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Abstract
We present a new version of YOLO with better performance and extended with instance segmentation called Poly-YOLO.

Poly-YOLO builds on the original ideas of YOLOv3 and removes two of its weaknesses: a large amount of rewritten labels

and an inefficient distribution of anchors. Poly-YOLO reduces the issues by aggregating features from a light SE-Darknet-

53 backbone with a hypercolumn technique, using stairstep upsampling, and produces a single scale output with high

resolution. In comparison with YOLOv3, Poly-YOLO has only 60% of its trainable parameters but improves the mean

average precision by a relative 40%. We also present Poly-YOLO lite with fewer parameters and a lower output resolution.

It has the same precision as YOLOv3, but it is three times smaller and twice as fast, thus suitable for embedded devices.

Finally, Poly-YOLO performs instance segmentation by bounding polygons. The network is trained to detect size-inde-

pendent polygons defined on a polar grid. Vertices of each polygon are being predicted with their confidence, and therefore,

Poly-YOLO produces polygons with a varying number of vertices. Source code is available at https://gitlab.com/irafm-ai/

poly-yolo.

Keywords Object detection � Instance segmentation � YOLOv3 � Bounding box � Bounding polygon � Real-time detection

1 Problem statement

Object detection is a process where all important areas

containing objects of interest are bounded, while the

background is ignored. Usually, the object is bounded by a

box that is expressed in terms of the spatial coordinates of

its top-left corner and its width and height. The disadvan-

tage of this approach is that for the objects of complex

shapes, the bounding box also includes background data,

which can occupy a significant part of the area as the

bounding box does not wrap the object tightly. Such

behavior can decrease the performance of a classifier

applied over the bounding box [1] or may not fulfill the

requirements of precise detection [2]. To avoid the

problem, classical detectors such as Faster R-CNN [3] or

RetinaNet [4] were modified into a version of Mask

R-CNN [5] or RetinaMask [6]. These methods also infer

the instance segmentation, i.e., each pixel in the bounding

box is classified into object/background classes. The limi-

tation of the methods is their computation speed, where

they are unable to reach real-time performance on non-

high-tier hardware. The problem we focus on is to create a

precise detector with instance segmentation and the ability

of real-time processing on mid-tier graphics cards. By

‘‘mid-tier,’’’ we mean NVIDIA 2O and 3O graphics cards,

while the high-tier is presented by V100/A100, Titans, or

TPUs.

In this study, we start with YOLOv3 [7], which excels in

processing speed, and therefore, it is a good candidate for

real-time applications running on computers [8] or mobile

devices [9]. On the other hand, the precision of YOLOv3

lags behind detectors such as RetinaNet [4], EfficientDet

[10], or CornerNet [11]. We analyze YOLO’s performance

and identify its two drawbacks. The first drawback is the

low precision of the detection of big boxes [7] caused by

inappropriate handling of anchors in the output layers. The
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second one is rewriting of labels by each other due to the

coarse resolution. To solve these issues, we design a new

approach, dubbed Poly-YOLO, that significantly pushes

forward the original YOLOv3 capabilities. To tackle the

problem of instance segmentation, we propose a way to

detect tight polygon-based contours; see (Figs. 1, 2, 3)

illustrating the output of Poly-YOLO. Our contributions

and benefits of our approach are as follows:

• We propose Poly-YOLO that increases the detection

accuracy of the previous version, YOLOv3. Poly-

YOLO has a brand-new feature decoder with a single

output tensor that goes to a head with a higher

resolution that solves two principal YOLO’s issues:

rewriting of labels and incorrect distribution of anchors.

• We produce a single output tensor by a hypercolumn

composition of multi-resolution feature maps produced

by a feature extractor. To unify the resolution of the

feature maps, we utilize stairstep upscaling, which

allows us to obtain a slightly lower loss in comparison

with direct upscaling while the computation speed is

preserved.

• We design an extension that realizes instance segmen-

tation using bounding polygon representation. The

number of maximal polygon vertices can be adjusted

according to the requirement of precision. The system

accepts labels with an arbitrary number of vertices,

even over the defined maximum.

• The bounding polygon is detected within a polar grid

with relative coordinates that allow the network to learn

general, size-independent shapes. The network pro-

duces a dynamic number of vertices per bounding

polygon up to the maximum defined vertices.

2 Current state and related work

2.1 Object detection

Models for object detection can be divided into two groups:

two-stage and one-stage detectors. Two-stage detectors

split the process as follows. In the first phase, regions of

interest (RoI) are proposed, and in the subsequent stage,

bounding box regression and classification is being done

inside these proposed regions. One-stage detectors predict

the bounding boxes and their classes at once. Two-stage

detectors are usually more precise in terms of localization

and classification accuracy, but in terms of processing are

slower than one-stage detectors. Both of these types con-

tain a backbone network for feature extraction and head

networks for classification and regression. Typically, the

backbone is some SOTA network such as ResNet [5] or

ResNext [12], pre-trained on ImageNet or OpenImages.

Even, some approaches [13, 14] also experiment with

training from scratch.

2.1.1 Two-stage detectors

The prototypical example of two-stage architecture is

Faster R-CNN [3], which is an improvement of its prede-

cessor Fast R-CNN [15]. The main improvement lies in the

use of region proposal network (RPN), which replaced a

much slower selective search of RoIs. It also introduced the

usage of multi-scale anchors to detect objects of different

sizes. Faster R-CNN is, in a way, a meta-algorithm that can

have many different incarnations depending on a type of

the backbone and its heads. One of the frequently used

backbones, called feature pyramid network (FPN) [16],

allows to predict RoIs from multiple feature maps, each

with a different resolution. This is beneficial for the

recognition of objects at different scales.

2.1.2 One-stage detectors

Two best-known examples of one-stage detectors are

YOLO [7] and SSD [17]. The architecture of YOLO will

be thoroughly described in Sect. 3. Usually, one-stage

detectors divide the image into a grid and predict bounding

boxes and their classes inside them, all at once. Most of

them also use the concept of anchors, which are predefined

typical dimensions of bounding boxes that serve as a priori

knowledge. One of the major improvements in the area of

one-stage detectors was a novel loss function call Focal

Loss [4]. Because of the fact that two-stage detectors

produce a sparse set of region proposals in the first step,

most of the negative locations are filtered out for the sec-

ond stage. One-stage detectors, on the other hand, produce

a dense set of region proposals which they need to classify

as containing objects or not. This creates a problem with

the non-proportional frequency of negative examples.

Focal loss solves this problem by adjusting the importance

of negative and positive examples within the loss function.

Another interesting idea was proposed in an architecture

called RefineDet [18], which performs a two-step regres-

sion of the bounding boxes. The second step refines the

Fig. 1 The figure shows instance segmentation performance of the

proposed Poly-YOLO algorithm applied on Cityscapes dataset and

running 22FPS on a mid-tier graphic card. Image was cropped due to

visibility
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bounding boxes proposed in the first step, which produces

more accurate detection, especially for small objects.

