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Abstract
This paper focuses on the finite-time lag synchronization (FTLS) of uncertain complex networks involving impulsive

disturbance effects. By designing two different controllers, some Lyapunov-based conditions are established in terms of

linear matrix inequalities to ensure the FTLS of impulsive systems, where the upper bound of the synchronizing times can

be estimated via constructing Lyapunov functions. It is interesting to discover that the synchronizing time depends not only

on the initial value but also on the impulse sequences, which implies that different impulses will lead to different

synchronization times. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed

FTLS criterion.

Keywords Finite-time lag synchronization � Lyapunov method � Uncertain complex networks � Impulsive disturbance �
Linear matrix inequality (LMI)

1 Introduction

Since Huygens discovered that the pendulum oscillates

synchronously, the synchronization phenomenon has been

widely concerned and continuously studied. In 1990, Pec-

ora and Carroll [1] of the US Navy laboratory put forward

the drive-response synchronization method, which further

triggered the research upsurge of synchronization and

control for dynamic systems in various fields, such as

signal processing, engineering, combinatorial optimization,

modeling brain activity, and secure communication [2–5].

Up to now, many studies on several types of synchro-

nization including complete, generalized, anticipated, lag,

and phase synchronization have been proposed [6–10].

Among them, lag synchronization is very common in the

implementation of electronic networks, which requires the

current state of one node to be synchronized with the past

state of another node; that is to say, there is a time shift on

synchronization between these two nodes [11, 12]. In the

telephone communication network, for example, the voice

received by the receiver at time t� is sent by the sender at

time t� � q, where q is the time shift. That is to say, the

real-time transmission cannot be realized in many real

models, i.e., complete synchronization cannot be effec-

tively realized. In this case, it is natural to consider the lag

synchronization. In addition, from the practical engineering

application of parallel image processing and secure com-

munication, this is a reasonable synchronization strategy.

Therefore, the lag synchronization research has been

applied to many practical systems, such as laser, neural

networks, and electronic circuit [7, 13–16].

As we all know, synchronization performance is a key

performance index in the synchronization of dynamical
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systems. However, in most closed-loop system control

design methods, the fastest synchronization rate is in

exponential form, which is why better synchronization

performance cannot be achieved. The fundamental reason

is that Lipschitz continuity of the closed-loop system needs

to be satisfied. Therefore, these control analysis methods

belong to the synchronization control problem over the

infinite time. In addition, since the life span of human and

machine is limited, people want to realize synchronization

in finite time as much as possible. Especially in the field of

engineering technology and economic management, if the

goal of synchronization can be achieved within a certain

period of time, it will greatly improve economic benefits.

Based on above motivations, a synchronization called

finite-time synchronization has attracted attention. It

requires synchronization within a finite time. The

improvement in this performance not only ensures the

fastest convergence time of network synchronization, but

also has better robustness against disturbance and uncer-

tainty [17, 18], in which robustness refers to the ability to

keep synchronization performance unchanged under

uncertain interference. Therefore, network synchronization

based on finite-time stability theory has been studied in the

field of physics and engineering, and there have been a lot

of researches on finite-time stability and chaos synchro-

nization [18–27]. For example, by periodic intermittent

control and impulsive control, Mei et al. [18] studied the

finite-time synchronization (FTS) of complex networks

(CNs) with delayed and non-delayed coupling; in [25],

authors studied the FTS of hierarchical delayed neural

networks by using Lyapunov–Krasovskii functional meth-

ods; Jing et al. [26] adjusted and designed a periodically

intermittent strengths and feedback controller, respectively,

to realize finite-time lag synchronization (FTLS) of delayed

CNs. Therefore, it is necessary to study FTS for different

types of network systems via different methods.

On the other hand, the key to realize FTS for CNs is to

design a suitable controller. In recent years, there are var-

ious kinds of controllers to realize FTS for many kinds of

systems, such as observer-based controller, sliding mode

controller, adaptive controller, impulsive controller, and

feedback controller [18, 28–34]. When designing the con-

troller, we should not only consider whether the controller

can achieve FTS successfully, but also consider the

excellent performance of the designed controller. Hence,

the design of controller should be simple in structure and

easy to implement, and moreover, it should be continuous

to avoid the chattering phenomenon. However, when

designing FTS controllers, these two points are rarely fully

considered in many cases. For example, the boundedness of

controllers designed in [18] is hard to guarantee due to the

special structure of the controllers; the proposed controllers

in [33] are not precise and need to be further improved.

