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Abstract
Deep neural networks (DNNs) have evolved as a beneficial machine learning method that has been successfully used in

various applications. Currently, DNN is a superior technique of extracting information from massive sets of data in a self-

organized method. DNNs have different structures and parameters, which are usually produced for particular applications.

Nevertheless, the training procedures of DNNs can be protracted depending on the given application and the size of the

training set. Further, determining the most precise and practical structure of a deep learning method in a reasonable time is

a possible problem related to this procedure. Meta-heuristics techniques, such as swarm intelligence (SI) and evolutionary

computing (EC), represent optimization frames with specific theories and objective functions. These methods are

adjustable and have been demonstrated their effectiveness in various applications; hence, they can optimize the DNNs

models. This paper presents a comprehensive survey of the recent optimization methods (i.e., SI and EC) employed to

enhance DNNs performance on various tasks. This paper also analyzes the importance of optimization methods in

generating the optimal hyper-parameters and structures of DNNs in taking into consideration massive-scale data. Finally,

several potential directions that still need improvements and open problems in evolutionary DNNs are identified.
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1 Introduction

In 1943, McCilloch and Pitts [1] proposed a new concept

and mathematical model of artificial neural network

(ANN), which ushered in a new era ANN. The essence of

ANN is to provide a simulation and abstract description of

biological neuronal structure. In 1958, Rosenblatt proposed

a neural network that contains two layers of neural cells

and termed this as perceptrons [2]. The perceptron algo-

rithm used the ANN model to classify an input of data
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represented in multiple dimensions where gradient descent

was used to update the weights of ANN. However, ANN is

a simple linear model that cannot solve nonlinear problems

such as the XOR problem. Meanwhile, Geoffrey et al. [3]

proposed backpropagation (BP) algorithm to train multiple

layers perceptron (MLP) models and tackle nonlinear

classification problems. However, BP was pointed that it

may cause a gradient-vanish problem or gradient-explosion

problem. Besides, support vector machine (SVM) [4] and

other statistical learning methods showed better perfor-

mance than ANN in that period. Geoffrey Hinton [5, 6]

proposed a solution to solve the shortcoming of BP using

unsupervised learning to pre-trained deep neural network

(DNN) weights and then using supervised learning to train

DNN. On account of DNNs better performance, more

universities and companies pay considerable attention to

DNN research. Microsoft and Google achieved many

breakthroughs during that decade. The most noticeable

event of DNN is that AlexNet ranked the champion in the

2012 ImageNet [7] competition. Their results outperform

the second place model built upon SVM. Different DNNs

were designed by human experts since that time (e.g.,

GoogleNet [8], ResNet [9], DenseNet [10], EfficientNet

[11] in image classification problem).

In a traditional machine learning (ML) project, the

process of building an ML model can be divided into

several steps: modeling the problem into a mathematical

problem, collecting data and data cleaning, feature

extraction and selection, training, model optimization, and

model evaluation. Contrary, DNN belongs to deep end-to-

end learning where it can replace several processing steps

into a single DNN to reduce the cost of complex feature

design, and extraction [12]. DNN only needs enough data

and correct hyper-parameters to achieve competitive

performance.

The growth of data and computing power can be seen as

the most crucial point that pushed DNNs’ evolution. With

the advent of big-data, DNN got more data to train,

effectively reducing the over-fitting problem. Besides, the

growth of computing power allows the training of bigger

DNN models than before. Although, DNN also has some

shortcomings that cannot be ignored. In most cases, the

design of DNN architecture needs human intervention.

DNN needs a massive amount of labeled data to train on.

These labeled data consume significant resources and come

with a cost. Moreover, better performance of DNN requires

researchers to tune DNNs hyper-parameters iteratively.

This paper reviews existing meta-heuristic optimization

techniques and algorithms that have been used in the

design and tune their DNN in various research tasks, fields,

and applications. These algorithms include genetic algo-

rithm (GA), genetic programming (GP), differential evo-

lution (DE), finite-state machine (FSM), evolution

strategies (ESs), particle swarm optimization (PSO), ant

colony optimization (ACO), firefly algorithm (FA), and

other hybrid methods. This review helps researchers in

future research in DNNs using optimization techniques and

algorithms by showing the currently published papers and

their main proposed methods, advantages, and disadvan-

tages. We found that various published papers design and

tune their DNN in different research tasks, fields, and

applications. The paper summarizes many nature-inspired

meta-heuristic optimization algorithms (MHOA) applied to

train DNNs, fine-tuning DNNs, network architecture search

(NAS) DNNs hyper-parameters search and optimization.

Moreover, discussion, problems, and challenges are pre-

sented in the review also.

The main contributions invented in this paper are given

as follows:

1. Reviewed the well-known meta-heuristic optimization

techniques and algorithms that have been employed to

tune the DNN parameters in various applications.

2. Classified the existing optimization techniques that

have been used in adjusting DNN parameters.

3. Evaluated several well-known meta-heuristic optimiza-

tion techniques combined with DNN for image

classification.

4. Defined the problems and challenges in the domain of

optimization techniques for tuning the DNN.

The rest of this paper is organized as follows: Sect. 2

introduces the background of DL architectures and meta-

heuristic techniques. Sections 3 and 4 present the evolu-

tionary algorithms and swarm algorithms used to enhance

DNN. Section 5 presents the hybrid meta-heuristic tech-

niques applied to improve the performance of DNN. The

challenges and future work are introduced in Sect. 7. The

conclusion is given in Sect. 9.

2 Background

2.1 Deep learning architectures and techniques

In this section, we will briefly review some of the well-

known DL architectures. Besides, we will present various

DL techniques which can be investigated using an opti-

mization method. Several parameters need to be tuned in

the optimization algorithms and optimization problems.

Some of them should be adjusted by the user, and the

algorithm itself should fix others.

DL is used to model the complexity and abstractions of

data by employing multiple processing layers. Data can be

presented in various forms such as text, image, and audio

[13, 14]. Thus, DL can be applied in different research

areas such as language modeling, pattern recognition,
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signal processing, and optimization. The advancements in

neuroscience, high-performance computing devices, and

big data placed DL methods on the cutting-edge artificial

intelligence (AI) research enabling DL methods to learn

and perform more complex calculations and representa-

tions effectively. Thus, DL methods automatically extract

the features of structured and unstructured data and learn

their representations using supervised and unsupervised

strategies. Although DL has many breakthroughs in dif-

ferent research fields and applications, DL still faces some

limitations in its design and hyper-parameters setting.

The demand for robust and innovative DL-based solu-

tions has increased in big data analytic during the past

decade. Other areas, including e-commerce, industrial

control, bioinformatics [15], robotics [16], and health care

[17]. The following facts could characterize DL-based

solutions:

1. Extract hidden information and features from noisy

data.

2. Learn and train from samples to discover patterns and

essential information.

3. Classify structured and unstructured data.

4. Simulate the human brain to solve a given problem

using ANN.

DL methods do not rely on human intervention when it

comes to feature engineering. It benefits from the hidden

layers to build an automatic high-level feature extraction

module such in convolutional neural network (CNN)

architecture [18]. Thus, in applications such as pattern

recognition, DL models can detect objects and translate

speech. Although DL provides the best solutions to many

problems, DL networks possess various hyper-parameters

related to the network architecture, for example, number of

hidden layers and the associated numbers of neurons in

each layer, number of convolution layers, pooling layer

type and size, type of activation function, dropout ratio,

optimization algorithm, and so on. The presence of this

variety in hyper-parameters alongside the absence of any

solid mathematical theory makes it challenging to set the

appropriate hyper-parameters, which in most cases are set

by trial-and-error process. Thus, EC and SI methods can be

used to tackle this problem and evolve the structure and

hyper-parameters of a DL network. Finally, it may maxi-

mize the network’s performance on a specific task without

the need for human intervention.

CNN is the most commonly applied DL architecture in

various applications such as image and video analysis,

natural language processing, anomaly detection, health risk

assessment, and time-series forecasting. A CNN architec-

ture can be composed of several convolution layers,

pooling layers, and fully connected layers on top of each

other. CNN has achieved good results in many applications

including: raw audio generation [19], speech synthesis

[20], object detection [21], and transfer learning [11].

Besides, CNNs possess relatively fewer parameters to be

set, which ease the usage and training of such architecture.

CNNs are widely used as feature extractors with image-like

data for several reasons, including the successful training

process and the network topology, which reduces the

number of parameters to be fine-tuned. Moreover, pre-

trained CNN architectures have been commonly used, such

as VGG [22] which is a simple CNN architecture with

increased depth.

ResNet (residual networks) [23] is a network that allows

layers (residual blocks) to fit using residual mapping

instead of hoping each few stacked layers directly. Com-

pared to a ResNet, ResNeXt [24] uses cardinality (the size

of the set of transformations) to perform a set of transfor-

mations. EfficientNet [25] uses a compound coefficient to

uniformly scales all dimensions of a CNN architecture

including depth, width, and resolution. XceptionNet

[26, 27] replies on CNN architecture and depthwise sepa-

rable convolution layers. DenseNet [28] is a CNN based

architecture with dense connections between layers (dense

blocks). The aforementioned architectures are trained on

the ImageNet dataset [7] or other large dataset, and they

can run on GPU platforms. Other pre-trained architectures

running on CPU platforms include SqueezeNet [29],

MobileNet [21, 30], and ShuffleNet [31, 32]. More archi-

tectures have been trained for specific tasks such as object

detection including You only look once (YOLO) [33, 34],

single shot multibox (SSD) [35], and RetinaNet [36].

Recurrent neural network (RNN) [37] and its variants

such as gated recurrent unit (GRU) and long short-term

memory (LSTM) are widely used in NLP [38] and speech

recognition tasks such in language modeling [39], senti-

ment classification [40], music generation, named entity

recognition, and machine translation [41]. Traditional

RNNs are a class of ANNs that uses hidden states to allow

previous outputs to be used as inputs. Historical informa-

tion is taken into consideration during the training with

shared weights across time. RNNs are suitable for data that

can be represented as a sequence to advance or complete

information, such as auto-completion. However, RNNs

suffer from the vanishing (or exploding) gradient problem.

