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Abstract
Water distribution network (WDN) is one of the most essential infrastructures all over the world and ensuring water quality

is always a top priority. To this end, water quality sensors are often deployed at multiple points of WDNs for real-time

contamination detection and fast contamination source identification (CSI). Specifically, CSI aims to identify the location

of the contamination source, together with some other variables such as the starting time and the duration. Such infor-

mation is important in making an efficient plan to mitigate the contamination event. In the literature, simulation-opti-

misation methods, which combine simulation tools with evolutionary algorithms (EAs), show great potential in solving CSI

problems. However, the application of EAs for CSI is still facing big challenges due to their high computational cost. In

this paper, we propose DLGEA, a deep learning guided evolutionary algorithm to improve the efficiency by optimising the

search space of EAs. Firstly, based on a large number of simulated contamination events, DLGEA trains a deep neural

network (DNN) model to capture the relationship between the time series of sensor data and the contamination source

nodes. Secondly, given a contamination event, DLGEA guides the initialisation and optimise the search space of EAs based

on the top K contamination nodes predicated by the DNN model. Empirically, based on two benchmark WDNs, we show

that DLGEA outperforms the CSI method purely based on EAs in terms of both the average topological distance and the

accumulated errors between the predicted and the real contamination events.

Keywords Contamination source identification � Deep neural networks � Evolutionary algorithms � Time series analysis �
Water distribution networks � Water quality sensors

1 Introduction

Water distribution networks (WDNs) are essential infras-

tructures for modern life and economy. To ensure the water

quality, sensors are deployed at multiple points of WDNs

for collecting real-time data regarding water quality. These

data are used for contamination detection and fast con-

tamination source identification (CSI). Specifically, CSI

[21] aims to identify the location of the contamination

source, together with some other variables of the contam-

ination event, e.g. starting time and duration. Such infor-

mation is important in making efficient plans to mitigate

the contamination event. CSI problems are difficult due to

a number of reasons. First, it is infeasible to do experi-

mental analysis in real-world WDNs. Second, the water

quality data are often sparse as the deployment of water

quality sensors is limited in WDNs. Third, the dynamics of

water demand patterns add uncertainty to the analysis.

Fourth, it is important that the contamination source can be

identified within a short period of time.

As an alternative to the experimental analysis in real-

world WDNs, simulation tools are often adopted for solv-

ing CSI problems, e.g. the hydraulic modelling and simu-

lation tool EPANET [26] developed by the US
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environmental protection agency. A WDN is modelled by

setting up the topology, hydraulic and water quality

parameters, which can then be used to run simulations to

observe the hydraulic and water quality changes. It is

possible to explore the contamination configurations by

simulating a large number of contamination events and

searching for the one that generates the most similar water

quality data as to the real contamination event. In other

words, we need to identify the event which minimises the

difference between the simulated water quality data and the

observed water quality data. As such, CSI is transformed

into an optimisation problem.

In the literature, simulation-optimisation methods,

which combine simulation tools with evolutionary algo-

rithms (EAs), show great potential in solving CSI problems

[9, 16, 22, 30, 33, 38]. EAs are population-based algo-

rithms widely adopted for solving optimisation problems

[1]. However, the application of EAs for CSI is still facing

big challenges due to their high computational cost. To this

end, we propose DLGEA, a deep learning guided evolu-

tionary algorithm to improve the searching efficiency of

EAs. In particular, DLGEA trains a deep neural network

(DNN) model based on a large number of samples gener-

ated by EPANET to infer the ranking of all the nodes in a

WDN by their probability of being the contamination

source node. By prioritising the search space of the set of

top K nodes with the highest probabilities, the computation

of EAs can be optimised. By carrying out a set of experi-

ments with dynamic water demand patterns, we show that

DLGEA outperforms the CSI method purely based on EAs

[38] in terms of the average topological distance as well as

the accumulated errors between the predicted and the real

contamination events.

In summary, the contributions of this paper are as

follows:

– We propose a deep learning guided evolutionary

algorithm DLGEA for CSI which takes advantage of

the learning capabilities of deep neural networks to

optimise the search space of evolutionary algorithms,

and we show that DLGEA outperforms the state-of-the-

art CSI method purely based on EAs through a set of

experiments with two benchmark WDNs.

– We investigate the application of two types of DNN

models, i.e. convolutional neural networks and recur-

rent neural networks, for contamination source node

localisation, and show that the DNN models are able to

localise the real source node with an accuracy above

85% for a medium-size WDN and above 69% for a

large-scale WDN when the top 5 nodes with the highest

probability are considered.

