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Abstract
In this paper, we propose a new set of fractional-order continuous orthogonal moments for image representation. These are

called fractional-order Jacobi moments (FrJMs) and are defined from the fractional-order orthogonal Jacobi polynomials.

We also propose a method for the fast and precise calculation of FrJMs based on recursive calculations of fractional-order

Jacobi polynomials and on the separability property of FrJMs. Then, we will derive invariants of FrJMs with respect to

rotation, scale and translation (RST) in order to apply them for classification tasks. Just as important, we have presented a

systematic parameter selection method for finding the optimal fractional parameter values with respect to pattern recog-

nition applications. Finally, an experimental and comparative study was carried out to test the capacity of FrJMs for the

image reconstruction, extraction of global and local image characteristics, invariance to RST, sensitivity to noise, ability to

recognize similar grayscale images and the computational times of the new descriptors. The proposed descriptors out-

performed the recent orthogonal moments with fractional orders.

Keywords Fractional-order orthogonal Jacobi polynomials � Moment invariants � Image representation � Pattern
recognition � Robustness to noise � Fast and accurate computation
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1 Introduction

1.1 Background

Over the last few decades, 2D/3D images have become

ubiquitous and increasingly important in many scientific

domains such as manufacturing, molecular biology, medi-

cine and computer vision [1–4]. At the same time, image

moments and geometric invariance of moments have

emerged as effective methods of feature extraction from

images [5, 6]. Moment invariants have become a useful

tool for describing objects regardless of their position,

viewing angle and illumination. Due to their ability to

represent global features of an image, moment invariants

have found widely applications in image processing and

pattern recognition [7–9]. Hu [10] is the first who intro-

duced a set of seven invariants of geometric moments for

pattern recognition. After this date, several applications of

moments appeared in the literature such as image recon-

struction [11, 12], image tattoo [13], medical image anal-

ysis [1, 14], image compression [15, 16], image

watermarking [17] and image encryption [18]. Geometric

moments are very sensitive to noise and are not orthogonal,

which complicates the task of reconstructing the image

because of the information redundancy. To overcome these

two problems, the researchers proposed the continuous

orthogonal moments that are defined from the bases of

orthogonal polynomials such as the polynomials of:

Legendre [16], Zernike [19], Pseudo-Zernike [20],

Gegenbauer [21], Laguerre [22], Jacobi [23], Gaussian–

Hermite [24] and Fourier–Mellin [5]. This set of orthogo-

nal moments has received much attention in recent years

because of their ability to represent images with minimal

information redundancy and a high level of robustness to

noise [25]. More recently, Mukundan et al. [26] introduced

discrete orthogonal moments, based on Tchebichef discrete

orthogonal polynomials, which have the property of being

natively defined in discrete space. Consecutively, other

discrete orthogonal moments, such as Krawtchouk [27],

Charlier [12, 28], Mexnier [6, 29], Hahn [30], Racah [31]

and dual-Hahn [32] were introduced in the field of image

analysis. Zhu et al. [33] have defined a new type of

moments called separable two-dimensional orthogonal

continuous moments. These are defined from the separable

bi-variable continuous orthogonal polynomials, which are

obtained by the product of two continuous orthogonal

polynomials of a single variable. It can be seen that all the

aforementioned orthogonal moments are limited to an

integer order, since their basic functions are represented by

orthogonal integer polynomials.

1.2 Related works

Several works for image reconstruction and classification

based on two-dimensional continuous of fractional-order

orthogonal moments and moment invariants of fractional-

order have been presented in the literature. In recent years,

considerable attention has been given to find more accurate

numerical solution of fractional differential equations using

orthogonal polynomials. This has led to define the fractional-

order type of some classical orthogonal polynomials

[25, 33, 34], such as the shifted fractional-order Jacobi

orthogonal functions (SFrJOFs) [35, 36], fractional-order

Chebyshev polynomials (FrCPs) [37, 38] and fractional-

order Legendre polynomials (FrLPs) [39, 40]. These

orthogonal polynomials imply the introduction of a frac-

tional parameter k�0, in order to generalize the notion of

integer order nwith to a fractional order, wherewe can obtain

the classical orthogonal polynomials by defining k ¼ 1. In

fact, fractional-order orthogonal polynomials can be used to

represent the basic function of a new set of fractional-order

orthogonal moments. In this context, Zhang et al. [5] intro-

duced fractional-order orthogonal radial order Fourier–

Mellin moments based on fractional-order Fourier–Mellin

polynomials. Xiao et al. [40] have introduced two types of

fractional-order orthogonal moments defined in polar and

Cartesian coordinates, based, respectively, on the fractional-

order Legendre radial polynomials and the shifted fractional-

order Legendre polynomials. Benouini et al. [41] presented

the orthogonal fractional-order Chebyshev moments

(FrCMs) for image representation and pattern recognition. El

Ogri, et al. [22] derived the Laguerre polynomials of frac-

tional order and defined what is called fractional-order

generalized Laguerre moment invariants (FrGLMs). Hosny

et al. [21] defined the fractional-order shifted Gegenbauer

moments for image analysis and recognition (FrSGMs). The

fractional-order moments presented in the aforementioned

studies [20] can easily become invariant in rotation due to the

separable nature of their radial and angular components.

However, their practical use was substantially limited for the

extraction of rotational invariant features and image recon-

struction, and no discussion regarding the computation of

scale and translation invariants has yet to be found in these

studies because it is difficult to extract a common scale and

translational factors from the radial base function [7, 42, 43].

In addition, these fractional-order moments are very fast and

computationally inexpensive which increase its applicability

in wide range of real-time applications such as distributed

clustering of linear bandits in peer to peer networks [44], the

art of clustering bandits [45], collaborative filtering bandits

[46], medicine rating prediction and recommendation in

mobile social networks [2], fast distributed bandits for online

recommendation systems [47].
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1.3 Problem statement

Due to their strong image description ability, Jacobi

moments (JMs) have been widely used in various fields of

image processing in recent years. However, there is a

numerical instability problem with JMs because they can

only take integer orders, and this problem restricts the

performance of JMs in the extraction of the regions of

interest (ROI), image reconstruction and noise resistance.

To address this problem, the concept of fractional order is

introduced and incorporated into Jacobi moments (JMs)

and fractional-order orthogonal Jacobi moments (FrOJMs)

are proposed; then, the FrOJMs that are suitable for digital

images and have better performance than JMs in noise

resistance, image reconstruction, global and local feature

extraction capability, invariability property and image

classification performance on various databases images to

the public. In this paper, we introduce a new set of frac-

tional-order moments, named fractional-order orthogonal

Jacobi moments (FrOJMs) for image reconstruction and

pattern recognition. This set of moments is defined on the

Cartesian coordinate system based on the Jacobi polyno-

mials of fractional order. In addition, the proposed set of

moments have the capability of being able to extract both

global and local features, where the extraction of local

features can be easily achieved by adjusting polynomials

parameters associated with the gamma distribution. Also,

we propose a new set of RST moment invariants, baptized

fractional-order Jacobi moment invariants (FrJMIs), based

on using the algebraic relation between the FrOJMs and the

fractional-order geometric moments. What is more, we

developed new recurrence relations for the computation of

the polynomials coefficients, which can be used to effi-

ciently reduce the numerical instability and computation

cost of the proposed FrJMIs. Therefore, appropriate

numerical experiments are performed to demonstrate the

utility of our new feature descriptor on different databases.

Motivated by the facts summarized above, the main con-

tributions of this paper include the following points:

(i) Introduce a new set of fractional-order orthogonal

Jacobi moments for the images representation.

(ii) Provide an accurate and fast computation algo-

rithm to derive invariants of Jacobi fractional-

order moments from the RST transformations.

These invariant moments have the capacity to

remain unchanged despite geometric transforma-

tions of rotation, scale and translation of grayscale

images.

(iii) To present an adaptive method for the extraction

of invariant characteristics based on the capacity

of the proposed moments to capture local infor-

mation from the fractional parameters and

parameters of the Jacobi polynomials for any

position of the image.