Information can be lost over time, slow computation, hard

to reach information from a long time ago. To overcome

the vanishing gradient problem and short-term memory of

RNN, LSTM, and GRU were proposed with different

mechanisms introduced as memory cells with defined

gates.

Moreover, each neuron is defined by a memory cell and

a specific type of gates where the gates control the infor-

mation flow. LSTM has input, output, and forge gates. In

contrast, GRU has updated and reset gates where in most
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cases, they function similarly to LSTM. GRUs are faster

and easier to run compared to LSTMs, which requires more

computationally resources. Besides, LSTMs can learn

complex sequences where the problem of exploding gra-

dient in forwarding propagation can be solved using gra-

dient clipping [42].

In the past few years, many state-of-the-art CNN

architectures were introduced in natural language pro-

cessing (NLP) applications by converting CNN models that

work on images to be applied on the text also [43, 44].

Moreover, advanced encoder and decoder architectures

known as transformers [45] have been proposed. Trans-

formers mainly rely on an attention mechanism instead of

recurrence, which offers more parallelization than methods

like RNNs and CNNs. For example, Megatron-LM [46] is a

state-of-the-art transformer model in many tasks trained

with billions of parameters using an intra-layer model

parallel approach. BERT [47] (bidirectional encoder rep-

resentations from transformers) is an improved version of

the standard transformer architecture, which employs

masked language model (MLM) pretraining objective.

RoBERTa [48] is an extent ion of BERT that has been

trained for more extended time on more data consisting of

longer sequences. Dilbert [49] is a distilled version of

BERT with reduced size of 40% for fast and light training.

BART [50] is a denoising autoencoder that uses arbitrary

noising function and tries to reconstruct the original input

(test) for pretraining sequence-to-sequence models. T5 [51]

is also known as the text-to-text transfer transformer, which

uses the text-to-text method which extends its application

across diverse tasks such as translation, question answer-

ing, and classification. Reformer [52] uses locality-sensi-

tive hashing instead of dot-product attention and employs

reversible residual layers to improve the efficiency of the

standard transformer. GPT-3 is an autoregressive trans-

former that uses dense and locally banded sparse attention

patterns [53]. These architectures have been applied in

different fields including bioinformatics [54], text ranking

[55], machine translation [56], and question answering

[57].

Deep autoencoders [58] and generative adversarial net-

works (GANs) [59] can be classified as generative models

where they tend to model data generatively. These models

are commonly used in computer vision to approximate the

probability distribution of specific data. Generative models

such as deep autoencoders and GANs can be applied to

various applications, including denoising, dimensionality

reduction, image modeling [60], adversarial training [60],

and image generation [61]. Briefly, an autoencoder uses an

encoder to transfer a high-dimensional input into a latent

low-dimensional representation and a decoder to inverse

the operation and reconstruct the input using the low-di-

mensional representation. Meanwhile, GAN trains two

models, which are the generative model and the discrimi-

native model, simultaneously. The generative model learns

to imitate the data distribution.

In contrast, the discriminative model estimates the

probability that a sample came from the training data rather

than the generative model. Recently, some state-of-the-art

architectures have been introduced, including LeakGAN

[62] which is a GAN-based model for long text generation,

which proved to improve the performance in short text

generation applications. StyleGAN [60, 63] uses style

transfer approaches to propose an alternative generator for

unsupervised separation of high-level attributes and image

generation. U-Net GAN [64] uses U-Net [65] architecture

as a discriminator by improving U-Net training with a per-

pixel consistency regularization technique for image

generation.

2.2 Meta-heuristics techniques

Within this section, meta-heuristic (MH) techniques are

discussed. In general, the process of use MH techniques to

solve different applications has grown exponentially. They

are free gradient methods and can solve highly complex

optimization problems with results better than the tradi-

tional methods [66]. In addition, they are simple in the

implementation and fast than classical optimization meth-

ods [67, 68].

There are variant inspirations for MH techniques to be

classified into different groups according to these inspira-

tions. These groups are evolutionary algorithms (EAs),

swarm intelligence (SI) methods, natural phenomena

approaches, and human inspiration algorithms [69, 70].

Figure 1 depicts these groups.

In the first group that called EAs, the inspiration of the

algorithms depends on simulating the natural genetic con-

cepts such as crossover, mutation, and selection. Several

MH methods belong to this group such as Arithmetic

Optimization Algorithm (AOA) [71], evolutionary pro-

gramming [72], GA [73, 74], ES [75] DE [76], and GP

[77].

The second group, named SI, simulates the behavior of

swarm in nature during searching for food. The most

popular of this group is PSO [78], salp swarm algorithm

(SSA) [79], marine predators algorithm (MPA) [80], and

whale optimization algorithm (WOA) [81].

The third group aims to emulate the natural phenomena

such as the rain, the spiral, the wind, and the light. This

group includes water cycle algorithm (WCA) [82], spiral

optimization (SO) [83], and wind-driven optimization

(WDO) [84]. Moreover, other methods belong to this group

but emulate physical laws. For example, field of force

(FOF) [85], electromagnetism algorithm [86], charged

system search (CSS) [87], simulated annealing [88],
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gravitational search algorithm (GSA) [89], Aquila Opti-

mizer (AO) [90], low regime algorithm (fra), [91], elec-

tromagnetism-like mechanism [85], charged system search

[87], optics inspired optimization (oio) [92], chemical-re-

action-inspired metaheuristic [93, 94], and ant lion opti-

mizer [94].

Also, the fourth group depends on inspiration the

behaviors of the humans [95]. The following algorithms are

sample belonging to this group: teaching learning-based

optimization (TLBO) [96], volleyball premier league

algorithm (VPL) [97], like seeker optimization algorithm

(SOA) [98], soccer league competition (SLC) [99], and

league championship algorithm (LCA) [100].

3 Evolutionary computing for DNNs

Algorithms employed to solve, search, optimize, and find

optimal solutions for problems are called evolutionary

computing (EC) [101]. The principles of natural genetics

inspire common EC algorithms. This section will discuss

the recent progress of research related to the evolution of

deep learning paradigms, including their topology, hyper-

parameters, and learning rules using EC algorithms. Non-

convex and black-box optimization problems tend to ben-

efit most from solutions that use EC algorithms where they

can be used in various disciplines such as robotics [102],

optimal control [103], control servo systems [104], robot

path planning [105], body-worn sensors for human activity

[106], games [107], and medicine [108]. The variation and

selection operations are essential to differentiate the EC

method from the other. For instance, evolution strategies

(ESs), genetic algorithms (GAs), genetic programming

(GP), differential evolution (DE), and estimation of dis-

tribution (EDA) algorithms are sub-families under EC.

3.1 Evolution using GA

Al-Hyari and Areibi [109] used GA to evolve CNNs by

designing the following space exploration approach. The

covered search space includes the number of convolutional

layers, the number of filters for each convolutional layer,

the number of fully connected layers, and each layer’s size.

Also, filter size, dropout rate, pooling size, and type were

also included in the proposed chromosome structure. The

proposed framework was evaluated using the MNIST

dataset for handwritten digit classification, and they

obtained an accuracy equal to 96.66%.

Lingxi et al. [110] proposed a genetic DCNN (GDCNN)

that can automatically build deep CNN architectures.

GDCNN model the network architectures as a hyper-pa-

rameters search and optimization problem involving an

evolutionary-based approach. The authors proposed an

encoding scheme to generate randomized network structure

embeddings (individuals) using a fixed-length binary string

(binary bit) to initialize the GA algorithm. An individual

encodes only convolutional and pooling operations where

the size of convolutional filters is fixed within each stage.

The elimination of weak individuals is defined by the

generated network classification accuracy on different

datasets such as MNIST, CIFAR10, and ILSVRC2012.

Such algorithms are computationally time-consuming since

each individual’s evaluation is performed via training-

from-scratch on the selected dataset. Moreover, a limited

number of layers, fixed filter size, and several filters per

filter size can be seen as a limitation of this method. Fel-

binger [111] proposed an automated approach for CNN to

detect the ball in the NAO robotic. The GA is used to find a

network and enhance classification. The method showed

superior performance and was implemented on the NAO

RoboCup 2017.

Fig. 1 The different categories of meta-heuristics

Neural Computing and Applications (2021) 33:14079–14099 14083

123



Yanan et al. [112] used the skip connections concept

introduced in ResNet to proposed GA-based system (CNN-

GA) to build CNN architectures automatically. Their goal

was to create deeper architectures that maximize the per-

formance accuracy on image classification tasks by dis-

covering the best depth instead of limiting the network’s

depth. The combination of skip layers (two convolutional

layers and a skip connection) and pooling layers is encoded

into each individual to represent a network architecture.

Encoded individuals allow the network to deal with com-

plex data by avoiding the gradient vanishing (GV) prob-

lems, reducing the search space, and minimizing the

parameters. CIFAR10 and CIFAR100 were used to eval-

uate the performance of CNN-GA. Although CNN-GA

achieved remarkable results on the well-known benchmark,

CNN-GA cannot generate the arbitrary graph structure’s

CNN architectures.

Yanan et al. [113] developed an automatic design

architecture of CNN using GA according to DenseNet and

ResNet’s blocks. This algorithm does not require pre-pro-

cessing or post-processing in the process of designing

CNN. To evaluate this algorithm, two datasets, namely

CIFAR10 and CIFAR100, were used. Also, a set of 18

state-of-the-art methods are compared against it. Experi-

mental results illustrate the high performance of the

developed method overall other state-of-the-art hand-craf-

ted CNNs according to various performance metrics,

including classification accuracy and time complexity.

