
ORIGINAL ARTICLE

Enhanced Harris hawks optimization with genetic operators
for selection chemical descriptors and compounds activities

Essam H. Houssein1 • Nabil Neggaz2 • Mosa E. Hosney3 • Waleed M. Mohamed1 • M. Hassaballah4

Received: 23 November 2019 / Accepted: 31 March 2021 / Published online: 20 April 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
This paper presents modified versions of a recent swarm intelligence algorithm called Harris hawks optimization (HHO)

via incorporating genetic operators (crossover and mutation CM) boosted by two strategies of (opposition-based learning

and random opposition-based learning) to provide perfect balance between intensification and diversification and to explore

efficiently the search space in order to jump out local optima. Three modified versions of HHO termed as HHOCM,

OBLHHOCM and ROBLHHOCM enhance the exploitation ability of solutions and improve the diversity of the popu-

lation. The core exploratory and exploitative processes of the modified versions are adapted for selecting the most

important molecular descriptors ensuring high classification accuracy. The Wilcoxon rank sum test is conducted to assess

the performance of the HHOCM and ROBLHHOCM algorithms. Two common datasets of chemical information are used

in the evaluation process of HHOCM variants, namely Monoamine Oxidase and QSAR Biodegradation datasets. Exper-

imental results revealed that the three modified algorithms provide competitive and superior performance in terms of

finding optimal subset of molecular descriptors and maximizing classification accuracy compared to several well-estab-

lished swarm intelligence algorithms including the original HHO, grey wolf optimizer, salp swarm algorithm, dragonfly

algorithm, ant lion optimizer, grasshopper optimization algorithm and whale optimization algorithm.

Keywords Cheminformatics � Genetic operators � Harris hawks optimization � Feature selection � QSAR �
Swarm intelligence

1 Introduction

Cheminformatics has many strategies that can be used in

drug design and discovery. A lot of efforts with large

numbers of chemical compounds are being used to evaluate

specific molecular properties [1]. The prediction process of

molecular properties is close to drug virtual screening of a

chemical library. Commonly, the drug is an organic

molecule that inhibits the function of proteins as

bimolecular interactions [2]. Drug design is often referred

to as a rational design and inventive process of finding new

drugs based on biological target knowledge [3]. Drug

design and discovery consist of lead structures optimiza-

tion, quantitative structure–activity relationships (QSAR)

[4] and docking of ligand into a receptor [5]. Recently,

machine learning (ML) techniques are applied in

chemoinformatics filed to predict the chemical descriptor

selection, compound activities, molecular properties [6]

and for drugs design and discovery [7]. The storage space
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size increases exponentially with respect to the number of

features available in the data set.

Feature selection (FS) is used in many critical fields

such as classification, data mining and object recognition,

where it is useful in eliminating obsolete and redundant

features from datasets [8, 9]. It represents a real challenge

and computational processing, especially when working

with datasets of high dimensions in classification problems

[10, 11]. The aim of FS is to minimize the number of

features which increasing the search space and allowing

ML techniques to use only the most significant features that

affecting the classification accuracy [12]. Swarm intelli-

gence (SI) algorithms are the most common methods used

to solve FS-based problems [13]. The SI algorithms reflect

computational intelligence methods made up of artificial

agent population and inspired by social behavior of animals

from the real world [14].

Heidari et al. [15] have proposed the HHO algorithm

that mimics the Harris hawks cooperative hunting behav-

ior. The original HHO maintains some important limita-

tions, such as: (1) the exploration and exploitation are

smooth but unbalanced and hence the global search and

local search process becomes difficult to manipulate, (2) it

has premature convergence when the problems are highly

multi-modal and (3) the exploitation strategy in HHO is

insufficient and the search agents may find local solutions.

In this study, to overcome the limitations of HHO, a

wrapper feature selection method termed HHOCM, which

hybridizes HHO with crossover and mutation for chemical

descriptors selection and chemical activities. The role of

mutation and crossover is to generate new offspring that

helps to find solutions simulating the nature laws of origin

and adaptation to the environment.

Experimental results revealed that the three versions of

proposed HHOCM algorithms are efficient alternatives for

solving the FS problems. Several comparisons are per-

formed considering seven well-established SI algorithms,

namely the grey wolf optimizer (GWO) [16], original HHO

[15], whale optimization algorithm (WOA) [17], salp

swarm algorithm (SSA) [18], ant line optimizer (ALO)

[19], grasshopper optimization algorithm (GOA) [20] and

dragonfly algorithm (DA) [21] using k-nearest neighbors

(k-NN) as a classifier. Further, the Wilcoxon test is used to

evaluate the performance of the proposed algorithms. It is

noted that the ROBHHOCM and HHOCM algorithms

achieve the best results compared with the competitor

algorithms in most statistical and graphical measurements

(e.g., average and standard deviation of fitness, accuracy,

number of selected features, and the convergence curves

and boxplot curves). To sum up, the major contributions of

this work are:

1. Crossover and mutation evolutionary operators are

used to enhance the performance of the HHO

algorithm.

2. Integration of opposition-based learning operator to

HHO.

3. Three versions based on HHO called HHOCM,

OBLHHOCM and ROBLHHOCM algorithms are

proposed to select the chemical descriptors and chem-

ical compound activities.

4. Modeling a wrapper FS paradigm using the three

versions is conducted.

5. A series of experiments are carried out to prove

superiority of these versions in choosing the best

molecular descriptor subset with high classification

accuracy.

The rest of this paper is organized as follows. Section 2

summarizes related works in the literature. Section 3 pre-

sents briefly basics of the HHO algorithm, the k-nearest

neighbor (k-NN) algorithm and genetic operators. Sec-

tion 4 explains the proposed modifications over the HHO

algorithm. Experimental results are reported and discussed

in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related work

Generally, for creating a medical molecule, it is necessary

to use protein bank databases in order to determine crystal

structure of the protein [22]. Computer-aided drug design

(CADD) is an efficient tool for chemical compounds

identification of drug design and discovery [2]. CADD

methods are used to extract the compounds such as Pub-

chem by the pharmacophore modeling tools. These meth-

ods depend on the important concept of docking large

libraries for small molecule [23]. Also, CADD methods are

used to obtain protein and ligand. A good drug depends on

good ligands selected by the PyMOL software [24] to

separate the ligand from protein, and the energy is calcu-

lated by AutoDock software.

In the same context, QSAR is applied to describe the

correlation between structures from a set of molecule and

the response for targets. Thus, it can be considered as an

alternative tool for the CADD methods [25]. In general,

QSAR consists of an active and inactive molecule, which

requires good molecular descriptors representing molecular

features responsible for the relevant molecular activity.

Drug design and discovery is one of the main aspects in

cheminformatics including two phases: encoding phase to

represent the molecular graph (or connection table) to

extract vector of features through calculating the descrip-

tors as three-dimensional information for the molecular

structure and mapping phase to build various models for
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ML techniques in cheminformatics. Mapping between

different feature vectors and property is the major role of

ML techniques in cheminformatics to discover different

functions, which can be done by ML techniques [12].

