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Abstract
Detecting source-code level vulnerabilities at the development phase is a cost-effective solution to prevent potential attacks

from happening at the software deployment stage. Many machine learning, including deep learning-based solutions, have

been proposed to aid the process of vulnerability discovery. However, these approaches were mainly evaluated on self-

constructed/-collected datasets. It is difficult to evaluate the effectiveness of proposed approaches due to lacking a unified

baseline dataset. To bridge this gap, we construct a function-level vulnerability dataset from scratch, providing in source-

code-label pairs. To evaluate the constructed dataset, a function-level vulnerability detection framework is built to

incorporate six mainstream neural network models as vulnerability detectors. We perform experiments to investigate the

performance behaviors of the neural model-based detectors using source code as raw input with continuous Bag-of-Words

neural embeddings. Empirical results reveal that the variants of recurrent neural networks and convolutional neural

network perform well on our dataset, as the former is capable of handling contextual information and the latter learns

features from small context windows. In terms of generalization ability, the fully connected network outperforms the other

network architectures. The performance evaluation can serve as a reference benchmark for neural model-based vulnera-

bility detection at function-level granularity. Our dataset can serve as ground truth for ML-based function-level vulner-

ability detection and a baseline for evaluating relevant approaches.

Keywords Vulnerability discovery � Deep learning � Function-level � Baseline dataset � Performance evaluation

1 Introduction

Computer software is ubiquitous and affects all aspects of

our lives daily. Vulnerabilities in the software might be

exploited by attackers, thus leading to severe consequencesGuanjun Lin and Wei Xiao have contributed equally to this
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such as data breaches, privacy leakage and financial loss. A

recent data breach caused by a vulnerability in the Apache

Struts has resulted in 143 million consumers’ financial data

to be compromised [1]. The global outbreak of WannaCry

ransomware, caused by the exploitation of a vulnerability

in the Server Message Block (SMB) protocol in early

Windows, has affected millions of users. Consequently, it

is essential to identify security vulnerabilities in software

before they get exploited.

Vulnerability detection is a labor-intensive task, which

requires expert knowledge [2]. To automate the detection

process, many approaches have been proposed. In the field

of software engineering, from the early rule-based methods

[3] to the mainstream code analysis approaches such as

symbolic execution [4], fuzzing test [5] and taint analysis

[6], automated vulnerability discovery solutions have sig-

nificantly improved the efficiency of code inspection for

identifying vulnerabilities [7–10].

The data-driven approaches, powered by Machine

Learning (ML) algorithms, have become alternative solu-

tions for intelligent and effective vulnerability detection

[11]. Researchers from software engineering and cyber-

security communities have proposed various ML-based

approaches for vulnerability discovery. However, these

approaches, including the ones utilizing deep learning

techniques, were all based on self-collected/-constructed

datasets for evaluating the effectiveness. For example,

some studies chose various types of Mozilla software for

empirical study [12, 13]. Others applied different open-

source software projects for evaluation [7, 14–20]. Also,

Android applications and the synthetically generated

datasets were popular data sources for performance eval-

uation [21–24].

There is one standard benchmarking dataset which pri-

marily contains artificially constructed test cases, i.e., the

Software Assurance Reference Dataset (SARD) [25] pro-

vided by the National Institute of Standards and Technol-

ogy (NIST).1 The dataset has been established for the

evaluation of automated defect/vulnerability detection.

However, some researchers questioned that the code pat-

terns of these test cases provided by Juliet Test Suite (JTS)

[26] from the SARD follow a similar coding format,

resulting in a large portion of code appearing identical

among many test cases [22]. From this point of view, the

code samples in the aforementioned dataset failed to reflect

the characteristics of code patterns in the production

environment.

It is always beneficial, for both the research and the

industrial communities, to have a real-world vulnerability

dataset that serves as reliable evaluation metrics for mea-

suring the performance of vulnerability detection

approaches. In this paper, we take a step further in this

direction by constructing a function-level vulnerability

dataset containing real-world source code samples col-

lected from nine open-source projects. The dataset is

constructed by our manually labeling 1471 vulnerable

functions based on the disclosed vulnerability records from

the Common Vulnerabilities and Exposures (CVE)2 and

the National Vulnerability Database (NVD),3 which are

publicly accessible vulnerability data repositories.

Excluding the vulnerable functions and vulnerable files

(e.g., some CVE records mention which files are vulnerable

but do not specifically describe the exact location of vul-

nerabilities), we collect a subset of the remaining functions

as non-vulnerable functions. The detail of data labeling and

collection process will be discussed in Sect. 3.1. For

evaluation, we implement a function-level vulnerability

detection framework that incorporates six neural network

models as a systematic benchmark. It aims to investigate

the performance behavior of different network architec-

tures on the constructed dataset and to provide a referenced

benchmark for neural model-based vulnerability detection

at function-level granularity.

We have made our data and developed framework

publicly available at Github4 and hope that with the

framework as an easy-to-use tool, the dataset can serve as

ground truth for ML-based function-level vulnerability

detection and a baseline for evaluating the relevant

approaches. The contributions of this paper are summa-

rized as follows:

• We construct a real-world vulnerability ground truth

dataset at function level. We manually label 1471

vulnerable and collect 59,297 non-vulnerable function

samples from nine open-source software projects. Each

sample in the dataset is provided in a source code

function-label pair.

• We perform a comprehensive evaluation using six

mainstream neural networks mentioned in the recent

literature. Experiments revealed that in terms of detec-

tion performance, the convolutional neural network

(CNN) achieves the best performance on our dataset.

As to the generalization ability, the Fully Connected

Network (FCN) outperforms the other network

architectures.

• We develop a vulnerability detection framework with

the six mainstream network models built-in, providing

one-click execution for model training and testing on

the proposed dataset. The framework supports easy-to-

implement Application Programming Interfaces (APIs),

1 https://www.nist.gov/.

2 https://cve.mitre.org/.
3 https://nvd.nist.gov/.
4 https://github.com/Seahymn2019/Function-level-Vulnerability-

Dataset.
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allowing novel neural network models and newly

labeled codes to be easily integrated into the

framework.