Recently, there has been a surge of interest in approaches

that do not use anchor boxes. The main representative of

this trend is the FCOS framework [19], which works by

predicting four coordinates of a bounding box for every

foreground pixel. These four coordinates represent a dis-

tance to the four boundary edges of a bounding box in

which the pixel is enclosed in. The predicted bounding

boxes of every pixel are subsequently filtered by NMS.

Similar anchor-free approach was proposed in CornerNet

[11], where the objects are detected as a pair of top-left and

bottom-right corners of a bounding box.

2.2 Instance segmentation

In many applications, a boundary given by a rectangle may

be too crude, and we may instead require a boundary

framing the object tightly. In the literature, this task is

called instance segmentation, and the main approaches also

fit into the one-stage/two-stage taxonomy. The prototypical

example of a two-stage method is an architecture called

Mask R-CNN [5], which extended Faster R-CNN by add-

ing a separate fully convolutional head that predicts masks

of objects. Note the same principle is also applied to

RetinaNet, and the improved net is called RetinaMask [6].

One of Mask R-CNN innovations is a novel way for

extracting features from RoIs using the RoIAlign layer,

which avoids the problem of misalignments of the RoI due

to its quantization to the grid of the feature map. One-stage

methods, for instance, segmentation can be further divided

into top-down methods, bottom-up methods and direct

methods. Top-down methods [20, 21] work by first

detecting an object and then segmenting this object within

a bounding box. Prediction of bounding boxes either uses

anchors or is anchor free following the FCOS framework

[19]. Bottom-up methods [22, 23], on the other hand, work

by first embedding each pixel into a metric space in which

are these pixels subsequently clustered. As the name sug-

gests, direct methods work by directly predicting the seg-

mentation mask without bounding boxes or pixel

embedding [24]. We also mention that independently of

our instance segmentation, PolarMask [25] introduces

instance segmentation using polygons, which are also

predicted in polar coordinates. In comparison with Polar-

Mask, Poly-YOLO learns itself in general size-independent

shapes due to the use of the relative size of a bounding

polygon according to the particular bounding box. The

second difference is that Poly-YOLO produces a dynamic

number of vertices per polygon, according to the shape-

complexity of various objects.

3 Fast and precise object detection
with Poly-YOLO

Here, we firstly recall YOLOv3 fundamental ideas,

describe issues that block reaching higher performance and

propose our solution that removes them.

3.1 YOLO history

First version of YOLO (You Only Look Once) was intro-

duced in 2016 [26]. The motivation behind YOLO is to

create a fast object detector with an emphasis on speed.

The detector is made of two essential parts: the

Fig. 2 Examples of Poly-YOLO inference on the Cityscapes testing dataset

Fig. 3 Examples of Poly-YOLO inference on the India driving testing dataset
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convolutional neural network (CNN) and a specially

designed loss function. The CNN backbone is inspired by

GoogleNet [27] and has 24 convolutional layers followed

by 2 fully connected layers. The network output is reshaped

into a two-dimensional grid with the shape of Gh � Gw,

where Gh is the number of cells in the vertical side and Gw

in the horizontal side. Each grid cell occupies a part of the

image, as depicted in Fig. 4. Every object in the image has

its center in one of the cells, and that particular cell is

responsible for detecting and classifying the said object.

More precisely, the responsible cell outputs NB bounding

boxes. Each box is given as a tuple (x, y, w, h) and a

confidence measure. Here, (x, y) is the center of the pre-

dicted box relative to the cell boundary and (w, h) is the

width and height of the bounding box relative to the image

size. The confidence measures how much is the cell con-

fident that it contains an object. Finally, each cell outputs

Nc conditional class probabilities, i.e., the probabilities that

the detected object belongs to a certain class(es). In other

words, cell confidence tells us that there is object in the

predicted box and the conditional class probabilities tell us

that the box contains, e.g., a vehicle—car. The final output

of the model is a tensor with dimensions

Gh � Gw � ð5NB þ NcÞ, where constant five is used

because of (x, y, w, h) and a confidence.

YOLOv2 [28] brought a couple of improvements.

Firstly, the architecture of the convolutional neural network

was updated to Darknet-19—a fully convolutional network

with 19 convolutional layers containing batch normaliza-

tion and five max-pooling layers. The cells are no longer

predicting the plain (x, y, w, h) directly, but also scales and

translates anchor boxes. The parameters ðaw; ahÞ, i.e., the
width and height of an anchor box for all anchor boxes, are

extracted from a training dataset with the usage of k-means

algorithm. The clustering criterion is IoU. Lastly, YOLOv2

uses skip connections to concatenate features from differ-

ent parts of the CNN to create a final tensor of feature

maps, including features across different scales and levels

of abstraction.

The most recent version of YOLO [7] (YOLOv3)

introduces mainly three output scales and a deeper archi-

tecture—Darknet-53. Each of the scales has its own set of

anchors—three per output scale. Compared with v2,

YOLOv3 reaches higher accuracy, but due to the heavier

backbone, its inference speed is decreased.

3.2 YOLOv3 issues blocking better performance

YOLOv3, as it is designed, suffers from two issues that we

discovered and that are not described in the original

YOLOv2 and YOLOv3 papers: rewriting of labels and

imbalanced distribution of anchors across output scales.

Solving these issues is crucial for the improvement of the

YOLO performance.

3.2.1 Label rewriting problem

Here, we discuss the situation, when a bounding box given

by its label from a ground truth dataset can be rewritten by

other box and therefore the network is not trained to detect

it. For the sake of simplicity and explanation, we avoid the

usage of the anchor’s notation in the text below. Let us

suppose there is an input image with a resolution of r � r

pixels. Furthermore, let sk be the scale ratio of the k-th

output to the input, where YOLOv3 uses the following

ratios: s1 ¼ 1=8; s2 ¼ 1=16; s3 ¼ 1=32. These scales are

given by the YOLOv3 architecture, namely, by strided

convolution. Finally, let B ¼ fb1; . . .; bng be a set of boxes

presented in an image. Each box bi is represented as a tuple

ðbx1i ; b
y1

i ; b
x2

i ; b
y2

i Þ that defines its top-left and bottom-right

corners. For simplicity, we also derive the centers C ¼
fc1; . . .; cng where ci ¼ ðcxi ; c

y
i Þ is defined as cxi ¼ 0:5ðbx1i þ

bx
2

i Þ and the same for cyi . With this notation, a label is

rewritten, if the following holds:

9ðci; cj 2 CÞ : nðcxi ; cxj ; skÞ þ nðcyi ; c
y
j ; skÞ ¼ 2; ð1Þ

where

nðx; y; zÞ ¼
1; bxzc ¼ byzc

0; else

�
; ð2Þ

and b�c denotes the lowest integer of the term. The purpose

of the function n is to check if both boxes are assigned to

the same cell of a grid on the scale sk. In simple words, if

two boxes with the same scale are assigned to the same

cell, then one of them will be rewritten. Introducing

anchors, both must belong to the same anchor. As a con-

sequence, the network is trained to ignore some objects,

which leads to a low number of positive detections.