Several efforts were developed for selecting proper

features in datasets. Considering this fact, three categories

of FS are found in the literature [26]: filter-based [27],

embedded-based [28] and wrapper-based [29]. FS-based SI

includes several algorithms, such as improved salp swarm

algorithm using crossover [30], whale optimization algo-

rithm [31] and binary dragonfly optimization [32]. In [33],

a filter-based FS method is introduced for the QSAR

Biodegradation and other medical benchmarks. It com-

bined relief-f with differential evolution for selecting the

most relevant features. It achieved 85.4% classification

accuracy with keeping only 16 relevant molecular

descriptors from 41 features. Wrapper-based methods have

been attracted more attention due to the involvement of

learning algorithms in the FS process. Thus, selection of

significant features effected by the performance of learning

algorithms (e.g., rate of correct classification accuracy)

[12]. A swarm-based algorithm is introduced in [34] using

wrapper FS for predicting chemical compound activities.

SSA is applied for selecting the best subset of molecular

descriptors of the Monoamine Oxidase (MAO) dataset. It is

important to note that SSA with k-NN classifier obtained

the highest accuracy of 87.35% and kept only 783

molecular descriptors. Houssein et al. [35] proposed two

classification approaches called HHO-SVM and HHO-kNN

for drug design and discovery prediction. In [36], the HHO

is combined with cuckoo search for drug design and dis-

covery in chemoinformatics.

Another branch of multi-objective optimization algo-

rithms-based FS has developed recently for selection of

molecular descriptors in QSAR by introducing the molec-

ular descriptors subsets selection software (MoDeSuS) for

QSAR Biodegradation [37]. Two scenarios are proposed

for selecting relevant molecular descriptors known as

aggregation and Pareto based FS. In the first one, a binary

vector is generated which contains m molecular descrip-

tors, where ones bits indicate that the molecular descriptors

are selected and zeros bits indicate the molecular descrip-

tors are ignored. In addition, the selected subset should be

evaluated using aggregation function that combines the

accuracy with the selection ratio. The second scenario

(Pareto-based methods) employs two algorithms (i.e., non-

dominated sorting genetic algorithm (NSGAII) and

strength Pareto evolutionary algorithm (SPEA2)) to opti-

mize the accuracy and the selection ratio, separately. The

MoDeSuS achieved high performance on the QSAR

Biodegradation dataset with an accuracy rate of 84% and

37% of selection ratio.

In [38], a method based on biclustering is proposed to

reduce the number of molecular descriptors for predicting

Biodegradation of chemical compounds. The task of

Biodegradation is evaluated using three classifiers: random

committee, neural network and random forest. The exper-

imental results have shown that the best classifier was RF,

which achieved 88.81% of accuracy with only 19 molec-

ular descriptors (MD) on the QSAR Biodegradation data-

set. Recently, artificial intelligence knows a remarkable

progress that allows to develop several horizons based on

ML and deep learning for QSAR modeling [39, 40]. Also,

Putra et al. [41] combined artificial neural network and

support vector machine for QSAR modeling and principal

component analysis (PCA) is utilized for reducing the

dimensionality of data. The performance is assessed on the

QSAR Biodegradation dataset and a classification rate of

82% is achieved.

Hierarchical stochastic graphlet embedding (HSGE)

[42] is introduced using different hierarchical configura-

tions for treating molecular graph dataset. The approach

achieved 95.71% of accuracy on the MAO dataset. In the

same context, the work of [43] presented a fusion between

old neuronal architecture (multi-layer perceptron) and

recent architecture based on deep learning called CNN-

MLP for predicting chemical activities. In the CNN-MLP

method, two models DeepBioD? and DeepBioD are pro-

posed for the QSAR Biodegradation dataset based on

domain-specific features engineering and learned repre-

sentations from pattern samples, which achieved 90% and

87.5% of accuracy, respectively. A similar work based on a

pre-trained model called ChemNet was presented in [44]

for the prediction of chemical activities using deep learning

model achieved 86.7% of accuracy on the QSAR

Biodegradation dataset. In [45], diffusion-convolutional

neural network (DCNN) was produced for graph-structured

data using a representation of deep learning architecture

called diffusion CNN. The experiments showed that an

accuracy rate of 75.14% can be achieved on the MAO

dataset.

3 Preliminaries

This section introduces necessary basics of the HHO

algorithm, k-NN and the genetic operators.

3.1 Harris hawks optimization

The HHO [15] as a new SI algorithm is inspired from the

cooperative behaviors of Harris hawks in hunting and

escaping preys. Harris hawks demonstrate a variety of

chasing styles dependent on the dynamic nature of cir-

cumstances and escaping patterns of a prey. In this
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intelligent strategy, several Harris hawks try to coopera-

tively attack from different directions and simultaneously

converge on a detected escaping rabbit outside the cover

showing different hunt strategies. The candidate solutions

are the Harris hawks, and the intended prey is the best

candidate solution (nearly the optimum) in each step. The

three phases of the HHO algorithm can be highlighted as:

exploration phase, transition from exploration to exploita-

tion phase and exploitation phase. The hunting is modeled

as:

xitþ1 ¼
xrand � s1 xrand � 2s2xit

�
�

�
� if s5� 0:5

xRabbit � xtð Þ � s3 lbj þ s4 ubj � lbjð Þj j else

(

t 2 1 � � �T½ �; i 2 1 � � �N½ �;
ð1Þ

where the current location of ith hawk and its new location

in iteration tþ 1 are represented by xit and xitþ1, whereas

xrand and xRabbit are randomly selected hawk location and

the best solution (target:rabbit). Lower and upper bounds of

jth dimension are defined by lbj and ubj, while s1 to s5
represent random numbers which belong to the interval

[0, 1]. The average hawk position xt is defined as:

xt ¼
1

N

XN

i¼1

xtðiÞ: ð2Þ

In Eq. (1), the first scenario (s5 � 0:5) grants a chance to

the hawks to hunt randomly spread in the planned space,

while the second scenario explains context when the

Hawks hunt beside family members close to a target. In the

exploration to exploitation transformation phase, the prey

attempt to escape from the capture, so the escaping energy

En level of the prey decreases gradually. The energy is

defined by

En ¼ 2 � En0 � 1� t

T

� �

; ð3Þ

where the initial energy ðEn0Þ is defined by En0 ¼ 2 �
rand � 1 , randomly changed inside ð�1; 1Þ; and T is the

maximum number of iterations. HHO keep explorative as

long as jEnj � 1 and hawks remain on exploring global

regions, while it swaps into exploitative mode when

jEnj\1. R refers to escaping probability of the target. The

exploitation phase aims to avoid fall into local optima.

The first task-surrounding soft The surrounding soft can

be formulated mathematically when R� 1
2
and the level of

energy is greater than 1
2
(i.e., jEnj � 1

2
) as:

xitþ1 ¼ Dxit � En JxRabbit � xit
�
�

�
�

Dxit ¼ xRabbit � xit; J ¼ 2 1� s6ð Þ;
ð4Þ

where Dxit is the difference between the best agent (i.e., a

rabbit) and the current position of ith hawk. J indicates

random strength jump of the prey, and s6 is a random

number which belongs to the interval [0, 1].