– The evaluations are performed using two benchmark

WDNs, respectively, with 97 nodes and 1786 nodes.

We release the datasets used in this paper as well as the

source code1 of DLGEA to facilitate the reproducibility

of our work.

The rest of the paper is organised as follows: Sect. 2 dis-

cusses the related work. Section 3 gives a formal descrip-

tion of the CSI problem. Section 4 presents the proposed

deep learning guided evolutionary algorithm DLGEA for

CSI. Section 5 describes the dataset used in this paper.

Section 6 illustrates the experiment preparation and the

evaluation metrics, and analyses the experiment results.

Finally, in Sect. 7, we conclude the paper with possibilities

of future work.

2 Related work

In the early stage, researchers regarded the CSI problem as

an inverse problem and tried to solve it by analysing the

inner hydraulic model and water quality model of the

WDN directly. For example, Shang et al. proposed a par-

ticle backtracking algorithm which aims to describe the

relationship between water quality at input and output

locations and by the relationship, the inverse problem can

be solved [28]. Laird at al. presented an origin tracking

algorithm for solving the inverse problem of contamination

source identification based on a nonlinear programming

framework [14] and later extended their work by incor-

porating a mixed-integer quadratic program to address non-

unique solution problems [13]. However, these methods

require complicated analysis and are difficult to be applied

to large-scale WDNs.

Machine learning methods have also been investigated

for CSI problems. For example, Huang and McBean pro-

posed to combine a screening approach and a maximum

likelihood method to identify the location and time of a

contamination event based on limited sensor data [10].

Perelman and Ostfeld proposed a solution based on topo-

logical clustering and Bayesian Networks (BNs) [20]. It

first applies the clustering method proposed in [19] to

formulate a simplified representation of WDNs based on

nodal connectivity properties. With evidence from the

clusters, information is then combined through proba-

bilistic inference using BNs to find the most likely source

of contamination and its propagation in the network. Wang

and Harrison proposed to use Markov Chain Monte Carlo

(MCMC) to enable probabilistic inference of contamina-

tion events [31], and combine support vector regression

(SVR) to speed up the likelihood evolution during the

MCMC chain evolution [32].

1 https://github.com/rmbking/DNN_EA_CSI.
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More recently, simulation-optimisation methods are

gaining more popularity. The idea is that the accumulated

errors between the observed concentration data and the

simulated concentration data should be minimum if the

simulated contamination event is the same as the real

contamination event. Although some other optimisation

techniques were considered such as the reducing gradient

method [5], a commonly adopted approach for CSI is

combining the simulation tool EPANET with variants of

EAs. For example, Preis and Ostfeld integrated a genetic

algorithm (GA) with EPANET [22], in which GA provides

heuristic information for searching while EPANET is used

to evaluate the fitness of a candidate solution as to the real

event. Praveen et al. conducted experiments to show the

effectiveness of simulation-optimisation methods by taking

dynamic water demand into account [30]. Liu et al.

developed an EA based adaptive dynamic optimisation

procedure that uses multiple population-based search to

provide a real-time response to contamination events [16].

Hu et al. developed a MapReduce based Parallel Niche

Genetic Algorithm (MR-PNGA) which explores the cloud

resources for performance improvement [9]. Yan et al.

investigated different optimization algorithms for CSI such

as cultural algorithms [34] and variants of genetic algo-

rithms [33, 35–39].

All these works show great potential of simulation-op-

timisation methods in solving CSI problems. However, the

simulation part of these EA-based approaches is usually

expensive and the search space of contamination events is

also huge. Therefore the total computational cost is high

and it is hard to find the optimal solution within a short

period of time. To the best of our knowledge, there is no

previous work that has investigated the application of deep

neural networks for CSI problems by using the predictions

from neural networks as a prior to optimise the search

space and speed up the search process.

3 Problem statement

Given a WDN, a contamination event can be characterised

by a set of variables including the location of the con-

tamination source, the starting time, the duration of the

contamination and the concentration of the contaminants at

the source node. Formally, we define a contamination event

s as:

s ¼ ½n; t0; t; q� ð1Þ

where n indicates the contamination source node in the

WDN, t0 indicates the starting time of the contamination, t

indicates the duration of the contamination and q indicates

the concentration of the contaminants at the source node.

For example, a contamination event s ¼ ½10; 3; 2; 100�

indicates that some contaminants are injected into the

WDN at node 10, starting from 3:00, lasting for 2 h and the

contaminant concentration at the source node is 100mg/L.