Baldominos et al. [114] developed a method for auto-

matically designing CNNs according to GA and gram-

matical evolution. The developed model has been

evaluated using the MNIST dataset for handwritten digit

recognition. The results are compared with other models.

The results showed the high ability of this model without

using data augmentation.

Yanan et al. [115] developed the evolving deep CNN

(evoCNN) method to overcome the limitations of Hyper-

NEAT [116]. The authors used GA to search for the opti-

mal CNN architecture and connection weight initialization

values for image classification. The authors designed a

variable-length chromosome encoding to encode CNN

building blocks and depth. Also, they developed a repre-

sentation scheme for CNN connection weights initializa-

tion to avoid networks getting stuck into local minima.

EvoCNN has been compared with 22 existing algorithms

on nine benchmark datasets (Fashion, the Rectangle, the

Rectangle Images (RI), the Convex Sets (CS), the MNIST

Basic (MB), the MNIST with Background Images (MBI),

Random Background (MRB), Rotated Digits (MRD), and

with RD plus Background Images (MRDBI)) in terms of

classification error rate and CNN parameters.

Yang et al. [117] proposed an alternative pruning CNN’s

method using GA and multi-objective trade-offs among

error, sparsity, and computation. The developed method

was used to prune a pre-trained LeNet model. The evalu-

ation has been performed using the MNIST dataset, which

shows faster performance by 16 times and decreases

95.42% parameter size. Besides, by comparing the results

of GA with state-of-the-art compression methods, GA

outperforms most of them according to various perfor-

mance measures.

David et al. [118] describe their experiment using deep

learning to identify galaxies in the zone of avoidance

(ZOA), a binary classification problem. They aimed to use

an evolutionary algorithm to evolve the topology and

configuration of CNN to identify galaxies in the Zone of

Avoidance automatically. They use EA, similar to a

DeepNEAT implementation, to search the topology and

parameters of a CNN. The selected search space including

the number of convolution, pooling, fully connected layers,

kernel size and stride, pooling size and stride, fully con-

nected layer size, and the learning rate.

Bohrer et al. [119] propose an adapted implementation

of GA-based evolutionary technique (CoDeepNEAT) [120]

to automate the tasks of topology and hyper-parameter

selection. The authors used two types of layers to build

their networks which are convolutional and dense layers.

For the convolutional layer, hyper-parameter such as Fil-

ters, Kernel size, and Dropout was investigated. Besides,

the number of units was investigated in dense layers. The

evaluation has been conducted on two image classification

datasets which are MNIST and CIFAR-10.

3.2 Evolution using GP

Agapitos et al. [121] used the greedy layer-wise training

protocol, which is a GP-based system for multi-layer

hierarchical feature construction and classification. The

authors used two successive runs of GP to evolve two

cascaded transformation layers rather than a single evolu-

tion stage.

Suganuma et al. [122] tried to solve the classification of

the image by designing a CNN using the GP of kind

Cartesian. Convolutional blocks and tensor concatenation

represent the nodes of the network. He checked the pro-

posed method performance using the dataset of CIFAR-10.

The experimental result showed that the proposed method

could automatically reach the competitive CNN architec-

ture compared with the state-of-the-art models like VGG

and ResNet.

Wong et al. [123] proposed adaptive grammar-based

deep neuroevolution (ADAG-DNE) for the ventricular

tachycardia signals classification. ADAG-DNE uses a

grammar-based GP with a Bayesian network (BGBGP) to

model probabilistic dependencies among the network

modules. Authors compared using ADAG-DNE against
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two neural network techniques named AlexNet, ResNet,

and other seven popular classifiers, including Bayesian

ANN classifier, least square SVM, ANN, pruned, and

simple KNN, SVM, Random Forest, and Boosted-CART

classifier. In terms of accuracy, ADAG-DNE is slightly

better than AlexNet-A, AlexNet-B, and ResNet18. ADAG-

DNE shows high efficiency in reducing the number of

deaths caused by ventricular tachycardia and various heart

diseases.

3.3 Evolution using DE

Zhang et al. in [124] proposed a multi-objective deep belief

network (DBN) ensemble (MODBNE) method which

employs a competitive multi-objective evolutionary algo-

rithm, called MOEA/D [125] and a single-objective DE

[126]. Several scalar optimizations have been composed as

subproblems from a multiobjective optimization problem

using MOEA/D. MOEA/D controls the number of hidden

neurons per hidden layer, the weight cost, and learning

rates used by the conventional DBN. The single-objective

DE uses the mean training error to optimize the combina-

tion weights of an RBMs stacking ensemble.

Choi et al. [127] introduce a DE algorithm that controls

each evolutionary process. Then, the algorithm assigns

proper monitor parameters based on evolved of the indi-

vidual. The CEC 2014 benchmark problems were used to

demonstrate the performance; the proposed approach

shows superior performance than the conventional DE

algorithm.

Wang et al. [128] introduced crossover operator which is

suggested in [128] to develop length CNN architectures,

which is called DECNN. The suggested DECNN approach

integrates three concepts. First, an established successful

encoding method is optimized to accommodate for CNN

architectures of variable length; Second, to optimize the

hyper-parameters of CNNs, the novel mutation and cross-

over operators are established for variable-length DE;

finally, the latest second crossover is implemented to

improve the depth of CNN architectures. The proposed

method is evaluated on six commonly used benchmark

datasets. The findings are compared to 12 state-of-the-art

techniques, which indicates that the proposed method is

significantly efficient compared with state-of-the-art

algorithms.

Peng et al. [129] presented DE-LSTM to evolve LSTM

using DE algorithm. DE-LSTM is used to perform elec-

tricity price forecasting for balancing electricity generation

and consumption. The method used to select and identify

optimal hyper-parameters for LSTM where results indicate

that DE outperforms PSO and GA in forecasting accuracy.

3.4 Evolution using FSM

Alejandro et al. [130] presented an automated way based

on evolutionary approaches named EvoDeep for evolving

both the architecture and the parameters of DNN. Authors

used finite-state machine (FSM) as their evolutionary-

based model design to generate valid networks to improve

the level of classification accuracy and maintain a valid

layers sequence. Several tuning parameters and network

structure were included in the search space to generate

DNN, including optimizer, several epochs, batch size, layer

type, initialization function, activation function, and pool-

ing other parameters. During their experiments, the MNIST

dataset was used to evaluate EvoDeep. The model achieved

a mean accuracy of 98.42% showing that the proposed

algorithm improves the DNN architecture.

3.5 Evolution using evolution strategies (ESs)

Tirumala et al. [131] proposed a new approach for opti-

mizing the DNN and improve the training process using

EC. The proposed approach compared with various meth-

ods, including support vector machine (SVM), reinforce-

ment, neuroevolution (NE), and GAs. However, this

approach aims to decrease the DNN learning time by

optimizing the DNNs. The system examines using the

MNIST dataset (images dataset) and shows an improve-

ment in the classification process’s accuracy.

Ororbia et al. [132] expand EXALT [133] algorithm to

propose a new algorithm EXAMM (Evolutionary eXplo-

ration of Augmenting Memory Models), which can evolve

recurrent neural networks (RNNs). In particular, EXAMM

refines EXALT’s mutation operations to reduce hyper-pa-

rameters, and D-RNN, GRU, LSTM, MGU, and UGRNN

cells were implemented to encode different memory

structures rather than using simple neurons or LSTM cells

only. EXAMM has been evaluated on large-scale, accurate

world time-series data prediction from the aviation and

power industries.

Badan and Sekanina [134] proposed EA4CNN, a

framework employed to evolve CNNs using an evolu-

tionary algorithm (EA) TinyDNN library for image clas-

sification concerning the classification error and CNN

complexity. EA4CNN uses the following operations to

build the EA: two-member tournament selection, cross-

over, and mutation. Also, a replacement algorithm that uses

a simple speciation mechanism based on the CNN age.

EA4CNN was used to design and optimize CNNs where

each CNN is represented in the chromosome, including a

variable-length list of layers, the age, and the learning rate.

Moreover, two types of layers were studied: the Convolu-

tional layer represented by the kernel size, number of
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filters, stride size, and padding. Furthermore, the pooling

layer is encoded with the stride size, subsampling type, and

subsampling size. EA4CNN has been evaluated on two

image classification datasets which are MNIST and

CIFAR-10.

Irwin-Harris et al. [135] suggested an encoding strategy

based on a directed acyclic graph representation and use

this encoding to implement an algorithm for random gen-

eration of CNN architectures. Unlike previous research, the

proposed encoding method is more specific, allowing rep-

resentation of CNNs of unspecified connectional structure

and infinite depth. It demonstrated the effectiveness

through a random search, in which it evaluates 200 ran-

domly generated CNN architectures. The 200 CNNs are

trained by using 10% of CIFAR-10 training data to

enhance computational efficiency; the three best-perform-

ing CNNs are then retrained on the entire training set. The

findings demonstrate that given the random search meth-

od’s simplicity and the reduced data set, the proposed

representation and setup approach can obtain impressive

efficiency compared to manually designed architectures.

Bakhshi et al. [136] proposed a genetic algorithm that

can efficiently investigate a specified space of potential

targets CNN architectures and optimize their hyper-pa-

rameters simultaneously for a given image processing

function. Authors called this fast, automatic optimization

model fast-CNN and used it to find efficient CNN image

classification architectures on CIFAR10. In a set of simu-

lation tests, it has been able to show that the network built

by fast-CNN has obtained fair accuracy comparing with

some other best network work existing models, but fast-

CNN has taken much less time. Also, the trained model of

the fast-CNN network generalized well to CIFAR100.