(iv) Propose a systematic method of parameter selec-

tion to select the appropriate parameter values to

find the optimal values of the fractional parameters

of FrJMIs, based on experimental studies.

(v) The new fractional-order orthogonal Jacobi

moments descriptors are robust to noise.

The rest of this article is organized as follows: In Sect. 2,

we introduce the classical polynomials and moments of

Jacobi. Section 3 is devoted to the definition of the proposed

fractional-order Jacobi moments. Following Sect. 4, we

present the theoretical framework for obtaining the frac-

tional-order Jacobi moment invariants of rotation, scale and

translation. The experimental results and discussions are

carried out in Sect. 5. Finally, the final remarks and direc-

tions for future research are given in Sect. 6.

2 Classical orthogonal Jacobi moments

The Jacobi polynomials are widely used for approximating

numerical functions and solving ordinary and partial dif-

ferential equations. The polynomials of Legendre, Gegen-

bauer, Chebyshev of the first and second species are special

cases of continuous orthogonal polynomials of Jacobi [33].

In the next section, we present the definition of continuous

orthogonal polynomials of Jacobi and their methods of

computation.

2.1 Orthogonal Jacobi polynomials

For a; b 2 R ; a�� 1 ; b�� 1, and a nonnegative integer

n, we denote by J
ða;bÞ
n ðxÞ the Jacobi polynomials, which

comprises all the polynomial solutions to singular Sturm–

Liouville problems on �1; 1½ �.
The Jacobi polynomials, J

ða;bÞ
n ðxÞ, have the following

Gauss hypergeometric representation [36]:

Jða;bÞn ðxÞ ¼ ðaþ 1Þn
n!

2F1 �n; 1þ aþ bþ n ; aþ 1 ;
1� x

2

� �

ð1Þ

where ðaþ 1Þn is Pochhammer’s symbol given by:

ðaþ 1Þn ¼ ðaþ 1Þðaþ 2Þ � � � ðaþ nÞ; n� 1

and ðaþ 1Þ0 ¼ 1
ð2Þ

The function 2F1 is the generalized hypergeometric

which is defined as:

2F1ða; b; c ; xÞ ¼
X1
k¼0

ðaÞkðbÞk
ðcÞk

xk

k!
: ð3Þ
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In this case, the series for the hypergeometric function is

finite, so we get the expression of the Jacobi polynomials

J
ða;bÞ
n ðxÞ of degree n is given by:

Jða;bÞn ðxÞ ¼
Xn
k¼0

vða;b;nÞk xk ð4Þ

where

vða;b;nÞk ¼ ð�1Þn�k Cðnþ bþ 1ÞCðnþ k þ aþ bþ 1Þ
Cðk þ bþ 1ÞCðnþ aþ bþ 1Þ ðn� kÞ!k! :

ð5Þ

The direct calculation of Jacobi polynomials is very

complex, requires computation time and causes numerical

fluctuations especially for large orders. To overcome this

problem, it is proposed to use the recursive form of Jacobi

polynomials. The Jacobi polynomials are generated from

the three-term recurrence relations [35]:

J
ða;bÞ
nþ1 ðxÞ ¼ ðAnx� BnÞJða;bÞn ðxÞ � CnJ

ða;bÞ
n�1 ðxÞ ; n� 1

ð6Þ

with

J
ða;bÞ
0 ðxÞ ¼ 1 and J

ða;bÞ
1 ðxÞ ¼ ðaþ bþ 2Þx� ðbþ 1Þ

ð7Þ

and

An ¼
ð2nþ aþ bþ 1Þð2nþ aþ bþ 2Þ

ðnþ 1Þðnþ aþ bþ 1Þ

Bn ¼
ð2nþ aþ bþ 1Þð2n2 þ ð1þ bÞðaþ bÞ þ 2nðaþ bþ 1ÞÞ

ðnþ 1Þðnþ aþ bþ 1Þð2nþ aþ bÞ

Cn ¼
ð2nþ aþ bþ 2Þðnþ aÞðnþ bÞ

ðnþ 1Þðnþ aþ bþ 1Þð2nþ aþ bÞ :

ð8Þ

The Jacobi polynomials constitute an orthogonal system

with respect to the weight function xða;bÞðxÞ ¼
ð1þ xÞað1� xÞb over I ¼ �1; 1½ �, that is,Z 1

�1

J
ða;bÞ
j ðxÞ Jða;bÞk ðxÞxða;bÞðxÞ dx ¼ h

ða;bÞ
k djk ð9Þ

where djk is the Kronecker function and

h
ða;bÞ
k ¼ 2aþbþ1 Cðk þ aþ 1ÞCðk þ bþ 1Þ

ð2k þ aþ bþ 1Þk!Cðk þ aþ bþ 1Þ : ð10Þ

The normalized Jacobi polynomials ~Jða;bÞn ðxÞ are defined

as:

~Jða;bÞn ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xða;bÞðxÞ
h
ða;bÞ
k

s
Jða;bÞn ðxÞ : ð11Þ

We can deduce that the orthogonality relation of the

normalized Jacobi polynomials:Z 1

�1

~J
ða;bÞ
j ðxÞ ~J

ða;bÞ
k ðxÞ dx ¼ djk: ð12Þ

Figure 1a presents the 2D plot of the matrix of Jacobi

polynomial values for the first five hundred orders using

the recursive relation with respect to the order n as defined

in Eqs. (6) and (11) for N ¼ 500 and a ¼ b ¼ 1. Note that

the values of the polynomials are indefinite from the order

100. After an experimental study of the source of the

problems of the numerical fluctuation of the polynomial

values (Fig. 1), it has been found that the divergence comes

from the parameters h
ða;bÞ
k because this parameter consti-

tutes gamma function. To solve these problems, we pro-

pose to calculate the weighted parameters h
ða;bÞ
k by the

formula of recurrence.

Using the formula of Eq. (10) we find:

h
ða;bÞ
kþ1 ¼ ð2k þ aþ b� 1Þðk þ aÞðk þ bÞ

ð2k þ aþ bþ 1Þðk þ aþ bÞk h
ða;bÞ
k ð13Þ

with h
ða;bÞ
0 ¼ 2aþbþ1Cðaþ1ÞCðbþ1Þ

ðaþbþ1ÞCðaþbþ1Þ .
The recurrence relation in Eq. (13) is independent of the

power and the factorial, we could calculate the Jacobi

values without numerical fluctuation up to order 1000.

Figure 1b shows plots of polynomial values up to 500

without divergence.

2.2 Computation of classical orthogonal Jacobi
moments

The classical Jacobi moments (CJMs) of order ðnþ mÞ of
any function f x; yð Þ defined on �1; 1½ � � �1; 1½ � can be

computed using continuous integrals as:

CJMða;bÞ
nm ¼

Z 1

�1

Z 1

�1

f ðx; yÞ ~Jða;bÞn ðxÞ ~Jða;bÞm ðyÞ dxdy ð14Þ

where n;m ¼ 0; 1; 2; . . .N:

Therefore, the classical Jacobi moments CJMða;bÞ
nm of a

digital image function f x; yð Þ with the size M � N, mapped

into the region �1; 1½ � � �1; 1½ �, can be computed using

zeroth-order approximation (ZOA) method as [48]:

CJMða;bÞ
nm ¼

XN�1

i¼0

XM�1

j¼0

f ði; jÞ ~Jða;bÞn ðxiÞ ~Jða;bÞm ðyjÞDxDy ð15Þ

where

• ~Jða;bÞn ðxÞ is the nth order orthonormal polynomials of

Jacobi and Dx ¼ xi � xi�1, Dy ¼ yj � yj�1 are sampling

intervals in the ‘‘x’’ and ‘‘y’’ directions, respectively,

xi; yj
� �

is the center of i; jð Þ pixel.
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• The image coordinates transform is defined as follows:

xi ¼ iþ 1

2

� �
Dx� 1 ; yj ¼ jþ 1

2

� �
Dy� 1 ð16Þ

with Dx ¼ 2
N ; Dy ¼ 2

M ; i ¼ 0; 1; 2:::::;N � 1 and

j ¼ 0; 1; 2:::::;M � 1.

