracy
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breast cancer datasets. The average classification accuracy,

F-measure, number of connections and computational time

have been calculated using ten different independent runs

for different generation sizes, and the best of the average

values has been recorded. The HAW algorithm-optimized

ANN model; namely, HAW-RP has shown better perfor-

mance with a smaller number of connections in comparison

with standard ABC and WOA for the datasets taken for

investigation.

Figures 9 and 10 show the graphical representation of

the performance of the standard ABC and WOA-optimized

ANN model and the HAW-optimized ANN model for

various breast cancer datasets taken for investigation with

respect to classification accuracy and an average number of

connections. The HAW-optimized ANN model has shown

higher accuracy and low complexity in comparison with

the standard ABC and WOA-optimized ANN model.

Table 12 shows the confusion matrix with a frequently

selected feature set for the various datasets used for

Table 5 Confusion Matrix of

the HAW-optimized ANN

across ten runs

Methods of comparison Number of actual cases Test outcome-predicted

Malignant Benign

HAW-RP 650 (malignant) 647 (TP) 10 (FN)

1100 (benign) 3 (FP) 1090 (TN)

HAW-LM 650 (malignant) 640 (TP) 21 (FN)

1100 (benign) 10 (FP) 1079 (TN)

HAW-GD 650 (malignant) 642 (TP) 17 (FN)

1100 (benign) 8 (FP) 1083 (TN)

Fig. 6 Performance of HAW with respect to the number of connections

Table 6 Performance of HAW-optimized ANN based on different

metrics

Metrics Proposed

HAW-RP

Proposed

HAW-LM

Proposed

HAW-GD

Sensitivity (%) 98.47 96.82 97.42

Specificity (%) 99.72 99.08 99.26

Accuracy (%) 99.25 98.22 98.57

Precision (%) 99.53 98.46 98.76

Negative predictive value

(NPV) (%)

99.09 98.09 98.45

F-measure 0.99 0.97 0.98
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investigation of HAW-RP-based ANN after the execution

of ten independent runs.

Table 13 shows the performance comparison of the

HAW-optimized ANN model in terms of average classifi-

cation accuracy for ten independent runs with various

classifiers for different datasets. The HAW-ANN model

has shown higher accuracy compared with existing clas-

sifiers for all the datasets taken for investigation.

4.4 Comparison with existing approaches using
WDBC and WPBC

Figure 10 compares HAW with PSO, DE, ABC, BA, ACO,

BFO, DA, GA, AIS, MBO, WOA and SSA using the

WDBC. Each algorithm is executed for 10 runs various

generation sizes 10, 20 and 30 and the best is taken for

comparison. HAW-based ANN attained highest accuracy,

which was 7.65, 6.83, 12.96, 17.12, 8.84, 5.69, 9.2, 7.42,

Fig. 7 Evolution of hidden node count with FS for HAW across different generations

Table 7 Performance of HAW-RP based on FS

Max

generation

size

Feature

selection (FS)

Average

hidden

node count

Quartiles

Q1

Q3

Average

number of

selected

features

Quartiles

Q1

Q3

Average

number of connections

Quartiles

Q1

Q3

Average

accuracy

(%)

Quartiles

Q1

Q3

10 With FS 1.4 0.9

1.1

5.8 4.5

5.2

12.56 10.75

10.95

97.55 97.05

98.22

Without FS 2.5 1.9

2.2

9 8.2

8.9

27.5 23.87

26.54

88.34 84.13

86.23

20 With FS 1.2 0.8

0.9

5 4.4

5.2

10.40 9.75

9.89

99.25 97.05

98.22

Without FS 2.2 1.3

2.0

9 7.9

8.7

26.6 25.02

26.17

90.42 88.97

89.59

30 With FS 1.3 0.7

1.0

5.1 4.2

4.9

12.23 10.75

10.95

98.48 97.05

98.22

Without FS 2.2 1.5

1.7

9 8.2

8.7

24.8 22.31

24.09

89.05 87.55

88.07
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12.96, 11.3, 7.65 and 5.35%, respectively, higher than

when compared to above-mentioned algorithms.

Table 14 gives a comparison of the HAW-optimized

classifier with existing breast cancer diagnosis schemes

using WDBC and WPBC datasets. Table (6.10) shows that

the proposed optimized ANN classifier using HAW out-

performed existing breast cancer diagnosis schemes.