According to Eqs. (1) and (2), there is a crucial role of sk
that directly affects the number and resolution of cells.

Considering the standard resolution of YOLO r ¼ 416,

Fig. 4 The left image illustrates the YOLO grid over the input image,

and yellow dots represent centers of detected objects. The right image

illustrates detections
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then, for s3 (the coarsest scale) we obtain a grid of 13� 13

cells with the size of 32� 32 pixels each. Moreover, the

absolute size of boxes does not affect the label rewriting

problem; the important indicator is the box center. The

practical illustration for such a setting and its consequences

for the labels is shown in Fig. 5. The ratio of rewritten

labels in the datasets used in the benchmark is shown in

Table 1.

3.2.2 Anchors distribution problem

The second YOLO issue comes from the fact that YOLO is

anchor-based (i.e., it needs prototypical anchor boxes for

training/detection), and the anchors are distributed among

output scales. Namely, YOLOv3 uses nine anchors, three

per output scale. A particular ground truth box is matched

with the best matching anchor that assigns it to a certain

output layer scale. Here, let us suppose a set of box sizes

M ¼ fm1; . . .;mng, where mi ¼ ðmw
i ;m

h
i Þ is given by

mw
i ¼ bx

2

i � bx
1

i for width and analogously for height. The

k-means algorithm [29] is applied to M to determine the

centroids in 2D space, which then represent the nine

anchors. The anchors are split into triplets and connected

with small, medium, and large boxes detected in the output

layers. Unfortunately, such a principle of splitting anchors

according to three sizes is generally reasonable if

M�Uð0; rÞ

holds. By Uð0; rÞ we notate a uniform distribution between

the bounds given by 0 and r. However, such a condition

cannot be guaranteed for various applications in general.

Note M�N ð0:5r; rÞ, where N ð0:5r; rÞ is a normal dis-

tribution with mean l ¼ 0:5r and standard deviation r2 ¼
r is a more realistic case, which causes that most of the

boxes will be captured by the middle output layer (for the

medium size) and the two other layers will be underused.

To illustrate the problem, let us suppose two sets of box

sizes, M1 and M2; the former connected with the task of car

plate detection from a camera placed over the highway and

the latter connected with a person detection from a camera

placed in front of the door. For such tasks, we can obtain

roughly M1 �N ð0:3r; 0:2rÞ because the plates will cover a
small area and M2 �N ð0:7r; 0:2rÞ because the people will
cover large areas. For both sets, the anchors are computed

separately. The first case leads to the problem that the

output scales for medium and large will also include small

anchors because the dataset does not include big objects.

Here, the problem of label rewriting will escalate because

small objects will need to be detected in a coarse grid. The

second case works vice versa. Large objects will be

detected in the small and medium output layers. Here, the

detection will not be precise because the small and medium

output layers have limited receptive fields. The receptive

field for the three scales is {85� 85, 181� 181,

365� 365}. The practical impact of the two cases is the

same: the performance will be suboptimal. In the paper that

introduced YOLOv3 [7], the author says ‘‘YOLOv3 has

relatively high AP small performance. However, it has

comparatively worse performance on medium and larger

size objects. More investigation is needed to get to the

bottom of this.’’ We believe that the reason why YOLOv3

has these problems is explained in the paragraph above. Let

us note that generic datasets for object detection have a

distribution of sizes from Gaussian’s, Poisson’s, or bino-

mial distribution rather than from uniform, which is almost

unreal. To verify the claim, see Fig. 5 in [30] where is

shown the distribution of sizes in COCO, Pascal VOC, Sun

and ImageNet. In all cases, we can see the distributions are

far from the uniform one.
Fig. 5 The image illustrates the label rewriting problem for the

detection of cars. A label is rewritten by other if centers of two boxes

(with the same anchor box) belong to the same cell. In this illustrative

example, blue denotes grid, red rewritten label, and green preserved

label. Here, 10 labels out of 27 are rewritten, and the detector is not

trained to detect them

Table 1 Amount of rewritten labels for various datasets

Dataset Resolution Rewritten labels [%]

Poly Poly

YOLOv3 YOLO YOLO lite

Simulator 416�416 16.36 0.22 2.31

Simulator 608�800 12.55 0.00 0.61

Cityscapes 416�416 9.51 2.79 9.50

Cityscapes 608�832 3.92 0.97 2.75

Cityscapes 640�1280 2.56 0.59 1.44

India Driving 416�416 23.07 5.80 13.78

India Driving 448�800 13.54 1.92 4.96

India Driving 704�1280 9.16 1.12 2.44
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3.3 Poly-YOLO architecture

Before we describe the architecture itself, let us mention

the motivation and the justification for it. As we described

in the previous section, YOLO’s performance suffers from

the problem of label rewriting and the problematic distri-

bution of anchors among output scales.

The first issue can be suppressed by high values of sk,

i.e., a scale multiplicator that expresses the ratio of the

output resolution with respect to the input resolution r. The

ideal case would happen when r ¼ rsk, i.e., sk ¼ 1, which

means that the output and input resolutions are equal. In

this case, no label rewriting may occur. Such a condition

generally holds in many encoder–decoder-based segmen-

tation NNs such as U-Net [31]. As we are focusing on the

computational speed, we have to omit such a scheme to

find a solution where sk\1 will be a reasonable trade-off.

Let us recall that YOLOv3 uses s1 ¼ 1=8, s2 ¼ 1=16,

s3 ¼ 1=32.

The second issue can be solved in one of two ways. The

first way is to define the receptive fields for the three output

scales and define two thresholds that will split them. Then,

k-means will compute centroid triplets (used as anchors)

according to these thresholds. This would change the data-

driven anchors to problem-driven (receptive field) anchors.

For example, data M� N ðr=5; r/10) would be detected

only on the scale detecting small objects and not on all

scales as it is currently realized in YOLOv3. The drawback

of such a way is that we will not use the full capacity of the

network. The second way is to create an architecture with a

single output that will aggregate information from various

scales. Such an aggregated output will also handle all

anchors at once. Thus, in contrast to the first way, the

estimation of anchor sizes will be again data-driven.