The rest of this paper is organized as follows: The related

studies are reviewed in Sect. 2. Section 3 presents the data

labeling and collection criteria and the methodology for

comparing and evaluating the network-based vulnerability

detection approaches. In Sect. 4, we provide the analysis of

the comparative results on our dataset. Section 5 concludes

this paper.

2 Related works

Motivated by the success of neural techniques in many

areas, such as image and voice recognition, researchers

have proposed various approaches which apply neural

networks for software vulnerability detection. We catego-

rize existing studies in this field into three categories based

on the different network structures used.

The FCN, which is also called Multi-layer Perceptron

(MLP), is ‘‘input structure-agnostic’’ [27]. Namely, it can

take many forms of input data (e.g., images or sequences),

offering researchers the flexibility to use various forms of

handcrafted features for learning. A pioneering study pro-

posed by Shar and Tan [28] applied the MLP for detecting

SQL injection (SQLI) and cross-site scripting (XSS) vul-

nerabilities on PHP applications. They extracted features to

depict input sanitization patterns from Control Flow

Graphs (CFGs) and Data Dependency Graphs (DDGs) and

used these features as input to the MLP. Grieco et al. [29]

combined static and dynamic analysis to derive features

from call traces for detecting memory corruption vulnera-

bilities using MLP. They assumed that the usage patterns of

C library functions could reveal the characteristics of

memory corruption vulnerabilities. Dong et al. [30] applied

FCN for predicting vulnerabilities in Android binary exe-

cutable files using features extracted from Dalvik instruc-

tions. More recently, Peng et al. [24] used the N-gram

model to extract frequency-based features from the surface

text of Java source code for training a FCN to identify

vulnerable vulnerable files/classes in Android applications.

However, FCN/MLP is not specifically designed for

processing sequentially dependent data such as natural

languages, program code or voice data. Network structures

catered for learning context-aware information receive

more attention in code analysis, particularly in vulnera-

bility detection. The filters of CNN enable the network to

learn representations from different sizes of code context,

which has been shown to be effective for vulnerability

detection tasks. Lee et al. [31] applied CNN for learning

vulnerable code patterns from the features extracted from

assembly instructions. Later, Harer et al. [32] and Russell

et al. [33] utilized CNN as a feature extractor instead of a

classifier. Their experiments showed that using a separate

random forest classifier trained by the feature sets learned

from the CNN led to better performance compared with

using the CNN as a classifier.

The ability to model dependencies in sequences has

made Recurrent Neural Networks (RNN)s to be alternative

choices for researchers to learn potentially vulnerable code

patterns. Based on a program representation called ‘‘code

gadget,’’ Li et al. [34] adopted the bidirectional form of the

Long Short-Term Memory (LSTM) [35] network (we call

it Bi-LSTM) for detecting buffer error and resources

management error vulnerabilities. Another line of studies

utilized the Abstract Syntax Trees (ASTs) from source

code functions to derive features. These features were then

fed to the Bi-LSTM network to obtain high-level repre-

sentations indicative of potentially vulnerable functions

[18, 19] or processed by a sequence to sequence (seq2seq)

LSTM network to generate refined features for within- and

cross-project vulnerability detection [36]. A more system-

atic approach proposed by Li et al. [37] applied two RNNs

(i.e., Bi-LSTM and the bidirectional Gated Recurrent Unit

(GRU) [38]) for learning syntactic and semantic charac-

teristics of code from both ASTs and CFGs. Lin et al. [20]

also utilized two Bi-LSTM networks for extracting feature

representations from two data sources of different types

which contain samples from the open-source software

project and the synthetic test cases.

In addition to the studies using mainstream network

structures for vulnerability discovery, researchers can also

customize the network structures to satisfy the require-

ments of downstream tasks. To detect vulnerable functions

at binary-level, Wu et al. [39] used a CNN-LSTM network

for classification by adding a convolution layer on top of an

LSTM layer. Le et al. [40] proposed a Maximal Divergence

Sequential Auto-Encoder (MDSAE) for automated learn-

ing of representations from machine instruction sequences.

Most recently, a novel memory network structure [41, 42]

which equips with extra built-in memory blocks was pro-

posed by Choi et al. [22] for identifying buffer overflow

vulnerabilities and was further improved by Sestili et al.

[23].

Nevertheless, existing approaches were all based on

self-constructed/collected datasets. The absence of the real-

world vulnerability datasets is hindering the evaluation of

the actual usefulness of the published solutions. Therefore,

in this paper, we propose a dataset containing source code

functions extracted from open-source projects with labels

paired, hoping that this dataset can serve as one of the

baseline dataset for evaluation.
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3 Vulnerability dataset and comparison
methodology

In this section, we describe our proposed dataset from

three aspects, including data labeling and collection crite-

ria, naming convention, and the statistics. Then, we present

the methodology for comparing neural network-based

vulnerability detection approaches.

3.1 Data labeling and collection criteria

Our dataset contains vulnerable and non-vulnerable func-

tions collected from nine open-source software projects

written in C programming language. They are Asterisk,

FFmpeg, Httpd, LibPNG, LibTIFF, OpenSSL, Pidgin, VLC

Player and Xen, as shown in Table 1.

3.1.1 Vulnerable function labeling procedure

The vulnerable functions are labeled based on the infor-

mation from the NVD and CVE. Figure 1 is an example

that illustrates the information of a vulnerability on an

NVD web page, showing the description, the name, the

version of a software project/package which this vulnera-

bility belongs to, the location, the type, the severity level

and consequences if this vulnerability is exploited.

When labeling a vulnerable function, we may face four

different situations:

• The vulnerability description provided on an NVD or

CVE page specifically mentions which function is

vulnerable, as Fig. 1 shows. Accordingly, we download

the source code of the corresponding version (e.g., the

LibTIFF 4.0.7) of the software project from Github and

locate the vulnerable function (e.g., the readCon-

tigStripsIntoBuffer) in the file (e.g., the tif_unix.c).