An approximation ~f x; yð Þ of the original image can be

obtained by:

~f ði; jÞ ¼
Xnmax

n¼0

Xmmax

m¼0

CJMða;bÞ
nm

~Jða;bÞn ðxiÞ ~Jða;bÞm ðyjÞ: ð17Þ

The classical Jacobi orthogonal moments above are

defined only for integer orders. In the next section, we

propose a new type of moments that are fractional-order

orthogonal Jacobi moments. These are extended to

orthogonal moments of real order (or fractional-order)

using fractional-order orthogonal Jacobi polynomials.

3 Proposed fractional-order orthogonal
Jacobi moments

In this section, we will initially review some general

properties of the fractional-order orthogonal Jacobi poly-

nomials (FrOJPs). In the following, we will provide the

definition of the new FrOJMs.

3.1 Fractional-order orthogonal Jacobi
polynomials

In this sub-section, we will define new orthogonal system

of FrOJPs from classical Jacobi polynomials. Let k be a

rational positive number k� 0, for using these polynomials

on 0; 1½ �, we present the classical Jacobi polynomials by

implementing the change of variable x ¼ 2tk � 1.

From the classical Jacobi polynomials of Eq. (4), we can

define the fractional-order Jacobi polynomials FrJða;b;kÞn ðtÞ
as [35]:

FrJða;b;kÞn ðtÞ ¼ Jða;bÞn ð2tk � 1Þ with t 2 0; 1½ �: ð18Þ

Using Eqs. (4) and (5), we obtain:

FrJða;b;kÞn ðtÞ ¼
Xn
k¼0

vða;b;nÞk tkk ð19Þ

with

vða;b;nÞk ¼ ð�1Þn�k Cðnþ bþ 1ÞCðnþ k þ aþ bþ 1Þ
Cðk þ bþ 1ÞCðnþ aþ bþ 1Þ ðn� kÞ!k! :

ð20Þ

From Eq. (6), we find the following recurrence relations

of fractional-order Jacobi polynomials FrJða;b;kÞn ðtÞ:

FrJ
ða;b;kÞ
nþ1 ðtÞ ¼ ðAnð2tk � 1Þ � BnÞFrJða;b;kÞn ðtÞ

� CnFrJ
ða;b;kÞ
n�1 ðtÞ ; n� 1 ð21Þ

with An ;Bn andCn in the relations (8):

FrJ
ða;b;kÞ
0 ðtÞ ¼ 1; FrJ

ða;b;kÞ
1 ðtÞ

¼ ðaþ bþ 2Þ
2

ð2tk � 1Þ þ ða� bÞ
2

: ð22Þ

Let xða;b;kÞðtÞ ¼ k tðbþ1Þk�1ð1� tkÞa. Thanks to (12), the

fractional-order Jacobi functions form a complete

L2xða;b;kÞ ½0; 1�-orthogonal system, that is:

Z 1

0

FrJ
ða;b;kÞ
j ðtÞ FrJða;b;kÞk ðtÞxða;b;kÞðtÞ dt ¼ h

ða;bÞ
k djk: ð23Þ

We can define the normalized fractional-order Jacobi

polynomials by:

(a) (b)

Fig. 1. 2D plot of the coefficient matrix of Jacobi polynomials for orders n ranging from 0 to 500 and a ¼ b ¼ 1 a: using Eq. (8) and b: using
Eq. (13)
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fFrJða;b;kÞn ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xða;b;kÞðtÞ
h
ða;bÞ
k

s
FrJða;b;kÞn ðtÞ : ð24Þ

As a result, the recurrence relation of the normalized

FrOJMs is given as follows:

fFrJða;b;kÞnþ1 ðtÞ ¼ ðAnð2tk � 1Þ � BnÞfFrJða;b;kÞn ðtÞ
� Cn

fFrJða;b;kÞn�1 ðtÞ ; n� 1 ð25Þ

with

gFrJ ða;b;kÞ0 ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xða;b;kÞðtÞ
h
ða;bÞ
k

s

gFrJ ða;b;kÞ1 ðtÞ ¼ ðaþ bþ 2Þð2tk � 1Þ þ ða� bÞ
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xða;b;kÞðtÞ
h
ða;bÞ
k

s
:

ð26Þ

It is easy to verify that the orthogonality condition

becomes:Z 1

0

fFrJða;b;kÞj ðtÞ fFrJða;b;kÞk ðtÞdt ¼ djk: ð27Þ

Finally, it is important to note that the FrOJPs inherit all

the properties of the classical Jacobi polynomials, includ-

ing their relation with the standard gamma distribution.

What is more, the presented FrOJPs include a new frac-

tional parameter k�0, so as to generalize the notion of

integer-order n 2 N to fractional-order kn, where we can

recover the classical Jacobi polynomials as FrJða;b;1Þn ðxÞ ¼
J
ða;bÞ
n ðxÞ by setting k to 1. In fact, this parameter can be also

used for adjusting the distribution and the contraction of

the polynomials zeros. Figure 2 clearly depicts the influ-

ence of the parameter k on the graph of the FrOJPs.

Figure 3 presents the numerical results of the fractional-

order Jacobi polynomials for the four first order n ¼
1; 2; 3; 4 and different values of

k ¼ 1; 1:25; 1:5; 1:75; 2; 2:25.

3.2 Fast and accurate computation
of the fractional-order orthogonal Jacobi
moments

The fractional-order orthogonal Jacobi moments (FrOJMs) of

order ðnþ mÞ of any function f x; yð Þ defined on 0; 1½ � � 0; 1½ �
can be computed using the continuous integrals as follows:

FrJMða;b;kÞ
nm ¼

Z 1

0

Z 1

0

f ðx; yÞfFrJða;b;kÞn ðxÞ fFrJða;b;kÞm ðyÞ dxdy ð28Þ

where n;m ¼ 0; 1; 2; ::::N:

Therefore, for a digital image intensity function f i; jð Þ of
size M � N, the moments FrJMnm can be computed using

zeroth-order approximation (ZOA) method as [48]:

FrJMða;b;kÞ
nm ¼

XN�1

i¼0

XM�1

j¼0

f ði; jÞgFrJ ða;b;kÞn ðxiÞgFrJ ða;b;kÞm ðyjÞDxDy

ð29Þ

where the image coordinates transform is defined in

Eq. (16).

An approximation ~f ði; jÞ of the original image can be

reconstructed by:

~f ði; jÞ ¼
Xnmax

n¼0

Xmmax

m¼0

FrJMnm
gFrJ ða;b;kÞn ðxiÞ gFrJ ða;b;kÞm ðyjÞ: ð30Þ

The calculation of the FrOJMs by the approximate method

is limited by two problems: the very high computation time

especially for the large orders and the errors of approximations

which influence on the quality of the processed images. To

solve these problems, we propose precise and rapid method

for calculating Jacobi fractional-order moments. This method

is based on the use of the separability property of the moment

transform,which allows the computation of the 2DFrOJMs in

two cascaded stages by successive calculation of the corre-

sponding 1D FrOJMs for each line.