Baldominos et al. [137] enhanced previous research to

optimize the topology of DNNs that can be employed to

tackle the handwritten character recognition issue. Also, it

takes advantage of evolutionary algorithms to optimize the

population of candidate solutions by integrating a collec-

tion of the best-developed techniques resulting in a con-

volutional neural network committee. This method is

strengthened by the use of unique strategies to protect

population diversity. Consequently, it discusses one of the

drawbacks of neuroevolution in this paper: The mechanism

is very costly in terms of computational time. To tackle this

problem, authors explore topology transfer learning effi-

ciency: Whether the optimal topology achieved for a given

domain utilizing neuroevolution could be adapted suc-

cessfully to a different domain. In doing so, the costly

neuroevolution method could be recycled to address vari-

ous issues, transforming it into a more promising method to

optimizing topology design for neural networks. Findings

confirm that both the use of neuroevolved committees and

topology transfer learning are successful: Convolutional

neural network committees can optimize classification

outcomes compared to a single model, and topologies

learned for one issue could be repeated for another issue

and data with good efficiency.

Benteng et al. [138] proposed the genetic DCNN (deep

convolutional neural networks) designed to generate

DCNN architectures for image classification automatically.

The proposed framework uses refined evolutionary opera-

tions, including selection, mutation, and crossover, to

search for the optimal DCNN architectures. Each individ-

ual in the DCNN architectures population encodes the

following network parameters convolution, pooling, fully

connection, batch normalization, activation, and dropout

ratio as an integer vector. With the proposed DCNN

architecture encoding scheme inspired by the representa-

tion of locus on a chromosome, DCNN architectures can be

decomposed into a meta convolution block (p-arm) and a

metadata-connected block (q-arm) where the VGG-19

model has been taken as the case study. The framework has

been evaluated using MNIST, Fashion-MNIST, EMNIST-

Digit, EMNIST-Letter, CIFAR10, and CIFAR100 datasets.

Fan et al. [108] proposed a novel method that imple-

ments neural architecture search (NAS) to improve a reti-

nal vessel segmentation encoder–decoder architecture. An

enhanced evolutionary technique is employed to develop

encoder–decoder frame architectures with limited compu-

tational resources. The developed model achieved by the

introduced approach achieved the best performance on the

three datasets among all the comparative approaches,

called DRIVE, STARE, and CHASE DB1, with selected

criteria. Also, cross-training findings demonstrated that the

proposed model improves scalability, which implies great

potential for diagnosis of clinical disease. We conclude the

evolutionary algorithms used to improve DNNs in Table 1,

which illustrates the advantages and limitations of each

model.

4 Swarm intelligence for DNNs

Natural or artificial entities represented in groups that can

emerge collective intelligent behaviors are referred to as

swarm intelligence (SI) [139]. The interaction of these

entities with small groups or the environment can create

global intelligent behavior. In the last few decades, many

algorithms have been regularly proposed to simulate these

intelligent behaviors, for instance, cuckoo search [140],

firefly algorithms [140], grey wolf optimization (GWO)

[141], particle swarm optimization (PSO) [142], ant colony

optimization (ACO) [143], whale optimization algorithm

[144], and squirrel search algorithm [145]. The following

subsections summarize some of the key approaches of

evolving DNNs by using SI algorithms.
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Table 1 Evolutionary computing for DNNs summary

The EC algorithm The EC algorithm mechanism Advantages/disadvantages

General deep neural networks

EvoDeeP finite-state

machine (FSM) [130]

The search performed using EvoDeeP over the

parameters space FSM used to determine the possible

transitions between layers (multiple types)

Pros good accuracies has been achieved using the

generated DNNs architectures Cons the generated

DNNs needed high computational resources and

training time

Two different types of co-

evolutionary processes

[131]

The competitive strategy used on population P1 to

identify the fittest individual The cooperative strategy

used on population P2 to construct an optimal solution

and decrease the DNN learning time

Pros optimized DNNs were employed to reduce

learning time and improve classification accuracy

Cons hard to select the initial topology, weights, and

biases to start with

Convolutional neural network

GA [109] A chromosome structure with two sub-parts for the

convolutional layer parameters and the fully

connected layer parameters, respectively. GA had its

usual operators

Pros high accuracy on the MNIST dataset Cons limited

set of CNN parameters and components were explored

GA [110] A fixed-length binary string (binary bit) encoding

scheme is used. GA had its usual operators

Pros good generalization of the generated structures on

other tasks Cons computation time-consuming A

limited and fixed number of explored parameters The

network training process is performed separately

GA based on ResNet

blocks and DenseNet

blocks [113]

A variable-length encoding scheme is employed for the

unpredictably optimal depth of the CNN A new

crossover and mutation operators were used for local

and global search Another encoding strategy was

designed based on the ResNet and DenseNet blocks

Pros no users with the domain, problem, or GA

knowledge are required It outperforms other state-of-

the-art CNN with less time consumed Cons relative

slow speed of the fitness evaluation

GA [112] A new variable-length encoding strategy and crossover

operator The incorporation of skip connections to

avoid the vanishing gradient (VG) problems An

asynchronous computational component was

developed

Pros outperform the existing automatic CNN

architecture with fewer parameter numbers and

computational resources Cons slow speed for the

fitness evaluation of CNNs

GA and grammatical

evolution [114]

A new encoding scheme of the most relevant parameters

of CNN Approximating the quality function with a

reduced sample of the training A niching scheme was

proposed to preserve the diversity of the population

Pros competitive results with the state-of-the-art

without relying on data augmentation or preprocessing

Cons fixed search space—memory and computation

bottleneck

GA [115] A new variable-length encoding scheme A new

representation for weight initialization A slacked

binary tournament selection

Pros outperform the state-of-the-art algorithms in terms

of the classification error rate with less number of

parameters (weights) Cons high computational

resource and long time training on large-scale data

Darwinian biological

evolution [118]

An EA similar to DeepNEAT algorithm Pros highly specific CNNs to the task of galaxies

classification and identifying Larger input images and

all JHK passband Cons less resolution information

was needed and human is still needed to verify the

results

GA [119] CoDeepNEAT algorithm Pros only small population sizes and few generations

were needed Cons computation time-consuming

Network evaluations are narrowed to smaller search

spaces

Cartesian genetic

programming (CGP)

[122]

Node functions modules employs convolutional blocks

and tensor concatenation

Pros competitive CNN architectures compared with the

state-of-the-art Cons high computational cost with the

existence of redundant or less effective layers

Probabilistic Model

Building Genetic

Programming (PMBGP)

[123]

A set of rules in Probabilistic Context-Sensitive

Grammar (PCSG) used as a grammar to encode

structural dependencies within DNN components

Pros better accuracy than AlexNet, ResNet, and seven

non-neural network classifiers New forms of

regularities were discovered and new traits were

extracted Cons long training time of CNN Difficult to

trace a prediction result back CNN model cannot

handle missing feature values

DE [128] IP-Based Encoding Strategy with new mutation and

crossover operators for variable-length DE

Pros very competitive accuracy on the MBI and MRB

datasets Cons not tested on large and more complex

datasets
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4.1 Evolution using PSO

Khalifa et al. [146] proposed a method to optimize the

connection weights of a CNN architecture for handwritten

digit classification. PSO was used to optimize the last

classification layer weights of a CNN with seven layers.

Authors reported that the proposed method showed

improved accuracy compared to a generic CNN that uses

stochastic gradient descent (SGD) only.

Fei Ye [147] proposes an approach for automatically

find the best network configuration such as hyper-param-

eters and network structure for the DNN. There is the

combination of the gradient descent approach and PSO.

The PSO algorithm is used to explore optimal network

configurations; on the other hand, the gradient descent is

employed to train the DNN classifier. Throughout the

search process, the PSO algorithm is applied to explore

optimal network configurations. The steepest gradient

descent scheme is utilized for training the DNN classifier.

Qolomany et al. [148] investigated the usage of the PSO

algorithm to optimize parameter settings of a DNN and

predict the number of occupants and their locations from a

Wi-Fi campus network. PSO is used to optimize the

number of hidden layers and the number of neurons in each

layer compared to the grid search method.

Wang et al. [149] proposed an alternative method to

design the architecture of CNNs automatically using

improved PSO. In this algorithm, the PSO is modified

using three strategies; the first strategy applies an encoding

technique inspired by computer networks that aim to

encode the CNN layers is simple. In the second strategy, a

disabled layer is prepared to hide some information about

the particle’s dimensions to learn the variable-length

architecture of CNN. The third strategy aims to speed up

learning the model on extensive data by randomly selecting

partial datasets. The developed algorithm is evaluated by

comparing it with 12 state-of-the-art image classification

methods. According to the results, the proposed algorithm

outperforms other algorithms based on the results of clas-

sification error.

Gustavo et al. [150] proposed a technique to overcome

CNN’s overfitting problem using PSO for image

Table 1 (continued)

The EC algorithm The EC algorithm mechanism Advantages/disadvantages

EA [134] TinyDNN library Pros good trade-offs between the classification error and

CNN complexity Cons limited search quality and

computing resources

EA and Random search

[135]

A directed acyclic graph representation encoding

strategy

Pros proposed representation and initialization method

can achieve promising accuracy with less computation

time Cons large search space and limited training data

GA [136] Elite selection, random selection, and breeding as

genetic operations

Pros outperformed all manually designed models in

terms of classification accuracy with fewer GPU days

Cons lower performance compared to some semi-

automatic and automatically designed models

GA and grammatical

evolution [137]

Same NE algorithm from [114] Niching strategies,

historical set, and hall-of-fame were used.

