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Abstract
In this paper, one concerns with the problem of trajectory tracking control for an underactuated unmanned surface vehicle

subject to uncertain dynamics and input saturation. A first-order sliding surface and a second-order sliding surface are hired

to design surge control law and yaw control law, respectively, which together form an underactuated trajectory tracking

controller. Furthermore, the potential input saturation problem is solved through an auxiliary design system. Neural

shunting model is introduced into the design of the controller to avoid the increase in calculation caused by variable

derivation. The minimum learning parameter method of neural network replaces the traditional multilayer neural network

to compensate uncertain dynamics and time-varying disturbances, which further reduces the computational burden of the

controller. Besides, two adaptive robust terms are introduced to further enhance the robustness of the trajectory tracking

system. Finally, comparative simulation experiments are carried out to verify the universality and superiority of the

trajectory tracking control strategy.
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1 Introduction

Unmanned surface vehicle (USV) can perform dangerous

or inappropriate tasks with full autonomy or human inter-

vention, which not only protects the personal safety of staff

but also saves human and material costs to a large extent

[1–4]. It is precisely because of its excellent characteristics

that USV has been listed as a key research object in the

field of marine armaments by governments all over the

world, especially the military. Among the many advantages

of USV, track tracking is the basis of many other advanced

functions, which can be divided into two categories: path

following and trajectory tracking [5–8]. The main differ-

ence between path following and trajectory tracking is that

path following has nothing to do with time, that is to say, it

can only travel along a predetermined route without special

requirements for time; trajectory tracking is time-depen-

dent, that is, USV needs to arrive at a specific place at a

specific time, and there is a strict correspondence between

location and time. From the perspective of engineering

implementation, it is more strict and difficult to achieve

than path following task, but it is of great significance.

Trajectory tracking is a focus problem in the field of

motion control of unmanned surface vehicle, and it plays

an important role in USV formation control and recon-

naissance. For example, in the execution of special tasks

such as enemy ship tracking, USV needs to go to a specific

location at a specific time according to the preset trajectory.

In addition, USV is a typical underactuated system because

it is not equipped with side thruster, that is, it is uncon-

trollable in the lateral direction [9, 10]. In order to realize

the trajectory tracking of underactuated USV, Godhavn

et al. [11] proposed a method based on backstepping and

feedback linearization and designed the underactuated

trajectory tracking controller but did not consider the

influence of external disturbance on the controller. In [12],

a globally asymptotically stable trajectory tracking con-

troller for underactuated ship was proposed based on the

backstepping algorithm with integral, which can achieve

better control effect when the environmental disturbance is

unknown or slowly varying. However, the method of [12]
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is to suppress the external interference through the

robustness of the algorithm, which can not effectively

compensate the environmental interference. In [13], the

backstepping method was used to design the trajectory

tracking controller of unmanned aerial vehicle, and the

disturbance observer was used to estimate and compensate

the time-varying external disturbance. However, in the

process of USV driving on the sea, in addition to the

constant interference of external factors such as wind, wave

and current, its speed and moment of inertia also change,

which will lead to some unknown dynamic changes of the

model. Neural network [14, 15] and fuzzy logic [16, 17]

have been proved to have the ability to approximate con-

tinuous functions arbitrarily, and they have been widely

used in engineering applications and theoretical verifica-

tion. In view of the fact that underactuated ships only have

longitudinal thrust and steering torque, Li et al. [18] pro-

posed a new point-to-point control task and estimated the

unknown problems in the model through radial basis

function neural network and compensates them effectively.

Combining neural network adaptive technology with

backstepping method, the control method proposed in [19]

can track the desired trajectory under error constraints and

ensure that the system is uniformly bounded under certain

actuator faults. However, [18] nor [19] considered the

problem of ‘‘computational explosion’’ of backstepping,

that is, when the virtual control law needs multiple

derivatives, the design of the controller will become very

complex. In [20], the dynamic surface algorithm was

introduced into the design of controller to estimate the

derivative of virtual control law, so as to avoid the ‘‘cal-

culation explosion’’ problem caused by multiple derivation

of virtual control law. However, as a kind of multilayer

neural network, radial basis function neural network

undoubtedly increases the burden of controller. In order to

effectively solve this problem, Professor Yang proposed

the least learning parameter method based on the small

gain theory, which can not only avoid the singular prob-

lems of other adaptive algorithms, but also reduce the

number of adaptive parameters to a minimum, greatly

reducing the amount of calculation [21]. Paper [22]

designed a robust adaptive trajectory tracking controller for

underactuated USV, and neural network least learning

parameter method was introduced into the controller design

to estimate and compensate the external time-varying dis-

turbance and unknown dynamics in the model. Neverthe-

less, none of the above literature works considered an

important problem-input saturation. Input saturation is a

potential problem in controller design. If not taken into

account, the instruction value of the controller may exceed

the maximum range that the actuator can provide, which

will lead to the instability or collapse of the controlled

system [23, 24].