From Eq. (29), we obtained the following expression of

the FrOJMs:

FrJMða;b;kÞ
nm ¼ 4

NM

XN�1

i¼0

IXnðxiÞ
XM�1

j¼0

IYmðyjÞf ðxi; yjÞ
" #

¼ 4

NM

XN�1

i¼0

IXnðxiÞ Yi
m ð31Þ

where

Yi
m ¼

XM�1

j¼0

f ði; jÞIYmðyjÞ: ð32Þ

In the first step, we successively calculate the corre-

sponding 1D moments for each line by using the matrix

form of FrOJMs

Yi
m ¼ H1 f : ð33Þ

In the second step, we calculate M temporary matrices

along y direction by using the matrix form of FrOJMs by

successive computation of the corresponding 2D moments

for a grayscale image:

FrJMða;b;kÞ
nm ¼ FrJM

ða;b;kÞ
ij

o0� i� n

0� j�m

�
¼ H1 fH

T
2 ð34Þ

where

H1 ¼ IXlðxiÞgf 0� l� n
1� xi �N ; H2 ¼ IYsðyjÞ

�	 0� s�m

1� yj �M

f ¼ f ðxi; yjÞ
�	 1� xi �N

1� yj �M
:

ð35Þ

The FrOJMs of lower orders are used to describe the

components of low spatial frequency images and higher-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2 Graphs of the first seven orders of the normalized FrOJPs for different values of a; b and k
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order moments store high spatial frequencies of images that

correspond to rapid changes in pixel intensities. The

position and distribution of the zeros correspond to the

ability of the moments to extract image information,

making the proposed moments more suitable for image

reconstruction and classification of images. In fact, the

region of interest can be shifted to different positions, for

k x 	 1 the region shifted to the left and for k x�1 region

shifted to the right, with respect to the x-axis. The region is

moved up for k y 	 1 and down for k y�1, along the y-axis.

Moments have become important and frequently used as

form descriptors for classification and pattern recognition.

The properties of these moments aroused the interest of

finding their invariants in terms of translation, scale and

rotation. In the next section, we will show how to obtain

fractional-order Jacobi moment invariants with respect to

translation and scaling and rotation using the invariants of

the corresponding fractional-order geometric moment

invariants.

4 Proposed generalized fractional-order
Jacobi moment invariants

The FrOJMs are not precisely designed for pattern recog-

nition, in the sense that FrOJMs are not invariants with

respect to the geometric transformation, like rotation,

scaling and translation. And therefore, it may be insuffi-

cient to use the FrOJMs for describing and recognizing

deformed objects. For this, to obtain the rotation, scale and

translation invariants of the FrOJMs, we first need to define

the fractional-order geometric moment invariants

(FrGMIs), which is a modified form of the traditional

geometric moments invariants, by introducing two positive

fractional parameters k 1 ; k 2 �0 in the geometric basis

function ðxk 1pyk 2 qÞ, with p; q 2 N. In the next step, we will

establish the algebraic relationship between the fractional-

order geometric moments and their invariants in order to

obtain generalized Jacobi moment invariants.

4.1 Exact computation of the FrGMs

The FrGMs are defined as the projection of the image

intensity function f ðx; yÞ onto the nominal xk 1pyk 2 q. The

FrGMs of order ðnþ mÞ are defined as:

FrGMk 1 k 2

pq ¼
XN�1

i¼0

XM�1

j¼0

f ði; jÞmpqðxi; yjÞ ð36Þ

where

mpqðxi; yjÞ ¼
Z xiþDxi

2

xi�Dxi
2

Z yiþ
Dyj
2

yi�
Dyj
2

xk 1pyk 2 qdxdy: ð37Þ

Therefore, based on the separability property of the

moments kernel function, we can write the double integral

as follow:

mpqðxi; yjÞ ¼ IpðxiÞIqðyjÞ ð38Þ

where

IpðxiÞ¼
Z xiþDxi

2

xi�Dxi
2

xk 1pdx ¼ 1

k 1pþ 1
Uk 1pþ1

iþ1 � Uk 1pþ1
i

h i

IqðyjÞ¼
Z yiþ

Dyj
2

yi�
Dyj
2

yk 2 qdy ¼ 1

k 2qþ 1
Vk 2qþ1
jþ1 � Vk 2qþ1

j

h i
:

ð39Þ

Upper and lower limits of the integration in Eq. (39)

will be expressed as follows:

Uiþ1 ¼ xi þ
Dxi
2

¼ðiþ1ÞDxi;Ui ¼ xi �
Dxi
2

¼ iDxi

Vjþ1 ¼ yj þ
Dyi
2

¼ðjþ1ÞDyj;Vj ¼ yj �
Dyi
2

¼ jDyj

ð40Þ

Substituting Eq. (38) into Eq. (36) yields a set of exact

geometric moments.

FrGMk 1 k 2

pq ¼
XN�1

i¼0

XM�1

j¼0

f ði; jÞ IpðxiÞ IqðyjÞ ð41Þ

(a) (b) (c) (d)

Fig. 3 Graph of the FrOJPs for the four first order n ¼ 1; 2; 3; 4 and various values of k
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with k 1 and k 2 are rational positive numbers.

The image centroid x̂; ŷð Þ with x̂; ŷð Þ 2 0; 1½ �2 is defined

in terms of the first.

order moments as follows:

x̂ ¼ FrGMk 1 k 2

10

FrGMk 1 k 2

00

; ŷ ¼ FrGMk 1 k 2

01

FrGMk 1 k 2

00

ð42Þ

with k 1 ¼ k 2 ¼ 1.

4.2 Accurate fractional-order geometric moment
invariants

After the definition of FrGMs as a function of the geo-

metric moments, we will propose, in this sub-section, the

exact computation of the fractional-order geometric

moment invariants (FrGMIs) by the transformations of

translation, scaling and rotation. For this, we will define the

central moments of FrGMs noted FrUk 1 k 2
pq that are invari-

ant to the translation as follows:

FrUk 1 k 2

pq ¼
XN�1

i¼0

XM�1

j¼0

f ði; jÞ upqðxi; yjÞ ð43Þ

where

upqðxi; yjÞ ¼
Z xiþDxi

2

xi�Dxi
2

Z yiþ
Dyj
2

yi�
Dyj
2

x� x̂ð Þk 1p y� ŷð Þk 2 qdxdy:

ð44Þ

By applying the separability property of the moments of

the principal function, we can write the double integral in

Eq. (44) as follows:

upqðxi; yjÞ ¼ IupðxiÞIuqðyjÞ ð45Þ

where

IupðxiÞ¼
Z xiþDxi

2

xi�Dxi
2

x� x̂ð Þk 1pdx ¼ 1

k 1pþ 1

ðUiþ1 � x̂Þk 1pþ1 � ðUi � x̂Þk 1pþ1
h i

IuqðyjÞ¼
Z yiþ

Dyj
2

yi�
Dyj
2

y� ŷð Þk 2 qdy ¼ 1

k 2qþ 1

ðVjþ1 � ŷÞk 2qþ1 � ðVj � ŷÞk 2qþ1
h i

:

ð46Þ

The fractional-order geometric moment invariants

(FrGMIs), denoted FrVk 1 k 2
pq , by the transformations of

translation, scaling and rotation are written as:

FrVk 1 k 2
pq ¼ g�c

XN�1

i¼0

XM�1

j¼0

f ði; jÞ vpqðxi; yjÞ ð47Þ

where

vpqðxi; yjÞ ¼
Z xiþDxi

2

xi�Dxi
2

Z yiþ
Dyj
2

yi�
Dyj
2

ðx� x̂Þ cos hþ ðy� ŷÞ sin hð Þk 1p

� ðy� ŷÞ cos h� ðx� x̂Þ sin hð Þk 2q


 �
dxdy:

ð48Þ

The appropriate values for the normalization parameters

c ; g, and the rotational invariants can be obtained by

normalizing the transformed object, are already defined in

the literature [33, 49, 50], by using the special case k 1 þ
k 2 ¼ 1 as follows:

g ¼ FrGMk 1 k 2

00 ; c ¼ k 1 nþ k 2 mþ 2

2

h ¼ 1

2
tan�1 2FrUk 1 k 2

11

FrUk 1 k 2

20 þ FrUk 1 k 2

02

 !
:

ð49Þ

4.3 Accurate computation of the FrJMIs

In this sub-section, we will propose an accurate method for

the extraction of fractional-order Jacobi moment invariants

based on fractional-order geometric moment invariants.

For this, we will normalize the image function f x; y; zð Þ by
the product of the weight functions xðxÞxðyÞxðzÞð Þ�1=2

.