We propose to use a single output layer with a high s1
scale ratio connected to all anchors, which solves both

issues mentioned above. Namely, we use s1 ¼ 1=4. An

illustration of a comparison between the original and the

new architecture is shown in Fig. 6. For the composition of

the single output scale from multiple partial scales, we use

the hypercolumn technique [32]. Formally, let O be a

feature map, uð�;xÞ a function upscaling an input by a

factor x, and mð�Þ be a function transforming a feature map

with dimension a� b� c� � into a feature map with

dimension a� b� c� d, where d is a constant. Further-

more, we consider gðO1; . . .;OnÞ to be an n-nary compo-

sition/aggregation function of feature maps O1; . . .;On. For

that, the output feature map using the hypercolumn tech-

nique is given as

O ¼ g m O1ð Þ; u mðO2Þ; 21
� �

; . . .; u mðOnÞ; 2n�1
� �� �

:

Selecting addition as an aggregation function, the formula

can be rewritten as

O ¼
Xn
i¼1

uðmðOiÞ; 2i�1Þ:

As it is evident from the formula, there is a high imbal-

ance—a single value of O1 projects into O just a single

value, while a single value of On is projected into 2n�1 �
2n�1 values directly. To break the imbalance, we propose to

use the staircase approach known from the computer gra-

phic, see Fig. 7. The stairstep interpolation increases (or

decreases for downscale) an image resolution by 10% at

maximum until the desired resolution is reached. In com-

parison with a direct upscale, the output is more smooth but

does not include, e.g., step artifacts as a direct upsampling

does. Here, we will use the lowest available upscale factor,

two. Formally, a stairstep output feature map O0 is defined
as

O0 ¼ . . .uðuðmðOnÞ; 2Þ þ mðOn�1Þ; 2Þ. . .þ mðO1Þ:

If we consider the nearest neighbor upsampling, O ¼ O0

holds. For bilinear interpolation (and others), O 6¼ O0 is

reached for non-homogenous inputs. The critical fact is that

the computational complexity is equal for both direct

upscaling and stairstep upscaling. Although the stairstep

approach realizes more adding, they are computed over

feature maps with a lower resolution, so the number of

added elements is identical.

For understanding the practical impact, we initiated the

following experiment. We trained Poly-YOLO for 200

training and 100 validation images from Cityscapes dataset

[33] for the version with direct upscaling and stairstep

upscaling used in the hypercolumn. We ran the training

process five times for each of the versions and plotted the

training progress in the graph in Fig. 8. The graph shows

that the difference is tiny, but it is evident that stairstep

interpolation in hypercolumn yields slightly lower training

and validation losses. The improvement is obtained for the

identical computation time.

The last way how we propose to modify YOLO’s

architecture is the usage of squeeze-and-excitation (SE)

blocks [34] in the backbone. Darknet-53, like many other

neural networks, uses repetitive blocks, where each block

consists of coupled convolutions with a residual connec-

tion. The squeeze-and-excitation blocks allow the usage of

both spatial and channel-wise information, which leads to

accuracy improvement. By the addition of squeeze-and-

excitation blocks and by working with higher output res-

olution, the computation speed is decreased. Because speed

is the main advantage of YOLO, we reduced the number of
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convolutional filters in the feature extraction phase.

Namely, it is set to 75% of the original number. In addition,

the neck and head are lighter, together having 37.1M

parameters, which is significantly less than what YOLOv3

has (61.5M). Still, Poly-YOLO achieves higher precision

than YOLOv3—see Sect. 5.3. We also propose Poly-

YOLO lite, which is aimed at higher processing speed. In

the feature extractor and the head, this version has only

66% of the filters of Poly-YOLO. Finally, s1 is reduced to

1/8. The number of parameters of Poly-YOLO lite is

16.5M.

We want to highlight that for feature extraction, an

arbitrary SOTA backbone such as (SE)ResNeXt [12] or

EfficientNet [10] can be used, which would probably

increase the overall accuracy. Such an approach can also be

seen in the paper YOLOv4 [35], where the authors use a

different backbone and several other tricks (that can also be

applied in our approach), but the head of the original

YOLOv3 is left unchanged. The issues we described and

removed in Poly-YOLO actually arise from the design of

the head of YOLOv3, and a simple swap of a backbone will

not solve them. The model would still suffer from label

rewriting and improper anchor distribution. In our work,

we have focused on the performance improvement

achieved by conceptual changes and not brute force. Such

improvements are then widely applicable, and a modern

backbone can be easily integrated.

4 Instance segmentation with Poly-YOLO

The last sentence in YOLOv3 paper [7] says ‘‘Boxes are

stupid anyway though, I’m probably a true believer in

masks except I can’t get YOLO to learn them.’’ Here, we

show how to extend YOLO with masking functionality

(instance segmentation) without a big negative impact on

its speed. In our previous work [1], we were focusing on

more precise detection of YOLO by means of irregular

quadrangular detection. We proved that the extension for

quadrangular detection converges faster. We also

Fig. 6 A comparison of YOLOv3 and Poly-YOLO architecture. Poly-

YOLO uses less convolutional filters per layer in the feature extractor

part and extends it by squeeze-and-excitation blocks. The heavy neck

is replaced by a lightweight block with hypercolumn that utilizes a

stairstep for upsampling. The head now uses single instead of three

outputs and has a higher resolution. In summary, Poly-YOLO has

40% less parameters than YOLOv3 while producing more precise

predictions
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Fig. 7 Illustration of HC scheme (left) and HC with stairstep (right)
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Fig. 8 The graph shows a difference between the usage of the

standard hypercolumn technique and the hypercolumn with stairstep

in the term of the loss. The thin lines denote particular learning runs,

and the thick lines are mean of the runs. The training loss is computed

as a loss over the epoch through the samples used for training. The

validation loss is computed after each epoch through the samples

from the validation dataset, which is used only for validation purposes

and not for training. The difference between the training and

validation loss expresses the overfitting of the model
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demonstrated that classification using the quadrangular

approximation yields higher accuracy than using the rect-

angular approximation. The limitation of that approach lies

in the fixed number of detected vertices, namely, four.

Here, we introduce a polygon representation that is able to

detect objects with a varying number of vertices without

the usage of a recurrent neural network that would slow

down the processing speed. To see a practical difference

between the quality of bounding-box detection and poly-

gon-based detection, see Fig. 10, where we show results

from Poly-YOLO trained to detect various geometric

primitives including random polygons.