The second task-surrounding hard When the level of

energy is less than 1
2
ðjEnj\ 1

2
Þ & R� 1

2
, the rabbit becomes

exhausted and the possibility of escaping low (or escaping

becomes hard) because the level of energy is decreased.

This behavior can be modeled by

xitþ1 ¼ xRabbit � En Dxit
�
�

�
�: ð5Þ

The third task-surrounding soft beside advanced rapid

dives This task is applicable when the level of energy is

greater than 1
2
ðjEnj[ 1

2
Þ & R\ 1

2
, where the rabbit still has

sufficient force to run away. Hence, the hawk tries pro-

gressive dives in order to take the best position for catching

the prey. This behavior is modeled by integrating the Lévy

flight function [46].

The position of ith hawk should be modified using:

xitþ1 ¼
y if fit yð Þ\fit xit

� �

z if fit zð Þ\fit xit
� �

;

8

><

>:

y ¼ xrabbit � En Jxrabbit � xit
�
�

�
�;

z ¼ yþ rv � Lv Dð Þ;

ð6Þ

where

Lv Dð Þ ¼0:01� rand 1;Dð Þ � r

rand 1;Dð Þj j
1
b

; ð7Þ

r ¼
C 1þ bð Þ � sin pb

2

� �

C 1þb
2

� �

� b� 2
b�1
2ð Þ

0

@

1

A

1
b

; ð8Þ

where D is the dimensionality space, rv contains D com-

ponents generated randomly inside (0,1), Lv represents the

Lévy flight function, b is a constant with default b ¼ 1:5

and fit indicates the fitness function computed by Eq. (16).

The fourth task-surrounding hard beside advanced rapid

dives In this task, it is assumed that R\ 1
2
and the level of

energy is less than 1
2
ðjEnj\ 1

2
Þ, the prey has a lower level of

energy to evade, and Hawks are close to realize a succes-

sive dives for catching. This process can be described by

xitþ1 ¼
y if fit yð Þ\fit xit

� �

z if fit zð Þ\fit xit
� �

(

;

y ¼ xRabbit � En JxRabbit � xj j;
z ¼ yþ rv � Lv Dð Þ:

ð9Þ

For illustration, the general flowchart of the HHO algo-

rithm is shown in Fig. 1.
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3.2 k-Nearest neighbors algorithm (k-NN)

The k-NN classifier belongs to the supervised machine for

identifying a new pattern based on statistical metric. It is

considered as a lazy model of learning, which can be

performed for prediction tasks and classification problems

[47]. This algorithm presents a certain advantage that is an

easy interpreter of the output. It provides less computing

cost and efficiency. The classification process depends only

on computing the Euclidean distance between the current

test example and the query examples of training data. After

that, the first k minimal distances are selected to determine

the label of the current test vector. The k-NN is composed

of different steps given in Algorithm 1.

Algorithm 1 The k -NN algorithm
.

Inputs: Import the training and test datasets.
Initialize the number of neighbors k.
for (each example in the test dataset) do

Evaluate the metric between the current (test sample)
and the training samples.

Save the calculated distances and sort it in a list.
Select the first k samples.
Determine the output label of the current example.

end for
Return Accuracy (Acc) and classification error (Er = 1−
Acc) .

3.3 Genetic operators

The use of evolutionary operators is widely exploited in

several algorithms. Primarily, two basic algorithms have

explored deeply genetic operators such as differential

evolution and genetic algorithms. Here, we give a quick

overview of the genetic operators (i.e., mutation, crossover

and selection).

Mutation The results of the tasks numbers three and four

of HHO and the target solution (xRabbit) are utilized for

producing the mutation operation. For each component, a

number between 0 and 1 is randomly generated. In a case

the value is superior to the mutation rate (f), the element of

the target agent (xRabbit) is considered. If this value is less

than to the mutation rate (f), the old vector is replaced by

the component of y or z vectors. The mutation operator is

determined using:

yMut ¼
xRabbit if rand1 � f

y else

�

and

zMut ¼
xRabbit if rand2 � f

z else

�

Where :

f ¼ t

T
;

y ¼ xrabbit � En Jxrabbit � xit
�
�

�
�;

z ¼ yþ rv � Lv Dð Þ

8

>><

>>:

ð10Þ

yMut ¼
xRabbit if q1 � f

y else

�

and

zMut ¼
xRabbit if q2 � f

z else

�

Where :

f ¼ t

T
;

y ¼ xrabbit � En Jxrabbit � xj j;
z ¼ yþ rv � Lv Dð Þ:

8

>><

>>:

ð11Þ

Crossover In order to produce more diversity, the crossover

involves recombination of two individuals. An intermedi-

ate crossover with a random number s is used to generate a

new offspring wCross as

wCross ¼ yMut þ sð Þ � ðzMut � yMutÞ: ð12Þ

This type of operator allows children to inherit more

information from parents compared to other type as linear

recombination.

Fig. 1 Flowchart of the HHO algorithm
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Selection The type of selection used in HHO is a greedy

selection inspired from differential evolution. The off-

spring produced after evolutionary functions (mutation &

crossover) are accessed. Then, the performance of the child

and parent is compared to select the best one. Finally, the

parent has a chance to remain in the population if their

performance is high. The greedy selection is defined by the

following rule:

xitþ1 ¼
yMut if fit yMutð Þ\fit xit

� �

zMut if fit zMutð Þ\fit xit
� �

wCross if fit wCrossð Þ\fit xit
� �

8

><

>:

: ð13Þ

4 The proposed HHOCM algorithm

In this section, we give an alternative method for FS that

combines the HHO with genetic operators. Like other

meta-heuristic algorithms, HHO tends to be trapped in low

diversity, local optima and unbalanced exploitation ability

[48, 49]. Although HHO has the characteristics of accept-

able convergence speed and a simple structure, it may fail

to maintain the balance between exploration and

exploitation and fall into a local optimum in some complex

optimization problems [50].

Thus, the main contribution of the proposed HHOCM

algorithm focuses on integrating genetic operators (muta-

tion, crossover and selection) for solving the problem of

exploitation in the HHO algorithm. To this end, the pro-

posed HHOCM tries to ensure more diversity considering

two main phases: initialization phase and updating phase.

The framework of the proposed HHOCM algorithm for FS

is given in Fig. 2.

4.1 Initialization phase

In this step, HHOCM generates N swarm agents in the first

population, where each individual represents a portion of

molecular descriptors (features) to be selected for evalua-

tion. This step has a significant effect on the convergence

and aptitude of the optimal solution. The population X is

generated randomly as:

xji ¼ lbj þ kj � ðubj � lbjÞ; i ¼ 1; 2; :;N; j ¼ 1; 2::D:

ð14Þ

The lower and upper bounds lbj and ubj for each candidate

solution i are in the range of [0, 1]. The kj is a random

number 2 ½0; 1�. To select a subset of molecular descrip-

tors, an intermediate binary conversion step is necessary

before fitness evaluation. Thus, each solution xi undergoes

a binary conversion (xibin) using:

xibin ¼
1 if xi [ 0:5

0 otherwise.