Based on above discussions, it is very necessary to

design a proper controller to study the problem of lag

synchronization in finite time. Moreover, in practical

application, when the control input is transmitted, it is often

affected by frequency change, switching phenomenon, or

other burst noise in impulse form. Therefore, considering

the impulse noise interference in the real control is a very

normal thing in many cases. This paper considers the FTLS

of uncertain drive-response systems involving impulsive

disturbances. There are several main contributions as

follows.

(1) Unlike previous papers [24–26, 35–37], impulse

noise interferences for FTLS of CNs are fully

considered. When system is involved in impulse

disturbances before reaching the synchronization

time, the obtained results show that the synchroniz-

ing time is related to the impulses and will be

delayed. Furthermore, for impulse, we do not impose

restriction on lower bound of two consecutive

impulse disturbances and the size of impulse inter-

vals does not affect FTLS for addressed system.

(2) Different from the designed controllers in

[24, 33, 36], the boundedness problem of the

controllers is overcome, and it is easier to implement

through LMI toolbox.

The rest of the paper is organized as follows. Section 2

presents some preliminaries. By designing two different

control laws, in Sect. 3, we establish some FTLS criterion

for uncertain drive-response systems. A numerical example

is given in Sect. 4. Section 5 shows the conclusion of this

paper.

2 Preliminaries

Notations Let Zþ denote the set of positive integer num-

bers, R the set of real numbers and Rn the n-dimensional

real spaces equipped with the Euclidean norm j � j. B[ 0

(B\0) denotes that B is symmetric and positive (negative)

definite matrix. H ¼ f1; 2; . . .;Ng and I is an identity

matrix. For H � R; set W � Rmð1�m� nÞ;CðH;WÞ ¼
fx : H ! W is a continuous function} and PCðH;WÞ ¼
fx : H ! W is a continuous function everywhere except at

finite number of instances t, at which xðtþÞ; xðt�Þ exist,
and moreover, xðtþÞ ¼ xðtÞg: K ¼ fbð�Þ 2
CðRþ;RþÞj bð0Þ ¼ 0 , bðdÞ[ 0 for d[ 0, and b is strictly

increasing in d}.
Consider the CNs composed of N coupled nodes and

each of the nodes is an n-dimensional network. The

dynamic of the ith networks is described by
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_xiðtÞ ¼ �AxiðtÞ þ �Bf ðxiðtÞÞ þ c
XN

j¼1

hijCxjðtÞ; i 2 H; ð1Þ

where xiðtÞ ¼ ðxi1ðtÞ; xi2ðtÞ; . . .; xinðtÞÞT 2 Rn is the ith

network state; �A ¼ Aþ MA, �B ¼ Bþ MB; in which A; B 2
Rn�n are the connection weight matrices, and MA; MB 2
Rn�n are parametric uncertainties; c[ 0 is the coupling

strength;

f ðxiðtÞÞ ¼ ðf1ðxi1ðtÞÞ; f2ðxi2ðtÞÞ; . . .; fnðxinðtÞÞÞT

denotes nonlinear function and satisfies jfjð#1Þ �
fjð#2Þj � ljj#1 � #2j for any #1; #2 2 R; where lj [ 0 are

constants for j ¼ f1; 2; . . .; ng; the coupling configuration

H ¼ ðhijÞN�N is defined as: for element hij, if there is a

connection from node j to node i, then hij [ 0, or else

hij ¼ 0, and the diagonal elements hii ¼ �
PN

i¼1;j6¼i hij: The

inner coupling matrix C ¼ diagfc1; c2; . . .; cng[ 0 and

xið0Þ ¼ xi0 denotes initial value of the network (1).

In order to study the lag synchronization, we refer to

system (1) as the drive system without losing generality. In

addition, it is assumed that during the transmission of the

input signal, the state may suddenly jump at some discrete

time, that is, the impulse phenomenon is generated [4, 38].

Hence, this paper considers the following CNs involving

impulse as response system:

_yiðtÞ ¼ �AyiðtÞ þ �Bf ðyiðtÞÞ

þc
XN

j¼1

hijCyjðtÞ þ uiðtÞ; t 2 ½tk�1; tkÞ;

DyiðtkÞ ¼ Dðyiðt�k Þ � xiðt�k � rÞÞ; k 2 Zþ;

8
>>>><

>>>>:

ð2Þ

with the initial value yiðrÞ ¼ yir; i 2 H; where yiðtÞ ¼
ðyi1ðtÞ; yi2ðtÞ; . . .; yinðtÞÞT 2 Rn and r is a positive constant;

the control input uiðtÞ will be designed later; DyiðtkÞ ¼
yiðtkÞ � yiðt�k Þ; D represents the impulse matrix. The time

sequence ftk; k 2 Zþg is the set of impulse sequences

which is strictly increasing on Rþ. We denote such

sequence by set F for later use. The rest parameters in

system (2) are the same as in system (1).