4.1 The principle of bounding polygons

YOLOv3 uses a perpendicular grid consisting of cells

where each cell can detect a bounding box, or bounding

boxes in the case of multiple anchors. We extend each cell

with an additional polar subgrid, see Fig. 9. Let us recall,

we can describe a box as bi ¼ ðbx1i ; b
y1

i ; b
x2

i ; b
y2

i Þ, i.e., as a

tuple of its top-left and bottom-right coordinates. We

propose to extend the tuple as bi ¼ ðbx1i ; b
y1

i ; b
x2

i ; b
y2

i ;ViÞ,
where Vi ¼ fvi;0; . . .; vi;ng is a set of polygon vertices of a

given object with n polar cells. Furthermore,

vi;j ¼ ðai;j; bi;j; ci;jÞ, where a and b are the coordinates of a

polygon vertex in a polar coordinate system and c is its

confidence. If no vertex is present in a polar cell, the

confidence should be ideally equal to zero; otherwise, it

should be equal to one. The purpose of the confidence is to

indicate whenever a given cell contains an object vertex or

not. For example, Fig. 9 contains a star, and some polar

cells do not have a vertex in them. Such cells will have

confidence 0, and their predictions will be ignored. In the

case of polar cells with vertices, confidence 1. In practice,

Poly-YOLO produces confidences in [0,1]. The threshold

for the absence/presence of a vertex in a cell is set to 0.5.

In a common dataset, many objects are masked with a

similar shape because they are captured from a similar

viewpoint; the difference is only in the object size. For

example, instances of car plates, hand gestures, humans, or

cars have almost identical shapes. The general shape can be

easily described using polar coordinates, which is the

motivation why we use the polar coordinate system instead

of the Cartesian one for bounding polygons. Here, ai;j
stands for the distance of a vertex from the origin and bi;j
for an oriented angle. The center of a bounding box is used

as the origin. Furthermore, we divide the vertex distance

from the origin by the length of a diagonal of the bounding

box to obtain ai;j 2 ½0; 1�. Then, during the inference, when

the bounding box with a bounding polygon is detected, the

absolute distance from the origin is obtained by multiply-

ing ai;j with the diagonal of the detected box. The principle

allows the network to learn general, size-independent

shapes, not particular instances with sizes. For example, let

us suppose two images of the same car that are placed at

two distinct distances from a camera so that in each image,

its size will be different. The model will be trained to detect

confidence, angles, and relative distances from the

bounding box center for every vertex. These values will be

the same for both images. When the predictions are real-

ized, the distances are multiplied by the box diagonal, and

the particular values of the two differently sized cars will

be obtained. In comparison with PolarMask [25] which has

to predict distinct distances for different object sizes, this

sharing of values should make the learning easier.

Still, additional improvement is possible. For the ori-

ented angle, it holds that bi;j 2 ½0; 360�, which can be

changed to bi;j 2 ½0; 1� by a linear transformation. Because

our polar system is split into polar cells, it would be ben-

eficial to focus the inside of a cell to a particular part of the

angle interval, which is covered by the cell. When a certain

polar cell fires with high confidence, the vertex has to be

inside the cell. Therefore, we propose to take bi;j 2 ½b1; b2�,
where b1i;j and b2i;j are the minimum and the maximum

angle captured by the polar cell in which the vertex lies.

Then, we make a linear transformation of bi;j, where b
1
i;j ¼

0 and b2i;j ¼ 1 hold. In other words, when a certain polar

cell has high confidence, we know that it contains a vertex.

By a distance from the origin and the location of the polar

cell, we know its approximate position, and by the angle

inside the cell, we refine the position precisely.

Fig. 9 The image illustrates grids used in Poly-YOLO. Left: the

rectangular grid, which is taken from YOLOv3. A cell where an

object’s bounding box has its center predicts its bounding box

coordinates. Right: the grid based on circular sectors used in Poly-

YOLO for the detection of vertices of the polygon. The center of the

grid coincides with the center of the object’s bounding box. Each

circular sector is then responsible for detecting polar coordinates of

the particular vertex. Sectors, where no vertex is present, should yield

confidence equal to zero
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4.2 Integration with Poly-YOLO

The idea of detecting bounding polygons is universal and

can be easily integrated into an arbitrary neural network. In

general, three parts have to be modified: the way how the

data are prepared, an architecture and a loss function. For

the extraction of bounding polygons from semantic seg-

mentation labels, see Sect. 5.1. The extracted bounding

polygons have to be augmented in the same way as the

bounding boxes.

The architecture has to be modified to produce the

intended values. In the case of Poly-YOLO, the number of

convolutional filters in the output layer has to be updated.

When we detect only bounding boxes, the last layer is

represented by n ¼ naðnc þ 5Þ convolutional filters with a

kernel of dimension (1, 1), where na is the number of

anchors (nine, in our case) and nc stands for the number of

classes. After integrating the extension for polygon-based

object detection, we obtain n ¼ naðnc þ 5þ 3nvÞ, where nv
is the maximal number of detected vertices per polygon.

We can observe that nv has a high impact on the number of

convolutional filters. For example, when we have nine

anchors, twenty classes and thirty vertices, the output layer

detecting bounding boxes and polygons will have 4:6�
more filters than when detecting bounding boxes only. On

the other hand, the increase happens only in the last layer;

all remaining YOLO layers have the same number of

parameters. From that point of view, the total number of

the NN parameters is increased by a negligible 0.83%, and

the processing speed is not affected. The weak point lies in

the fact that the increase is in the last layer, which pro-

cesses high-resolution feature maps. This causes an

increased demand for VRAM for a symbolic tensor when

the network is trained, which may lead to a decrease of the

maximum possible batch size used during the learning

phase.

For explaining how a loss function has to be modified,

we describe the multi-part loss function ‘ used in Poly-

YOLO as follows:

‘ ¼
XGwGh

i¼0

Xna
j¼0

qi;j½‘1ði; jÞ þ ‘2ði; jÞ þ ‘3ði; jÞ þ ‘5ði; jÞ�

þ ‘4ði; jÞ;

where ‘1ði; jÞ is a loss for a prediction of a center of a

bounding box, ‘2ði; jÞ is a loss for the dimensions of a box,

‘3ði; jÞ is the confidence loss, ‘4ði; jÞ is the class prediction

loss and ‘5ði; jÞ is a loss for a bounding polygon made of

distance, angle and vertex confidence prediction. Finally,

qi;j 2 f0; 1g is a constant indicating if the i-th cell and the j-
th anchor contains a label or not. The loss iterates over

GwGh grid cells and na anchors. The parts ‘1; . . .; ‘4 are

taken from YOLOv3 and modified into a form working

with a single output layer. Part ‘5 is new and extends Poly-

YOLO with the functionality of polygon detection. In the

following formulas, we use b� to denote predictions of the

network. The parts of the loss function are defined as

follows:

‘1ði; jÞ ¼ zi;j Hðcxi;j; bcxi;jÞ þ Hðcyi;j; bcyi;jÞ
h i

;

where cxi;j and cyi;j are coordinates of the center of a box,

Hð�; �Þ is the binary cross-entropy, zi;j ¼ 2� wi;jhi;j serves

for a relative weighting of (i, j)-th box size according to its

width wi;j and height hi;j.