Pros ensembles of CNNs can outperform individual

models and transferred to different problems Cons less

adaptation to non-similar domains

Deep convolutional neural network

GA [138] An encoding scheme inspired by the representation of

locus on a chromosome Redefined selection,

crossover, and mutation operators

Pros comparable performance to the state of the art

Cons very high computational and space complexity

Deep belief networks

Multi-objective EA and

DE [124]

MODBNE used to evolve multiple DBNs

simultaneously Combination weights optimized using

a single-objective DE

Pros good performance of MODBNE on accuracy and

diversity Cons not tested on more or different

conflicting objectives Low computational speed

Recurrent neural network

DE [129] DE had its usual operators Pros outperform existing forecasting models Cons less

generalization on new datasets

EXAMM [132] EXALT algorithm with either simple neurons or LSTM

cells Refined EXALT’s mutation operations EXAMM

uses islands [151] instead of a single steady-state

population

Pros performant architectures Cons less reliability
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classification. PSO was used to select the proper regular-

ization parameter, which is the dropout ratio in CNNs. The

loss function guided the dropout ratio selection as a fitness

function over the validation set. Moreover, experiments

were conducted and compared to other meta-heuristic

optimization techniques, including bat algorithm (BA),

Cuckoo Search (CS), and firefly algorithm (FA) as well as a

standard dropout ratio and a dropout-less CNN. The pro-

posed technique was evaluated using four benchmarks,

including MNIST, CIFAR-10, Semeion Handwritten Digits

dataset, and USPS dataset.

Wang et al. [152] suggested an efficient PSO

scheme called EPSOCNN to develop CNN architectures

influenced by the concept of transfer learning. EPSOCNN

effectively reduces the computation cost by reducing the

search space to a single block and using a tiny number of

the training set to analyze CNNs during development.

Moreover, EPSOCNN still keeps the accuracy rate

stable by stacking the developed block several times to

match the entire training dataset. The suggested EPSOCNN

technique is tested on the CIFAR10 dataset and compared

with 13 peer competitors like hand-crafted deep CNNs,

trained by deep learning techniques developed by evolu-

tionary approaches. It demonstrates promising results in

terms of classification precision, number of parameters,

and cost. Besides, the developed transferable CIFAR-10

block is transferred and tested on several datasets—

CIFAR-100 and SVHN. It showed promising findings on

both datasets, showing the transferability of the developed

block. All the tests were conducted several times. From a

statistical point of view, Student’s t-test is employed to

compare the developed technique with peer competitors.

Junior et al. [153] proposed a new scheme based on

PSO, capable of rapid convergence compared to other

evolutionary techniques, to automatically search for rele-

vant deeply CNNs architectures for image classification

tasks, called psoCNN. A novel strategy for direct encoding

and a velocity operator was developed, enabling PSO use

with CNNs to be optimized. Experimental results demon-

strated that psoCNN could easily find successful CNN

architectures that obtain comparable quality performance

with state-of-the-art architectures.

Pinheiro et al. [154] proposed a new approach that

evolves CNN (U-Net) using the SI algorithm for biomed-

ical image segmentation (pulmonary carcinogenic nodules

detection) in cancer diagnosis. U-net imaging process

layers are maintained during the training phase, whereas

the last classification layer was remodeled. Moreover,

U-Net parameters were included in the search space of

several test SI algorithms, including PSO. The study shows

a competitive performance of the swarm-trained DNN with

25% faster training than the back-propagation model. PSO

achieved the top performance among other SI algorithms

on various tested metrics.

4.2 Evolution using ACO

Desell et al. [155] applied ACO to optimize deep RNN

structure for general aviation flight data prediction (air-

speed, altitude, and pitch). A forward information flow path

is selected by the artificial ants over neurons to generate a

fully connected topology having the input, hidden, and

output layers. An evaluation process is performed after

generating the neural network by integrating the paths

selected by a pre-specified number of ants.

ElSaid et al. [156] used ACO to evolve an LSTM net-

work for aircraft engine vibrations. The authors improved

the analytical calculations prediction of engine vibration by

developing the LSTM cell structure using ACO. In a recent

work on the same problem, ElSaid et al. [157] used ACO to

evolve LSTMs cells using artificial ants to produce the path

through the input and the hidden layer connections, taking

into consideration the previous cell output.

Edvinas and Wei [158] proposed a new neural archi-

tecture search (NAS) method named Deepswarm based on

swarm intelligence. Deepswarm uses ACO to search for the

optimal neural architecture. Furthermore, authors use local

and global pheromone update rules to guarantee the bal-

ance between exploitation and exploration. In addition,

they combined advanced neural architecture search with

weight reusability to evolve CNNs. Deepswarm was tested

on MNIST, Fashion-MNIST, and CIFAR-10 dataset and

achieved 1.68%, 10.28%, and 11.31% error rates.

ElSaid et al. [159] proposed a novel neuroevolution

scheme based on ACO, named ant swarm neuroevolution

(ASNE), for specific optimization of RNN topologies. The

technique chooses from various typical recurrent forms of

cells such as D-RNN, GRU, LSTM, MGU, and UGRNN,

as well as from recurrent connections that can cover several

layers/or stages of time. It also investigates variants of the

core algorithm to add an inductive bias that promotes the

creation of sparser synaptic communication patterns.

ASNE formulates various functions that guide the evolu-

tionary structure of pheromone stimulation (which mimics

L1 and L2 regularization in ML) and implement ant agents

with specific tasks such as explorer ants that create the

initial feed-forward network and social ants that choose

nodes from the network connections. Moreover, the num-

ber of training backpropagation epochs has been reduced

by using the Lamarckian weight initialization strategy.

Findings show that ASNE’s evolved sparser RNNs out-

perform conventional one- and two-layer architectures

built using modern memory cells and other well-known

methods such including NEAT and EXAMM [132].
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4.3 Evolution using firefly algorithm

Sharaf et al. [160] proposed an automated tool to enable

non-experts to develop their CNN framework without prior

expertise in this area. The suggested technique encoded the

skip connections, which reflect the standard CNN block to

produce the problem’s search space. An improved firefly

algorithm was introduced by exploring the search space to

find optimal CNN architecture. The suggested firefly was

developed to reduce the algorithm’s complexity based on a

neighborhood attraction model. The CIFAR-10 and

CIFAR-100 had been utilized for training and testing the

proposed algorithm. The new scheme obtained high results

and improved accuracy compared with the cutting-edge

CNN architecture.

5 Hybrid MH methods

We summarized the advantages and disadvantages of the

swarm techniques that have been introduced in this study to

enhance DNNs in Table 2. Garrett et al. [161] explored

novel evolved activation functions using a tree-based

search space that outperforms rectified linear unit (ReLU).

Exhaustive search, mutation, and crossover have been

employed on a set of candidate activation functions. Each

activation function was defined as a tree structure (unary

and binary functions) and grouped in layers. These acti-

vation functions were evaluated using a wide residual

network with depth 28 and widening factor 10 (WRN-28-

10) trained on two well-known image classification

benchmarks, CIFAR-10 and CIFAR-100. WRN-28-10 with

ReLU activation function got 94% accuracy on CIFAR-10

and 73.3% on CIFAR-100, respectively. WRN-28-10 uses

the activation function searched by their algorithm got

94.1% on CIFAR-10 and 73.9% on CIFAR-100.

Bin et al. [162] proposed a hybrid evolutionary com-

putation (EC) method that evolves CNNs architecture

automatically for the image classification task. Instead of

traditionally connecting layers with each other, authors

integrated shortcut connections in their method by

proposing a new encoding strategy. CNN (DynamicNet1)

architecture, the shortcut connections are encoded sepa-

rately. The authors combined PSO and GA as their primary

EC method (HGAPSO) to search and generate optimal

CNNs to maximize network classification accuracy.

HGAPSO has been evaluated on three CONVEX bench-

mark datasets, MB, and MDRBI, for 30 runs and one run

on CIFAR-10. HGAPSO has been compared with 12 peer

non-EC-based competitors and one EC-based competitor

that uses a differential evolution approach [128].

Yanan et al. [163] proposed an approach named

EUDNN (evolving unsupervised deep neural networks) for

learning meaningful representation through evolving

unsupervised DNN using EA (heuristically searches) to

overcome the lack of labeled data for training which is

often expensive to acquire. EUDNN aims to find the

optimal architecture and the initial parameter values for a

classification task. During the evolution search stage, a

small set of labeled data ensures the learned representations

are meaningful. Also, the authors proposed a gene encod-

ing scheme addressing high-dimensional data with limited

computational resources. EUDNN starts by searching for

the optimal architecture, initial connection weights, and

activation functions and then fine-tuning all parameter

values in connection weights. The authors used MNIST

and CIFAR-10 as benchmarks to assess the performance of

EUDNN, where an error classification rate of 1.15% has

been reported on the MNIST dataset.

Verbancsics and Harguess [164] investigated the con-

struction of deeper architectures of DNNs applying

HyperNEAT to an image classification task. HyperNEAT

is used to generate the connectivity for a defined CNN.

Then, the CNN is used to extract image features trained on

a specific dataset. After that, extracted features are given to

another machine-learning algorithm to calculate a fitness

score given as feedback to hyperNEAT for tuning the

connectivity. The authors conducted experiments on

MNIST and BCCT200 dataset and compared results to

other networks trained by using BP directly.

Adarsh et al. [165] proposed a hybrid evolutionary

approach to recognize handwritten Devanagari numerals

using CNN. GA was employed to develop the deep

learning model (CNN). Firstly, they use L-BFGS to train

an auto-encoder to extract image features where they fixed

the auto-encoder parameters. Lastly, they train a fully

connected layer by the features extracted by the auto-en-

coder where GA was integrated to get the best weights for

the softmax classifier. The proposed approach has achieved

around 96.09% recognition accuracy for handwritten

Devanagari numerals.

Liu et al. [166] have been developed an alternative

approach to find the optimal structure of CNNs. This

approach is named advanced neural architecture search,

and it depends on sequential model-based optimization

(SMBO) strategy. According to [166], this model has some

advantages over other models, such as its simple structure,

so it trains faster, which will learn the surrogate quickly.

The quality of the structures is predicted using a surrogate

that was not used before. The authors also factorized the

search domain into a product of smaller search domains,

which leads to improving the searching process with more

1 DynamicNet is implemented as one of the Python library models:

https://pypi.org/project/convtt/.
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blocks. The results showed that the developed model is

efficient five times more than others, including reinforce-

ment learning (RL) [167] in terms of the number of models

evaluated, and eight times faster total compute. In addition,

the model outperformed other state-of-the-art classification

methods using two datasets, namely CIFAR-10 and

ImageNet.