Define the lag synchronization error

fiðtÞ ¼ yiðtÞ � xiðt � rÞ. Then, we can obtain the following

error system between drive-response system (1) and (2)

_fiðtÞ ¼ �AfiðtÞ þ �BgðfiðtÞÞ

þc
XN

j¼1

hijCfjðtÞ þ uiðtÞ; t� r; t 6¼ tk;

DfiðtkÞ ¼ Dfiðt�k Þ; k 2 Zþ;

8
>>>><

>>>>:

ð3Þ

where gðfiðtÞÞ ¼ f ðyiðtÞÞ � f ðxiðt � rÞÞ and DfiðtkÞ ¼
fiðtkÞ � fiðt�k Þ for i 2 H. For convenience, let fðtÞ ¼
ðfT1 ðtÞ; f

T
2 ðtÞ; . . .; f

T
NðtÞÞ

T
and

GðfðtÞÞ ¼ ðgTðf1Þ; gTðf2Þ; . . .; gTðfNÞÞT . Then, the Kro-

necker product form of the error system (3) can be trans-

formed into

_fðtÞ ¼
�
IN 	 �Aþ cðH 	 CÞ

�
fðtÞ

þðIN 	 �BÞGðfðtÞÞ þ U; t� r; t 6¼ tk;

fðtkÞ ¼
�
IN 	 ðI þ DÞ

�
fðt�k Þ; k 2 Zþ;

8
><

>:
ð4Þ

where U ¼ ðuT1 ; uT2 ; . . .; uTNÞ
T ; and the initial value fðrÞ ¼

fr ¼ ðfT1r; f
T
2r; . . .; f

T
NrÞ

T ; fir ¼ yir � xi0; i 2 H:

Definition 1 [35] For given impulse sequence ftkg 2 F
and constant r[ 0, the system (1) and (2) is said to be

FTLS if there exists a constant T[ 0 such that

lim
t!Tþr

jfiðtÞj ¼ lim
t!Tþr

jyiðtÞ � xiðt � rÞj ¼ 0

and

lim
t!Tþr

jfiðtÞj 
 0; if t� T þ r; i 2 H;

where T called synchronizing time depends on the initial

value fir and impulse sequences F .

Remark 1 From the description of lag synchronization

error system, the response system does not receive the

information from the driver system from time 0 to r. Thus,
in Definition 1, we describe this characteristic for FTLS,

that is, synchronization time of the drive-response systems

is delayed due to the constant r which is named trans-

mission delay. Due to the existence of transmission delay

r, the real synchronization time of the drive-response

systems is T þ r, where T represents the synchronizing

time starting from the time r and depends not only on the

initial value fir but also on the impulse sequence F . In

particular, assume that a special case of r ¼ 0 is consid-

ered, and then, we can realize the complete synchronization

of the systems (1) and (2) with synchronizing time

T. Hence, there is a wide applicability in our results.

Definition 2 [32] For any vector m ¼ ðm1; m2; . . .; mnÞT 2 Rn

and constant l, we define

SðmÞ ¼ ðsignðm1Þ; signðm2Þ; . . .; signðmnÞÞT ;
DðmÞ ¼ diagðjm1jl; jm2jl; . . .; jmnjlÞ:

Assumption 1 There exist constants e1; e2 [ 0 such that

uncertainties MA; MB 2 Rn�n satisfy the following

conditions:

MAT
MA� e1I; MBT

MB� e2I:
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Before giving the main results, we first introduce the

theoretical results of impulsive systems, which plays an

important role in our proof.

Consider the following nonlinear impulsive system:

_xðtÞ ¼ f ðxtÞ; t 6¼ tk; t� t0;

xðtÞ ¼ gðxðt�ÞÞ; t ¼ tk; k 2 Zþ;

xð0Þ ¼ x0:

8
><

>:
ð5Þ

Li et al. [22] provide the detailed descriptions for functions

f, g and impulse sequence S, which are omitted here. For

system (5), the following lemma can be obtained.