‘2ði; jÞ ¼ 0:5zi;j log
wi;j

awj

 !
� ŵi;j

 !2
2
4

þ log
hi;j

ahj

 !
� ĥi;j

 !2
3
5;

where awj and ahj are the width and height of the j-th anchor.

‘3ði; jÞ ¼ qi;jHðqi;j; q̂i;jÞ þ ð1� qi;jÞHðqi;j; q̂i;jÞIi;j;

where q̂i;j is the predicted confidence and Ii;j is a mask

which excludes the part of a loss for the i-th cell if qi;j ¼ 0

but its prediction has IoU[ 0.5.

‘4ði; jÞ ¼
Xc
k¼0

HðCi;j;k � Ĉi;j;kÞ;

where Ci;j;k is k-th class probability in i-th cell. Finally,

‘5ði; jÞ ¼ 0:2
Xv
l¼0

zi;j

"
ci;j;k log

ai;j;k
adj

 !
� âi;j;k

 !2

þ ci;j;kHðbi;j;k; b̂i;j;kÞ

þ Hðci;j;k; ĉi;j;kÞ
#
;

where adj is the diagonal of the j-th anchor. Note that the

last equation is our polygon representation loss, one of our

main contributions.

The described scheme of integration results in the

simultaneous detection of both bounding boxes and

bounding polygons. Such a combination may be beneficial

due to the synergy—convolutional neural networks detect

edges in its bottom, then combine them into more complex

shapes in the middle and propose highly descriptive

abstract features in a head [36]. Because the polygon ver-

tices always lie in the bounding box and because the ver-

tices delimit the same object as the bounding box, the

intuition is the bounding polygon part will find features

useful for the bounding box and vice versa. The assumption
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is that the training of YOLO with polygon shape detection

extension will be more efficient and converge faster. The

principle is well known and described in the literature as

Auxiliary task learning [37]. For completeness, let us

suppose a special case when an object is a perpendicular

box. In such a case, the contour of the bounding box will

coincide with the contour of the bounding polygon, and the

left-top vertex will be detected by both the bounding box

and polygon. Still, the two detections will be synergistic,

and the training will require a shorter time than the training

of vanilla bounding box detection. For the verification of

the claims, see results of Poly-YOLO detection with/

without bounding polygon detection in Sect. 5.3.

5 Benchmarks

Here, we describe the experiments and results which we

realized. We divide them into two scenarios, algorithms for

pure bounding box detection and algorithms for instance

segmentation. Each scenario includes three datasets,

namely Simulator, Cityscapes and IDD. For the training,

we use three computers with RTX2080Ti, RTX2060, or

GTX1080 graphics cards. The inference time is always

measured on the computer with the 2080 card. In the

experiments, we set the maximum number of vertices for

Poly-YOLO to 24.

5.1 Preparing data for Poly-YOLO

As was stated before, one of the features of Poly-YOLO is

an object detection with the ability to estimate a polygon

tightly wrapping around the object. For that purpose, quite

specific data must be fetched in. Commonly, publicly

available datasets focus on pixel-precise segmentation

masks. The mask assigns each pixel to one of the many

predefined classes. Unfortunately, for Poly-YOLO, we

need a polygonal representation and not pixel-wise repre-

sentation. Because of that, some pre-processing became

inevitable.

As an input to the extraction of a bounding polygon, we

suppose a blob of pixel coordinates of a given object. That

notation is standard for general pixel segmentation tasks.

Then, we find the most distant points from an object center.

It means that if an object is folded, we do not extract the

inner boundary points, just the most distant ones. For

example, an object with a shape of a Swiss roll will have a

contour similar to the circle. Finally, we erase points that

lie in a straight line between two other points. Note, for a

single object, we always extract a single bounding polygon.

If we take, e.g., a car which is partly overlapped by a tree,

the bounding polygon will bound the whole car, including

the part covered behind the tree.

Another way to obtain training data is to generate them

synthetically. For that, we use two of our tools. The first

one serves for a generation of complex and realistic scenes,

as is shown in Fig. 11. The second one can generate an

infinite number of images, where the following parameters

can be configured: the resolution of images, the number of

geometric primitives per image, the type of geometric

primitives and the range of their size. It is also possible to

add a random background. For the illustration, see Fig. 10.

The tool is available at our GitLab repository.1

5.2 Datasets

In the benchmark, we use three datasets: Simulator,

Cityscapes [33] and India Driving [38].

Simulator is our own synthetic dataset available online,2

consisting of 700 training, 90 validation and 100 test

images with a resolution of 600� 800 px. The dataset is

useful for fast prototyping, hyperparameter searching, or as

a starting point for transfer learning because the low

number of images allows fast training, and the captured

scenes are trivial. It includes only a single class (a car),

where its particular instances are rendered using a single

3D model. On the other hand, the scene is illuminated by

physically precise lights. An illustrative image with

detection by Poly-YOLO is visualized in Fig. 11.

Cityscapes is a dataset captured from a car driven

through various German cities. The images were captured

during the day or evening, and all of them have the same

resolution of 2048 � 1024 px. For Cityscapes, both

bounding boxes and pixel-level labels are available. The

process, how we extracted polygons from pixel-level

annotations is described in Sect. 5.1. Notwithstanding, the

pixel-level labels include objects such as sky, building and

tree, we use only objects connected with traffic such as a

car, pedestrian, or bike. In total, we predict 12 classes.

Because the testing dataset does not contain labels, we

moved several images from the training to the testing

dataset. Finally, our train/valid/test datasets consist of

2474/500/500 images. The information about the particular

distribution of the images can be found in our repository.

IDD is a dataset similar to Cityscapes that focuses on

unstructured traffic on India’s roads. In contrast to Citys-

capes, the road borders captured in the images are fuzzy,

traffic is heavier and messy, and the images have various

resolutions. The distribution of images is as follows—

14010 for training, 977 for validation and 1049 for testing.

1 https://gitlab.com/irafm-ai/poly-yolo/-/tree/master/synthetic_

dataset.
2 https://gitlab.com/irafm-ai/poly-yolo/-/tree/master/simulator_

dataset.
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5.3 Results

We present all measured results for the three datasets in

Table 2. Poly-YOLO were trained separately for the ver-

sion of pure bounding box detection and with bounding

polygon detection. The original vanilla version3 of

YOLOv3, which we modified into the Poly-YOLO version,

is included as well. For the comparison with SOTA, we

have trained RetinaNet4 as a representative of the bounding

box detection algorithm and Mask R-CNN5 as a repre-

sentative of the instance segmentation algorithms. The

SOTA algorithms were trained using transfer learning.