In this paper, motivated by the above-mentioned

observations, a general trajectory tracking control strategy,

which is performed by using sliding mode control theory,

neural shunting model, minimum learning parameter

method for neural network, adaptive technology, auxiliary

design system is developed for underactuated USV subject

to uncertain dynamics and time-varying disturbances. The

main contributions of paper note can be summarized as

follows:

(1) A novel trajectory tracking control scheme for

underactuated USV is proposed, which uses first-

order sliding mode and second-order sliding mode to

stabilize surge velocity error and sway velocity error,

respectively. Minimum learning parameter method

of neural network is employed to estimate and

compensate uncertain dynamics and unmeasurable

external disturbances in real time, and adaptive

technology is used to further offset the compensation

error of neural network. In addition, auxiliary design

system is used to solve the potential input saturation

problem.

(2) This paper improves the robustness of the trajectory

tracking control strategy from three aspects: The

sliding mode control method itself has strong

robustness; the neural network online real-time

compensation uncertain dynamics and unmeasurable

external disturbances increase the anti-interference

ability; the adaptive robust term offsets the compen-

sation error of the neural network, to further increase

the robustness of the control strategy.

(3) This paper reduces the complexity of the trajectory

tracking control strategy from three aspects: The

neural shunting model is hired to avoid the problem

of ‘‘explosion of computation’’; minimum learning

parameter method for neural network with less

computation takes the place of traditional multilayer

neural network to compensate uncertain dynamics

and time-varying disturbances; uncertain dynamics

and time-varying disturbances are treated as a whole

rather than as compensation alone.

This paper is organized as follows. In Sect. 2, the

problem formulations are introduced. Preparatory knowl-

edge is introduced in Sect. 3. The design process of the

control strategy is given in Sect. 4. In Sect. 5, analysis of

system stability is formulated. Numerical simulations and

comparative experiments are provided in Sect. 6. Finally,

Sect. 7 summarizes the full text and introduces the future

research content.
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2 Problem formulation

The motion state of USV in actual navigation is very

complex, which mainly includes six degrees of freedom:

surge velocity u, sway velocity v, yaw rate r, heave

velocity w, rolling rate p and pitching rate q [25, 26]. Earth-

fixed frame and Body-fixed frame are usually used to

describe the relationship between them, which can be

referred to in Fig. 1.

(x, y) is used to describe the position coordinates of

USV, w stands for the course of USV. The kinematics and

dynamics equations of unmanned aerial vehicles are

described as (1) and (2).

_x ¼ u cosðwÞ � vsinðwÞ
_y ¼ usinðwÞ þ vcosðwÞ
_w ¼ r

8
><

>:
ð1Þ

m11 _u� m11fu þru ¼ su þ bu

m22 _v� m22fv þrv ¼ bv

m33 _r � m33f þrr ¼ sr þ br

8
><

>:
ð2Þ

where fu ¼ m22

m11
vr � d11

m11
u, fv ¼ � m11

m22
ur � d22

m22
v and

fr ¼ m11�m22

m33
uv� d33

m33
r, ru ¼ Dufu, rv ¼ Dvfv and rr ¼

Drfr represent the uncertain dynamics of each item,

respectively, Du, Dv and Dr stand for uncertain parameters,

su and sr are used to describe the force and moment that

cause the USV to forward and turn, respectively, bu, bv and

br represent the unmeasurable time-varying external dis-

turbances in all directions.

Remark 1 su and sr are bounded by the physical limita-

tions of the actuator, which is the input saturation problem.

The specific physical limitations can be described as

sumin � su � sumax, srmin � sr � srmax, where sumax � 0,

sumin � 0, srmax � 0 and srmin � 0. Although sumin and srmin

are constants less than zero, the minus sign only indicates

the direction of force and moment.

Assumption 1 Assume that uncertain dynamics and

unmeasurable time-varying external disturbances are

bounded. Duj j �Dumax, Dvj j �Dvmax, Drj j �Drmax,

buj j � bumax, bvj j � bvmax, brj j � brmax, where Dumax [ 0,

Dvmax [ 0, Drmax [ 0, bumax [ 0, bvmax [ 0 and

brmax [ 0.

Control objective The practical conditions considered in

this paper include underactuated model, uncertain dynam-

ics, unmeasurable time-varying external disturbances

caused by the wind, wave and currents and input saturation.