Martı́n et al. [168] proposed a hybrid procedure for

optimizing the inference block of the CNN by utilizing and

developing a recent meta-heuristic known as statistically

driven coral reef optimization (SCRO) and then hybridiz-

ing it with a backpropagation algorithm to make a final

fine-grained weights update. There is a need to implement

a set of fully connected layers, which leads to an enormous

size of the network. Hence, the authors considered the

hybrid between the two algorithms. They tested the per-

formance of the proposed method (HSCRO) on two data-

sets, CIFAR-10 and CINIC-10 datasets; HSCRO could

optimize the reasoning block of the VGG-16 CNN archi-

tecture with a reduction of around 90% of the weights of

the connections, which shows its superiority.

Aly et al. [169] proposed a technique for optimizing the

deep neural network based on a recent meta-heuristic

named multiple search neuroevolution (MSN). The authors

divided the search space into several regions. They then

searched in the regions simultaneously to keep enough

Table 2 SI approaches summary

The EC algorithm The EC algorithm mechanism Advantages/disadvantages

General deep neural networks

PSO and steepest

gradient descent

algorithm [147]

A real-number vector as the individuals of PSO A flexible

method to select the number of classifiers (ensemble

model)

Pros outperform the random approach in terms of the

generalization performance Cons limited search space

PSO [148] PSO had its usual operators Pros efficient approach for tuning DNN parameters when

compared to grid search Cons limited search space

Convolutional neural network

PSO [149] The IP address as a particle encoding scheme Disabled

layer to attain a variable-length particle Evolved and

evaluated on randomly picked partial datasets

Pros strong competitor to the state-of-art algorithms in

terms of classification error Lower computational cost

Cons poor generalization on other tasks

PSO [150] PSO had its usual operators Pros overcome overfitting problem Cons small search

space and the DNN architecture was not evolved

PSO [152] A single dense block of hyper-parameters was encoded A

training subset used to learn a transferable block A

proposed automatic and progressive process

Pros lower computation cost and competitive classification

accuracy The ability to transfer the evolved block Cons
not evaluated on large datasets and CNN block was not

evolved

PSO [153] A virtually no size limitation variable-length particles A

novel velocity operator

Pros fast convergence when compared with other

evolutionary approaches A good balance between speed

and accuracy Cons high computational power

ACO [158] Local and global pheromone update rules Heuristic

information Progressive NAS with weight reusability

Pros balance between exploitation and exploration

Competitive performance Cons evaluated on fewer well-

known datasets

FA [160] The skip connections encoded for CNN blocks A

neighborhood attraction model

Pros significant results and higher accuracy Cons Block-

QNN-S model performs better than the proposed model

PSO [154] PSO had its usual operators Pros competitive results with 25% faster than the back-

propagation model and classical learning algorithms

Cons CNN architecture was not evolved

Recurrent neural network

ACO [155] Ants select a forward propagating path through neurons

randomly based on the pheromone on each path

Pros easily parallelizable and scalable approach and

trained in fewer iterations lower computational cost Cons
limited network depth and fewer training epochs

ACO [159] Schemes for dynamically modifying the pheromone traces

Ant agents with specialized roles Lamarckian strategy for

weight initialization

Pros outperform traditional one, two-layer architectures,

and well-known NE algorithms Cons poor performance

of explorer ants on the mean and median cases - poor

performance of combined explorer and social ants on the

best cases

ACO [156] Message passing interface (MPI) version of ACO Pros lower prediction error Cons only ‘‘M1’’ LSTM cells

were studied
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distance among them. They used the proposed technique

for solving some global optimization functions. Then, train

a CNN on the famous MNIST dataset. From the results, the

proposed technique achieved high accuracy for the two

tasks.

Peyrard and Eckle-Kohler [170] proposed a framework

consisting of two summarizers for extractive multi-docu-

ment summarization (MDS) based on GA artificial bee

colony algorithm. The study’s objective is to optimize an

objective function (KL divergence and JS divergence) of

input documents and a summary. The investigation yielded

competitive results compared to commonly used summa-

rization algorithms on DUC-02 and DUC-03 datasets.

6 Evaluate MH techniques combined
with DNN for image classification

In this section, the results of different MH techniques

applied to improve the DNN models’ performance are

collected from image classification applications. We

focused on this application since it is one of the most

popular applications used to assess the evolved DNNs.

Other applications used to evaluate the evolved DNNs have

been discussed in the previous sections.

Table 3 depicts the value of the accuracy obtained by

different evolved DNNs using three commonly used data-

sets, including MNIST, IRIS, SVHN, CIFAR10, and

CIFAR100.

For the MNIST, it can be noticed that the EvoDeeP

framework that incorporates finite-state machine (FSM)

[130] provides the highest accuracy overall the other

methods. Followed by GA and grammatical evolution

[114] and PSO [153] which allocate the second and third

rank, respectively. However, there is no significant differ-

ence between these algorithms. For the CIFAR10, one can

be observed that GA [112], sequential model-based opti-

mization (SMBO) [166], and PSO [152] allocate the first,

second, and third rank, respectively. Moreover, PSO [152],

GA [112], and FA [160] achieved the best accuracies

overall the other methods.

7 Problems and challenges

Notwithstanding the actual results of the reviewed resear-

ches still, some difficulties and challenges are facing DNNs

and their architectures that require to be approached. To

describe these challenges, the following points are given.

1. The determination of DNNs architectures: Until now,

several various DNNs architectures have been utilized

and employed in the literature to address hard

problems. However, there is no evidence of why these

structures have been chosen.

2. Absence of benchmarking and expected results: Some

benchmark results are published in the literature, which

is not enough. In these benchmarks, scholars have

employed various deep architectures and analyzed

decision trees’ outcomes to provide the best training

outcomes.

3. The loss of knowledge in any method that influences

the determination of the entire system. This problem

requires to be benchmarked to realize the best

achievement.

4. Features extraction can be performed before feeding

the data to DNNs via transfer learning. Then, the

optimization algorithm can be selected and employed.

This process aims to decrease the training and com-

putational time.

5. Several parameters are associated with the training

dataset. This can produce various errors during the

training process and the error which can face in the

current training dataset. Nevertheless, the DNNs

model-based ANN’s performance can be assisted by

the capability to process the training and testing

datasets.

6. Adjusting and tuning the optimization process is an

essential procedure because any change in hyper-

parameters influences the DNN models’ effectiveness.

Moreover, to trade with real-world problems by using

DNNs solutions, powerful processing capability is

wanted.

8 Future works

With the advancement achieved by applying developed

state-of-the-art DL architectures to a variant set of appli-

cations, future directions must be addressed to overcome

the problems encountered when using DL models and

techniques. Dimensionality reduction is one of the most

prevalent challenges needed to be handled since the num-

ber of the extracted features from DL techniques can be

huge. This leads to degradation in the prediction model’s

performance (i.e., classifier) since most of these features

are irrelevant and redundant. To handle this problem in the

future, different metaheuristics can be combined with DL

techniques. These MH methods aim to determine the rel-

evant features from those extracted features and then pass

the selected features to a classification algorithm or a fully

connected layer in a DL architecture.

In addition, most of the presented DL techniques have

been designed to deal with many samples (big data).

However, few of them have been developed to handle
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training a model with few samples. This problem occurred

when applied DL models to some applications that gener-

ate a small number of observations, including engineering,

chemistry, bioinformatics, and medicine.

Although experts designed recent proposed state-of-the-

art architectures. Few of these architectures have been

explored by incorporating MH or NAS techniques such in

YOLOv4 [171], FP-NAS [172], and auto-deep lab [173]. A

huge range of architectures based on transformers of GANs

suffer from the long training time, computation cost, a high

number of training parameters, sequence length, and many

more issues, which are still open for further optimization

using MH and NAS techniques.

Finally, the evolutionary algorithms still need enhance-

ment before applying them to the DL techniques. Since

most of them have a high ability to explore or exploit the

search space, it is a challenging task to find the EC that can

balance between these two abilities. In addition, most of

the MH techniques ranked top in CEC’s competitions have

not been applied to improve or optimize the DL design or

parameters.

9 Conclusion

A deep neural network (DNN) is an artificial intelligence

approach that has been utilized successfully in various

applications. DNN is an artificial neural network (ANN)

with multiple layers to determine the optimal output of a

given input. The DNN structuring produces computational

models that consist of many processing layers to learn data

representations. Also, DNN is recognized as a sensible

Table 3 Comparison between MH techniques used to evolve DNN models for image classification

The MH algorithm MNIST IRIS CIFAR10 SVHN CIFAR100

EvoDeeP finite-state machine (FSM) [130] 99.93 NA NA NA NA

Two different types of co-evolutionary processes [131] 98.7 98.3 NA NA NA

GA [109] 96.66 NA NA NA NA

GA [110] 99.66 NA 92.9 98.03 70.97

GA based on ResNet blocks and DenseNet blocks [113] NA NA 95.3 NA 77.6

GA [112] NA NA 96.78 NA 79.47

GA and grammatical evolution [114] 99.63 NA NA NA NA

GA [115] 94.53 NA NA NA NA

GA [119] 92 NA 77 NA NA

Cartesian genetic programming (CGP) [122] NA NA 94.02 NA NA

DE [128] 98.54 NA NA NA

EA [134] 99.36 NA 75.8 NA NA

EA and Random search [135] NA NA 92.57 NA NA

GA [136] NA NA 94.7 NA 75.63

GA and grammatical evolution [137] 99.73 NA NA NA NA

GA [138] 99.64 NA 89.23 NA 66.77

PSO [149] 97 NA NA NA NA

PSO [150] 99.12 NA 71.69 NA NA

PSO [152] NA NA 96.42 81.44 98.16

PSO [153] 99.68 NA NA NA NA

ACO [158] 99.54 NA 87.3 NA NA

FA [160] NA NA 96 NA 77.75

Evolutionary optimization [161] NA NA 94.1 NA 74.3

GA-PSO [162] NA NA 95.63 NA NA

Hypercube-based NeuroEvolution [164] 92.1 NA NA NA NA

Genetic algorithm and L-BFGS [165] 96.41 NA NA NA NA

Sequential model-based optimization (SMBO) [166] NA NA 96.59 NA NA

ScheduledDropPath [167] NA NA 96.41 NA NA

Statistically driven coral reef optimization algorithm [168] NA NA 93.48 NA NA

Multiple search neuroevolution (MSN) [169] 90 NA NA NA NA
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technique to derive knowledge from the massive volume of

data. Hence, DNN is one of the most promising research

fields in machine learning and artificial intelligence

domains. Based on the literature, some efforts have been

made to realize how and why DNN achieves such essential

results. Moreover, DNN has been employed in medical

image analysis, classification rule, automatic speech

recognition, electromyography recognition, graphics object

detection, image recognition, drug discovery and toxicol-

ogy, voice recognition, natural language processing,

bioinformatics, financial fraud detection, and big data

analytics.