Poly-YOLO was trained from scratch due to the fact that

no pre-trained model is available. The models are trained

until early stopping is reached. To see the detailed setting

of the training procedure, please check our repository. For

the evaluation of the results, we use the mAP (mean

average precision) coefficient from the official COCO

repository.6

Overall, we can observe that Poly-YOLO significantly

increases YOLOv3 detection accuracy (the relative average

increase is 40%), although the inference speed is slightly

faster. On the other hand, Poly-YOLO lite slightly out-

performs the detection accuracy of YOLOv3, but it is twice

faster. The important fact is also that Poly-YOLO with

bounding polygon preserves the bounding box detection

accuracy. Moreover, the accuracy of bounding boxes is

increased in four out of six cases, so we can say the fea-

tures used for bounding polygons are suitable for bounding

boxes too. If we compare Poly-YOLO with RetinaNet, we

have to report that RetinaNet yields higher precision, but it

is slower in two of the three cases.

Let us also emphasize that the used framework and

operating system have a significant impact. According to

the original RetinaNet paper [4], it should run approxi-

mately 10FPS. However, the authors have rewritten the

original RetinaNet implementation with the usage of the

PyTorch framework, have optimized it massively, and

made it available only for Linux, which clearly leads to a

significant speed-up. According to the official documen-

tation of Detectron27 library from which we used Retina-

Net implementation, the reimplementation increased the

computation speed three times. Therefore, the comparison

of the computation speed is slightly unfair for us as we are

using Tensorflow and Windows. Thus, the open direction

and future work is to rewrite our Poly-YOLO to PyTorch

by a coding expert to reach even higher computation speed.

Therefore, we mark RetinaNet inference speed in the

table with * symbol. Let us note YOLOv3 and Mask

R-CNN were performed using the same framework and OS

as Poly-YOLO, i.e., Tensorflow and Windows.

In the case of the simulator dataset where RetinaNet has

the same resolution as Poly-YOLO, Poly-YOLO has higher

AP50, but it is less accurate for AP75, which can be given

by the fact that RetinaNet utilizes more anchor boxes,

which can improve the precise detection. For the two other

datasets, RetinaNet has been trained for a higher resolution

(selected automatically), and it is better even for AP50.

When we analyzed the outputs, we observed that Poly-

3 https://github.com/qqwweee/keras-yolo3.
4 https://github.com/facebookresearch/detectron2.
5 https://github.com/matterport/Mask_RCNN.
6 https://github.com/cocodataset/cocoapi/tree/master/PythonAPI. 7 https://detectron2.readthedocs.io/notes/benchmarks.html.

Fig. 10 Comparison of Poly-YOLO bounding box detection (top) and Poly-YOLO bounding polygon detection (bottom)

Fig. 11 The figure shows an illustrative image from the Simulator

dataset. The blue color shows prediction realized by Poly-YOLO lite

at 52FPS. The image was slightly cropped to increase visibility
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YOLO has a less precise class classification. That may be

given by the fact that it uses a categorical cross-entropy for

the classification loss function, while RetinaNet uses focal

loss that works significantly better for imbalanced datasets.

Here, it may be beneficial to integrate the focal loss into

Poly-YOLO in future work. From the last comparison with

Mask R-CNN, we can report that Mask R-CNN has slightly

better box detection accuracy, but it is less accurate in

masking. Furthermore, its processing speed is lower than

the Poly-YOLO processing speed. That makes it compli-

cated for real-time image/video processing.

Note the value of the precision numbers for the neural

networks is lower than the state-of-the-art results. That is,

by the fact that our graphics cards are unable to process

colossal batch sizes, and because of the training time, we

do not realize the enormous amount of iterations with a

fixed decrease of a learning rate, but we control the

learning rate dynamically and utilize early stopping.

6 Discussion

Here, we present the impact of hyperparameter setting on

Poly-YOLO performance, discussing additional improve-

ments and current limitations.

6.1 Hyperparameters

In Poly-YOLO, three aspects should be examined: the way,

how squeeze-and-excitation blocks are integrated into the

architecture, a dependency on a number of vertices and a

dependency on a number of anchors.

According to the original paper [34], the best result is

achieved when the squeeze-and-excitation block is placed

in the first position in the residual block, before convolu-

tion. However, Darknet-53 uses a special tuple of convo-

lution where the expansion layer follows the bottleneck

layer. Therefore, we realized a simple experiment whose

results are shown in Fig. 13. From this graph, we can see

that SE-Standard, i.e., placing a squeeze-and-excitation

Table 2 The results of the involved algorithms for bounding box detection and instance segmentation on the three datasets

Method Backbone Resolution Instance Box Mask FPS

segment AP AP50 AP75 AP AP50 AP75

Performance on the simulator dataset

RetinaNet ResNet-50 FPN 608�800 7 0.475 0.714 0.487 – – – 25.0*

YOLOv3 Darknet-53 608�800 7 0.305 0.699 0.220 – – – 21.2

Poly-YOLO SE-Darknet-53 608�800 7 0.413 0.735 0.408 – – – 22.0

Poly-YOLO SE-Darknet-53 lite 416�576 7 0.322 0.661 0.258 – – – 58.6

Mask R-CNN ResNet-50 448�448 4 0.389 0.664 0.414 0.203 0.452 0.157 15.8

Poly-YOLO SE-Darknet-53 608�800 4 0.435 0.745 0.445 0.345 0.731 0.272 19.6

Poly-YOLO SE-Darknet-53 lite 416�576 4 0.377 0.694 0.348 0.298 0.675 0.270 52.7

Performance on the cityscapes dataset

RetinaNet Resnet-50 FPN 608�1216 7 0.224 0.379 0.231 – – – 21.0*

YOLOv3 Darknet-53 416�832 7 0.106 0.266 0.061 – – – 26.3

Poly-YOLO SE-Darknet-53 416�832 7 0.168 0.344 0.141 – – – 26.5

Poly-YOLO SE-Darknet-53 lite 320�608 7 0.104 0.231 0.080 – – – 46.8

Mask R-CNN Resnet-50 1024�1024 4 0.164 0.318 0.151 0.069 0.202 0.031 6.2

Poly-YOLO SE-Darknet-53 416�832 4 0.129 0.273 0.105 0.087 0.240 0.046 21.9

Poly-YOLO SE-Darknet-53 lite 320�608 4 0.114 0.253 0.091 0.078 0.217 0.044 37.2

Performance on the India driving dataset

RetinaNet Resnet-50 FPN 608�1080 7 0.221 0.357 0.230 – – – 19.8*

YOLOv3 Darknet-53 448�800 7 0.117 0.267 0.089 – – – 23.9

Poly-YOLO SE-Darknet-53 448�800 7 0.152 0.304 0.137 – – – 25.5

Poly-YOLO SE-Darknet-53 lite 352�608 7 0.125 0.260 0.105 – – – 46.7

Mask R-CNN Renset-50 1024�1024 4 0.175 0.300 0.177 0.098 0.217 0.077 7.5

Poly-YOLO SE-Darknet-53 448�800 4 0.145 0.288 0.134 0.115 0.267 0.083 20.6

Poly-YOLO SE-Darknet-53 lite 352�608 4 0.131 0.263 0.119 0.101 0.239 0.074 37.1
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block after the convolution gives the best result. On the

basis of this experiment, we use the setting of SE-Standard

in our SE-Darknet-53.