Then, we label the function and the file as vulnerable.

The source code of the vulnerable function is saved as

an individual file.

• The vulnerability description does not mention which

function is vulnerable. Instead, it mentions the name of

the vulnerable file. In this case, we follow the descrip-

tion to mark the file as vulnerable. We also check the

Github and search the commit message using the CVE

Identifiers (CVE IDs) as the keyword, as a CVE ID

uniquely identifies a disclosed vulnerability. Once

found, we read through the commit message(s) and

identify the one that fixes this CVE. By checking the

diff files, we acquire the functions related to this CVE

fix. The diff files enable us to locate the functions prior

to the fix and label them as vulnerable. If no commit

message that is relevant to the CVE fix is found, we

skip this CVE.

Table 1 The name of the nine open-source projects and the number of vulnerable and non-vulnerable functions collected from each of them

Open-source

projects

Web page # of non-vulnerable functions

collected

# of vulnerable functions

labeled

# of total functions per

project

Asterisk https://www.asterisk.org/ 17,755 94 17,849

FFmpeg https://www.ffmpeg.org/ 5552 249 5801

Httpd https://www.httpd.apache.org 3850 57 3907

LibPNG http://www.libpng.org/pub/png/

libpng.html

577 45 622

LibTIFF http://www.libtiff.org/ 731 123 854

OpenSSL https://www.openssl.org/ 7068 159 7227

Pidgin https://www.pidgin.im/ 8626 29 8655

VLC media

player

https://www.videolan.org/vlc/

index.html

6115 44 6159

Xen https://www.xenproject.org/ 9023 671 9694

Total 59,297 1471 60,768

Fig. 1 The screenshot of a vulnerability description on a NVD page,

showing the name of a vulnerable function, to which file the function

belongs and corresponding version of the software project
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• The vulnerability description does not provide any

information related to a function or file. In this case, we

check the software project’s Github and search for

CVE-related commit messages as previously

mentioned.

• The vulnerability is not associated with any function or

file (e.g., the vulnerability caused by misconfigurations

and/or incorrect settings). These CVEs are excluded.

In addition to labeling vulnerable functions and files, we

also record the CVE IDs, their published/release date, the

Common Vulnerability Scoring System (CVSS) Severity,

vulnerability type, and file path, etc., for analysis.

3.1.2 Non-vulnerable function collection procedure

Usually, the known defects/vulnerabilities are fixed in the

latest release of a software project. Hence, we assume that

all disclosed vulnerabilities of the nine open-source pro-

jects included in our dataset have also been fixed in their

latest version. Based on this assumption, we collect the

non-vulnerable functions from the latest version at the time

of writing. We exclude the labeled vulnerable functions

and the files containing the vulnerable functions identified

previously. For the remaining files, we randomly select a

subset of them for extracting functions and treat these

functions as non-vulnerable. Similar to the way for saving

vulnerable functions, we save non-vulnerable functions in

C files, keeping each sample in our dataset as an individual

file containing only the source code of one function.

3.2 Naming convention

The vulnerable and non-vulnerable functions in the dataset

follow the following naming convention—the vulnerable

functions are named using the CVE ID and the non-vul-

nerable functions are named using the name of the function

followed by the name of the file to which the function

belongs. For example, the decode_end function in the

4xm.c file in the FFmpeg project is named 4xm.c_de-

code_end.c in our dataset. This allows us to differentiate

functions with identical names. For the cases where one

CVE is related to multiple vulnerable functions, we append

a numeric as the suffix to the CVE ID. For example, the

CVE-2014-0226 is related to two functions (i.e., sta-

tus_handler and lua_ap_scoreboard_worker) in the Httpd

project. These two functions are named as CVE-2014-

0226_1.c and CVE-2014-0226_2.c in our dataset.

3.3 Dataset statistics

Table 2 lists the annual distribution of the number of vul-

nerable functions labeled for each software project in our

dataset. Generally, an increasing trend can be seen that

over the past 18 years, the number of disclosed vulnera-

bilities in each project has been growing steadily. Figure 2

illustrates the proportion of different categories (or types)

of vulnerabilities in our dataset. The vulnerability catego-

rization is based on the Common Weakness Enumeration

(CWE) system. There are 255 buffer errors (CWE-119)

vulnerabilities, accounted for the largest proportion. The

permissions, privileges and access control (CWE-264)

category accounts for the second largest proportion in the

dataset and the input validation (CWE-20) is the third. In

Fig. 3, the distribution of different severity levels of labeled

vulnerabilities is presented. The severity of a vulnerability

is measured by the CVSS. The green color refers to the

vulnerabilities with a severity score between 0 and 3.6,

which is considered as low severity. The yellow color

denotes the vulnerabilities of medium severity with scores

ranging from 4.0 to 6.9. The red and blue colors represent

the high and critical severity with scores ranges from 7.0 to

8.9 and from 9.0 to 10.0, respectively. It can be observed

that vulnerabilities with severity scores of 4.3, 5.0 and 6.8

account for the largest proportion. Noticeably, vulnerabil-

ities with severity scores between 7.1 and 10 also occupy a

considerable proportion.

3.4 Experimental settings and environment

3.4.1 Neural models

As mentioned before, neural networks are adopted to build

the detection models on our dataset. The conventional ML

models for vulnerability detection have been studied in the

literature [7, 12, 14, 15, 17, 43, 44]. Ghaffarian and

Shahriari [11] provided an extensive survey reviewing

different approaches that applied non-neural network-based

techniques for vulnerability analysis and discovery.

Recently, motivated by the breakthrough of deep learning

techniques in Natural Language Processing (NLP) and

image recognition [45], researchers have adopted these

techniques for code analysis, particularly for vulnerability

discovery [46].

The application of neural networks for vulnerability

detection has achieved promising results [18, 22, 23, 47].