The control objective is to propose a practical underactu-

ated trajectory tracking controller (design control laws su
and sr) to deal with the above-mentioned issues, such that

the USV (2) can track the pre-set trajectory ðxd; ydÞ.

Remark 2 xd and yd are functions of time, respectively,

and they are continuous and differentiable.

3 Preparatory knowledge

3.1 Neural shunting model

In essence, neural shunting model belongs to the basic

knowledge in the field of neurology, and its significance is

to describe the stress response of neurons to external

stimuli. The specific form of neural shunting model is (3).

_b ¼ �Abþ ðB� bÞf ðaÞ � ðDþ bÞgðaÞ ð3Þ

where a and b are the input and output of neural shunting

model, respectively, A, B and D are the corresponding

Fig. 1 Earth-fixed frame and

Body-fixed frame
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positive parameters, f ðaÞ and gðaÞ are valve functions,

which can be expressed as: f ðaÞ ¼ max a; 0f g and

gðaÞ ¼ max �a; 0f g. Neural shunting model has been

widely used in many areas such as robot path planning,

tracking and motor control, and so on [27].

3.2 Minimum learning parameter method
for neural network

In the field of control theory and control engineering, the

universal approximation ability of neural network is often

employed to deal with uncertainties in the model and

unknown functions. For a continuous function f(x), it can

be representated as (4) according to the universal approx-

imation ability.

f ðxÞ ¼ WThðxÞ þ e ð4Þ

where x 2 Xx, Xx is a compact set of Rm, W is an adaptive

weight variable, h(x) represents Gauss function, e stands for
approximation error, and its upper bound is �e, �e[ 0.

However, the neural network represented by RBF is a

multilayer neural network, but it will undoubtedly increase

the complexity of the control law, which is the so-called

dimension disaster problem. In order to solve this problem

effectively, Professor Yang proposed a minimum learning

parameter method based on the small gain theory, which

can not only avoid the singularity of other adaptive algo-

rithms, but also reduce the number of adaptive parameters

to a minimum, which greatly reduces the amount of cal-

culation [28]. The essence of minimum learning parameter

method for neural network is to replace Wk k with a con-

stant /. /̂ is the estimated value of / and its estimated

error is ~/ ¼ /̂� /. The remarkable advantages of the

minimum learning parameter method are: (1) reducing the

self-learning parameter to one, which reduces the difficulty

of controller implementation; (2) solving the ‘‘dimension

disaster’’ problem and reducing the computational burden

of the controller.

3.3 Auxiliary design system

Input saturation is a potential problem for any control

system. If this problem is ignored, the input calculated by

the control strategy may exceed the maximum output range

of the actuator, which will lead to the weakening of the

control effect and even the collapse of the controlled sys-

tem. Input saturation problem can be described as

s ¼
smax; if s0 [ smax

s0; if smin � s0 � smax

smin; if s0\smin

8
><

>:
ð5Þ

where s is the final control input considering the input

saturation problem, s0 is the control input calculated by the

control strategy without considering the input saturation

problem, smax and smin are the maximum and minimum

values that the actuator can provide, respectively. Based on

this, Chen proposes an auxiliary design system to analyze

potential input saturation problems [29]. The specific form

of auxiliary design system can be expressed as

_U ¼ �KeU� S � Dsj j þ 0:5Ds2

U2
� Uþ Ds; Uj j � n

0; Uj jn

8
<

:

ð6Þ

where Ke is a positive parameter to be designed, U is a new

auxiliary variable introduced, S represents an error vari-

able, n is a small constant, Ds ¼ s� s0.

4 Control strategy

Compared with the conventional control strategy, the main

difference between the sliding mode variable structure

control is that it contains a control discontinuity, that is, a

switching characteristic that can change the system struc-

ture according to an appropriate law. Through the discon-

tinuity of this control, the state trajectory can be designed

according to the required requirements, and under certain

conditions, the system can make high-frequency, small-

amplitude reciprocating motion along this trajectory. This

motion is called sliding mode motion. The sliding mode is

independent of the parameters and disturbances of the

system and can be designed according to different

requirements. Therefore, the system with sliding mode

motion has excellent anti-interference and parameter

robustness. At present, the theory of sliding mode control

has been widely used in various fields such as aviation,

robots, drones and has achieved good application results

[30, 31].

In this Section, a first-order sliding mode and a second-

order sliding mode are employed separately to design surge

control law and yaw control law. In order to better

understand the design idea of this paper, the structure of the

trajectory tracking control strategy is described in Fig. 2.

xd and yd represent the position of reference trajectory.

ud and vd denote the reference surge speed and sway

velocity. ue and ve represent the error between the refer-

ence speed and the actual speed. Specific details will be

introduced in the following controller design.