So, the FrJMs defined by Eq. (28) are written:

FrJMnm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
ða;bÞ
n h

ða;bÞ
m

q
Z 1

0

Z 1

0

~f ðx; yÞFrJða;b;kÞn ðxÞFrJða;b;kÞm ðyÞ dxdy:

ð50Þ

By Eqs. (19) and (29), we can express FrOJMs in terms

of FrGMk 1 k 2
pq , based on the relation between FrJ

ða;b;kÞ
n ðtÞ

and the polynomials of tkk:

FrJMnm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
ða;bÞ
n h

ða;bÞ
m

q Xn
p¼0

Xm
q¼0

vða;b;nÞp vða;b;mÞq FrGMk 1 k 2

pq :

ð51Þ

Replacing the FrGMk 1 k 2
pq in the right side of the previous

equation with FrVk 1 k 2
pq defined in Eq. (51), we can obtain

the invariants of rotation, scaling and translation of frac-

tional-order Jacobi moment invariants, which will be des-

ignated by FrJMIs in this article:

FrJMInm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
ða;bÞ
n h

ða;bÞ
m

q Xn
p¼0

Xm
q¼0

vða;b;nÞp vða;b;mÞq FrVk 1 k 2

pq :

ð52Þ

The different stages of calculation fractional-order

Jacobi moment invariants are summarized in Algorithm 1:
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5 Experimental results and discussion

In this section, several experiments are provided to validate

the performance and effectiveness of newly introduced

FrOJMs and FrJMIs compared to existing fractional-order

methods [21, 40, 41]. It is important to note that all the

algorithms and the numerical experiments are implemented

and executed in MATLAB R2016a under Microsoft Win-

dows environment using a PC with Intel Core i5 CPU

2.4 GHz and 8 GB RAM. Through these experiments, we

will test: (1) the ability to represent gray-level images by

adjusting the fractional parameters and parameters of

Jacobi polynomials, (2) the experiments evaluated the

proposed FrOJMs on image reconstruction, ROI-feature

extraction and the influence of different parameter condi-

tions on image reconstruction, (3) invariance of fractional-

order Jacobi invariant moments with respect to RST, (4)

robustness to different kinds of noises, (5) classification

performance on gray-level images and (6) computational

CPU times for the proposed FrOJMs and FrJMIs.

5.1 Image representation capability

To demonstrate the capacity and the quality of the image

representation by the fractional-order orthogonal Jacobi

moments (FrOJMs) developed in this paper, we will make

comparisons with moments that belongs to the same family

of Jacobi moments as fractional-order Chebyshev moments

(FrCMs) [41], fractional-order Gegenbauer moments

(FrGegMs) [21] and fractional-order Legendre moments

(FrLMs) [40]. As a comparison criterion, we will use the

mean squared error (MSE) that measures the difference

between the original image f ðx; yÞ and the reconstructed

image f̂ ðx; yÞ. The latter is defined as follows:

MSE ¼ 1

NM

XN�1

x¼0

XM�1

y¼0

f ðx; yÞ � f̂ ðx; yÞ
� 
2

: ð53Þ

5.1.1 Choice of parameter of the FrOJPs

The Jacobi polynomials depend on the parameters a and b.
Therefore, the choice of these parameters is essential for a

better reconstruction of the images by fractional-order

orthogonal Jacobi moments. To measure the appropriate

parameter range a and b, we will reconstruct image

‘‘Lena’’ of size 1000� 1000. The reconstruction of this

image is performed for different parameter values a; b and

for several fractional orders k for different orders of frac-

tional-order orthogonal Jacobi moments. Figure 4 shows

the MSE and PSNR curves for different parameter choices

using the image ‘‘Lena’’ for fractional-order Jacobi

moment orders ranging from 0 to 512. For parameters a
and b vary between ð10; 10Þ and ð70; 70Þ, we notice that

the MSE curves of the reconstructed images decrease and

get closer to zero when the orders of the fractional-order

Jacobi moments increase which shows the capacity of the

Jacobi moments for image reconstruction to different val-

ues a and b. There is also a slight increase in the MSE with

the increase in the parameters a and b. So, for better image

reconstruction by fractional-order Jacobi moments, we

choose parameters a and b around ð10; 10Þ:
In the second reconstruction test, the same image of the

first test was used to perform their reconstructions by

fractional-order Jacobi moments for ða; bÞ ¼ ð10; 10Þ and

for fractional-order values

k ¼ 0:2 ; 0:8 ; 1; 1:2; 1:4; 1:8; 2:2. Figure 5 shows the

MSE curves for the different fractional-order parameters

using the image ‘‘Lena’’ for fractional-order Jacobi

moment orders ranging from 0 to 512. The results obtained

(a) (b)

Fig. 4 The MSE and PSNR values for the grayscale image of Lena for different parameter values of Jacobi polynomials
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experimentally are valid for different types of images and

for different fractional orders k. We note that the best

values of the fractional-order parameters k are between 1.2

and 2.2.

5.1.2 Digital image reconstruction

In this experiment, we will compare the image recon-

struction capacity of proposed FrOJMs with the existing

recent orthogonal moments [21, 40, 41]. For this fact, the

reconstruction test is performed on image ‘‘Lena’’ of size

1000� 1000 which is shown in Fig. 6, for fractional

orders ranging between 0.8 and 1.4 to orders of moments

ranging from 0 to 500.

Figure 7 shows the MSE and PSNR curves for the four

types of fractional-order moments FrOJMs, FrLMs [40],

FrCMs [41] and FrGegMs [21]. We then note that the MSE

of the four moments decreases and tends toward zero with

the increase in the orders of the moments, which shows the

capacity of the latter for the reconstruction of the images

for any fractional order knowing that for

kx ¼ 1 and ky ¼ 1, we find classical continuous orthogo-

nal moments of Jacobi, Legendre, Chebyshev and Gegen-

bauer. We can still see from the curves that MSE of

FrOJMs is smaller than MSE moments fractional-order

moments of Legendre, Chebyshev and Gegenbauer, which

shows the performance of the proposed fractional moments

compared to other orthogonal moments [21, 40, 41].

Figures 8 and 9 illustrate a comparison of a set of

reconstructed images by the FrOJMs, FrLMs [40], FrCMs

[41] and FrGegMs [21] for orders n;m ¼
20; 60; 100; 500; 1000 and for different fractional orders:

(a) kx ¼ ky ¼ 0:8, (b) kx ¼ ky ¼ 1, (c) kx ¼ ky ¼ 1:4, et

(d) kx ¼ 1:4 ; ky ¼ 0:8. From these Figs. 8 and 9, we

clearly see the quality of reconstruction of the images

reconstructed by the different types of fractional-order

moments and that the reconstructed images are close to that

of the original image with the increases of the orders of the

fractional-order moments for the different fractional orders.

5.2 Effect of fractional parameters k and (a,,b)
on the extraction of image characteristics

In recent years, local feature extraction or ROI detection

has presented new challenges for the existing orthogonal

moments. The existing image moments, especially most of

the orthogonal moments, extract only the global features,

and cannot describe the local features. In this experiment,

we will test the capacity of the proposed FrOJMs for ROI-

feature extraction of image while adjusting the parameters

k ; a ; b and study the influence these parameters on quality

of the image reconstruction.

(a) (b)

Fig. 5 The MSE values for the grayscale image of Lena: a The MSE of image for different parameter fractional-order k values and b zoom for

more clarification

Fig. 6 The test images of size 1000 9 1000 pixels: a ‘‘Lena’’ image

and b ‘‘IRM’’ medical images [51]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7 a–h MSE and PSNR of

the ‘‘Lena’’ image for different

fractional-order parameters

kx and ky of FrOJMs for

different orders of moments
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Fig. 8 The reconstructed ‘‘Lena’’ images using the proposed FrOJMs and the fractional-order orthogonal moments [21, 40, 41] for different

orders of moments n;m ¼ 20; 60; 100; 500; 1000
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Fig. 9 The reconstructed ‘‘IRM’’ medical images using the proposed FrOJMs and the fractional-order orthogonal moments [21, 40, 41] for

different orders of moments n;m ¼ 20; 60; 100; 500; 1000
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5.3 Effect of fractional-order parameter k

In this subsection, we discuss the effect of the fractional

parameters kx and ky to extract the region of interest from

the ‘‘Checkerboard’’ image during its reconstruction using

fractional-order Jacobi moments. Knowing that, the region

of interest can be shifted to different positions, for k x 	 1

the region shifted to the left and for k x�1 region shifted to

the right, with respect to the x-axis. The region is moved up

for k y 	 1 and down for k y�1, along the y-axis.