�

ð15Þ

The solution xi with ten molecular descriptors, where xi ¼
½0:6; 0:2; 0:9; 0:33; 0:15; 0:8; 0:2; 0:75; 0:1; 0:9�, is consid-

ered. The operation of conversion is applied using Eq. (15)

to generate a binary vector xibin, where ones imply that the

molecular descriptors are selected and otherwise are not

selected. This means that first, third, sixth, eighth and the

last molecular descriptors in original datasets are relevant

ones and must be selected, while the others are irrelevant

features and must be eliminated. After determining the

subset of selected molecular descriptors, the fitness func-

tion is calculated for each agent xibin to determine the

quality of these features. The fitness of the ith solution is

defined by

fiti ¼ t1 � Eri þ t2 �
di
D
; ð16Þ

where t1 ¼ 0:99 and ðt2 ¼ 1� t1Þ. The weight t1 repre-

sents the equalizer parameter employed to ensure a rela-

tionship between the error rate of classification

ðEri ¼ 1� AcciÞ and the size of selected molecular

descriptors ðdiÞ. In Eq. (16), D is the total size of Molec-

ular Descriptors (MD) in the original dataset. The k-NN is

utilized as a classifier in the FS cycle. As a strategy of

classification, the hold-out is utilized, which assigns 80%

as a training set and the rest of data as testing samples. The

Eri refers to the error rate of test datasets computed by k-

NN (Algorithm 1). The lower value of fitness through all

agents is assigned to the best prey ðxRabbitÞ.

4.2 Updating phase

The process of updating solutions consists of applying

firstly the exploration step, which aims to apply a global

search when the energy is greater than one. After that, the

transition from exploration to exploitation is applied. Then,

the exploitation phase is employed, which contains four

tasks: surrounding soft, surrounding hard, surrounding soft

beside advanced rapid dives and surrounding hard beside

advanced rapid dives boosted by genetic operators. For

improving the local search capability, HHOCM integrates

the mutation operator in task three (surrounding soft beside

advanced rapid dives) and task four (surrounding hard

beside advanced rapid dives) of HHO using Eqs. (10) and

(11), respectively. For more diversity, another genetic

operator is introduced called crossover. This operator tries

to combine both mutant vectors yMut and zMut for producing

a new child wCross as described in Eq. (12). The fitness

values of all offspring: yMut, zMut and wCross based on

selection operator Eq. (13) are compared to identify the

best prey xRabbit. The process is reproduced, while the
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termination condition is met. The stop criterion corre-

sponds to the maximum amount of iterations that allows to

evaluate the performance of the HHOCM algorithm. Then,

the best solution xRabbit is returned and converted to

determine the number of relevant features. In this regard,

experiments are carried out 30 times independently for

achieving accurate and precise results.

5 Experimental results and discussion

For validating the effectiveness of the proposed HHOCM

algorithm, a number of experiments are conducted using

two common datasets widely used in the field of

chemoinformatics: QSAR Biodegradation and MAO. The

first experiment is assigned to study the impact of swarm

size (N) and the maximum number of iterations (T) on the

accuracy and number of selected features. The second

experiment aims to determine the best value of control

parameter b used in Lévy flight function. The third

experiment is conducted to compare the performance of the

HHOCM algorithm and seven recent SI algorithms (i.e.,

HHO, GWO, WOA, SSA, DA, GOA and ALO) based on

the optimal control parameters obtained by previous two

experiments between. Each algorithm is executed 30 times

with keeping the same optimal values of N, T and b. Other
experiments are conducted using statistical Wilcoxon test,

which is used as assessment measure in order to verify

significance of the accuracy achieved by HHOCM and

ROBLHHOCM against the other competitor algorithms.

The last experiment is conducted to compare between the

three versions, HHOCM, OBLHHOCM and ROBLH-

HOCM, and other works from the literature using same

parameters configuration on both of the QSAR Biodegra-

dation and MAO datasets. The running is established on a

PC with Intel Core i7-5500 CPU@2.40 GHz 2.40 GHz, 8

GB RAM, Windows 10 and Matlab 2016a.

5.1 Parameter settings

Parameters settings of the DA, ALO, GWO, WOA, SSA,

GOA and HHO algorithms as well as the proposed versions

of HHO are listed in Table 1.

5.2 Performance measures

The performance of the proposed

Fig. 2 A general framework for the proposed HHOCM algorithm
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HHOCM algorithm is assessed based on several criteria

including, average and standard deviations of fitness,

accuracy, number of selected features, sensitivity, speci-

ficity and CPU time. Table 2 shows the confusion matrix

that allows to produce some performance metrics as

accuracy (Acc), sensitivity (Sn) and specificity (Sp).

• Average accuracy ðAVGAccÞ: (Acc) represents the cor-

rect number of correspondences between the label of

sample data and the output of classifier and is computed

using:

Acc ¼ Tpþ Tn

Tpþ Fnþ Fpþ Tn
: ð17Þ

The number of runs is fixed Nr ¼ 30, so the average

accuracy AVGAcc is calculated as:

AVGAcc ¼
1

Nr

XNr

k¼1

Acc
ðkÞ
best: ð18Þ

• Average sensitivity ðAVGSnÞ: The sensitivity (Sn)

accesses the rate of prognosticating positive samples as:

Sn ¼ Tp

Tpþ Fn
: ð19Þ

The AVGSn is calculated from the best prey ðxRabbitÞ
using:

AVGSn ¼
1

Nr

XNr

k¼1

Sn
ðkÞ
best: ð20Þ

Table 1 Parameters settings of

the SI algorithms
Algorithms Parameters setting

DA Dragonfly number N ¼ 10

T ¼ 100

D indicates to the number of features

ALO Ants number N ¼ 10

T ¼ 100

D indicates the dimensional of features

GWO a 2 [2; 0]

Wolves number (N ¼ 10)

T ¼ 100

D indicates to features number

WOA a 2 [2; 0]

b = 1

Whales numberN ¼ 10

T ¼ 100

D indicates to the size of features

SSA c1 and c2 are randomly distributed

Salps number N ¼ 10

T ¼ 100

D indicates to features domain

GOA Cmax ¼ 1 andCmin ¼ 0:00004

number of agents (N ¼ 10)

T ¼ 100

D indicates to features number

HHO N ¼ 10

T ¼ 100

D indicates to features number

b ¼ 1:5 used in Lévy flight function [46]

HHOCM The size of swarm (N ¼ 10, N ¼ 20 and N ¼ 30)

OBLHHOCM Maximum number of iterations (T ¼ 50,T ¼ 100 and T ¼ 150)

ROBLHHOCM b 2 [0.5; 2] used in Lévy flight function

The dimensionality (D) represents to the number of features

t1 ¼ 0:99 and t2 ¼ 0:01 in fitness function Eq. (16)
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• Average precision ðAVGPrÞ: The precision (Pr) indi-

cates the rate of true predicted samples as:

Pr ¼ Tp

Fpþ Tp
: ð21Þ

The AVGPr is determined via the following equation:

AVGPr ¼
1

Nr

XNr

k¼1

Pr
ðkÞ
best: ð22Þ

• Average fitness value ðAVGfitÞ: The objective value

estimates the quality of algorithms that study the

correlation between the selection ratio of FS and the

error rate of classifier as in Eq. (16). Its average is

computed by

AVGfit ¼
1

Nr

XNr

k¼1

fit
ðkÞ
best: ð23Þ

• Average size of selected features ðAVGsizeÞ: This metric

implies the size of relevant features. It is computed as:

AVGsize ¼
1

Nr

XNr

k¼1

d
ðkÞ
best; ð24Þ

where d
ðkÞ
best is the cardinally of the selected features of

the best agent for kth execution.