The underlying assumptions are that the programming

source code is a logical and semantic structure [46] and the

occurrence of vulnerable code fragment usually contains

multiple lines of code that are interrelated and contextual

[18, 19]. The neural networks, which are hierarchically

structured and highly nonlinear, are capable of fitting the

patterns that are latent and complex. In particular, the

network architectures such as RNNs and CNNs are suit-

able for processing sequentially dependent and contextual

data. On top of these facts, researchers in software
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engineering and ML communities have applied various

types of neural networks for vulnerability detection.

In this paper, we adopt six types of frequently used

network architectures according to the literature for a

comprehensive performance evaluation on our dataset. The

six network architectures belong to three main categories:

(1) FCN; (2) CNN and (3) RNNs. Each category is dis-

cussed as follows:

The FCN is a generic structure which is not specifically

designed for a particular form of data. It is a typical feed-

forward network which consists of at least three fully

connected layers (a.k.a dense layers). Usually, the number

of neurons in the input layer equals the dimensionality of

the input feature vector. The second layer, known as the

hidden layer, receives the output from the previous layer as

input and produces the output for the next layer. For a

neuron in the hidden layer, it takes a weighted sum of its

input values from the neurons in the preceding layer. A

nonlinear activation function within the neuron is then

applied to the weighted sum to produce an output which

will be propagated to neurons of the subsequent layer.

The FCN we use consists of seven layers as shown in the

first row of Table 3. The first layer is a Word2vec

embedding layer to convert input sequences to meaningful

embeddings (to be discussed in the next sub-section.),

followed by a flatten layer. The subsequent five layers are

fully connected dense layers to transfer the flatten

embeddings to a separable space and merge the sequences

to a single probability, indicating whether the corre-

sponding sequence is vulnerable or not.

Table 2 The annual distribution of disclosed vulnerable functions in each open-source software project in our dataset (from 2001 to 2018)

Open-source projects The number of vulnerable functions labeled based on the records from the past 18 years Total per project

2001–2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Asterisk 6 6 4 1 11 10 5 6 5 3 21 16 94

FFmpeg 1 2 1 1 5 50 71 7 23 20 35 33 249

Httpd 14 5 2 4 4 3 2 11 4 1 5 2 57

LibPNG 15 – 3 1 6 5 – 5 5 2 1 2 45

LibTiFF 10 1 3 5 3 4 4 1 0 30 40 22 123

OpenSSL 6 2 – 5 – 3 2 40 32 48 9 12 159

Pidgin – 1 4 2 4 3 2 6 – – 7 – 29

VCL media player 3 10 1 2 7 1 2 7 4 2 3 2 44

Xen – – – – 8 57 95 106 69 86 164 86 671

Total 55 27 18 21 48 136 183 189 142 192 285 175 1471

Fig. 2 The pie chart depicts the distribution of vulnerability

categories in our dataset. The vulnerability categorization is based

on the CWE system. The sectors in the pie chart represent different

categories of vulnerabilities and the size of a sector represents the

proportion of a specific category of vulnerabilities. The associated

numeric values are the numbers of vulnerabilities in the categories

Fig. 3 The bubble chart depicts the distribution of severity levels of

vulnerabilities in our dataset. Four colors in the bubble chart corre-

spond with four severity levels of ‘‘Low,’’ ‘‘Medium,’’ ‘‘High’’ and

‘‘Critical.’’ Each level has its own severity score range. The size of a

circle represents the proportion of vulnerabilities with a certain

severity score
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The RNN different from the FCN, neurons (a.k.a nodes

or units) in an RNN have edges (a.k.a the recurrent edges)

which connect adjacent time steps to form cycles. For a

node with the recurrent edge at a given time step t, its

output yt not only depends on the current input xt, but also

on the hidden node value ht�1 which is from the previous

time step [48]. This feature enables the RNN to retain

information in the past for the current prediction [49],

which makes the RNN suitable for tasks requiring con-

textual processing (e.g., the temporal data). However,

training RNNs can be challenging due to the problems of

vanishing and exploding gradients encountered when the

loss is back-propagated across many time steps [48].

Therefore, variants of RNN, which are the LSTM and

GRU, are more commonly used.

The unit of an LSTM network implements a gate

mechanism and a memory cell to overcome the vanishing

and exploding gradients. An LSTM unit has three gates

which are the input, forget and output gates. The gate

mechanism and the memory cell work corporately during

the training phase to selectively memorize/forget the

information [49], so that the information obtained in the

preceding sequence can be optionally kept for access when

processing the succeeding sequences, which allows the

network to learn long-range dependencies. The GRU can

be seen as a simplified LSTM unit because the GRU does

not have the memory cell and only has two gates: an update

gate and a reset gate. The absence of a memory cell and

having fewer gates in the GRU enable the network to be

trained faster compared with an LSTM network because

fewer tensor operations are needed in a GRU [50]. Addi-

tionally, due to the GRU network having fewer parameters,

it can be an alternative solution to the LSTM network when

having a smaller data set [51].

To enhance long-range dependency learning, the bi-di-

rectional RNN (e.g., the Bi-LSTM) structure is introduced.

A Bi-RNN consists of two different RNNs, capable of

processing sequences of both forward and backward

directions. This enables the hidden states from each RNN

of two opposite directions to be combined (e.g., concate-

nated) to form a single hidden state, allowing the contex-

tual dependency to be captured. In this paper, we use the

LSTM and GRU and their bidirectional forms, i.e., Bi-

LSTM and Bi-GRU. In our scenario, they are capable of

capturing dependencies among the input sequences, which

can be optimized for learning code semantics that require

the understanding of code context [18, 47]. In this sense,

the occurrence of the vulnerable code fragment, which is

usually related to either previous or subsequent code, or

even to both, could be captured by RNNs to learn con-

textually dependent code patterns. As shown in Table 3, the

variants of RNNs, listed from the second to the fifth rows,

contain one Word2vec embedding layer followed by two

RNN layers (either LSTM or GRU) or two bidirectional

RNN layers (either Bi-LSTM or Bi-GRU). We use a global

max-pooling layer to convert the outputs of the preceding

RNN layers. The last two layers are fully connected layers

to merge the outputs to a probability value.