4.1 Surge control law

Define trajectory tracking error variables xe and ye.
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xe ¼ x� xd

ye ¼ y� yd

�

ð7Þ

whose time derivative along (1) can be described as

_xe

_ye

� �

¼
cosw � sinw

sinw cosw

� �
u

v

� �

�
_xd

_yd

� �

ð8Þ

Meanwhile, define speed tracking error variables ue and ve.

ue ¼ u� ud

ve ¼ v� vd

�

ð9Þ

The time derivative of (9) along (8) can be described as

_ue

_ve

� �

¼
rve

�rue

� �

þ
cosw sinw

� sinw cosw

� �
€xe þ k _xe

€ye þ k _ye

� �

ð10Þ

Assuming ðud; vdÞ is associated with ðxd; ydÞ and ðxe; yeÞ, it
can be described as

ud ¼ cosw _xd þ sinw _yd � k coswxe � k sinwye
vd ¼ � sinw _xd þ cosw _yd þ k sinwxe � k coswye

�

ð11Þ

where k is a positive parameter to be designed.

The derivative of (11) can be described as

_ud ¼ cosw€xd þ sinw€yd þ vdr � k cosw _xe � k sinw _ye

_vd ¼ � sinw€xd þ cosw€yd � udr þ k sinw _xe � k cosw _ye

�

ð12Þ

In the next step, a first-order sliding mode will be intro-

duced to design surge control law su to converge the speed

tracking error ue. Meanwhile, it can be seen from (12) that

_ud is quite complex. To avoid this problem (explosion of

computation), neural shunting model is used to avoid the

derivation of ud to reduce the computational burden of the

controller.

Let ud pass through the neural shunting model (3) to

avoid the derivation of ud, and one has

_bd ¼ �Abd þ ðB� bdÞf ðudÞ � ðDþ bdÞgðudÞ ð13Þ

where A, B and D have the same meaning as defined in (3).

Neural network minimum learning parameter method is

introduced into the design of control law to compensate

uncertain dynamics and unmeasurable external distur-

bances, and the adaptive technique is employed to com-

pensate for the estimation error of the minimum learning

parameter method of the neural network to improve the

stability of the trajectory tracking system.

Sliding surface su can be expressed as

su ¼ ue þ k1

Z t

0

ueðlÞdl ð14Þ

where k1 is a positive parameter to be designed. Taking the

time derivative of (14) along (10) produces

_su ¼ k1ue þ
m22

m11

vr � d11
m11

u� 1

m11

Du þ
1

m11

su þ
1

m11

bu � _bd

ð15Þ

Without considering input saturation, the corresponding

surge control law can be selected as

Fig. 2 The structure of trajectory tracking control strategy
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s0u ¼ m11ð�
1

2
su/̂uh

Th� k1ue �
m22

m11

vr þ d11
m11

uþ _bd

þ Uu � kuesu � x̂usgnðsuÞÞ
ð16Þ

where kue is a positive parameter to be designed. Uu can be

described as

_Uu ¼
�KeuUu �

su � Dsuj j þ 0:5Ds2u
U2

u

� Uu þ Dsu; Uuj j � nu

0; Uuj j\nu

8
><

>:

ð17Þ

The meaning of each symbols has the same meanings as

those defined in (6). The adaptive law of neural network

minimum learning parameter method can be described as

_̂/u ¼
Cu

2
s2uh

Th� juCu/̂u ð18Þ

where Cu and ju are parameters to be designed. A robust

term is employed to enhance the trajectory tracking system,

and its adaptive law can be described as

_̂xu ¼ cusu � cuiux̂u ð19Þ

where cu and iu are parameters to be designed. Based on

the above analysis, taking into account the input saturation

problem, the final surge control law can be described as

su ¼
sumax; if s0u [ sumax

s0u; if sumin � s0u � sumax

sumin; if s0u\sumin

8
><

>:
ð20Þ

The meaning of each symbols has the same meanings as

those defined in (5).

4.2 Yaw control law

In this subsection, a second-order sliding mode is intro-

duced into the design of yaw control law to converge the

sway tracking error. Similar to the surge control law design

process, the role of neural network minimum learning

parameter method is to compensate uncertain dynamics

and unmeasurable external disturbances, and adaptive

technology is employed to improve the robustness of the

system.