Lemma 1 [22] Let Uq ¼ fx 2 Rn : jxj � qg with q[ 0:

System (5) is FTS over the class S of impulse sequences if

there exist constants b 2 ½1;1Þ; g 2 ð0; 1Þ; a[ 0; func-

tions w1;w2 2 K, and locally Lipschitz continuous function

VðxÞ : Rn ! Rþ such that

(i) w1ðjxjÞ �VðxÞ�w2ðjxjÞ; 8x 2 Rn;

(ii) VðgðxÞÞ� b
1

1�gVðxÞ; 8x 2 Rn; t ¼ tk;

(iii) DþV � � aVgðxÞ; 8x 2 Rn; t 6¼ tk; and the

impulse sequences ftkg 2 S satisfy

min j 2 Zþ :
tj

bj�1
� w1�g

2 ðqÞ
að1� gÞ

( )
:¼ N0\þ1:

In addition, the settling time is bounded by

Tðx0; ftkgÞ� bN0�1 w
1�g
2 ðqÞ

að1� gÞ ; 8x0 2 Uq; 8ftkg 2 S;

where N0 depends on ftkg.

3 Main results

In this section, we focus on the design of controllers to

ensure the FTLS of systems (1) and (2), where desyn-

chronizing impulses are considered.

Theorem 1 Under Assumption 1, if there exist constants

a[ 0; q[ 0; b 2 ½1;1Þ; l 2 ð�1; 1Þ; n� n matrices

P[ 0; Q[ 0; n� n diagonal matrices S[ 0; R[ 0; and

n� n real matrix W such that

P IN 	 P IN 	 ðPBÞ IN 	 P

� �IN 	 Q 0 0

� � �IN 	 R 0

� � � �IN 	 S

0
BBB@

1
CCCA\0;

ð6Þ

ðI þ DÞTPðI þ DÞ� b
2

1�lP; ð7Þ

where P ¼ IN 	 ðATPþ PAþ LRLÞþ
2cH 	 ðPCÞ � IN 	W � IN 	WT , L ¼ diagðl1; l2; . . .; lnÞ:

Then, the drive-response system (1) and (2) is FTLS over

the class F under the controller given by

U ¼ �ðIN 	 P�1Þ
�
ðIN 	WÞfðtÞ þ 0:5

�
kmaxðQÞe1I

þ kmaxðSÞe2LL
�
fðtÞ þ 0:5ak

1þl
2
maxðPÞDðfðtÞÞSðfðtÞÞ

�
;

ð8Þ

where impulse sequences ftkg 2 F satisfy

min j 2 Zþ :
tj

bj�1
� 2k

1�l
2
maxðPÞq1�l

að1� lÞ

( )
:¼ N0\þ1:

ð9Þ

In addition, the synchronizing time is bounded by

Tðfr; ftkgÞ� bN0�1 2k
1�l
2
maxðPÞq1�l

að1� lÞ ; ð10Þ

8fr 2 Uq; 8ftkg 2 F ; where N0 depends on ftkg.

Proof Choosing Lyapunov function as

VðtÞ ¼ fTðtÞðIN 	 PÞfðtÞ: ð11Þ

Taking the derivative of V(t) over the time interval t 2
½tk�1; tkÞ; t� r along the solution of (4), we have

DþVðtÞ ¼ 2fTðtÞðIN 	 PÞ _fðtÞ
¼ 2fTðtÞðIN 	 PÞ

�
IN 	 ½Aþ MA�fðtÞ

þ IN 	 ½Bþ MB�GðfðtÞÞ þ cðH 	 CÞfðtÞ þ U
�

¼ fTðtÞ
�
IN 	 ðATPþ PAÞ

�
fðtÞ

þ 2fTðtÞ
�
ðIN 	 PÞðIN 	 MAÞ

�
fðtÞ

þ 2fTðtÞðIN 	 PÞ½IN 	 ðBþ MBÞ�GðfðtÞÞ
þ 2fTðtÞ½cH	ðPCÞ�fðtÞþ2fTðtÞðIN	PÞU:

ð12Þ

From Assumption 1, it is easy to derive

2fTðtÞ
�
ðIN 	 PÞðIN 	 MAÞ

�
fðtÞ

� fTðtÞ½IN 	 ðPQ�1PÞ�fðtÞ
þ fTðtÞ½IN 	 ðMATQMAÞ�fðtÞ

� fTðtÞ½IN 	 ðPQ�1PÞ�fðtÞ
þ kmaxðQÞfTðtÞ½IN 	 ðMAT

MAÞ�fðtÞ
� fTðtÞ

�
IN 	 ððPQ�1PÞ þ kmaxðQÞe1IÞ

�
fðtÞ

ð13Þ

and
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2fTðtÞðIN 	 PÞ½IN 	 ðBþ MBÞ�GðfðtÞÞ
¼ 2fTðtÞ½IN 	 ðPBÞ�GðfðtÞÞ
þ 2fTðtÞ½IN 	 ðPMBÞ�GðfðtÞÞ