• Average CPU time ðAVGTimeÞ: It is the average of

computation time for each method, that is:

AVGTime ¼
1

Nr

XNr

k¼1

T
ðkÞ
best: ð25Þ

• Standard deviation (Std): It is the quality of each

algorithm and analysis of the obtained results over

different executions and metrics. It is calculated for all

measures described previously.

5.3 Datasets and preprocessing details

Monoamine Oxidase (MAO) dataset is represented by an

enzyme that is dispersed in largest tissues. It can catalyze

the inactivation and oxidation of monoamine neurotrans-

mitters. The information used in this data is taken from the

publicly available GREYC’s chemistry dataset.1 Thus, it is

transferred from MOA to simplified molecular-input line

entry system (SMILES) styles via open Babel software

[51]. Then, the molecular descriptors are determined using

E-Dragon [4]. It contains 1665 features (MD) with 68

compounds divided into two classes.

QSAR Biodegradation dataset has 41 attributes (molecular

descriptors) for classifying 1055 chemicals compounds.

This data is explored in the field of discrimination between

two chemical classes including 356 of readily biodegra-

dation samples and 699 of not readily biodegradation pat-

terns. In addition, this data can be useful for QSAR

development in order to determine the correlation molec-

ular biodegradation and chemical design. It is available on

the web page of UCI.2

The preprocessing stage of the datasets follows three

steps as follows:

1. Information of proteins is converted to isomeric

SMILES using the open Babel software [51]. Informa-

tion of proteins is stored in MOA chemical format that

must be converted to isomeric SMILES using Babel

software. Features represent attributes that have values

for making instances.

2. Descriptors are calculated by E-Dragon; in chemistry,

the features are performed for implementation of

different 2D and 3D data in QSAR model and calculate

descriptor by E-Dragon software [4]. The descriptors

are categorized into types as structural or physico-

chemical (weight and volume of molecule, rotary links,

the distance inter atoms, the type of atom, account of

molecular walking, electro-negativity, atom distribu-

tion, aromatic and thawed characteristics).

3. The correlation between chemical design and biolog-

ical activeness is expressed mathematically using

QSAR. Also, the features can identify the instances.

QSAR is used for seeking main characteristics of

chemical compounds as shown in Fig. 3. On the other

side, several techniques of ML are exploited to

structure–activity correlation analysis for predicting

the similarity of the compounds in the presence of a

given malady. The compounds of complex molecule

contain several features like topological factors [52].

5.4 Sensitivity analysis

This initial test is conducted to determine sensitivity and to

understand the main impact of some HHOCM parameters,

such as the size of swarm (N), number of iterations (T) and

the b parameter. The sensitivity is assessed in three stages.

First, we treat the effect of swarm size and maximum

number of iterations according to accuracy ðAVGAccÞ and

Table 2 Confusion matrix
Predicted

Actual 1 0

1 Tp Fn

0 Fp Tn

1 https://brunl01.users.greyc.fr/CHEMISTRY/. 2 https://archive.ics.uci.edu/ml/datasets/QSAR?biodeg.
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number of selected features ðAVGsizeÞ obtained by HHO

and HHOCM. Second, we study the influence of the b
parameter used in Lévy flight function according to accu-

racy ðAVGAccÞ and number of selected features ðAVGsizeÞ
obtained using HHO and HHOCM on the QSAR

Biodegradation and MAO datasets. Third, we analyze the

influence of initialization using opposition-based learning

(OBL) and random OBL (ROBL) according to accuracy

ðAVGAccÞ and number of selected features ðAVGsizeÞ
obtained by HHO and HHOCM on the two datasets (QSAR

Biodegradation and MAO datasets). A short description for

OBL [53, 54] and ROBL [55] is described as follows:

• OBL can produce opposite solutions that enhance the

convergence and jump out local optima. So, this

operator can be modeled mathematically using

xji
� ¼ lbj þ ubj � xji; i ¼ 1; 2; :::;N; j ¼ 1; 2:::;D:

ð26Þ

• ROBL as a new operator allows to explore the search

space with more diversity. It can be formulated by

xji
� ¼ lbj þ ubj � r � xji: ð27Þ

r is a random number 2 ½0; 1�. According to the best

fitness of current solution ðxiÞ and their opposite ðx�i Þ,
the initial population is created.

By inspecting the results of Tables 3, 4, 5 and 6, it can be

seen that the optimal values of accuracy ðAVGAccÞ and the

number of selected features ðAVGsizeÞ are obtained when

the swarm size N is 10 and the maximum number of iter-

ations T is 100 for both datasets using the basic HHO and

HHOCM. The second stage is conducted to treat the impact

of b by varying their value from 0.5 to 2 and fixing the

swarm size (N) and the maximum number of iterations (T)

to the best values obtained in the first stage, which are 10

and 100, respectively. From Tables 7, 8, 9 and 10, it can be

observed that the best values of accuracy and selected

features are reached when the value of b in Lévy flight

function is equal to 1.5 for both datasets using HHO and

HHOCM. From Tables 11 and 12, we can highlight the

impact of OBL and ROBL in initialization step for basic

HHO and the proposed method HHOCM over both datasets

(QSAR Biodegradation and MAO datasets). It can be seen

clearly that ROBL enhanced the performance of HHO and

HHOCM for both datasets. Additionally, ROBLHHOCM

provides high performance in terms of average accuracy

and size of selected features compared to HHO, OBLHHO,

ROBLHHO, HHOCM and OBLHHOCM. The best

obtained values of these control parameters are used for the

rest of experiments. The initialization-based OBL allows to

give another angle of view that help exploring a new

variants of HHOCM called OBLHHOCM and

OBLHHOCM.

5.5 Comparison of HHOCM with other SI
algorithms

• In terms of the average and standard deviations of fit-

ness: Table 13 reports the mean fitness values obtained

by the proposed algorithms HHOCM, OBLHHOCM

and ROBLHHOCM and recent SI algorithms. It can be

deduced clearly that ROBLHHOCM outperforms all

other competitor algorithms on both datasets. The per-

formance can be interpreted by two reasons: The first

reason is justified by the use of genetic operators in

HHO, which are based on evolutionary CM operators,

while the second one is illustrated by the use of OBL

operator, specially Random OBL that enhances the

exploration and avoids the convergence to local optima.