Figure 10 shows the result of reconstruction of the

‘‘Checkerboard’’ image using FrOJMs for different orders

and for different values kx and ky. This figure shows that

the region of interest at the top left, bottom left, top right

and bottom right are reconstructed by FrOJMs for

{k x ¼ 5 ; k y ¼ 5}, { k x ¼ 5 ; k y ¼ 15}, { k x ¼ 15 ; k y ¼
5} et { k x ¼ 15 ; k y ¼ 15}, respectively.

5.4 Effect of Jacobi parameters a and b on
feature extraction

In this subsection, we discuss the extraction of image

interest regions by adjusting the parameters a and b of

Jacobi polynomials. The test image used (Fig. 11) consists

of four images of the Butterflies. We first calculate the

Jacobi moments of the image using different parameters

ða1; b1; a2; b2Þ then we will reconstruct this image using

Jacobi’s moments for different orders ðn;mÞ Table 1

summarizes the different cases of parameters

ða1; b1; a2; b2Þ and the regions of interest for each case.

The set of fractional-order Jacobi moments can extract

the global features of an image if

(A)a1 ¼ b1 ¼ a2 ¼ b2 ¼ 0 shows the reconstructed image

under this parameter setting. The set of fractional-order

Jacobi moments can extract the local features of an image

if a1; b1; a2; b2 are set to values other than that mentioned

in the previous section and by following Table 1. We show

in Fig. 11 a set of reconstructed images for different

Fig. 10 Region of interest feature extraction of the ‘‘checkerboard’’ image by FrOJMs with different choices of the fractional parameters

k x and k y, for increasing moments orders
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parameters a1; b1; a2; b2. The interesting point of Jacobi

moments is that, by defining the parameters a and b, one
can extract the desired part in an image according to the

requested information. Considering the above analysis, by

using similar parameters settings for FrOJMs, as depicted

in Figs. 10 and 11, we can obtain global or local FrOJMs

Fig. 11 a Global features a1 ¼ b1 ¼ a2 ¼ b2 ¼ 0 , local features. The parameters used are b a1 ¼ 0;b1 ¼ 160; a2 ¼ 0;b2 ¼ 160, c
a1 ¼ 160;b1 ¼ 0; a2 ¼ 0;b2 ¼ 160, d a1 ¼ 0;b1 ¼ 160; a2 ¼ 160; b2 ¼ 0 and e a1 ¼ 160;b1 ¼ 0; a2 ¼ 160;b2 ¼ 0; P ¼ 300 for all cases

Table 1 Conditions and rules for controlling the features extracted by the Jacobi moments
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according to the desired ROI. Finally, it is important to

conclude that the proposed FrOJMs could have many

important practical applications in the field of medical

image analysis like tumor localization in brain magnetic

resonance images. However, a remarkable topic to be

discussed, is how to theoretically choose the optimal Jacobi

parameters values with regard to different pattern recog-

nition applications.

5.5 Optimal parameter selection

As presented previously, the proposed FrOJMs with

determined translation parameters a and b requires the

proper selection of the fractional-order parameter k,
because this parameter mainly affects the quality of the

local image feature extraction and the detailed descriptions

of the reconstructed image. Therefore, optimizing the

parameter k is the key requirement of image reconstruction

and classification by the proposed FrOJMs. In addition, it is

important to present a systematic selection method of the

parameters kx and ky, which could lead to desirable results

with regard to quality of the image reconstruction and the

accuracy of image classification.

To study the influence of the parameters kx and ky on

the performance of the proposed FrOJMs, we employed ten

images selected from two well-known database, COIL-20

[52] and ETHZ-53Obj [53], respectively. The selected

images are shown in Fig. 12. Referring to the different

image reconstructions, an approach for selecting the

parameter optimization method is proposed in this sub-

section. To elucidate how image size affects the parameters

kx and ky, we have considered two different image sizes:

128 9 128 and 64 9 64 pixels for database COIL-20 [52]

and 512 9 512 and 256 9 256 pixels for database ETHZ-

(a) (b)

(c) (d)

Fig. 12 Search space of the optimal fractional parameters {kx; ky}, based on AMSE values, with respect to: a 128 9 128 pixels , b 64 9 64

pixels for database COIL-20 [52], c 512 9 512 pixels and d 256 9 256 pixels for database ETHZ-53Obj [53]
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53Obj [53].To determine the optimal parameters kx and ky
in combination, this subsection computes the performance

of the proposed FrOJMs by the average of mean squared

error (AMSE), which is defined as follows:

AMSE a; b; kx; kyð Þ ¼ 1

NI

XNI

k¼1

MSEðf ; f̂kÞ: ð54Þ

Here, the number of testing images NI was 10, f is an

original image, and f̂ is the reconstruction of that image.

The MSE is the mean squared error function, defined in

Eq. (53). Figure 13a–d shows, respectively, the grid search

(or exhaustive search) corresponding to the different image

reconstructions. Note that the search space is restricted to

0:2� kx; ky� 5 with step 0.2, and the sections with mini-

mum values (darkest color) represent the neighborhood of

the best combinations of kx and ky. In addition, the regions

marked with red color for each of the search grids, are

corresponding to the lowest AMSE values and hold the

optimal combinations of the fractional parameters kx and

ky.
In order to examine the effect of the parameters a and b

on the proposed FrOJMs, we employed ten images selected

from COIL-20 database [52], shown in Fig. 12a. Referring

to the different image reconstructions, an approach for test

the best combinations of the parameters a and b. The

cutting order NI can find the optimal parameters for frac-

tional-order moments to different fractional parameters kx
and ky.

Figure 14a–d shows, respectively, the grid search results

corresponding to the different image reconstructions. It is

important to note that the search interval is restricted to

1� a; b� 50 with step 1, and the regions with the mini-

mum values (marked with the darkest blue color) present

the neighborhood of the best optimum parameter combi-

nations of a and b. Finally, we can conclude that this

experiment could considerably help in selecting the opti-

mal parameters (a ; b and kx ; ky) values for quality of the

image reconstruction. In addition, these methods may find

a local, rather than a global optimum, which could highly

influence the ROI-feature extraction performance for

image representation. As a conclusion, this experiment will

help choosing the appropriate parameters values for the

following sections, for the tasks of recognition of the

proposed invariants and image classification.

5.6 Invariance to RST

This experiment aims to verify the rotation, scaling and

translation in variance of the proposed FrJMIs. We used the

test image obj12__0 of size 128 9 128 pixels, selected

from COIL-20 [52] database and shown in Fig. 15. The test

image is first translated by a vector varying from

(- 10, - 10) to (10, 10) with a step (1,1), then scaled by

factors ranging from 0.6 to 1.3 with an interval of 0.05 and

finally rotated by a rotation angle varying between 0 Æ and

360 Æ with a step equal to 10. The invariant moments of

Jacobi are computed for five cases of fractional parameters:

(a) kx ¼ ky ¼ 0:8, (b) kx ¼ ky ¼ 1, (c) kx ¼ ky ¼ 1:4 and

(d) kx ¼ 0:8 ; ky ¼ 1:4. And as a comparison criterion, the

relative error between the FrJMIs coefficients, up to the

(a) COIL-20

(b) ETHZ-53Obj

Fig. 13 Tleach database: a COIL-20 [52] and b ETHZ-53Obj [53]
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order n;m ¼ 3ð Þ, of the original and transformed images is

used. The latter is given by the following formula:

RE f ; f d
� �

¼
FrJMIðf Þ � FrJMIðf dÞ
�� ��

FrJMIðf Þk k ð55Þ

where || ||, f et f d and, respectively, designate the Euclidean

norm, the original images and the deformed images. It

should be emphasized that a very small relative error leads

to a good invariance.