The CNN is a feed-forward network that consists of one

or more convolution layers, pooling layers and fully con-

nected layers. A CNN is designed to learn the structured

spatial data and was originally invented for image pro-

cessing and computer vision. The convolutional layer of a

CNN can be applied to an n-word window (a matrix con-

sists of n-word vectors) to generate features for this context

window. Applying this operation to each possible window

of n words in a sentence allows the CNN to capture the

contextual meanings of the words in a sentence. Followed

Table 3 The settings and configurations of the chosen network architectures, including the number of layers of each network, the applied

embedding method, the number of neurons in the first layer, the pooling layer used, and the activation functions applied

Network

architecture

Network settings

# of

layers

Embedding Layer type (# of neurons in the first layer) Pooling Activation

function used

FCN 7 Word2vec

Embedding

Flatten, dense (128) No ReLU, sigmoid

GRU 6 GRU (128), dense (32) Global max

pooling

tanh, ReLU,

sigmoid

LSTM LSTM (128), dense (32)

Bi-GRU Forward GRU (64)/Backward GRU (64)

Bi-LSTM Forward LSTM (64)/Backward LSTM (64)

Text-CNN 8 Convolution layers (16 filters) with filter sizes being 3, 4,

5 and 6, dense(64)

2-D Max

pooling

ReLU, sigmoid
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by convolutions, pooling layers are used to perform

downsampling of the feature representations.

CNNs have achieved state-of-the-art performance on

many NLP tasks [52–54] and is also applied for learning

contextualized code semantics in code analysis tasks

[32, 33, 55]. In this paper, we adopt the text-CNN archi-

tecture proposed by Kim [52] for building the vulnerability

detection model. The difference from the text-CNN

implementation is that we downsize the number of filters in

the convolution layers so the network only has 16 filters

and the filter sizes are 3, 4, 5 and 6, respectively. The

detailed configuration is shown in the last row of Table 3.

Table 3 also lists the choice of activation functions and

the number of neurons used in each layer for the different

network architectures adopted in the experiments. These

settings are referenced from the literature which applied

neural networks for vulnerability detection (refer to Sect. 2

for details). We further adjust and optimize the settings

based on the performance of our initial experiments. For all

networks, the stochastic gradient descent (SGD) optimizer

is used with its default parameter settings provided by

Keras [56]. To prevent overfitting, we apply the Dropout

[57] with a value of 0.5 to regularize the networks. During

the training phase, a relatively small batch size (with the

value of 16) is used to achieve better generalization. Every

network completes training after 120 epochs.

To deal with the data imbalance issue on our dataset, we

adopt the cost-sensitive learning by applying different

weights to the ‘‘binary cross-entropy’’ loss function. The

weights of the two classes can be calculated by the fol-

lowing equations:

weight ¼ n samples

ðn classes � samples in oneclassÞ ð1Þ

where the n samples refers to the number of samples in

total; the n classes is the number of classes and the

samples in oneclass denotes the number of samples in one

class. According to this formula, the minority class (i.e.,

the vulnerable class) is assigned with more weights than

the majority class (i.e., the non-vulnerable class) during the

process of loss minimization.

3.4.2 Feature learning and embedding scheme

Neural models allow code fragments to be directly used for

learning, reducing code analysis efforts. In this paper, we

directly use the source code as the input to the neural

networks. Each sample is a source code function which has

been converted to a code sequence. The neural networks

take numeric vectors of unified length as input. First, we

build a mapping table to link each code element within the

code sequence to integers. These integers act as ‘‘tokens’’

which uniquely identify each code element. Second, we

follow the standard practice to handle the sequences of

various lengths by applying padding and truncation. Since

90% of vulnerable functions in our dataset containing less

than 1000 code elements when converted to sequences, we

use 1000 as the truncation threshold to truncate the func-

tion sequences having more than 1000 elements down to

1000. For the function sequences with less than 1000 ele-

ments, we use zeros for end-of-sequence padding. The

padding and truncation mechanism achieves a good bal-

ance among length, excessive-sparsity of the converted

sequences, and information loss [18].

To preserve the code semantic meanings of input

function sequences, we apply Word2vec [58] with the

Continuous Bag-of-Words (CBOW) model to convert each

element of the sequence to a dense vector of 100 dimen-

sions. With Word2vec, the elements of sequences can be

represented by semantically meaningful vector represen-

tations so that the code elements share similar contexts in

the codebase are clustered in close proximity in the vector

space. This enables the neural networks to capture rich and

expressive semantics from the codebase, facilitating the

learning of potentially vulnerable code patterns. In this

paper, we train the Word2vec model using all the source

code of the nine open-source projects.

3.4.3 Performance evaluation

To evaluate the proposed dataset and the detection per-

formance of each neural network, we perform experiments

on both the C test cases from the JTS provided by the

SARD and the real-world C function samples from our

proposed dataset. The evaluation of C test cases from the

SARD aims to examine the performance of chosen neural

networks on detecting the artificially constructed vulnera-

ble function samples. Also, the performance behaviors of

different neural networks on the artificial dataset and our

proposed real-world dataset can be compared.

To evaluate the performance on artificial function

samples from the JTS, we randomly selected 10,000 vul-

nerable function samples and 10,000 non-vulnerable ones

from the test suite to form a dataset. We then partition the

dataset into training, validation and test sets with the ratio

of 6:2:2 and ensure that the number of vulnerable and non-

vulnerable samples are equal in each set. We notice that the

vulnerable and non-vulnerable function samples from the

JTS contain the text ‘‘bad’’ and ‘‘good’’ as substrings in the

names functions, and in the variable and parameter names.

To avoid the neural networks being biased by the presence

of these substrings, we remove them.

To investigate the overall performance of each neural

network on detecting the real-world function-level vul-

nerabilities, we mix the vulnerable and non-vulnerable

functions from all the nine projects together to form a
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dataset. We also partition the dataset into training, vali-

dation and test sets with the ratio of 6:2:2. To guarantee

that the ratio of the vulnerable and non-vulnerable func-

tions in each project is kept in the training, validation and

test sets, the partition process is performed first on the data

of individual project and then the partitioned training,

validation and test sets of each project are merged. This

ensures that there is no single project whose data only

appear in training, validation or test set.