Also, the OBLHHO algorithm takes the second rank in

terms of average fitness for the QSAR Biodegradation

dataset. However, HHOCM is ranked thirdly which can

be interpreted by generating more diverse solutions by

the use of CM operators. For the MAO dataset, the

convergence curves between the three variants of

HHOCM are shown in Fig. 4. The proposed ROBLH-

HOCM algorithm highlights more stability for both

datasets because the value of Std is close to zero, which

presents the key reason of good balance between

exploration and exploitation.

– In terms of the average and standard deviations of

accuracy and selected features: the performance of

three variants of HHOCM (ROBLHHOCM,

OBLHHOCM and HHOCM), three variants of HHO

(ROBLHHO, OBLHHO and HHO) and other swarm

competitor algorithms in terms of accuracy and number

of selected features are illustrated in Tables 14 and 15.

It can be seen that ROBLHHOCM finds the most

informative features that provide high accuracy for both

datasets. It is important to highlight that ROBLH-

HOCM achieves high classification accuracy of 100%

with keeping only four features from 1665 in the case of

MAO dataset that represents high-dimensional low-in-

stance data. Also, it can be observed that the three

variants of HHOCM outperform the variants of HHO in

terms of average correct classification rate and average

size of selected features for both datasets. For MAO

dataset, the second rank is shared between

OBLHHOCM and HHOCM in terms of average accu-

racy, while the second best optimizer for the QSAR

Biodegradation dataset is OBLHHOCM. In this regard,

the three variants of HHOCM achieve high
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performance in terms of average accuracy and average

size of selected features.

– In terms of the average and standard deviations of

sensitivity and precision metrics: Comparison the

performance of sensitivity and precision of three vari-

ants of HHOCM, three variants of HHO and six SI

algorithms are illustrated in Tables 16 and 17. The

performance of ROBLHHOCM in terms of sensitivity

Fig. 3 Flowchart of the QSAR model

Table 3 Impact of iterations

number and swarm size on the

accuracy and number of

selected features for the MAO

dataset using basic HHO

N T The MAO dataset

AVGAcc AVGSize

HHO

10 50 0.8786 92.4000

20 50 0.8833 82.6333

30 50 0.9333 37.3333

10 100 0.9476 15.6333

20 100 0.9286 21.6333

30 100 0.9190 26.9333

10 150 0.9381 18.9667

20 150 0.9381 25.7000

30 150 0.9333 20.3000

Table 4 Impact of iterations

number and swarm size on the

accuracy and number of

selected features for the MAO

dataset using HHOCM

N T The MAO dataset

AVGAcc AVGSize

HHOCM

10 50 0.9714 34.6667

20 50 0.9952 54.7333

30 50 0.9976 9.0667

10 100 1.0000 4.5667

20 100 1.0000 4.8667

30 100 1.0000 5.4333

10 150 1.0000 5.8333

20 150 1.0000 5.6000

30 150 1.0000 5.6667

Table 5 Impact of iterations number and swarm size on the accuracy

and number of selected features for QSAR Biodegradation dataset

using basic HHO

N T QSAR Biodegradation dataset

AVGAcc AVGsize

HHO

10 50 0.8627 20.7667

20 50 0.8373 21.3333

30 50 0.8578 20.7667

10 100 0.8798 19.9667

20 100 0.8537 20.4667

30 100 0.8669 20.3667

10 150 0.8667 20.8333

20 150 0.8491 21.9333

30 150 0.8403 21.6667

Table 6 Impact of iterations number and swarm size on the accuracy

and number of selected features for the QSAR Biodegradation dataset

using HHOCM

N T QSAR Biodegradation dataset

AVGAcc AVGsize

HHOCM

10 50 0.8825 16.0000

20 50 0.8795 16.1667

30 50 0.8844 15.4667

10 100 0.9079 14.8667

20 100 0.8863 14.9667

30 100 0.8946 14.8967

10 150 0.8978 14.9333

20 150 0.8803 15.6333

30 150 0.9013 15.3333

Table 7 Impact of the b
parameter on Lévy function for

the MAO dataset using basic

HHO

b The MAO dataset

AVGAcc AVGSize

HHO

0.5 0.9305 37.3000

1 0.9405 31.5000

1.5 0.9476 15.6333

2 0.8643 22.8667
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and precision is still much better than all other com-

petitor algorithms. In terms of precision, we can

observe a clear advantage obtained by the three variants

of HHOCM, specially for MAO dataset.

• In terms of the average and standard deviations of CPU

time: The CPU time consumed by the three variants of

HHOCM/HHO and the other algorithms is given in

Table 18. From the listed results, it can be observed that

the WOA is very fast, specially for the MAO dataset

when the number of patterns is small, while the three

variants of HHOCM require more time when the

number of samples increases exponentially. This

behavior can be interpreted by adding two genetic

operators: CM and the use of OBL operator. For the

QSAR dataset, SSA provides the lowest time due to the

use of simple updating operator.