Sliding surface sv can be expressed as

sv ¼ _veðtÞ þ k2veðtÞ þ k3

Z t

0

veðlÞdl ð21Þ

where k2 and k3 are parameters to be designed. Taking the

time derivative of (21) along (10) produces

_sv ¼ €v� €vd þ k2ð _v� _vdÞ þ k3ve ð22Þ

where €v ¼ 1
m22m33

ð�m11m33 _ur � m11ðm11 � m22Þu2vþ

m11d22ur � m11usr þ m11 uðrr � brÞ � m33d22 _v� m33

ð _rv � _bvÞÞ, €vd ¼ vm � vn,

vm ¼ �r½cosðwÞ€xd þ sinðwÞ€yd� � sin ðwÞd þ cos ðwÞd
� r½cosðwÞ€xd þ sinðwÞ€yd þ vdr � kðcosðwÞ _xe
þ sinðwÞ _yeÞ� þ k½r cosðwÞ _xe þ sinðwÞ€xe þ r sinðwÞ _ye
� cosðwÞ€ye�

, vn ¼ ud
sr�d33rþðm11�m22Þuv

m33
. Then, _sv can be rewritten as

_sv ¼ vbsr þ vv � vm þ k2ð _v� _vdÞ þ k3ve þ vf ð23Þ

where vb ¼ ðm22ud�m11uÞ
m22m33

,

vv ¼
�m11m33 _ur � m11ðm11 � m22Þu2vþ m11d22ur � m33d22 _v� m22d33rud þ m22ðm11 � m22Þuduv

m22m33

;

vf ¼ m11uðrr�brÞ�m33ð _rv� _bvÞ
m22m33

.

Remark 3 In the process of yaw control law design, neural

shunting model will not be introduced into the design of

control strategy to reduce the computational burden of the

controller. The reason why neural shunting model is not

used to handle vd is that €vd contains sr.

Without considering input saturation, the corresponding

yaw control law can be selected as

s0r ¼ v�1
b ð� 1

2
sv/̂vh

Th� vv þ vm � k2ðfv
� _vdÞ � k3ve þ Uv � kvesv � x̂vsgnðsvÞÞ

ð24Þ

where kve is a positive parameter to be designed. Uv can be

described as

_Uv¼
�KevUv�

sv �Dsrj jþ0:5Ds2v
U2

v

�UvþDsr; Uvj j�nv

0; Uvj j\nv

8
><

>:

ð25Þ

The meaning of each symbols has the same meanings as

those defined in (6). The adaptive laws of neural network

minimum learning parameter method and robust term are

described in (26) and (27), respectively.

_̂/v ¼
Cv

2
s2vh

Th� jvCv/̂v ð26Þ

_̂xv ¼ cvsv � cvivx̂v ð27Þ

where Cv, jv, cv and iv are positive parameters to be

designed.

Based on the above analysis, taking into account the

input saturation problem, the final yaw control law can be

described as

sr ¼
srmax; if s0r [ srmax

s0r; if srmin � s0r � srmax

srmin; if s0r\srmin

8
><

>:
ð28Þ
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Remark 4 Sign function can undoubtedly add the robust-

ness of the controlled system. However, if xu and xv are

selected as constant, this will undoubtedly increase the

chattering phenomenon of the control law. So in this paper,

an adaptive method is used to estimate the xu and xv

values online and in real time to reduce the chattering

phenomenon of the control law.

5 Stability analysis

The following theorem presents the stability result of the

presented trajectory tracking strategy.

Define the following error variable.

yu ¼ bd � ud ð29Þ

whose time derivative along (13) can be expressed by

_yu ¼ �ð½Aþ f ðudÞ þ gðudÞ�bd � ½Bf ðudÞ � DðudÞ�Þ � Xd

ð30Þ

where

Xd ¼ cosw€xd þ sinw€yd þ vdr � k cosw _xe � k sinw _ye. If

B ¼ D, (30) can be simplified as (31).

yu ¼ �Mbd þ Bud � Xd ð31Þ

where M ¼ Aþ f ðudÞ þ gðudÞ.

Theorem 1 Consider the trajectory tracking system con-

sisting of the underactuated USV (1) and (2), the control

laws (20) and (28), the neural network minimum learning

parameter method adaptive laws (18) and (26), the robust

term adaptive laws (19) and (27) and the neural shunting

model (13). On the premise of optimizing and adjusting

parameters k, k1, k2, k3, Cu, ju, cu, iu, Cv, jv, cv, iv, kue, kve,
Keu, Kev, nu, nv, A, B and D, the error signals in the closed-

loop system are uniformly ultimately bounded.