The corresponding results of invariance to scale rotation

and translation are illustrated, respectively, in Fig. 16a, b

and c. These results ensure the high accuracy and the

invariances of the proposed method FrJMIs with respect to

rotation, scaling and translation. Generally, the results

show that the relative error is very small and approaches

zero (10�12) for the three transformations (RST), and

ensure the superiority of these proposed moments FrJMIs,

over the existing fractional-order method FrLMIs [40],

FrCMIs [41] and FrGegMIs [21] for grayscale images.

5.7 Noise sensitivity

Three experiments were performed to assess the noise

sensitivity of FrOJMs. Different levels of the noise, white

Gaussian, speckle and ‘‘salt & peppers,’’ are added to the

object obj12__0 [52]. First, affected by salt-and-pepper

noise with a varying density from 0 to 5% with step 0.25%.

(a) (b)

(c) (d)

Fig. 14 Graphs of search grid results of the proposed FrOJMs based on AMSE values according to different combinations of a and b: a
kx ¼ 2 ; ky ¼ 2, b kx ¼ 1 ; ky ¼ 1, c kx ¼ 0:2 ; ky ¼ 2 and d kx ¼ 0:2 ; ky ¼ 0:2

Fig. 15 obj12__0 [52] image of

size 128 9 128 pixels
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Second, distorted by Gaussian noise with zero mean and

standard deviation varying from 0 to 0.5 with step 0.05.

Third, contaminated by speckle noise varying from 0 to 1

with step 0.05. Figure 17 shows the standard and con-

taminated images. Relative error values are computed

using the proposed FrOJMs, four parameterization FrOJMs

are considered in this experiment: (a) kx ¼ ky ¼ 0:8, (b)

kx ¼ ky ¼ 1; (c) kx ¼ ky ¼ 1:4, (d) kx ¼ 0:8 ; ky ¼ 1:4

and the orthogonal moments [21, 40, 41] for contaminated

images and displayed in Fig. 18a, b, c.

The values of the relative errors are clearly seen to

increase with the increase in the noise densities but they

remain very low (10�10) for all the fractional-order.

FrOJMs are less sensitive to noise than the existing frac-

tional-order moments, FrLMs [40], FrCMs [41] and

FrGegMs [21]. Finally, these important results concerning

the invariance of FrJMIs to geometric transformations and

noise encourage us to use these as a characteristic

descriptor for object recognition and images classification.

5.8 Image recognition using FrJMIs

The experimental study of the invariance to the geometric

transformations, rotation, scaling and translation are

attractive characteristics required by pattern recognition

and computer vision applications. In this subsection, where

three well-known databases are adopted: MPEG-7 [54],

COIL-20 [52] and ETHZ-53Obj [53]. These grayscale

images are resized to the unified size 128 9 128. Basically,

this experiment is conducted on three testing sets, which

have been created by selecting 20 images from the original

databases. Each selected image will be affected by differ-

ent transformations (8 translations ? 8 scale ? 8 rota-

tions ? 8 mixed transformations), in order to generate 640

objects per base. In addition, to illustrate the noise

robustness of the proposed invariant descriptors, we will

contaminate the selected images of each base by the noise

salt and pepper with densities {1%, 2%, 3%, 4%, 5%}, for

create five noisy test sets. In fact, the feature vector is

constructed by fractional-order Jacobi moment invariants

up to the third order. We used K-NN (K-Nearest Neighbors

with k = 1) as a classifier with the fivefold cross-validation

technique. Tables 2, 3 and 4, respectively, present the

comparison results in terms of object recognition accuracy

for the three bases between the proposed FrJMIs invariant

moments and the classical geometric momentary invariants

(GMIs) [49], the invariants fractional-order moments of

Legendre (FrLMI) [40], Chebyshev (FrCMIs) [41],

Gegenbauer (FrGegMIs) [21] and Gaussian–Hermite

moments invariants GHMIs [42]. Finally, it is important to

note that we used five fractional-order parameters when

(a)

(b)

(c)

Fig. 16 The relative error values of the grayscale images calculated

for scaling invariance using the proposed FrJMIs and the recent

fractional-order moments [21, 40, 41]
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calculating the FrJMIs: (a) kx ¼ ky ¼ 0:8, (b) kx ¼ ky ¼ 1,

(c) kx ¼ ky ¼ 1:4 and (d) kx ¼ 0:8 ; ky ¼ 1:4.

The obtained results clearly show that the proposed

FrJMIs moments outperform the exiting method

[21, 40, 41] in terms of recognition rates. As a follow-up,

the FrJMIs have better recognition performance for the

three databases for (e) with (kx ¼ 0:8 ; ky ¼ 1:4). We can

conclude that the newly introduced fractional-order

invariants could be extremely useful for representing the

characteristics of objects for pattern recognition and image

classification.

5.9 Execution times

In this subsection, we aim to evaluate the computational

efficiency of the proposed FrOJMs and FrJMIs in com-

parison with the existing fractional-order moment invari-

ants. Experiments are performed to quantitatively estimate

the computational time of the proposed FrOJMs and

FrJMIs. In first experiment, we will evaluate the compu-

tational performance of the proposed fractional-order

moments. These experiments are performed using three

well-known datasets of grayscale images, MPEG-7 [54],

COIL-20 [52] and ETHZ-53Obj [53], respectively. These

datasets have different grayscale image’ sizes and numbers.

Few images are randomly selected from these datasets and

displayed in Fig. 19.

Figure 20 shows the elapsed CPU times in seconds for

the moment’s computation of these grayscale images, by

using the proposed method FrOJMs and the recent frac-

tional-order methods [21, 40, 41], for an increasing maxi-

mum moments order from 0 to 60 with fixed increment 10.

According to the results presented in Fig. 20, one can

observe that the computation time taken by the proposed

method is much faster than the existing fractional moments

[21, 40, 41].

In second experiment, we aim to evaluate the compu-

tational efficiency of the proposed FrJMIs in comparison

with the existing fractional-order moment invariants.

Therefore, this current experiment is conducted on the

three well-known datasets of grayscale images, MPEG-7

[54], COIL-20 [52] and ETHZ-53Obj [53], respectively,

Salt & Peppers (1%) Salt & Peppers (2%) Salt & Peppers (3%) Salt & Peppers (4%) Salt & Peppers (5%)

Gaussian
(m=0 v=0.1)

Gaussian
(m=0 v=0.2)

Gaussian
(m=0 v=0.3)

Gaussian
(m=0 v=0.4)

Gaussian
(m=0 v=0.5)

Speckle (0.2%) Speckle (0.4%) Speckle (0.6%) Speckle (0.8%) Speckle (1%)

Fig. 17 Noisy grayscale image of obj12__0 [52] by ‘‘Salt & Peppers’’ (1% until 5%), ‘‘Gaussian’’ (mean = 0 and variance = 0.1% until

variance = 0.5%) and ‘‘Speckle’’ (0.2% until 1%)
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where we record the elapsed CPU times for the generation

of moment invariants with an increasing order from 0 to

60. The process of computing moments is repeated 10

times for each method and the average CPU times are

computed and summarized in Tables 5, 6 and 7. The

obtained results clearly show that the proposed FrJMIs are

very fast and much faster than the FrLMIs [40], FrCMIs

[41] and FrGegMIs [21].

6 Conclusion

In this paper, we have introduced a new set of fractional-

order orthogonal Jacobi moments for the global and local

representation of grayscale images which significantly

improve their image reconstruction capabilities, these new

moments are robust against the well-known kinds of noise.