Figure 10 compares HAW with PSO, DE, ABC, BA,

ACO, BFO, DA, GA, AIS, MBO, WOA and SSA using the

WPBC. Each algorithm is executed for 10 runs various

generation sizes 10, 20 and 30 and the best is taken for

Table 8 Confusion Matrix of HAW-RP-optimized best ANN with features selected

FS Actual cases Predicted cases Selected feature set

Benign Malignant

With FS Benign 110 110 1 Uniformity of cell size, single epithelial cell size, bare nuclei

Malignant 65 0 64

Without

FS

Benign 110 102 7 Clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, single

epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, mitosesMalignant 65 8 58

Table 9 Performance-based on average computational time

Maximum generation size Average CPU time(s)

Proposed

HAW-RP

Proposed

HAW-LM

Proposed

HAW-GD

10 427.5 301.5 502.8

20 820.2 789.6 845.9

s30 1105.9 1036.5 1254.1

Fig. 8 Comparison between evolutionary methods using WBCD dataset
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comparison. HAW-based ANN attained highest accuracy,

which was 7.6%, 6.06%, 11.33%, 13.03%, 6.41%, 9.31%,

10.44%, 5.02%, 10.44%, 7.6%, 2.99% and 2.67%,

respectively, higher when compared to the above-

mentioned.

4.5 Comparison with existing approaches using
DDSM, MIAS and INbreast databases

Figure 11 shows the comparison of HAW with evolution-

ary algorithms such as PSO, DE, ABC, BA, ACO, BFO,

DA, GA, AIS, MBO, WOA and SSA. Each algorithm is

executed for 10 runs various generation sizes 10, 20 and 30

and the best is taken for comparison. Using DDSM data-

base, HAW-based ANN achieved accuracy which is

7.98%, 7.16%, 13.3%, 17.48.1%, 9.17%, 6.01%, 9.53%,

7.74%, 13.3%, 11.64%, 6.81% and 6.35% more than

above-mentioned algorithms, respectively. Using MIAS

database, HAW-based ANN achieved highest accuracy

which is 10.53%, 10.28%, 10.4%, 8.2%, 8.22%, 12.67%,

10.28%,7.17%, 9.42%, 10.28%, 8.22% and 7.87% more

than above-mentioned algorithms, respectively. Using

INbreast database, HAW-based ANN achieved highest

accuracy which is 7.6%, 9.14%, 14.83%, 9.26%, 5.99%,

11.47%, 8.66%, 5.99%, 8.07%, 12.36%, 10.97% and

10.11% more than above-mentioned algorithms,

respectively.

Fig. 9 Comparison of ABC-based hybrid algorithms using WBCD

datasets

Table 10 Comparison with

existing breast cancer diagnosis

schemes

WBCD dataset

First author, year Method Accuracy (%)

Quinlan,1996 [44] C4.5 classifier 94.74

Hamilton, 1996 [45] RAIC classifier 95.00

Nauck,1999 [46] NEFCLASS 95.06

Pena-Reyes,1999 [47] FUZZY-GA classifier 97.36

Setino, 2000 [48] Neuro-rule classifier 98.10

Albrecht, 2002 [49] LSA classifier Machine 98.80

Fogel, 1995 [50] ENN classifier 98.05

Abonyi, 2003 [51] SFC classifier 95.57

Polat, 2007 [52] LS-SVM classifier 98.54

Gujaro-Berdinas, 2007 [53] LIS classifier 96.00

Karabatak, 2009 [7] AR ? ANN classifier 97.40

Monirul, 2010 [62] CAFS ? ANN classifier 98.76

Stoean, 2013 [54] SVM ? EA classifier 97.07

Fadzil Ahmad, 2014 [55] GANN-ANN classifier 98.29

Shunmugapriya, 2017 [31] ABC-ACO-J48 classifier 99.04

Rao, 2018 [34] ABC ? GD classifier 92.8

Ghanem, 2018 [97] ABC-DA ? ANN classifier 98.29

Karthik, 2018 [56] DNN classifier 98.62

Dalwinder, 2019 [94] Ant lion ? ANN 97.85

Derangula, 2021 [95] PSO ? firefly ? naive Bayes 98.00

Nayak, 2020 [96] EHO ? NN 98.37

Proposed work HAW-ANN classifier 99.25
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Table 15 gives a comparison of the HAW-optimized

classifier with existing breast cancer diagnosis schemes

using DDSM, MIAS and INbreast datasets. Table 16 shows

that optimized ANN classifier using HAW outperformed

existing breast cancer diagnosis schemes.

4.6 Comparison with existing approaches
that doesn’t involve complex tuning process
for breast cancer diagnosis

Table 16 gives a comparison of the HAW-ANN

scheme with existing breast cancer diagnosis schemes that

involves either FS or parameter tuning process. Table 17

shows that having both FS and parameter optimization of

ANN in parallel is vital and the HAW-ANN outperformed

existing breast cancer diagnosis schemes that has used

either FS or the parameter tuning of the classifier involved.