The cross-project experiments aim to examine the gen-

eralization ability of each neural network for detecting

vulnerabilities at function level. The cross-project experi-

ments intend to simulate the scenario where a target soft-

ware project does not have any labeled data for training

while there are some historical labeled vulnerability data

from other software projects. We use eight out of nine

software projects as the training and validation set and one

software project as the test set. For example, in the first

experiment, we use project FFmpeg as the test set and the

data of the other eight projects will be used as the training

and validation sets.

3.4.4 Evaluation metrics

To evaluate the performance of chosen neural models on

the artificial samples from the JTS, we use the mainstream

performance metrics, i.e., precision, recall and F1-score,

because there is no data imbalance issue in the artificial

dataset. However, in practice, since vulnerability detection

mainly relies on manual inspection, it is not cost-effective

for a security expert to check every function of a codebase.

A practical way is to examine a small portion of code that

is most likely to be vulnerable. To help resolve this prob-

lem, in this paper, we first retrieve a list of functions ranked

by their vulnerable probabilities then use the ranking

information as metrics to measure performance. Similar

measurements are commonly applied in scenarios of

information retrieval by search engines which measure

how many relevant documents are acquired in all the top-

k retrieved documents [59].

In this paper, we choose the mainstream neural networks

to build vulnerability detection models on our dataset. The

performance of a chosen network model is measured by the

proportion of functions retrieved against the list of k vul-

nerable functions. The metrics we apply for performance

evaluation are top-k precision (P@K) and top-k recall

(R@K). The P@K refers to the proportion of the top-k

retrieved functions which are actually vulnerable. The

R@K refers to the proportion of actually vulnerable func-

tions returned in the total number of vulnerable functions.

Formally, P@K and R@K can be calculated using the

following equations:

P@K ¼ TP@k

TP@k þ FP@k
;R@K ¼ TP@k

TP@k þ FN@k
ð2Þ

where TP@k is the true positive samples which are the

actual vulnerable functions found by a detection model

when retrieving k most probable vulnerable functions;

FP@k refers to the false vulnerable functions detected or

the false positive when retrieving k most likely vulnerable

functions. FN@k refers to the true vulnerable samples

undetected or the false negative when retrieving

k functions.

3.4.5 Experimental environment

The Keras (version 2.2.4) [56] with a TensorFlow backend

(version 1.14.0) [60] is used to implement the neural net-

work models. The Word2vec embedding is provided by the

gensim package (version 3.8.0) [61] using all default set-

tings. The experiments are carried out on a Ubuntu Linux

system equipped with 32 GB RAM and an NVIDIA GTX

TITAN GPU.

4 Evaluation results and analysis

This section presents the results of experiments and pro-

vides an in-depth analysis of the results and findings.

4.1 Performance on artificial dataset

Table 4 presents the detection results of chosen neural

network models on the artificially created dataset which

consists of function samples collected from the JTS. It can

be observed that all network models exhibit similar per-

formance behaviors. Particularly, except for the FCN, all

the other models achieve 99% F1-score on both the vul-

nerable and the non-vulnerable classes. This reveals that

the vulnerable patterns from artificially created samples are

relatively primitive or less diverse. Thus, they can be easily

captured and distinguished by the chosen network models

from the non-vulnerable patterns.

4.2 Performance of mixed-project

Table 5 lists the top-k precision and top-k recall results of

all the chosen neural network models in the scenario of

mixed-project detection. It can be observed that the text-

CNN achieves the best top-k precision and recall when

k ranged from 10 to 200. When retrieving only 10 most

probably vulnerable functions, all models found the nine

vulnerable functions (having top-10 precision of 90%)

except for the Bi-GRU network. When retrieving 200

functions, the text-CNN achieves 51% of precision. That is,
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the model identifies 102 actually vulnerable functions out

of the 200 retrieved functions, which accounted for 35% of

the total vulnerable functions in the test set. In contrast to

the CNN and RNN architecture, the FCN underperforms

when retrieving more than 50 functions. In particular, the

FCN only achieves 37% precision when retrieving 200

vulnerable functions. The RNN variants and their bidirec-

tional forms achieve better performance than the FCN, but

they performed similarly on our dataset. The GRU and Bi-

GRU slightly outperform the LSTM and Bi-LSTM, espe-

cially when retrieving less than 100 vulnerable functions.

There is no significant performance variance observed

between the RNN variants and their bidirectional forms.

The results of the mixed-project detection suggest that

the capability of obtaining contextual dependency of code

sequences facilitates the learning of the vulnerable code

patterns. The FCN, which is a generic structure not

specifically designed for learning context-aware sequences,

detects the fewest vulnerable functions in our dataset. In

contrast, the text-CNN and the RNN variants which are

capable of learning contextual dependency of code

sequences achieves better detection results. The text-CNN

achieving the best performance implies that the high-level

representations obtained by small code context windows

(i.e., the filter implementation with size 3, 4, 5, and 6)

could contribute to more effective learning of vulnerable

patterns. The RNN variants (i.e., the GRU, the LSTM, and

their bidirectional forms), which are designed for learning

long-range dependency of input sequences, underperform

compared with the text-CNN on our dataset. In particular,

no significant performance improvement is observed when

switching the GRU and the LSTM to their bidirectional

counterparts. This reveals a fact that not all the vulnerable

code patterns are associated with the long-range code

context.

Besides, compared with the performance on the mixed-

project scenario where the real-world function samples are

used, all neural networks performed very well on the

artificially constructed dataset. This reveals that the real-

world functions from our proposed dataset can more real-

istically reflect the performance behaviors of neural models

in practice, whereas on the artificial dataset, the perfor-

mance behaviors of different neural networks are

indistinctive.

4.3 Generalization ability of cross-project

In the cross-project scenario, we use one software project

as the hold-out to form the test set and the other eight as the

training set to train the six neural network models. The

cross-project experiments produce nine groups of results

for the ninth software project, which are listed in Table 6.