� fTðtÞ½IN 	 ðPBR�1BTPÞ�fðtÞ
þ GTðfðtÞÞðIN 	 RÞGðfðtÞÞ
þ fTðtÞ½IN 	 ðPS�1PÞ�fðtÞ
þGTðfðtÞÞ½IN	ðMBTSMBÞ�GðfðtÞÞ

� fTðtÞ½IN 	 ðPBR�1BTPþ PS�1PÞ�fðtÞ
þfTðtÞ½IN	ðLRLÞ�fðtÞ
þ fTðtÞ½IN 	 ðkmaxðSÞe2LLÞ�fðtÞ

¼ fTðtÞ
�
IN 	 ðPBR�1BTPþ PS�1Pþ LRL

þ kmaxðSÞe2LLÞ
�
fðtÞ:

ð14Þ

Substituting (13)–(14) into (12) and considering condition

(6), it holds that

DþVðtÞ� fTðtÞ
�
IN 	 ðATPþ PAþ PQ�1P

þ kmaxðQÞe1I
þ PBR�1BTPþ PS�1Pþ LRL

þ kmaxðSÞe2LLÞ
þ 2cH 	 ðPCÞ

�
fðtÞ

þ 2fTðtÞðIN 	 PÞU

� � ak
1þl
2
maxðPÞfTðtÞDðfðtÞÞSðfðtÞÞ

� � a
�
fTðtÞðIN 	 PÞfðtÞ

�1þl
2

¼ �aV
1þl
2 ðtÞ:

ð15Þ

In addition, when t ¼ tk; k 2 Zþ; one obtains that

VðtkÞ ¼ fTðtkÞðIN 	 PÞfðtkÞ
¼ fTðt�k Þ

�
IN 	 ½ðI þ DÞTPðI þ DÞ�

�
fðt�k Þ

� b
2

1�lfTðt�k ÞðIN 	 PÞfðt�k Þ
� b

2
1�lVðt�k Þ:

ð16Þ

Then, we see that it is easy for inequalities (15) and (16) to

satisfy Lemma 1. Thus, the FTLS of systems (1) and (2)

under the controller (8) over the class F of impulse

sequences given in (9) is achieved. Moreover, the syn-

chronizing time (10) is derived. This completes the

proof. h

Remark 2 In Theorem 1, some sufficient conditions for

synchronization control of systems (1) and (2) are pre-

sented. Note that it is necessary to ensure LMIs (6)–(7)

hold simultaneously, that is to say, some decision matrices

P, Q, W, S, R are solved to ensure LMIs (6)–(7) feasible

for some given parameters at the same time. Moreover, in

implementation, it can be seen from the derivation of

inequality (16) that for given l, it is desirable to find

smallest constants b to ensure the term ðI þ DÞTPðI þ DÞ
is as close as possible to b

2
1�lP. Therefore, when solving

(6)–(7), the MATLAB LMI toolbox is used to find the

smallest b so that the above inequalities hold.

In what follows, another FTLS result for the drive-re-

sponse system (1) and (2) is derived based on a new

Lyapunov function, in which a special case that the

impulse matrix D ¼ diagfd1; d2; . . .; dng[ 0 is considered.

Theorem 2 Under Assumption 1, if there exist constants

a[ 0; q[ 0; b 2 ½1;1Þ; l 2 ð�1; 1Þ; k1; k2; k3 [ 0,

n� n diagonal matrix P[ 0; n� n real matrix W such

that

ðH1ÞIN 	
�
ATPþ PAþ e1

k1
I þ 1

k2
Lþ e2

k3
L
�
þ 2cH	

ðPCÞ � IN 	W � IN 	WT � 0;

ðH2ÞkmaxðI þ DÞ� b
2

1�lI;

where L ¼ diagðl1; l2; . . .; lnÞ: Then, the drive-response

system (1) and (2) is FTLS over the class F under the

controller given by

U ¼ U1 þ U2 ð17Þ

with

U1 ¼ �0:5
�
½IN 	 ðP�1WÞ�fðtÞ þ ½IN 	 ðP�1WTÞ�fðtÞ

þ ðIN 	 PÞSðfðtÞÞ � k1fTðtÞSðfðtÞÞ
þ ½IN 	 ðBBTPÞ�SðfðtÞÞ � k2fTðtÞðIN 	 LÞSðfðtÞÞ
þ ðIN 	 PÞSðfðtÞÞ � k3fTðtÞðIN 	 LÞSðfðtÞÞ

�
;

U2 ¼ �0:5aðIN 	 P�1ÞSðfðtÞÞ½2fTðtÞðIN 	 PÞSðfðtÞ�
1þl
2 ;

where impulse sequences ftkg 2 F satisfy

min j 2 Zþ :
tj

bj�1
� 2

3�l
2 k

1�l
2
maxðPÞq

1�l
2

að1� lÞ

( )
:¼N0\þ1:

ð18Þ

In addition, the synchronizing time is bounded by

Tðfr; ftkgÞ� bN0�1 2
3�l
2 k

1�l
2
maxðPÞq

1�l
2

að1� lÞ ; ð19Þ

8fr 2 Uq; 8ftkg 2 F ; where N0 depends on ftkg.