Proof Consider the following Lyapunov function

candidate:

V ¼ 1

2
ðs2u þ s2v þ C�1

u
~/
2

u þ C�1
v

~/
2

v

þ c�1
u ~x2

u þ c�1
v ~x2

v þ y2u þ U2
u þ U2

vÞ
ð32Þ

Take the time derivative (31) along (15) and (23), one can

get

_V ¼ suðk1ue þ
m22

m11

vr � d11
m11

uþWT
u hþ eu þ

1

m11

su � _buÞ

þ svðvbsr þ vv � vm þ k2fv þ k2
1

m22

ðbv �rvÞ � k2 _vd þ k3ve þ vf Þ

þ C�1
u

~/u
_̂/u þ C�1

v
~/v

_̂/v þ c�1
u ~xu

_̂xu þ c�1
v ~xv

_̂xv þ yu _yu þ Uu
_Uu þ Uv

_Uv

ð33Þ

Submitting the control laws (20), (28) and adaptive laws

(18), (19), (26), (27) yields

_V � � kues
2
u � kves

2
v � ju ~/u/̂u � jv ~/v/̂v � iu ~xux̂u � iv ~xvx̂v

þ suUu þ svUv þ suDsu þ svDsv þ Uu
_Uu þ Uv

_Uv þ yu _yu þ 1
ð34Þ

According to young’s inequality analysis (34), one has

_V � � kues
2
u � kves

2
v �

ju
2

~/
2

u �
jv
2

~/
2

v �
iu
2
~x2
u �

iv
2
~x2
v

þ suUu þ svUv þ suDsu þ svDsv þ Uu
_Uu þ Uv

_Uv þ yu _yu

þ ju
2
/2
u þ

jv
2
/2
v þ

iu
2
x2

u þ
iv
2
x2

v þ 1

ð35Þ

If B ¼ M, we have Mbd �Mud ¼ Myu. According to

Young’s inequality, one can get that �yuXd � ruy2u
2

þ �X2
d

2ru
,

where ru is a normal number. Based on the above analysis,

(35) can be redefined as

_V � � kues
2
u � kves

2
v �

ju
2

~/
2

u �
jv
2

~/
2

v

� iu
2
~x2
u �

iv
2
~x2
v � ðM � ru

2
Þy2u

þ suUu þ svUv þ suDsu þ svDsv þ Uu
_Uu þ Uv

_Uv

þ ju
2
/2
u þ

jv
2
/2
v þ

iu
2
x2

u þ
iv
2
x2

v þ 1

ð36Þ

Besides, noting that

_UuUu ¼ �KeuU2
u �

suDsuj jþ0:5Ds2u
U2

u
U2

u þ DsuUu,

DsuUu � 1
2
ðDs2u þ U2

uÞ,
_UvUv ¼ �KevU2

v �
svDsrj jþ0:5Ds2r

U2
v

U2
v þ DsrUv,

DsrUv � 1
2
ðDs2r þ U2

vÞ, it follows that

_V � � kues
2
u � kves

2
v �

ju
2

~/
2

u �
jv
2

~/
2

v �
iu
2
~x2
u �

iv
2
~x2
v

� ðM � ru
2
Þy2u � ðKeu �

1

2
ÞU2

u � ðKev �
1

2
ÞU2

v

þ ju
2
/2
u þ

jv
2
/2
v þ

iu
2
x2

u þ
iv
2
x2

v þ 1

ð37Þ

Define p1 ¼ kue, p2 ¼ kve, p3 ¼ ju
2
, p4 ¼ jv

2
, p5 ¼ iu

2
,

p6 ¼ iv
2
, p7 ¼ ðM � ru

2
Þ[ 0, p8 ¼ ðKeu � 1

2
Þ[ 0,

p9 ¼ ðKev � 1
2
Þ[ 0, P ¼ ju

2
/2
u þ jv

2
/2
v þ iu

2
x2

u þ iv
2
x2

v þ 1,

then (37) becomes
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_V � � p1s
2
u � p2s

2
v � p3 ~/

2

u � p4 ~/
2

v � p5 ~x
2
u � p6 ~x

2
v

�p7y
2
u � p8U

2
u � p9U

2
v þP

ð38Þ

Define

P ¼ minfp1; p2; p3; p4; p5; p6; p7; p8; p9g;

then it follows from (38) that

_V � � 2PV þP ð39Þ

Solving inequality (39) gives

V �ðVð0Þ � P
2P

Þe�2lt þ P
2P

�Vð0Þe�2lt þ P
2P

; 8t[ 0

ð40Þ

Through the above analysis what conclusions can be

drawn: V is eventually bounded by P
2P, and all error vari-

ables in the controlled system are uniformly ultimately

bounded. h

6 Numerical simulation

In this Section, the simulations of straight-line trajectory

tracking and curve trajectory tracking are carried out in the

case of disturbance and non-disturbance to verify the cor-

rectness and feasibility of the trajectory tracking strategy

proposed in this paper. Furthermore, the proposed

scheme is compared with [32] and classical PID control

strategy to further verify its superiority. CyberShip II USV

is selected as the research object, which is developed by the

Marine Cybernetics Laboratory in Norwegian University of

Science and Technology [33, 34].