We also constructed a new series of fractional-order

invariant moments to RST geometric transformations

based on fractional-order Jacobi polynomials. New fast and

accurate algorithm to compute the fractional-order moment

invariants which accelerating the computation time and

increase their pattern recognition capabilities. In addition,

we proposed a new method for extracting adaptive local

image characteristics by adjusting the fractional parameters

of the proposed invariant moments. What is more, we have

presented a systematic parameter selection method for

choosing the appropriate parameter values for the FrOJMs,

with respect to pattern recognition applications, by using

the grid search approach. The experimental results showed

the capacity of the proposed moments for the reconstruc-

tion and classification tasks of the grayscale images com-

pared to the existing fractional-order moments. Finally,

these fractional-order moments are very fast and compu-

tationally inexpensive which increase its applicability in

wide range of real-time applications. In our future work,

we will focus on exploring other types of moments and for

other applications.

(a)

(b)

(c)

Fig. 18 c-scale images of obj12__0 [52] for FrOJMs and the recent

fractional-order methods [21, 40, 41]: (a) salt-and-Pepper noise,

(b) Gaussian noise and (c) Speckle noise
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Table 2 Comparative analysis

of object recognition accuracy

(%) on MPEG-7 [54] database,

by using FrJMIs, FrLMIs,

FrCMIs, FrGegMIs, GHMIs and

GMIs, with k ¼ 1:4

Moments invariants Noise-free Salt-and-pepper noise Average

1% 2% 3% 4% 5%

Proposed FrJMIs (a) 99.76 93.94 85.37 82.85 81.38 78.82 87.02

Proposed FrJMIs (b) 99.84 95.98 86.12 81.23 80.32 78.96 87.08

Proposed FrJMIs (c) 99.88 94.55 89.53 83.86 80.54 79.42 87.96

Proposed FrJMIs (d) 99.88 95.23 89.74 81.92 79.47 80.25 87.75

FrLMIs [40] 99.72 93.36 89.16 83.86 80.13 80.21 87.74

FrCMIs [41] 99.73 93.08 87.03 83.58 79.98 79.92 87.19

FrGegMIs [21] 99.83 85.31 88.55 83.86 81.89 80.15 86.60

GHMIs [42] 96.99 83.42 78.67 76.26 75.14 71.42 80.32

GMIs [49] 90.21 90.21 77.34 78.26 76.52 70.72 80.54

Table 3 Comparative analysis

of object recognition accuracy

(%) on Columbia COIL-20 [52]

database, by using FrJMIs,

FrLMIs, FrCMIs, FrGegMIs,

GHMIs and GMIs, with k ¼ 1:4

Moments invariants Noise-free Salt-and-pepper noise Average

1% 2% 3% 4% 5%

Proposed FrJMIs (a) 99.98 93.54 86.25 83.41 82.91 79.22 87.55

Proposed FrJMIs (b) 100.00 93.48 87.04 83.02 81.47 79.26 87.38

Proposed FrJMIs (c) 100.00 93.23 89.98 84.48 81.65 79.31 88.11

Proposed FrJMIs (d) 100.00 94.83 90.62 83.52 83.76 81.55 89.05

FrLMIs [40] 99.88 93.24 90.12 83.23 81.24 79.01 87.79

FrCMIs [41] 99.89 92.26 88.11 82.94 80.89 79.38 87.25

FrGegMIs [21] 99.90 90.21 89.56 82.91 81.02 80.02 87.27

GHMIs [42] 97.89 86.66 79.87 75.45 76.25 73.17 81.55

GMIs [49] 98.98 91.31 78.27 79.15 77.14 72.92 82.96

Table 4 Comparative analysis

of object recognition accuracy

(%) on ETHZ-53Obj [53]

database, by using FrJMIs,

FrLMIs, FrCMIs, FrGegMIs,

GHMIs and GMIs, with k ¼ 1:4

Moments invariants Noise-free Salt-and-pepper noise Average

1% 2% 3% 4% 5%

Proposed FrJMIs (a) 98.94 66.00 55.45 42.64 39.38 34.87 56.21

Proposed FrJMIs (b) 99.98 67.98 54.37 44.43 38.12 35.56 56.74

Proposed FrJMIs (c) 100.00 65.45 55.23 45.26 37.55 36.40 56.65

Proposed FrJMIs (d) 100.00 67.11 54.94 44.93 41.09 36.21 57.38

FrLMIs [40] 98.55 40.31 42.36 38.03 34.23 30.20 47.28

FrCMIs [41] 99.21 50.42 45.14 35.22 29.92 28.32 48.04

FrGegMIs [21] 99.17 49.33 42.12 33.92 28.73 26.50 46.63

GHMIs [42] 97.89 40.14 39.67 30.26 26.10 27.44 43.58

GMIs [49] 97.52 32.51 28.04 20.45 14.52 16.70 34.96
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Fig. 19 The selected images from each database: a MPEG-7 [54], b COIL-20 [52] and c ETHZ-53Obj [53]

Fig. 20 The average CPU times for computing the proposed FrOJMs

and the existing fractional moments [21, 40, 41]

Table 5 CPU times in seconds for MPEG-7 [54] grayscale images of

size (256 9 256), with k ¼ 1:4

Order (n, m) Moments invariants

FrJMIs FrLMIs [40] FrCMIs [41] FrGegMIs [21]

(0,0) 0.002 0.044 0.032 0.057

(2,2) 0.011 0.335 0.422 0.434

(4,4) 0.039 4.254 3.904 3.814

(8,8) 0.147 19.212 17.124 20.341

(16,16) 0.723 60.526 59.823 60.425

(20,20) 1.654 118.511 117.712 120.198

(30,30) 2.762 252.326 247.842 239.696

Average 0.763 65.030 63.837 63.566

Table 6 CPU times in seconds for COIL-20 [52] grayscale images of

size (128 9 128), with k ¼ 1:4

Order (n, m) Moments invariants

FrJMIs FrLMIs [40] FrCMIs [41] FrGegMIs

[21]

(0,0) 0.001 0.031 0.022 0.031

(2,2) 0.003 0.153 0.161 0.167

(4,4) 0.021 1.605 1.927 1.872

(8,8) 0.088 9.517 8.533 9.122

(16,16) 0.354 30.931 29.789 30.541

(20,20) 0.801 60.049 59.173 61.489

(30,30) 1.055 135.848 136.976 130.831

Average 0.332 34.019 33.797 33.436

Table 7 CPU times in seconds for ETHZ-53Obj [53] grayscale

images of size (512 9 512), with k ¼ 1:4

Order (n, m) Moments invariants

FrJMIs FrLMIs [40] FrCMIs [41] FrGegMIs [21]

(0,0) 0.004 0.114 0.142 0.117

(2,2) 0.031 0.630 0.644 0.797

(4,4) 0.079 6.643 5.976 7.189

(8,8) 0.342 40.446 41.186 40.585

(16,16) 1.462 121.128 119.860 120.876

(20,20) 2.185 229.102 230.717 245.176

(30,30) 5.421 543.423 531.793 519.372

Average 1.361 134.498 132.903 133.445
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degli Studi dell’Insubria

46. Li S, Karatzoglou A, Gentile C (2016) Collaborative filtering

bandits. In: Proceedings of the 39th international ACM SIGIR

conference on research and development in information retrieval,

2016, p 539–548.

47. Mahadik K, Wu Q, Li S, Sabne A (2020) Fast distributed bandits

for online recommendation systems. In Proceedings of the 34th

ACM international conference on supercomputing, p. 1–13

48. Liao SX, Pawlak M (1996) On image analysis by moments. IEEE

Trans Pattern Anal Mach Intell 18(3):254–266. https://doi.org/10.

1109/34.485554

49. Teague MR (1980) Image analysis via the general theory of

moments. JOSA 70(8):920–930

50. Yap P-T, Paramesran R, Ong S-H (2003) Image analysis by

Krawtchouk moments. IEEE Trans Image Process

12(11):1367–1377

51. University Hospital Center Hassan II – Un établissement de
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