• Wilcoxon rank-sum test: The significance of the

obtained results using different algorithms requires to

realize a statistical test in order to access the efficiency

of the proposed ROBLHHOCM algorithm against

HHOCM and other SI algorithms including DA,

WOA, GOA, ALO, GWO, SSA and HHO. Table 19

shows the p-values of Wilcoxon rank-sum test based on

Table 8 Impact of the b
parameter on Lévy function for

the MAO dataset using

HHOCM

b The MAO dataset

AVGAcc AVGSize

HHOCM

0.5 0.9667 26.2333

1 1.0000 18.0000

1.5 1.0000 4.5667

2 1.0000 18.7

Table 9 Impact of the b parameter on Lévy function for the QSAR

Biodegradation dataset using basic HHO

b QSAR Biodegradation dataset

AVGAcc AVGSize

HHO

0.5 0.8674 21.7667

1 0.8642 20.5000

1.5 0.8798 19.9667

2 0.8469 21.8333

Table 10 Impact of the b parameter on Lévy function for the QSAR

Biodegradation dataset using basic HHOCM

b QSAR Biodegradation dataset

AVGAcc AVGSize

HHOCM

0.5 0.8705 14.7000

1 0.8912 14.9000

1.5 0.9079 14.8667

2 0.8954 14.8733

Table 11 Impact of initialization strategies for the MAO dataset using

basic HHO and HHOCM

Algorithms The MAO dataset

AVGAcc AVGSize

HHO 0.9476 15.6333

OBLHHO 0.9738 10.1333

ROBLHHO 0.9786 9.9333

HHOCM 1.0000 4.5667

OBLHHOCM 1.0000 4.4667

ROBLHHOCM 1.0000 4.3333

Table 12 Impact of initialization strategies for the Biodegradation

dataset using basic HHO and HHOCM

Algorithms QSAR Biodegradation dataset

AVGAcc AVGSize

HHO 0.8798 19.9667

OBLHHO 0.8826 18.8667

ROBLHHO 0.9039 18.6667

HHOCM 0.9079 14.8667

OBLHHOCM 0.9081 14.0000

ROBLHHOCM 0.9084 13.6667

Table 13 The average fitness values of all competing optimizers

Algorithms QSAR Biodegradation dataset The MAO dataset

AVGfit Stdfit AVGfit Stdfit

DA 0.1421 0.0089 0.0799 0.0391

WOA 0.1430 0.0078 0.0262 0.0346

GOA 0.1674 0.0090 0.1369 0.0244

ALO 0.1176 0.0059 0.0703 0.0179

GWO 0.1526 0.0100 0.0897 0.0354

SSA 0.1288 0.0104 0.0776 0.0129

HHO 0.1239 0.0081 0.0521 0.0366

OBLHHO 0.1208 0.0088 0.0260 0.0346

ROBLHHO 0.0997 0.0071 0.0212 0.0329

HHOCM 0.0948 0.0081 0.0000 0.0001

OBLHHOCM 0.0944 0.0065 0.0000 0.0001

ROBLHHOCM 0.0941 0.0010 0.0000 0.0001
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accuracy metric. It can be concluded that the proposed

ROBHHOCM provides a clear superiority compared to

the other SI algorithms. For both datasets, the

ROBLHHOCM obtained lower values of p-values,

which are less than 1% compared to all SI except

HHOCM. Thus, the proposed algorithms HHOCM and

ROBLHHOCM are statistically significant compared to

all optimizer tested in this study. In addition, we can see

that the HHOCM and ROBLHHOCM provide same

performance on QSAR, while on the MAO dataset,

HHOCM is statistically significant compared to

ROBLHHOCM.

• Graphical analysis: Fig. 4 illustrates convergence

curves of the ROBLHHOCM, HHOCM algorithms

against all other SI algorithms HHO, GWO, GOA,

WOA, SSA, DA and ALO, which are implemented and

assessed under same conditions (i.e., same number of

agents ðN ¼ 10Þ and same number of iterations

ðT ¼ 100Þ). It is clear that the HHOCM and ROBLH-

HOCM algorithm present fast convergence on both

datasets. Also, the convergence behavior of HHOCM is

more accelerated than that of ROBLHHOCM algorithm

for large dataset in the case of MAO dataset. Addi-

tionally, for QSAR Biodegradation dataset, the con-

vergence behavior of ROBLHHOCM is faster than that

of WOA, ALO, DA, GWO, GOA, SSA and HHOCM.

Moreover, the convergence of the HHOCM and

ROBLHHOCM algorithms show that the optimal val-

ues of fitness coincide perfectly with the optimal value

of accuracy. This phenomenon can be explained by the

effective trade-off balance between exploration and

exploitation due to the integration of genetic operators

and the use of random OBL operator. Figure 5 shows

box plots of the accuracy for all datasets achieved by

the competitor algorithms and the proposed variants of

HHOCM. From this representation, one can determine

first quartile ðQ1Þ, third quartile ðQ3Þ, maximum and

minimum values. The red line inside the box indicates

the median value. It is important to emphasize that each

box is obtained after 30 runs of each algorithms.

Looking closely to Fig. 5, it can be concluded that the

HHOCM and ROBLHHOCM algorithms have higher

box plots for both datasets than the other SI algorithms.

The third place is taken by ALO on the QSAR

Biodegradation dataset, and WOA shows the third high

box on the MAO dataset.
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Fig. 4 Convergence curves of the HHOCM and ROBLHHOCM

algorithms against other SI algorithms

Table 14 The average classification accuracy of all competing

optimizers

Algorithms QSAR Biodegradation dataset The MAO dataset

AVGAcc StdAcc AVGAcc StdAcc

DA 0.8613 0.0087 0.9214 0.0391

WOA 0.8605 0.0079 0.9738 0.0350

GOA 0.8360 0.0091 0.8667 0.0247

ALO 0.8852 0.0058 0.9333 0.0181

GWO 0.8507 0.0101 0.9119 0.0360

SSA 0.8744 0.0104 0.9262 0.0130

HHO 0.8798 0.0082 0.9476 0.0372

OBLHHO 0.8826 0.0089 0.9738 0.0350

ROBLHHO 0.9039 0.0096 0.9786 0.0300

HHOCM 0.9079 0.0080 1.0000 0.0000

OBLHHOCM 0.9081 0.0079 1.0000 0.0000

ROBLHHOCM 0.9084 0.0078 1.0000 0.0000
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5.6 Comparison of HHOCM variants
with the existing algorithms

For proving the efficiency of HHOCM,OBLHHOCM and

ROBLHHOCM, some results from literature on the same

datasets are reported in Table 20. This task becomes dif-

ficult because researchers use different parameters config-

uration, specially in terms of population size (N) and

maximum number of iterations (T) in swarm algorithms.

For explaining this situation, the work of [34] used eight

solutions as population size ðN ¼ 8Þ and and maximum

number of iterations ðT ¼ 200Þ. Also, a recent work is

developed by [35], which employed other values of

parameters (i.e., population size ðN ¼ 30Þ and and maxi-

mum number of iterations ðT ¼ 100, 500 and 1000) and the

type of classifiers (k-NN and SVM)). To solve this issue,

other experiments are added using same parameters con-

figurations for realizing a fair comparison between

HHOCM, OBLHHOCM, ROBLHHOCM and other swarm

optimizers from the literature.