In contrast to the performance achieved in the mixed-pro-

ject scenario, significant performance degradation can be

Table 4 Comparative results of chosen neural network models on artificially constructed function samples randomly selected from the JTS

provided by the SARD

Network architecuture Vulnerable functions Non-vulnerable functions

Precision (%) Recall (%) F1-score (%) Precision (%) Recall (%) F1-score (%)

FCN 99 90 95 91 99 95

GRU 100 99 99 99 100 99

LSTM 98 100 99 100 98 99

Bi-GRU 98 100 99 100 97 99

Bi-LSTM 98 100 99 100 98 99

Text-CNN 99 99 99 99 99 99

The bold refers to the highest performance achieved for a certain group of experimental settings/configurations. It aims to highlight the best

performance and make it stand out

Table 5 Comparative results of

chosen neural network models

in the mixed-project scenario

using the function samples from

our proposed dataset

Top k The chosen neural network models (top-k precision j top-k recall)

FCN GRU LSTM Bi-GRU Bi-LSTM Text-CNN

Top 10 90% j 3% 90% j 3% 90% j 3% 80% j 3% 90% j 3% 90% j 3%
Top 50 62% j 11% 72% j 12% 66% j 11% 67% j 11% 66% j 11% 78% j 13%
Top 100 49% j 17% 58% j 20% 54% j 18% 60% j 20% 55% j 19% 64% j 22%
Top 150 42% j 21% 51% j 26% 50% j 26% 52% j 26% 51% j 26% 59% j 30%
Top 200 37% j 25% 45% j 30% 44% j 30% 47% j 32% 45% j 31% 51% j 35%

The bold refers to the highest performance achieved for a certain group of experimental settings/config-

urations. It aims to highlight the best performance and make it stand out
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observed for all the chosen networks. This is expected

because the data of a software project which is used for

testing are unseen by the network models during the

training phase.

In terms of the performance of the six chosen networks,

the FCN achieves better performance on the majority of the

projects compared with the other networks. It can be

observed from Table 6 that the other networks’ perfor-

mance is more project-dependent. For example, the LSTM

network achieves the best performance when it is tested on

the Httpd project (when the k ranged from 50 to 200) and

the text-CNN network achieves the best performance when

tested on the Pidgin project. In terms of the performance

across the nine software projects, all the six networks

achieved better performance on projects LibTIFF and

LibPNG, but they underperform on projects Asterisk,

Pidgin and VLC Player.

The cross-project detection results indicate that the FCN

architecture demonstrates better generalization ability

compared with the text-CNN and the selected RNN vari-

ants. Recall the setting of the cross-project experimental

setup, the test project data in the cross-project detection

scenario are unseen during the network training. Therefore,

the more project-agnostic knowledge the network model

learns from the training projects, the better performance it

achieves on the test project. According to Xu [62], the

FCNs with the rectifier linear units (ReLUs) activation

functions could learn a smooth objective function, leading

Table 6 Comparative results of chosen neural network models in the cross-project scenario using function samples from our proposed dataset.

Each project is tested by neural models trained by the other eight projects

Top k Neural Models The top-k precision (%) j top-k recall (%) of nine open-source software projects

Asterisk FFmpeg Httpd LibPNG LibTIFF OpenSSL Pidgin VLC Player Xen

Top 10 FCN 2 j 0 24 j 1 26 j 5 28 j 6 54 j 4 42 j 3 8 j 3 2 j 0 38 j 1
GRU 0 j 0 18 j 1 10 j 2 44 j 10 66 j 5 24 j 2 4 j 1 0 j 0 26 j 0
LSTM 0 j 0 22 j 1 16 j 3 48 j 11 52 j 4 34 j 2 4 j 1 2 j 0 30 j 0
Bi-GRU 0 j 0 38 j 2 12 j 2 32 j 7 50 j 4 16 j 1 6 j 2 0 j 0 12 j 0
Bi-LSTM 0 j 0 26 j 1 10 j 2 42 j 9 54 j 4 40 j 3 2 j 1 0 j 0 0 j 0
Text-CNN 2 j 0 22 j 1 10 j 2 58 j 13 50 j 4 44 j 3 16 j 6 2 j 0 34 j 1

Top 50 FCN 8 j 4 33 j 7 16 j 14 37 j 41 56 j 23 40 j 12 8 j 13 3 j 4 36 j 3
GRU 0 j 0 21 j 4 12 j 11 29 j 32 38 j 15 19 j 6 3 j 5 1 j 1 18 j 1
LSTM 0 j 0 21 j 4 18 j 16 27 j 30 40 j 16 25 j 8 7 j 12 4 j 5 20 j 1
Bi-GRU 3 j 1 27 j 5 10 j 9 28 j 31 40 j 16 19 j 6 2 j 3 0 j 0 9 j 1
Bi-LSTM 0 j 0 22 j 4 11 j 10 28 j 31 41 j 17 31 j 10 10 j 17 2 j 3 4 j 0
Text-CNN 2 j 1 22 j 4 8 j 7 42 j 47 39 j 16 25 j 8 11 j 19 4 j 5 20 j 2

Top 100 FCN 8 j 9 31 j 13 12 j 20 30 j 68 44 j 36 33 j 21 6 j 21 3 j 8 41 j 6
GRU 0 j 0 23 j 9 10 j 17 21 j 48 34 j 28 16 j 10 5 j 17 1 j 2 16 j 2
LSTM 0 j 0 24 j 9 14 j 24 19 j 43 31 j 26 22 j 14 7 j 26 5 j 10 15 j 2
Bi-GRU 3 j 3 25 j 10 9 j 16 23 j 52 35 j 28 17 j 10 4 j 14 0 j 0 12 j 2
Bi-LSTM 0 j 0 22 j 9 9 j 15 21 j 47 31 j 25 24 j 15 7 j 26 4 j 8 6 j 1
Text-CNN 3 j 3 20 j 8 7 j 13 30 j 67 32 j 26 22 j 14 7 j 26 3 j 6 20 j 3