5 Discussions

The advantage of proposed HAW lies in deriving an

optimal ANN by the optimal searching of hidden node size,

the initial value of weights and input features using a

simple wrapper approach. ANN uncertainty arises due to

the improper selection of the best set of parameters of the

Table 11 Performance of HAW-RP-optimized ANN for different datasets

Datasets Average classification accuracy

(%)

Average F-measures Average number of

connections

Average computational time

(secs)

ABC WOA HAW-RP ABC WOA HAW-RP ABC WOA HAW-RP ABC WOA HAW-RP

WBCD 89.5 94.5 99.2 0.8812 0.9327 0.990 25.21 28.11 10.40 640.6 700.5 820.2

WDBC 87.5 91.5 98.5 0.8648 0.9005 0.975 24.67 22.17 19.82 590.3 600.2 750.2

WPBC 86.5 93.5 96.3 0.8532 0.9206 0.953 24.89 23.19 18.52 300.1 350.7 425.5

DDSM 87.2 92.5 98.8 0.8641 0.9187 0.981 36.23 37.87 16.8 535.6 600.2 700.6

MIAS 89.4 91.2 98.7 0.8894 0.9072 0.978 33.78 35.78 25.34 450.2 500.9 656.8

INbreast 86.3 89.3 99.1 0.8570 0.8831 0.986 30.82 31.12 25.12 400.1 455.7 600.4

Fig. 10 Comparison with other evolutionary methods using WDBC and WPBC dataset
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model. These uncertainties also occur due to inherent

variability present in the input of ANN. If the inputs and

the other parameters of the model are uncertain, it causes

uncertain and inaccurate output of the model. This problem

of uncertainty in the ANN architecture used in this paper

has been eliminated by choosing the best parameters of the

model using proposed HAW algorithm. The algorithm has

also selected the optimal input features from different

datasets that acts as the input of the ANN used. Uncertainty

in the input data has also been overcome by appropriate

data division and data processing methods such as nor-

malization and data filling procedures. However, detailed

uncertainty analysis can be taken as the future work for this

research.

The main objective of this research work is to propose a

hybrid optimization algorithm to select the optimal feature

set to be processed by the neural network in order to have a

reduced computational time and complexity without sac-

rificing its performance. The optimal feature sets obtained

were only 25% of the original set of features, and hence,

this research work has the feed forward neural network

considering the amount of processing data and to avoid the

problem of over fitting of the data. The proposed ANN

architecture has not been tested for high-dimensional

datasets. This could be done as the future work where deep

learning models or other decision-making models can be

used when the set of features processed by the model is

high. For the datasets taken for evaluation, the proposed

Table 12 Confusion matrix after ten runs for various datasets

HAW-RP

WDBC dataset Test outcome-predicted Frequently selected features

Malignant (actual—420) Benign (actual—1000) Texture, radius, compactness concavity, fractal dimension

415 (TP) 16 (FN)

5 (FP) 984 (TN)

WPBC dataset Test outcome-Predicted Radius, texture, area, concavity, symmetry,

fractal dimensionRecurrent (actual—190) Nonrecurrent (actual—300)

183 (TP) 11 (FN)

7 (FP) 289 (TN)

DDSM dataset Test outcome-predicted Skewness, kurtosis, correlation, contrast, area,

major axis length, skeletonMalignant (actual—400) Benign (actual—900)

392(TP) 7 (FN)

8 (FP) 893 (TN)

MIAS dataset Test outcome-predicted Solidity, perimeter, extent, skewness, entropy,

mean, variance, eccentricityMalignant (actual—250) Benign (actual—600)

247 (TP) 8 (FN)

3 (FP) 592 (TN)

INbreast dataset Test outcome-predicted Skewness, kurtosis, correlation, area, major axis

length, convex area, eccentricityMalignant (actual—290) Benign (actual—400)

287 (TP) 3 (FN)

3 (FP) 397 (TN)

Table 13 Average classification

accuracy for various classifiers
Datasets Average classification accuracy (%)

SVM Naive Bayes Random forest MLP HAW-ANN

WBCD 92.3 83.4 85.9 88.6 99.2

WDBC 89.7 88.4 82.4 87.5 98.5

WPBC 84.5 89.1 84.9 88.1 96.3

DDSM 92.2 80.9 82.5 92.2 98.8

MIAS 88.4 80.3 77.9 86.2 98.7

INbreast 88.3 82.6 88.2 91.1 99.1
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ANN architecture considered in this paper has achieved

accurate results.

6 Conclusions

This paper proposed a hybrid algorithm by integrating the

standard ABC with WOA for simultaneous feature subset

selection and parameter optimization of ANN for breast

cancer diagnosis. Performance evaluation of HAW using

backpropagation variants such as RP, LM and GD is done

for different breast cancer datasets. Based on the results

achieved, RP achieved the best prediction accuracy with a

low-complexity ANN. HAW-RP achieved the highest

mean accuracy of 99.25%. The mean connections were

10.40 for HAW-RP, which is low when compared to

HAW-LM and HAW-GD for WBCD dataset. For WDBC,

WPBC, DDSM, MIAS and INbreast databases, HAW-

optimized architecture achieved 98.5, 96.3, 98.8, 98.7 and

99.1, respectively. From the results of this study, it is

concluded that having both FS and parameter optimization

of ANN is vital. In comparison with existing researches,

the average accuracy attained by HAW is promising. In

comparison with existing evolutionary algorithms, the

HAW algorithm was more accurate and less complex.