6.1 Trajectory tracking without disturbance

6.1.1 Straight-line trajectory tracking

The straight-line trajectory tracking task is relatively sim-

ple, so the numerical simulation of straight-line trajectory

tracking is first performed in this Section. The straight-line

trajectory reference can be described as ½xd ¼ t; yd ¼ t�.
The initial state of CyberShip II is ½xð0Þ; yð0Þ;wð0Þ;
uð0Þ; vð0Þ; rð0Þ� ¼ ½15m; 0m; 0rad; 0m=s; 0m=s; 0rad=s�.
The corresponding control parameters are selected as

k ¼ 0:09, k1 ¼ 0:95, k2 ¼ 5, k3 ¼ 0:95, Cu ¼ 0:11,

ju ¼ 0:01, cu ¼ 0:12, iu ¼ 0:2, Cv ¼ 0:1, jv ¼ 0:011,

cv ¼ 0:12, iv ¼ 0:03, kue ¼ 0:01, kve ¼ 0:0152, Keu ¼ 0:21,

Kev ¼ 0:12, nu ¼ 0:01, nv ¼ 0:01, A ¼ 2, B ¼ 2þ f ðudÞ þ
gðudÞ and D ¼ 2þ f ðudÞ þ gðudÞ. The control inputs range
of the CyberShip II USV are assumed to be sumax ¼ 35N,

sumin ¼ �35N, srmax ¼ 35Nm and srmin ¼ �35Nm. The

straight-line trajectory tracking performance without

disturbance of the underactuated USV is shown in

Figs. 3, 4, 5, 6 and ITAE index (ITAE index refers to the

integral of the product of the absolute value of the variable

and time) is hired to analyze xe and ye.

The simulation results of straight-line trajectory tracking

without disturbance of the underactuated USV are plotted

in Fig. 3, while the tracking errors in X and Y directions

are shown in Fig. 4. It can be seen that these three control

strategies have good control performance. In addition,

since there is no interference, it can be seen from Fig. 4

that the final values of xe and ye under the three control

strategies are almost zero. Furthermore, it can be seen from

Table 1 that the ITAE values of the three control strategies

are in the same order of magnitude for both error xe and ye,

and there is a little difference. This is because there is no

disturbance in the system, so the control effect is similar.

Figs. 5 and 6 depict the comparison curves for control

inputs. It can be observed from Fig. 5 that the minimum

value of Yu et al. (2012)’s su is about �60N, which has

exceeded the range available by the actuator. In addition, it

can be seen from Fig. 6 that the extreme value of Yu et al.

(2012)’s sr exceeds the maximum value that the actuator

can provide. Correspondingly, the su and sr under the

proposed strategy and PID are within the scope of the input

that the actuator can provide. In addition, it can be seen that

the control input of sliding mode control strategy has a

certain chattering phenomenon, which is caused by the

principle of sliding mode algorithm.

6.1.2 Curve trajectory tracking

Without changing any control parameters and the

initial value of the USV, the curve trajectory tracking

is simulated to verify the versatility of the proposed

scheme. The reference curve trajectory is a circle with

a radius of 20 m, which can be described as

Fig. 3 The performance of straight-line trajectory tracking without

disturbance
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½xd ¼ 20 cosð0; 05tÞ; yd ¼ 20 sinð0; 05tÞ�. The curve trajec-

tory tracking performance without disturbance of the

underactuated USV is shown in Figs. 7, 8, 9, 10.

Fig. 7 depicts the trajectory tracking in a two-dimen-

sional plane, where the reference trajectory is a circle. It

can be observed that although any conditions (control

parameters and the initial state of USV) have not changed,

the curve trajectory tracking still achieves excellent per-

formance. Fig. 8 plots the comparison curves of xe and ye
in the case of curve trajectory tracking. Because there is no

interference, the convergence results of xe and ye under the

three control strategies are still zero. It can be seen from

Fig. 4 The curves of xe and ye

Fig. 5 The curves of su

Fig. 6 The curves of sr

Table 1 ITAE coefficients of xe and ye

ITAE Value Value Value

xe 1433.1 1421.5 1399.5

ye 54.7 84.58 99.4

Fig. 7 The performance of curve trajectory tracking without

disturbance

Fig. 8 The curves of xe and ye
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Table 2 that the ITAE values of xe and ye under the three

control strategies still conform to the law of straight-line

trajectory tracking. The comparison curves of su and sr are
shown in Figs. 9 and 10. It reveals that the su and sr under
Yu et al. (2012) and PID control strategies are beyond the

maximum range that the actuator can provide at a certain

transient. According to the above simulation results, it can

be seen that the trajectory tracking performance under the

three control strategies is similar, because the cause of

interference is not considered.