The second aspect is the maximal number of possible

vertices in the polygon, or in other words, the resolution of

the polar grid. Let us note, if an object is quadrangular,

there is no difference if the maximal number is four or

twenty. On the other hand, if an object is complicated and

defined by, e.g., 80 vertices, with the maximal number set

to 10, we will lose information due to quantization. In

Fig. 12, we examine the impact of the maximal number of

vertices on the loss and a mean average precision.

According to the definition of the loss function given in

Sect. 4.2, the error is summed over all vertices. Therefore,

a bigger maximal number of vertices should produce a

higher loss if the objects consist of enough vertices. That

assumption is reflected in the graph. It is interesting that the

dependency is sub-linear. It means that increasing the

maximal number of vertices does not produce a signifi-

cantly more complicated task. On the contrary, increasing

this number may lead to smaller quantization and deliver

more information useful in the training of a network. The

disadvantage is that as the number goes up, it increases the

number of parameters in the high-resolution output tensor.

That may force us to use smaller batch sizes and, therefore,

to an increase in the training time. Thus, the proper

selection is up to a user and available hardware.

The last aspect to investigate how the precision depends

on the number of anchors used. Let us recall, YOLOv2

uses a single output layer and five anchors, YOLOv3 uses

three output layers with three anchors per layer, nine in

total. When the labels are pre-processed, each label is

assigned to an anchor, for which the IOU is maximized.

Then, such an anchor is used to detect a box for that par-

ticular label the network is trained. From that, it is evident

that the higher number of anchors makes the task more

complicated. On the other hand, a higher number of

anchors may be helpful to partially solve the label rewriting

problem mentioned in Sect. 3.2. In Fig. 12, we show the

results of the experiment where a network is trained for a

various number of anchors. According to the loss, the

optimal value is between six and nine anchors; a higher or

lower number increases both the training loss and the

validation loss. We have selected the same number as

YOLOv3, i.e., nine (Fig. 13).

6.2 Emphasizing parts of detections

As we mentioned in Sect. 1, a practical application where

quick instance segmentation may be helpful is the imple-

mentation of an intelligent car headlamp, where various

objects in front of a car can be lightened/dimmed indi-

vidually. The precise object detection based on the

polygonal principle, which we propose, uses polar coor-

dinates that allow improving the functionality even further.

Let us consider classes such as car, biker, pedestrian, or

van. Objects of such a class should be lightened more (to

increase their visibility), but it is also necessary to avoid

their dazzling. The solution is not to illuminate parts that

include a front glass of a car, the head of a pedestrian, etc.

To detect such parts, additional extensive data labeling

would be required in the standard case. In our case, it is

enough to manually define an interval in the polar coor-

dinate system that should not be dazzled. The benefits are

that such a manual definition is fast, easily controlled, it

does not affect training/inference speed, it is explainable,

and what is essential—it is independent on the size of an

object or its aspect ratio. Finally, it is not necessary to

define additional labels. The illustration of such inference

with this additional extension is shown in Fig. 14.

6.3 Limitations

The major limitation discovered during our research came

from the scheme used for polygon vertices definition and

the scheme of how the labels are created, as is described in

Sect. 5.1. If two vertices belong to the same polar cell, the

vertex with a bigger distance from the bounding box center

is taken. That may lead to a situation when a new part to a

strongly non-convex object is added, as it is shown in

Fig. 12 Left: dependence of number of vertices on loss for 9 used

anchors. Right: dependence of number of anchors on loss for 24 used

vertices. The training loss is computed as a loss over the epoch

through the samples used for training. The validation loss is computed

after each epoch through the samples from the validation dataset,

which is used only for validation purposes and not for training. The

difference between the training and validation loss expresses the

overfitting of the model
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Fig. 15. The figure also shows the practical impact of this

limitation. Let us note it is not a problem of training or

inference. It is a problem of the creation of labels; the

network itself is trained correctly and makes predictions

based on the (imprecise) training labels. After we connect

individual vertices, we connect the first vertex with the last

one, and this can cause problems for strongly non-convex

objects. For completeness, this behavior does not happen

for all non-convex objects. If two vertices lie in two dis-

tinct polar cells, even non-convex objects will be handled

correctly, as can be seen in Fig. 10, where Poly-YOLO

works nicely even for non-convex stars.

6.4 Future work

The Poly-YOLO takes as the labels vertices, together with

other pieces of information. The vertices are constructed as

those points in polar cells, where the distance from the

center is maximalized. Such a process is easy to implement

but does not guarantee a maximized IoU between such the

established polygon and the original, ‘‘uncompressed,’’

object’s area. Future work should address the optimal

selection of the vertices. That can be realized by, e.g., a

genetic algorithm that will take the original object’s con-

tour as an input and produce a nearly optimal representa-

tion given by the vertices. There is a hypothesis that the

more precise will be the labels used for training Poly-

YOLO, the more precise will be the predictions.

7 Summary

We have presented Poly-YOLO, which improves YOLOv3

in three aspects. It is more precise, faster and able to realize

instance segmentation. The precision is improved due to

the analysis of issues in YOLO (rewriting of labels and

incorrect distribution of anchors) and their removal by a

newly proposed neck and head. The neck consists of the

hypercolumn technique improved by the stairstep

approach, and the head processes a single output tensor

with high resolution. The new neck and head reach higher

precision, which allows us to decrease the number of

parameters in the original feature extractors, while still

preserving a significantly higher precision. Poly-YOLO has

only 60% of the parameters of YOLOv3 but improves the

accuracy by relatively 40%.

For the task of instance segmentation, we have designed

an extension that detects bounding polygons with a

dynamic number of vertices per detected object. The pro-

posed bounding polygon detection learns itself size-inde-

pendent shapes, which simplifies the task. Poly-YOLO is

able to run real-time on mid-tier graphics cards.

The approach based on Poly-YOLO reached the second

place in a worldwide Signate competition on object

detection and tracking. For details, see the repository.8

8 https://gitlab.com/irafm-ai/signate_3rd_ai_edge_competition.

Fig. 13 Progress of training loss for various SE block placing

variants. The marked lines are computed as the mean from five runs

Fig. 14 The two images illustrate the case when there are manually

defined intervals for angles of vertices (for cars and for pedestrians).

Object area defined by these vertices should be dimmed, while the

rest of the object should be emphasized by car headlamps

Fig. 15 Left: a scheme of label creation for a problematic object,

where the limitation appear. Right: impact on a real predictions, see

the lamp object
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