The architecture of DNNs may contain several layers

with variant types and depth. Each of these layers can

extract useful information from the input data. Meanwhile,

a wide range of DNNs, DNNs blocks, and training tech-

niques made building DNNs models more difficult. Fur-

thermore, various hyper-parameters to select to define how

each layer will be trained added an extra layer of com-

plexity to the model building or the architecture selection

process. For example, a convolutional neural network can

contain different hyper-parameters, including several con-

volutional layers, the number of kernels, kernel size, acti-

vation function, pooling operation, and pooling size. A

dense layer can include the number of neurons, activation

function, and layer type. Also, to train a DNN model, the

number of epochs should be set alongside the batch size,

initialization function, optimizer, and learning rate. From

the previous literature, it can be concluded that determining

the optimal configuration from those parameters is com-

plex and can be considered an NP-hard problem.

In this paper, a comprehensive survey of existing meta-

heuristic optimization methods used to evolve DNNs in

various research tasks, areas, and applications (such as in

training DNNs fine-tuning DNNs, networks architecture

search (NAS), and DNNs hyper-parameters search) is

presented. We focused on recent SI and EC algorithms

applied to DNNs, present their advantage and disadvan-

tage, and find out some future research directions for

connecting the gaps between optimization methods and

DNNs.

It has been noticed from the comparison between the

MH techniques that have been used to improve the per-

formance of DNN models that the Evolutionary algorithms

are wider used than swarm and hybrid techniques. How-

ever, the quality of the swarm techniques, such as the

particle swarm algorithm (PSO), can provide results better

than evolutionary algorithms. Moreover, the MH tech-

niques are less applied to unsupervised learning-based

DNNs. In most scenarios, MH techniques have been

applied to image classification tasks. Thus, there is still

room to apply these techniques in different areas and assess

their performance on different and more challenging real-

world datasets. Mainly DNNs require high computational

resources and time. In this case, a few MH techniques have

been explored to balance the computational resources,

computation time, and performance.

Future aspects and challenges of this research include

optimizing DNN structure using other recent optimization

algorithms and modifying them by introducing more robust

methods such as hybridizing them or adding new operators

to these algorithms. These propositions can improve the

optimization algorithms’ ability to solve significant prob-

lems in DNNs and enhance their performance. Further-

more, DNNs can be employed in several other applications,

such as military, financial fraud detection, mobile adver-

tising, recommendation systems, drug discovery and toxi-

cology, visual art processing, computer vision, and natural

language processing.
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86. İlker BŞ, Shu-Chering F (2003) An electromagnetism-like

mechanism for global optimization. J Global Optim

25(3):263–282

87. Kaveh A, Talatahari S (2010) A novel heuristic optimization

method: charged system search. Acta Mech 213(3–4):267–289

88. Scott K, Daniel Gelatt C, Mario PV (1983) Optimization by

simulated annealing. Science 220(4598):671–680

89. Esmat R, Hossein N-P, Saeid S (2009) Gsa: a gravitational

search algorithm. Inf Sci 179(13):2232–2248

14096 Neural Computing and Applications (2021) 33:14079–14099

123

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2008.07772
http://arxiv.org/abs/2007.03898


90. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qanes,

MA, Gandomi AH (2021) Aquila Optimizer: A novel meta-

heuristic optimization Algorithm. Comput Indus Eng. https://

doi.org/10.1016/j.cie.2021.107250

91. Tahani M, Babayan N (2018) Flow regime algorithm (fra): a

physics-based meta-heuristics algorithm. Knowledge and

Information Systems, pp 1–38

92. Ali Husseinzadeh Kashan (2015) A new metaheuristic for

optimization: optics inspired optimization (oio). Comput Operat

Res 55:99–125

93. Lam Albert YS, Li Victor OK (2010) Chemical-reaction-in-

spired metaheuristic for optimization. IEEE Trans Evolut

Comput 14(3):381–399

94. Laith A, Mohammad S, Mohammad A, Seyedali M, Abd EM

(2020) Ant lion optimizer: A comprehensive survey of its

variants and applications. Arch. Comput, Methods Eng

95. Abualigah L, Abd EM, Hussien AG, Alsalibi B, Jafar J, Seyed

M, Gandomi AH ( 2020) Lightning search algorithm: a com-

prehensive survey. Appl Intell, pp 1–24

96. Ravipudi VR, Vimal JS, Vakharia DP (2011) Teaching-learn-

ing-based optimization: a novel method for constrained

mechanical design optimization problems. Comput Aided Des

43(3):303–315

97. Reza M, Khodakaram S (2018) Volleyball premier league

algorithm. Appl Soft Comput 64:161–185

98. Dai C, Zhu Y, Chen W (2006) Seeker optimization algorithm.

In: International Conference on Computational and Information

Science, pp 167–176. Springer

99. Naser Moosavian and Babak Kasaee Roodsari (2014) Soccer

league competition algorithm: a novel meta-heuristic algorithm

for optimal design of water distribution networks. Swarm Evolut

Comput 17:14–24

100. Kashan AH (2009) League championship algorithm: a new

algorithm for numerical function optimization. In: 2009 Inter-

national Conference of Soft Computing and Pattern Recogni-

tion, pp 43–48. IEEE

101. Fogel DB (1995) Phenotypes, genotypes, and operators in evo-

lutionary computation. In Proceedings 1995 IEEE Int. Conf.

Evolutionary Computation (ICEC’95), pp 193–198

102. Kriegman S, Cheney N, Corucci F, Bongard JC (2017) A min-

imal developmental model can increase evolvability in soft

robots. In: Proceedings of the Genetic and Evolutionary Com-

putation Conference, pp 131–138

103. Parker A, Nitschke G (2017) Autonomous intersection driving

with neuro-evolution. In: Proceedings of the Genetic and Evo-

lutionary Computation Conference Companion, pp 133–134

104. Radu-Emil P, Radu-Codrut D (2019) Nature-inspired opti-

mization algorithms for fuzzy controlled servo systems. But-

terworth-Heinemann, Oxford

105. Constantin P, Radu-Emil P, Daniel I, Lucian-Ovidiu F, Radu-

Codrut D, Florin D (2013) Optimal robot path planning using

gravitational search algorithm. Int J Artif Intell 10(S13):1–20

106. Kaya Y, Faruk Ertugru O (2017) Determining the optimal

number of body-worn sensors for human activity recognition.

Soft Comput 21(17):5053–5060

107. Justesen N, Risi S (2017) Continual online evolutionary plan-

ning for in-game build order adaptation in starcraft. In: Pro-

ceedings of the Genetic and Evolutionary Computation

Conference, pp 187–194

108. Fan Z , Wei J, Zhu G, Mo J, Li W (2020) Evolutionary neural

architecture search for retinal vessel segmentation. arXiv, pages

arXiv–2001

109. Abeer A-H, Shawki A (2017) Design space exploration of

convolutional neural networks based on evolutionary algo-

rithms. J Comput Vis Imag Syst, vol 3, no 1

110. Xie L, Yuille A (2017) Genetic cnn. In: Proceedings of the IEEE

international conference on computer vision, pp 1379–1388

111. Felbinger GC (2017) A genetic approach to design convolu-

tional neural networks for the purpose of a ball detection on the

nao robotic system. Project Work

112. Yanan S, Bing X, Mengjie Z, Gary GY, Jiancheng L (2020)

Automatically designing cnn architectures using the genetic

algorithm for image classification. IEEE Trans Cybern

113. Sun Y, Xue B, Zhang M, Yen GG (2018) Automatically

evolving cnn architectures based on blocks. arXiv preprint.

arXiv: 1810.11875

114. Alejandro B, Yago S, Pedro I (2018) Evolutionary convolutional

neural networks: an application to handwriting recognition.

Neurocomputing 283:38–52

115. Sun Y, Xue B, Zhang M, Yen GG (2019) Evolving deep con-

volutional neural networks for image classification. IEEE Trans

Evolut Comput

116. Stanley Kenneth O, D’Ambrosio David B, Jason G (2009) A

hypercube-based encoding for evolving large-scale neural net-

works. Artificial Life 15(2):185–212

117. Yang C, An Z, Li C, Diao B, Xu Y (2019) Multi-objective

pruning for cnns using genetic algorithm. In: International

Conference on Artificial Neural Networks, pp 299–305.

Springer

118. Jones D, Schroeder A, Nitschke G (2019) Evolutionary deep

learning to identify galaxies in the zone of avoidance. arXiv

preprint. arXiv: 1903.07461

119. da Silveira BJ, Iochins GB, Dorn M (2020) Neuroevolution of

neural network architectures using codeepneat and keras. arXiv

preprint. arXiv: 2002.04634

120. Miikkulainen R, Liang J , Meyerson E, Rawal A, Fink D,

Francon O, Raju B, Shahrzad H, Navruzyan Arshak,Duffy Nigel

, et al (2019). Evolving deep neural networks. In: Artificial

Intelligence in the Age of Neural Networks and Brain Com-

puting, pp 293–312. Elsevier

121. Agapitos A, O’Neill M, Nicolau M, Fagan D, Kattan A, Bra-

bazon A, Curran K (2015) Deep evolution of image represen-

tations for handwritten digit recognition. In: 2015 IEEE

Congress on Evolutionary Computation (CEC), pp 2452–2459.