Further, the limitations of the HAW-ANN classifier are

based on the ‘no free lunch theorem’ which states that

classifier trained on a particular feature set may not be used

for other feature sets. Based on this, the HAW-optimized

classifier that is trained on the breast cancer datasets has

not been yet tested for other medical datasets and other

high-dimensional datasets. The proposed wrapper approach

of HAW-ANN scheme is complex and requires more

computational time than the existing breast cancer

scheme since it involves FS and parameter tuning process

parallel.

Table 14 Comparison with

existing breast cancer schemes

for WDBC and WPBC dataset

WDBC dataset

First author, year Method Accuracy (%)

Bamakan, 2014 [57] CFS-SVM classifier

SVM-Filtered classifier

Logistic regression-CFS classifier

Logistic regression-filtered classifier

87.84

87.84

95.95

96.62

Xue, 2012 [58] BPSO classifier 92.98

Xue, 2014 [59] PSO classifier 93.98

Maldonado, 2011 [60] KP-SVM classifier

REF-SVM classifier

97 ± 0.9

95.25 ± 1.0

Miao, 2011 [61] Training self-classifier

Training random classifier

85.12

83.54

Luukka, 2006 [62] LDA classifier

C4.5 classifier

DIMLP classifier

SIM classifier

97.19

94.06

96.92

98.2

Razieh, 2015 [63] PSO-KDE classifier 98

Djellali, 2018 [39] ABC-GA classifier 91.67

Dalwinder, 2019 [94] Ant lion ? ANN 98.37%

Proposed Work HAW-ANN classifier 98.5

WDBC dataset

First author, year Method Accuracy (%)

Belciug, 2012 [64] MLP-GA hybrid classifier

MLP-BP classifier

PNN classifier

PCNN classifier

81.11

60.21

74.43

72.10

Salama, 2012 [65] SMO classifier

J48 classifier

76.28

76.28

Sridevi, 2014 [66] Correlation ? Rough Set classifier 85

Proposed work HAW-ANN classifier 96.3
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In the future, the proposed hybrid algorithm HAW can

be used for segmentation of the breast regions and other

abnormal regions such as masses and microcalcifications

from the digital mammograms eliminating the background

portions. This can be done by using HAW to generate

optimal thresholds that can be used by various

Fig. 11 Comparison with other evolutionary methods using DDSM, MIAS and INbreast

Table 15 Comparison with

existing breast cancer diagnosis

schemes for DDSM, MIAS and

INbreast datasets

First author, year Method Database Accuracy (%)

Wang, 2014 [67] SVM classifier DDSM 92.74

Liu, 2014 [68] SVM classifier DDSM 93.00

Saki, 2013 [69] OWBPE classifier MIAS 89.28

Buciu, 2011 [70] PSVM classifier MIAS 96.43

Tahmasbi, 2011 [71] ANN-MLP classifier MIAS 96.43

Tahmasbi, 2010 [72] ANN-MLP classier MIAS 92.80

Zhang, 2012 [73] SVM classifier DDSM 72.00

Verma, 2010 [74] SCNN classifier DDSM 94.28

Verma, 2009 [75] SCBDL classifier DDSM 97.50

Rojas, 2009 [76] Bayesian classifier DDSM, MIAS 81

Dheeba, 2012 [77] PSO-ANN classifier MIAS 97.61

Dheeba, 2012 [78] DE-WNN classifier MIAS 97.84

Rahimeh, 2015 [79] GA-CNN classifier MIAS, DDSM 88.15, 94.99

Andrik, 2017 [80] CED classifier INbreast 98.9 ± 0.4

Ribl, 2018 [81] DNN classifier INbreast 95

Proposed work HAW-ANN classifier DDSM

MIAS

INbreast

98.8

98.7

99.1
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segmentation methods such as region growing and multi-

level thresholding. HAW can also be used for segmentation

of various abnormalities that occur in the different parts of

the body such as the brain, liver and kidney. In future,

HAW can also be used to select the optimal input feature

subsets for various existing classifiers under different

medical datasets for various disease diagnoses and it can be

used to find out optimal parameters for different ANN

architectures such as the CNN, RNN and deep belief neural

networks. In future, the HAW can also be used in optimal

parameter tuning for different classifiers such as the SVM,

RF, decision tree and optimal selection of fuzzy rules.
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