Proof Consider the Lyapunov function

VðtÞ ¼ 2fTðtÞðIN 	 PÞSðfðtÞÞ: ð20Þ

Taking the derivative of V(t) over the time interval t 2
½tk�1; tkÞ; t� r along the solution of (4), one has that
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DþVðtÞ ¼ 2fTðtÞðIN 	 PÞ _SðfðtÞÞ
þ 2 _fTðtÞðIN 	 PÞSðfðtÞÞ

¼ 2STðfðtÞÞðIN 	 PÞ _fðtÞ
¼ STðfðtÞÞ

�
IN 	 ½ATPþ PA�

þ 2cH 	 ðPCÞ
�
fðtÞ

þ 2STðfðtÞÞ
�
ðIN 	 PÞðIN 	 MAÞ

�
fðtÞ

þ 2STðfðtÞÞ
�
IN 	 ðPBþ PMBÞ

�
GðfðtÞÞ

þ 2STðfðtÞÞðIN 	 PÞU:

ð21Þ

Note that

fTðtÞðIN 	 ðLLÞÞfðtÞ�
�
fTðtÞðIN 	 LÞSðfðtÞÞ

�2
:

From Assumption 1, one obtains that when jfðtÞj 6¼ 0;

2STðfðtÞÞ
�
ðIN 	 PÞðIN 	 MAÞ

�
fðtÞ

� STðfðtÞÞ
�
IN 	 ðPPÞ

�
SðfðtÞÞ � k1fTðtÞSðfðtÞÞ

þ fTðtÞ
�
IN 	 ðMAT

MAÞ
�
fðtÞ � k�1

1

1

fTðtÞSðfðtÞÞ
� STðfðtÞÞ

�
IN 	 ðPPÞ

�
SðfðtÞÞ � k1fTðtÞSðfðtÞÞ

þ e1
k1

fTðtÞSðfðtÞÞ

ð22Þ

and

2STðfðtÞÞ
�
IN 	 ðPBþ PMBÞ

�
GðfðtÞÞ

� STðfðtÞÞ
�
IN 	 ðPBBTPÞ

�
SðfðtÞÞ

� k2fTðtÞðIN	LÞSðfðtÞÞ
þ GTðfðtÞÞGðfðtÞÞ � k�1

2

1

fTðtÞðIN 	 LÞSðfðtÞÞ
þ STðfðtÞÞ

�
IN 	 ðPPÞ

�
SðfðtÞÞ

� k3fTðtÞðIN 	 LÞSðfðtÞÞ
þ GTðfðtÞÞ

�
IN 	 ðMBT

MBÞ
�
GðfðtÞÞ

� k�1
3

1

fTðtÞðIN 	 LÞSðfðtÞÞ
� STðfðtÞÞ

�
IN 	 ðPBBTPÞ

�
SðfðtÞÞ

� k2fTðtÞðIN	LÞSðfðtÞÞ
þ k�1

2 fTðtÞðIN 	 LÞSðfðtÞÞ
þ STðfðtÞÞ

�
IN 	 ðPPÞ

�
SðfðtÞÞ

� k3fTðtÞðIN 	 LÞSðfðtÞÞ

þ e2
k3

fTðtÞðIN 	 LÞSðfðtÞÞ:

ð23Þ

When jfðtÞj ¼ 0;, it can be derived that

2STðfðtÞÞ
�
ðIN 	 PÞðIN 	 MAÞ

�
fðtÞ

¼ STðfðtÞÞ
�
IN 	 ðPPÞ

�
SðfðtÞÞ

� k1fTðtÞSðfðtÞÞ þ
e1
k1

fTðtÞSðfðtÞÞ;

2STðfðtÞÞ
�
IN 	 ðPBþ PMBÞ

�
GðfðtÞÞ

¼ STðfðtÞÞ
�
IN 	 ðPBBTPÞ

�
SðfðtÞÞ

� k2fTðtÞðIN	LÞSðfðtÞÞ
þ k�1

2 fTðtÞðIN 	 LÞSðfðtÞÞ
þ STðfðtÞÞ

�
IN 	 ðPPÞ

�
SðfðtÞÞ

� k3fTðtÞðIN 	 LÞSðfðtÞÞ

þ e2
k3

fTðtÞðIN 	 LÞSðfðtÞÞ:

Thus, assertion Eqs. (22) and (23) hold for any fðtÞ 2 RNn:

Moreover, from the definition of SðmÞ , we have

STðfðtÞÞSðfðtÞÞ ¼
0; jfðtÞj ¼ 0;

M 2 f1; . . .;Nng; jfðtÞj 6¼ 0:

�

Combining this with (21)–(23) over the time interval

t 2 ½tk�1; tkÞ; t� r;, one has that

DþVðtÞ
� STðfðtÞÞ

�
IN 	 ½ATPþ PA� þ 2cH 	 ðPCÞ

�
fðtÞ

þ STðfðtÞÞ
�
IN 	 ðPPÞ

�
SðfðtÞÞ � k1fTðtÞSðfðtÞÞ

þ STðfðtÞÞ
�
IN 	 ðPBBTPÞ

�
SðfðtÞÞ

� k2fTðtÞðIN 	 LÞSðfðtÞÞ
þ STðfðtÞÞ

�
IN 	 ðPPÞ

�
SðfðtÞÞ

� k3fTðtÞðIN 	 LÞSðfðtÞÞ

þ e1
k1

fTðtÞSðfðtÞÞ þ 1

k2

	

þ e2
k3



fTðtÞðIN 	 LÞSðfðtÞÞ

þ 2STðfðtÞÞðIN 	 PÞU
� 2STðfðtÞÞðIN 	 PÞU2

¼ �aSTðfðtÞÞSðfðtÞÞ½2fTðtÞðIN 	 PÞSðfðtÞÞ�
1þl
2

� � aV
1þl
2 ðtÞ:

ð24Þ

In addition, when t ¼ tk; k 2 Zþ;

VðtkÞ ¼ 2fTðtkÞðIN 	 PÞSðfðtkÞÞ
¼ 2fTðt�k Þ

�
IN 	 ðI þ DÞ

�TðIN 	 PÞ
S
�
ðIN 	 ðI þ DÞÞfðt�k Þ

�

� 2kmaxðI þ DÞfTðt�k ÞðIN 	 PÞSðfðt�k ÞÞ
� 2b

2
1�lfTðt�k ÞðIN 	 PÞSðfðt�k ÞÞ

¼ b
2

1�lVðt�k Þ:

ð25Þ
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According to Lemma 1, the FTLS problem of systems (1)

and (2) under the controller (17) over the class F of

impulse sequences given in (18) is achieved, and moreover,

the synchronizing time (19) is derived. The proof is

completed. h

Remark 3 In recent years, there are many results dealt

with the problem for FTLS of CNs [24, 35–37]. However,

note that the controllers in [24, 36] needed state feedback

with special structure when the lag synchronization error is

not zero, i.e., fi=jfij2 when fi 6¼ 0, which is named frac-

tional state feedback. The obvious disadvantage of this

kind of controllers is that although ui is defined when

fi ¼ 0, when fi is close to 0, it is difficult to determine

whether ui is bounded or not, which indicates that these

controllers are difficult to apply in finite-time sense when

considering the synchronization problem. In our results, the

controllers (8) and (17) can effectively solve the problem

of boundedness in [24, 36] and are easier to implement in

applications. In addition, it should be noted that these

researches are all based on continuous state dynamics.

When considering a system with impulses, there are many

difficulties and challenges, such as when the FTLS system

is affected by impulse disturbance, the FTLS property may

changed and the synchronizing time may increase or even

tend to infinity. Hence, some FTLS conditions of drive-

response systems with impulse effects are presented in our

results, which generalizes the previous results.

Remark 4 In Theorems 1 and 2, by constructing different

Lyapunov functions, the FTLS criteria of CNs involving

impulsive disturbance are obtained, respectively. The pro-

posed results show that different impulses will lead to

different synchronization times. If the system is subjected

to impulse disturbance with large disturbance strength or

more frequent impulse sequence, the convergence rate will

slow down, and then, the synchronization time will be

delayed. Conversely, when smaller disturbance strength or

less frequent impulse sequence is involved to the system,

the convergence speed will speeded up and then the

synchronization time will be shortened. This observation

can be found from (10) and (19).

4 Numerical examples

In this section, a example is given to illustrate the FTLS of

the drive-response system with impulse disturbance under

the control design.