6.2 Trajectory tracking under disturbance

6.2.1 Straight-line trajectory tracking

In the actual operating environment of USV, interference is

inevitable, so the influence of various interference must be

considered in the simulation. Under the same control

parameters and USV initial conditions, the straight-line

trajectory tracking and curve trajectory tracking are carried

out, respectively, and the ITAE index is used to further

describe xe and ye to reflect the robustness of the proposed

control strategy. At the same time, uncertain dynamics and

time-varying external disturbances caused by wind, waves

and currents are taken as Du¼0:2, Dv¼0:2, Dr¼0:2,

bu ¼ 1þ 0:5 sinð0:2tÞ þ 0:3cosð0:5tÞ, bv ¼ 1þ
0:5 sinð0:2tÞ þ 0:3cosð0:4tÞ and

br ¼ 1þ 0:2 sinð0:1tÞ þ 0:2cosð0:2tÞ. The straight-line

trajectory tracking performance under disturbance of the

underactuated USV is shown in Figs. 11, 12, 13, 14.

The straight-line trajectory tracking results under dis-

turbance are plotted in Fig. 11. It is obvious from Fig. 11

that both the proposed scheme and Yu et al. (2012) have

good control performance, but PID control effect is not

ideal, with obvious error. This is because the proposed

scheme and Yu et al. (2012) can compensate for the

interference, while PID only relies on its own robustness to

suppress the impact of interference. xe and ye under the

three control strategies are described, and the simulation

results are further proved in Fig. 12. It can be seen from

Table 3 that the accuracy of the proposed control strategy

is the highest, while the trajectory tracking accuracy of PID

control is the lowest. Figs. 13 and 14 depict the compar-

ison curves for control inputs. The su and sR of Yu et al.

(2012) exceed the maximum range that the actuator can

provide. Although the su and sR of PID control strategy do

Fig. 9 The curves of su

Fig. 10 The curves of sr

Table 2 ITAE coefficients of xe
and ye

ITAE Value Value Value

xe 626.1 632.5 624.8

ye 333.7 326.2 316.9

Fig. 11 The performance of straight-line trajectory tracking under

disturbance
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not exceed the maximum range that the actuator can pro-

vide, the control effect is not ideal.

6.2.2 Curve trajectory tracking

Similarly, no adjustments are made to any control param-

eters and other conditions, and the robustness and versa-

tility of the control strategy in this paper are further proved

through curve trajectory tracking. The curve trajectory

tracking performance under disturbance is shown in

Figs. 15, 16, 17, 18.

Figure 15 shows the results of circular trajectory track-

ing with three control strategies in the presence of inter-

ference. It is obvious that the proposed control strategy and

Yu et al. (2012) have good control performance, while the

simulation under PID strategy has large error. Fig. 16 and

Table 4 further verify the simulation results. The compar-

ison curves of su and sr are shown in Figs. 17 and 18. Both

Yu et al. (2012) and PID control strategies have control

inputs that exceed the maximum range that the actuator can

provide. In summary, the robustness and generality of the

proposed trajectory tracking control strategy are proved

through the simulation of straight-line trajectory tracking

and curve trajectory tracking without disturbance and with

disturbance.

Fig. 12 The curves of xe and ye

Fig. 13 The curves of su

Fig. 14 The curves of sr

Table 3 ITAE coefficients of xe and ye

ITAE Value Value Value

xe 1544 2055 3220.1

ye 50.75 1226.3 2211.2

Fig. 15 The performance of curve trajectory tracking under

disturbance
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7 Conclusion

This paper has proposed a practical adaptive trajectory

tracking control strategy for an underactuated USV. The

proposed scheme is proposed by combing a first-order

sliding mode, a second-order sliding mode, neural shunting

model, minimum learning parameter method for neural

network and adaptive technology. Neural shunting model

and minimum learning parameter method can reduce the

computational burden of the controller to some extent.

Finally, the feasibility and superiority of the proposed

tracking scheme are verified by the simulation experiments

of straight-line and curve.

Although this paper takes many practical situations into

account, there are still many problems to be solved. For

example, the proposed trajectory tracking control strategy

does not take the dynamic characteristics of the actuator

into account. In other words, the final control output is

force su and torque sr, rather than propeller speed and

corresponding rudder angle, which is difficult to achieve in

engineering. Therefore, in the future research, the author

plans to consider the dynamic characteristics of the actu-

ator in the design of the controller and carries out the field

experiment if conditions permit.
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