MAO dataset Table 20 presents results of the three versions

of the HHOCM algorithm and other competitor algorithms

including SSA, MFO, PSO, GOA, SCA, DCNN and

HSGE. According to these results, it is obvious that the

competitor algorithms are not so good as ROBLHHOCM

or HHOCM, where the SSA optimizer achieved 87.35%

with keeping 783.55 molecular descriptors, while

ROBLHHOCM obtained higher rate of classification with

100% and keeping only 4.3333 MD from 1665 features in

the case of ðN ¼ 10 and T ¼ 100Þ. Additionally,

ROBLHHOCM showed 100% as accuracy and 4.6667

Table 15 The average size of

selected features of all

competing optimizers

Algorithms QSAR Biodegradation dataset The MAO dataset

AVGsize Stdsize AVGsize Stdsize

DA 19.5000 4.0065 348.6667 233.8507

WOA 20.2333 7.1036 45.2333 77.8055

GOA 20.7333 2.9935 811.4667 16.7038

ALO 16.1667 2.4925 712.3000 11.5345

GWO 19.9000 5.5916 419.5333 69.7581

SSA 18.5000 2.9798 754.1333 16.4981

HHO 19.9667 4.4527 15.6333 5.1561

OBLHHO 18.8667 3.9596 10.1333 3.8889

ROBLHHO 18.6667 3.3333 9.9333 2.6667

HHOCM 14.8667 3.1703 4.5667 1.9270

OBLHHOCM 14.0000 3.0568 4.4667 1.8667

ROBLHHOCM 13.6667 2.3333 4.3333 1.3333

Table 16 The average sensitivity of the optimizers

Algorithms QSAR Biodegradation dataset The MAO dataset

AVGSn StdSn AVGSn StdSn

DA 0.8430 0.0161 0.9374 0.0338

WOA 0.8433 0.0170 0.9752 0.0353

GOA 0.8181 0.0175 0.8963 0.0192

ALO 0.8758 0.0159 0.9481 0.0141

GWO 0.8365 0.0173 0.9315 0.0280

SSA 0.8599 0.0182 0.9426 0.0101

HHO 0.8774 0.0121 0.9533 0.0503

OBLHHO 0.8611 0.0168 0.9592 0.0574

ROBLHHO 0.8800 0.0330 0.9666 0.0462

HHOCM 0.8805 0.0111 1.0000 0.0000

OBLHHOCM 0.8900 0.0079 1.0000 0.0000

ROBLHHOCM 0.8974 0.0062 1.0000 0.0000

Table 17 The average precision of the optimizers

Algorithms QSAR Biodegradation dataset The MAO dataset

AVGPr StdPr AVGPr StdPr

DA 0.8150 0.0112 0.9127 0.0386

WOA 0.8143 0.0100 0.9728 0.0375

GOA 0.7845 0.0110 0.8651 0.0206

ALO 0.8431 0.0070 0.9222 0.0211

GWO 0.8018 0.0121 0.9036 0.0322

SSA 0.8303 0.0124 0.9147 0.0109

HHO 0.8609 0.0086 0.9342 0.0459

OBLHHO 0.8545 0.0104 0.9797 0.0301

ROBLHHO 0.9633 0.0396 0.9800 0.0266

HHOCM 0.9763 0.0426 1.0000 0.0000

OBLHHOCM 0.9745 0.0398 1.0000 0.0000

ROBLHHOCM 0.9797 0.0030 1.0000 0.0000
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molecular descriptors in the case of ðN ¼ 30 and T ¼ 100Þ.
In [35], the HHO-k-NN with same conditions achieved

96.9% as accuracy in the case of ðN ¼ 30 and T ¼ 100Þ,
while DCNN as classifier is ranked in third position with

75.14% of accuracy.

QSAR Biodegradation dataset The obtained results listed

in Table 20 on the QSAR Biodegradation dataset prove

that the best optimizer is ROBLHHOCM, which achieved

90.84% of accuracy in the case of ðN ¼ 10 and T ¼ 100Þ
followed by OBLHHOCM approach which achieved

90.81% of accuracy. Also, the approaches which used deep

learning methods show that DeepBioD? presented a good

behavior of performance because it achieved 90%. In the

case of ðN ¼ 30 and T ¼ 100Þ, an accuracy of 85.9% was

achieved using HHO-k-NN in [35]. For approaches, which

use ML methods such as the ANN-SVM, only 82% of

compounds activity was recognized. It is important to

highlight that the lower number of molecular descriptors

for the QSAR Biodegradation dataset is obtained by

ROBLHHOCM, which equals to 13.6667 in the case of

ðN ¼ 10 and T ¼ 100Þ. Also, HHOCM, MoDeSuS and

OBLHHOCM determined a low number of features around

15 MD. Thus, the proposed ROBLHHOCM shows a

Table 18 The average CPU time of the optimizers

Algorithms QSAR Biodegradation dataset The MAO dataset

AVGTime StdTime AVGTime StdTime

DA 13.9586 0.5285 22.6599 0.2870

WOA 13.1186 0.6489 10.5675 0.5239

GOA 13.4102 0.3528 12.0696 0.2393

ALO 13.1269 0.2352 11.6625 0.1440

GWO 13.5632 0.3726 12.6311 0.3561

SSA 13.0468 0.2983 11.6254 0.3799

HHO 27.8865 1.2023 21.3808 0.8292

OBLHHO 33.6254 2.2675 25.2581 1.6709

ROBLHHO 34.6751 1.2491 26.2148 1.3641

HHOCM 36.4030 3.6827 27.2690 1.2057

OBLHHOCM 37.3333 1.2654 28.6941 1.3619

ROBLHHOCM 37.6714 2.9699 29.3689 1.5891

Table 19 Wilcoxon rank-sum

test
ROBLHHOCM versus QSAR Biodegradation dataset The MAO dataset

p value p value

DA 2.00E-11 1.71E-11

WOA 1.89E-11 2.85E-04

GOA 2.03E-11 8.64E-14

ALO 1.86E-11 7.15E-13

GWO 2.07E-11 1.19E-12

SSA 2.06E-11 2.71E-14

HHO 2.01E-11 2.10E-08

HHOCM 1 NA
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Fig. 5 Boxplot of the HHOCM and ROBLHHOCM algorithms

against other SI algorithms
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powerful efficiency on both datasets because the perfor-

mance is more efficient using both metrics (accuracy and

average number of features) which has high accuracy with

low number of molecular descriptors compared to com-

petitor algorithms as reported in Table 20. This behavior

can be interpreted by the incorporation of genetic operators

to HHO and the random OBL operator which allows to

enhance clearly the diversity of the population and the

exploitation step. However, the proposed HHOCM,

OBLHHOCM and ROBLHHOCM algorithms suffer from

certain drawbacks as the computation time and the subset

of selected molecular descriptors change according to the

execution that may cause confusion for users.

6 Conclusion

In fields of cheminformatics research, QSAR is an impor-

tant model that predicts the biological activities and

physiochemical properties of chemical compounds. QSAR

presents a real challenge problem because the representa-

tion of chemical compounds requires several features (i.e.,

high dimensionality problem is provoked). FS based on SI

algorithms has become an efficient solution for keeping the

prominent features and removing irrelevant data. To tackle

with the previous challenges, this paper has proposed a

three hybrid wrapper FS algorithms called HHOCM,

OBLHHOCM and ROBLHHOCM which combined HHO

with the genetic operators assisted by OBL strategies for

selecting the proper chemical descriptor. The introduced

wrapper FS is based on the variants of HHOCM and

integrating the k-NN classifier that provides accurate and

fast classification rates. To evaluate the proposed variants

of the HHOCM algorithms, two common datasets of

chemical information: the MAO dataset and the QSAR

Biodegradation dataset, are considered in the performance

evaluation process. The quantitative results revealed that

the proposed algorithms HHOCM, OBLHHOCM and

ROBLHHOCM achieve significant performance compared

to seven well-established SI algorithms including the basic

HHO, GWO, ALO, DA, WOA, GOA and SSA on both

datasets. Moreover, it is concluded that the proposed

ROBLHHOCM algorithm outperformed the competitor

algorithms in terms of average standard deviations of fit-

ness, accuracy, number of selected features, sensitivity and

precision.

As a future work, the three variants of HHOCM can be

used as multi-objective global optimization or FS paradigm

for high dimensional with small instance in order to syn-

chronously increase the classification rate and decrease the

selection ratio of attributes. Another investigation is to

consider the implementation of the HHOCM in parallel

way to reduce the computation time.
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