Example 1 CNs often arise in the modeling of practical

systems, such as digital communication network, urban

public transportation, epidemic spreading phenomena. In

view of this, we consider the following 3D uncertain CNs

as drive system

_xiðtÞ ¼ ðAþ MAÞxiðtÞ þ ðBþ MBÞf ðxiðtÞÞ

þ c
XN

j¼1

hijCxjðtÞ; i ¼ 1; 2; 3; 4;
ð26Þ

with

A ¼
�1 2 0

1 �1 1

0 �7 1

0

B@

1

CA;

MA ¼
�0:1 0:2 0:1

0:1 �0:1 0:1

0:1 0:1 �0:1

0
B@

1
CA;

B ¼
2 0 0

0:2 �0:1 1

7 0 0:1

0
B@

1
CA;

MB ¼
0:1 0:1 0:2

0:1 0:2 �0:1

0:1 �0:1 �0:2

0

B@

1

CA;

H ¼

�2 0 1 1

1 �1 0 0

0 1 �1 0

0 1 1 �2

0

BBB@

1

CCCA;

C ¼ diagf0:3; 0:4; 0:5g;

Fig. 1 Trajectories of drive system (26)

Fig. 2 Trajectories of error fi ¼ yiðtÞ � xiðt � rÞ with r ¼ 1 under

controller (17)
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c ¼ 0:2 and f ðmÞ ¼ ðf1ðmÞ; f2ðmÞ; f3ðmÞÞT ; where

fjðmÞ ¼ 0:5ðjmþ 1j � jm� 1jÞ; j ¼ 1; 2; 3:

Consider the initial condition x10 ¼ ð1; 2;�1ÞT ; x20 ¼
ð3;�1; 2ÞT ; x30 ¼ ð5;�3;�1ÞT ; x40 ¼ ð�1; 2; 1ÞT : Then,

state trajectories of drive system (26) are shown in Fig. 1.

Considering the response system involving impulses

disturbance in the form of

_yiðtÞ ¼ ðAþ MAÞyiðtÞ þ ðBþ MBÞf ðyiðtÞÞ

þc
XN

j¼1

hijCyjðtÞ þ uiðtÞ; t 2 ½tk�1; tkÞ;

DyiðtkÞ ¼ Dðyiðt�k Þ � xiðt�k � rÞÞ; k 2 Zþ;

8
>>>><

>>>>:

ð27Þ

where impulses matrix

D ¼
0:8 0 0

0 0:9 0

0 0 0:6

0
B@

1
CA

and impulse sequences t4k ¼ 3k; t4k�1 ¼
3k � 1; t4k�2 ¼ 3k � 1:98; t4k�3 ¼ 3k � 1:99:

In simulation, the lag synchronization with r ¼ 1 is

considered. In what follows, we choose a ¼ 2; b ¼
1:3; l ¼ 0:2; k1 ¼ k2 ¼ k3 ¼ 1 and note that L ¼ I; e1 ¼
0:1; e2 ¼ 0:1: According to Theorem 2, the following

feasible solution is derived by MATLAB LMI toolbox

P ¼
0:0388 0 0

0 0:0388 0

0 0 0:0388

0

B@

1

CA;

W ¼
0:5254 0:0405 0

0:0525 0:5244 �0:0981

0 �0:0879 0:5855

0

B@

1

CA:

Then drive-response system (26) and (27) can achieve

FTLS under the controller (17), where synchronizing time

is bounded by Tðfr; ftkgÞ� 1:8797. Under same condi-

tions, when considering system without impulses, we can

estimated the synchronizing time Tðfr; ftkgÞ� 0:8556. It

shows that due to the existence of impulse disturbances in

response system, the synchronization time is delayed. The

lag synchronization errors of CNs with impulse disturbance

and the synchronizing time with r ¼ 1 are shown in Fig. 2.

Correspondingly, the state trajectories without/with con-

troller are shown in Fig. 3, where the initial condition is

chosen as y1r ¼ ½1; 3;�2�T ; y2r ¼ ½2; 1; 1�T ;
y3r ¼ ½3;�1; 1�T ; y4r ¼ ½�3; 1; 1�T :

bFig. 3 Trajectories of systems (26) and (27) with r ¼ 1 without/with

controller (17) in Example 1
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5 Conclusion

This paper studied the FTLS of uncertain CNs subjecting to

impulsive disturbances, and some criteria on synchroniza-

tion control were established by employing different Lya-

punov function in two theorems. In particular, the

synchronizing time for addressed impulsive system was

estimated, which shows that different impulses will lead to

different synchronization times. Finally, the effectiveness

of the proposed results was verified by a numerical

example. The development for systems involving delayed

impulses with synchronizing-time estimation is an inter-

esting topic in the future, and moreover, further interesting

research topic is the case that synchronization time is

independent of the initial value, i.e., the problem of fixed-

time synchronization. In addition, inspired by [39, 40], our

another future work will concern with controller design for

finite-time problems of practical system.
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