Top 150 FCN 8 j 12 29 j 17 9 j 24 24 j 79 37 j 45 29 j 28 5 j 27 4 j 12 38 j 9
GRU 0 j 0 23 j 14 9 j 23 19 j 63 30 j 36 17 j 16 4 j 23 1 j 4 17 j 4
LSTM 1 j 1 24 j 14 11 j 29 16 j 53 26 j 32 18 j 17 6 j 32 4 j 15 13 j 3
Bi-GRU 2 j 3 25 j 15 8 j 22 17 j 58 30 j 37 15 j 14 3 j 18 1 j 2 12 j 3
Bi-LSTM 0 j 0 21 j 13 8 j 20 18 j 60 28 j 34 20 j 19 7 j 39 4 j 15 7 j 1
Text-CNN 3 j 5 19 j 12 7 j 18 24 j 79 31 j 37 18 j 17 7 j 37 4 j 12 19 j 4

Top 200 FCN 7 j 16 27 j 22 8 j 28 19 j 86 33 j 53 26 j 33 5 j 31 4 j 16 36 j 11
GRU 0 j 1 22 j 18 9 j 31 16 j 72 26 j 41 15 j 19 4 j 27 2 j 7 16 j 5
LSTM 1 j 2 23 j 19 9 j 32 15 j 66 25 j 41 16 j 20 6 j 41 4 j 19 12 j 4
Bi-GRU 2 j 3 25 j 20 8 j 28 15 j 68 26 j 43 13 j 16 3 j 21 1 j 4 12 j 3
Bi-LSTM 1 j 1 21 j 17 7 j 25 15 j 67 25 j 40 18 j 23 6 j 41 4 j 20 7 j 2
Text-CNN 3 j 6 19 j 15 6 j 21 19 j 85 27 j 45 17 j 21 6 j 44 3 j 14 9 j 6

The bold refers to the highest performance achieved for a certain group of experimental settings/configurations. It aims to highlight the best

performance and make it stand out
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to better generalization ability. For the RNN variants, we

speculate that the capability of learning the contextual

dependency of the code sequences degrades the general-

ization ability because the contextual patterns of code in

different software projects vary dramatically. Similarly, the

generalization ability of the text-CNN is also reduced since

the filters applied only learn the local abstraction of the

code sequences while the local features are usually more

project-specific.

Besides, the fact that detection performance varies on

different software projects also suggests that the difference

exists among projects. For example, their functionality is

one of the factors leading to the variation in detection

performance. It is easy to understand that software projects

with similar functionalities will exhibit similar code pat-

terns. For example, projects LibPNG and LibTIFF are both

image libraries for processing images (e.g., reading, writ-

ing image data). When testing on project LibPNG, the

network models could learn similar code patterns from

project LibTIFF during the training phase, thus resulting in

better detection performance. When testing on project

LibTIFF, the project LibPNG in the training set allows the

network models to capture similar code patterns. Hence,

the detection performances on projects LibPNG and Lib-

TIFF are better than that on the other projects. In terms of

the degraded performance achieved on projects Asterisk,

Pidgin and VLC Player, we attribute this to the high

imbalance ratio of vulnerable and non-vulnerable samples

in these projects.

4.4 Efficiency

We also compare the efficiency of the six neural network

models by measuring the time they spend in the training

and testing process. The time is recorded in the scenario of

mixed-project detection where the samples in the training,

validation and test sets remain unchanged, as 36,458,

12,155 and 12,155 samples, respectively. To speed up the

RNN networks, i.e., the LSTM, the GRU and their bidi-

rectional forms, we apply the CudnnLSTM and CudnnGRU

implementations which are customized version of LSTM

and GRU based on NVIDIA CUDA Deep Neural Network

library.5

Figure 4 shows the time variations of the training and

testing phases of the six network models. Specifically, the

left chart illustrates the average time spent by each network

in one epoch during the training process. It can be seen that

it takes 17 s for the FCN to complete one epoch. For the

text-CNN, it needs approximately 1 min. In contrast, it

takes a significantly longer time for the RNN variants even

with the Cudnn implementation. In particular, the Bi-

LSTM needs around 6 mins to finish one epoch, which is

six times slower than the text-CNN. During the testing

phase, the time usage pattern of the six models is similar to

that of the training phase. The FCN and the text-CNN can

complete the test within 1 or 2 s, which is significantly

faster than the other networks. The bidirectional LSTM and

GRU networks are the slowest, requiring around 50 s to

Fig. 4 The comparison of training and test time of the six neural

network models, measured in second(s), in the scenario of mixed-

project detection. The left bar chart depicts the time of each network

model spent per epoch on average during the training phase. The right

one shows the time of each network model used during the test phase

5 https://developer.nvidia.com/cudnn.
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finish the test. In practice, network models can be trained

before use. Generally, among the chosen network models,

the text-CNN can be a preferable choice which balances

between detection performance and efficiency.

5 Conclusions and future work

In this paper, we have proposed a function-level vulnera-

bility dataset containing real-world source code samples

collected from nine open-source projects. We aim to con-

struct this dataset to serve as one of the benchmarking

datasets for measuring the performance of function-level

vulnerability detection approaches in academia. It can also

be used as a code source for neural model-based code

analysis tasks such as defect prediction, code generation

and code completion. We further evaluate the dataset using

three categories of neural networks. Experiments show that

the text-CNN achieves the best vulnerability detection

performance in the mixed-project scenario and the FCN

outperforms the other networks in cross-project detection

scenarios. The results indicated that the convolutions which

extract the abstract representations of small context win-

dows of codes enable the effective learning of potentially

vulnerable code patterns in our dataset and the FCN

exhibits the best generalizability in detecting unseen vul-

nerable functions in software projects that are not involved

in training.

We will continue to collect more open-source projects

and expand the dataset by labeling more vulnerable func-

tions. We welcome researchers to further improve and

contribute to the dataset so it can be beneficial to the state-

of-the-art research in the field of vulnerability detection.
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