IEEE

122. Masanori S, Shinichi S, Tomoharu N (2017) A genetic pro-

gramming approach to designing convolutional neural network

architectures. In: Proceedings of the genetic and evolutionary

computation conference, pp 497–504

123. Pak-Kan W, Kwong-Sak L, Man-Leung W (2019) Probabilistic

grammar-based neuroevolution for physiological signal classi-

fication of ventricular tachycardia. Expert Syst Appl

135:237–248

124. Chong Z, Pin L, Kai Qin A, Kay Chen T (2016) Multiobjective

deep belief networks ensemble for remaining useful life esti-

mation in prognostics. IEEE Trans Neural Networks Learn Syst

28(10):2306–2318

125. Anupam T, Dipti S, Krishnendu S, Abhiroop G (2016) A survey

of multiobjective evolutionary algorithms based on decompo-

sition. IEEE Trans Evolut Comput 21(3):440–462

126. Swagatam D, Sankha SM, Ponnuthurai NS (2016) Recent

advances in differential evolution-an updated survey. Swarm

Evolut Comput 27:1–30

127. Tae JC, Chang WA (2017) An improved differential evolution

algorithm and its application to large-scale artificial neural

networks. In: Journal of Physics: Conference Series, vol 806,

p 012010. IOP Publishing

128. Bin W, Yanan S, Bing X, Mengjie Z (2018) A hybrid differ-

ential evolution approach to designing deep convolutional neu-

ral networks for image classification. In: Australasian Joint

Conference on Artificial Intelligence, pp 237–250. Springer

Neural Computing and Applications (2021) 33:14079–14099 14097

123

https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1016/j.cie.2021.107250
http://arxiv.org/abs/1810.11875
http://arxiv.org/abs/1903.07461
http://arxiv.org/abs/2002.04634


129. Peng L, Shan L, Rui L, Lin W (2018) Effective long short-term

memory with differential evolution algorithm for electricity

price prediction. Energy 162:1301–1314
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143. Dorigo M, Stützle T (2019) Ant colony optimization: overview

and recent advances. In: Handbook of metaheuristics,

pp 311–351. Springer

144. Farhad Soleimanian Gharehchopogh and Hojjat Gholizadeh

(2019) A comprehensive survey: whale optimization algorithm

and its applications. Swarm Evolut Comput 48:1–24

145. Mohit J, Vijander S, Asha R (2019) A novel nature-inspired

algorithm for optimization: squirrel search algorithm. Swarm

Evolut Comput 44:148–175

146. Khalifa MH, Ammar M, Ouarda W, Alimi AM (2017) Particle

swarm optimization for deep learning of convolution neural

network. In: 2017 Sudan Conference on Computer Science and

Information Technology (SCCSIT), pp 1–5. IEEE

147. Fei Y (2017) Particle swarm optimization-based automatic

parameter selection for deep neural networks and its applica-

tions in large-scale and high-dimensional data. PloS ONE

12(12):e0188746

148. Qolomany B, Maabreh M, Al-Fuqaha A, Gupta A, Benhaddou D

(2017) Parameters optimization of deep learning models using

particle swarm optimization. In: 2017 13th International Wire-

less Communications and Mobile Computing Conference

(IWCMC), pp 1285–1290. IEEE

149. Wang B, Sun Y, Xue B, Zhang M (2018) Evolving deep con-

volutional neural networks by variable-length particle swarm

optimization for image classification. In: 2018 IEEE Congress

on Evolutionary Computation (CEC), pp 1–8. IEEE

150. De Rosa GH, Papa João P, Xin-S Y (2018) Handling dropout

probability estimation in convolution neural networks using

meta-heuristics. Soft Comput 22(18):6147–6156

151. Enrique A, Marco T (2002) Parallelism and evolutionary algo-

rithms. IEEE Trans Evolut Comput 6(5):443–462

152. Bin W, Bing X , Mengjie Z (2019) Particle swarm optimisation

for evolving deep neural networks for image classification by

evolving and stacking transferable blocks. arXiv preprint. arXiv:

1907.12659

153. Junior FEF, Yen GG (2019) Particle swarm optimization of deep

neural networks architectures for image classification. Swarm

Evolut Comput 49:62–74

154. de Pinho P, Cesar A, Nedjah N, de Macedo ML (2020) Detec-

tion and classification of pulmonary nodules using deep learning

and swarm intelligence. Multimedia Tools Appl

79(21):15437–15465

155. Desell T, Clachar S, Higgins J, Wild B (2015) Evolving deep

recurrent neural networks using ant colony optimization. In:

European Conference on Evolutionary Computation in Combi-

natorial Optimization, pp 86–98. Springer

156. ElSaid A, Wild B, Jamiy FE, Higgins J, Desell T (2017) Opti-

mizing lstm rnns using aco to predict turbine engine vibration.

In: Proceedings of the Genetic and Evolutionary Computation

Conference Companion, pp 21–22

157. ElSaid A, Jamiy FE, Higgins J, Wild B, Desell T (2018) Using

ant colony optimization to optimize long short-term memory

recurrent neural networks. In: Proceedings of the Genetic and

Evolutionary Computation Conference, pp 13–20

158. Byla E, Pang W (2019). Deepswarm: Optimising convolutional

neural networks using swarm intelligence. In: UK Workshop on

Computational Intelligence, pp 119–130. Springer

159. ElSaid AA , Ororbia Alexander G, Desell Travis J (2019) The

ant swarm neuro-evolution procedure for optimizing recurrent

networks. arXiv preprint. arXiv:1909.11849

160. Sharaf AI , Radwan E-SF (2020) An automated approach for

developing a convolutional neural network using a modified

firefly algorithm for image classification. In: Applications of

Firefly Algorithm and its Variants, pp 99–118. Springer

161. Bingham G, Macke W, Miikkulainen R (2020) Evolutionary

optimization of deep learning activation functions. arXiv pre-

print. arXiv: 2002.07224

162. Wang B, Sun Y, Xue B, Zhang M (2019). A hybrid ga-pso

method for evolving architecture and short connections of deep

convolutional neural networks. In: Pacific Rim International

Conference on Artificial Intelligence, pp 650–663. Springer

163. Yanan S, Yen Gary G, Zhang Y (2018) Evolving unsupervised

deep neural networks for learning meaningful representations.

IEEE Trans Evolut Comput 23(1):89–103

164. Verbancsics P , Harguess J (2015) Image classification using

generative neuro evolution for deep learning. In: 2015 IEEE

winter conference on applications of computer vision,

pp 488–493. IEEE

165. Adarsh T, Siddhant S, Apoorva M, Anupam S, Ritu T (2018)

Hybrid evolutionary approach for Devanagari handwritten

numeral recognition using convolutional neural network. Pro-

cedia Comput Sci 125:525–532

14098 Neural Computing and Applications (2021) 33:14079–14099

123

http://arxiv.org/abs/1907.12659
http://arxiv.org/abs/1907.12659
http://arxiv.org/abs/1909.11849
http://arxiv.org/abs/2002.07224


166. Chenxi L, Barret Z, Maxim N, Jonathon S, Wei H, Li-Jia L,

Li F-F, Alan Y, Jonathan H, Kevin M (2018) Progressive neural

architecture search. In: Proceedings of the European Conference

on Computer Vision (ECCV), pp 19–34

167. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning

transferable architectures for scalable image recognition. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 8697–8710

168. Alejandro M, Manuel VV, Antonio GP, David C, César H-M

(2020) Optimising convolutional neural networks using a hybrid

statistically-driven coral reef optimisation algorithm. Appl Soft

Comput 90:106144

169. Aly A, Weikersdorfer D, Delaunay C (2019) Optimizing deep

neural networks with multiple search neuroevolution. arXiv

preprint. arXiv: 1901.05988

170. Peyrard M, Eckle-Kohler J (2016) A general optimization

framework for multi-document summarization using genetic

algorithms and swarm intelligence. In: Proceedings of COLING

2016, the 26th International Conference on Computational

Linguistics: Technical Papers, pp 247–257

171. Chen S-L, Lin S-C, Huang Y, Jen C-W, Lin Z-L, Su S-F (2020)

A vision-based dual-axis positioning system with yolov4 and

improved genetic algorithms. In: 2020 Fourth IEEE Interna-

tional Conference on Robotic Computing (IRC), pp 127–134.

IEEE

172. Zhicheng Y, Xiaoliang D, Peizhao Z, Tian Yuandong W,

Bichen, (2011) Feiszli Matt (2020). Fast probabilistic neural

architecture search. arXiv preprint arXiv, Fp-nas, p 10949

173. Liu C, Chen L-C, Schroff F, Adam H, Hua W, Yuille W, Li F-F

(2019) Auto-deeplab: Hierarchical neural architecture search for

semantic image segmentation. In: Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp 82–92

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:14079–14099 14099

123

http://arxiv.org/abs/1901.05988

	Advanced metaheuristic optimization techniques in applications of deep neural networks: a review
	Abstract
	Introduction
	Background
	Deep learning architectures and techniques
	Meta-heuristics techniques

	Evolutionary computing for DNNs
	Evolution using GA
	Evolution using GP
	Evolution using DE
	Evolution using FSM
	Evolution using evolution strategies (ESs)

	Swarm intelligence for DNNs
	Evolution using PSO
	Evolution using ACO
	Evolution using firefly algorithm

	Hybrid MH methods
	Evaluate MH techniques combined with DNN for image classification
	Problems and challenges
	Future works
	Conclusion
	Acknowledgements
	References