When a contamination event encoded by s occurs in a

WDN, the water quality at different parts of the WDN will

change according to the topology, water hydraulic and

quality model of the WDN. Suppose we have the following

mapping:

F : S ! C ð2Þ

where F is a function of the WDN that maps contamina-

tion events S ¼ fsg to concentration matrices C ¼ fCg in

which C � RT�M and a concentration matrix C captures the

spatio-temporal contaminant concentration data at all T

time steps from all M sensor nodes. Note that the set of

sensor nodes is a subset of all the nodes in the WDN.

Suppose the WDN in total has N nodes, we have M�N. In

this paper, we rely on the water distribution network

modelling and simulation tool EPANET2 to realise such a

mapping. That is, we can simulate a contamination event

s in a WDN using EPANET, and the tool will return the

contaminant concentration data for allM sensor nodes at all

T time steps.

Given a contamination event s occurring in a WDN, the

aim of CSI is to find a solution s� that minimises the errors

between the simulated concentration data based on s� and

the real concentration data obtained from the sensors when

s occurred. Accordingly, the objective of CSI can be for-

mulated as follows ( [9, 22, 38]):

min
XT

t¼1

XM

m¼1

½Csðt;mÞ � Cs� ðt;mÞ�2
( )

ð3Þ

where Csðt;mÞ and Cs� ðt;mÞ are the observed and simu-

lated contaminant concentration data at time step t from

node m, respectively. As such, the CSI problem is trans-

formed into an optimisation problem, which can be handled

by EAs.

4 Deep learning guided evolutionary
algorithm

As illustrated in Sect. 2, the CSI methods purely based on

EAs suffer from high computational cost in finding the

optimal solution. To alleviate this problem, in this paper,

we propose DLGEA, a deep learning guided evolutionary

algorithm for CSI to improve the searching efficiency of

EAs by leveraging the knowledge from the historical

contamination data. The framework of DLGEA is shown in

Fig. 1, which consists of two stages. Given a contamination

2 https://www.epa.gov/water-research/epanet.
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event occurred in a WDN, the first stage, called DNN

Based Search Space Division, uses a pre-trained DNN

model to estimate the likelihood (probability) of each node

in the WDN being the contamination source. Based on the

probability ranking of all the nodes returned by the DNN

model, the set of possible solutions (i.e. all the nodes in a

WDS) is divided to construct two populations, with the

nodes of higher probabilities in one population and the rest

of the nodes in the other population. The second stage,

called Dual-Population Evolution, applies a simulation-

optimisation approach to identify all the components of the

contamination event as defined in (1) based on the two

populations constructed from the first stage. The details of

these two stages are illustrated in the rest of this section.

4.1 DNN based search space division

A WDN often consists of a large number of nodes such as

pipe junctions, water sources and water tanks. When a

contamination event occurs, we assume in this paper that

the contamination is injected from one of the nodes in the

WDN as in ([9, 16, 22, 30, 38]). The goal of the first stage

of DLGEA is to estimate the probability of each node in the

WDN being the contamination source node. For this pur-

pose, a deep neural network (DNN) model is trained using

the historical contamination data.

Specifically, given a set of contamination events, the

inputs for the DNN model are sequences of readings from

all the sensor nodes in the WDN, and the outputs of the

DNN model are the probability of each node being the

source of contamination. For real-world WDNs, contami-

nation events rarely occur and thus we cannot get sufficient

data for training DNN models. To solve this problem, we

turn to EPANET to generate training data, which will be

illustrated in Sect. 5.

Given a new contamination event, the trained DNN

model can then be used to infer the probability of each

node in the WDN being the contamination source node

based on the water quality data collected from the sensor

nodes. We pool the top K candidate source nodes to con-

struct one population and the rest of the nodes to construct

another population for the second stage which aims at

identifying the source node and recover the other variables

of the contamination events such as the starting time,

duration, etc.

4.2 Dual-population evolution

EA based CSI methods often follow a simulation-optimi-

sation approach and encode contamination events as indi-

viduals with components such as the source node, the

starting time, etc. [16, 22, 30, 33]. Similarly, we model a

contamination event encoded by (1) as an individual in a

population and its fitness value f is defined according to the

objective function (3), which is formulated as follows:

f ¼
XT

t¼1

XM

m¼1

½Csðt;mÞ � Cs� ðt;mÞ�2 ð4Þ

As mentioned in Sect. 3, matrix Cs� is the time-series

concentration data of candidate contamination events. In

specific, for each given individual, the original network

model will be configured to initiate the corresponding

candidate event and then simulated with EPANET.

Accordingly, a water quality report will be generated,

recording the concentration data at all time steps from all

the sensor nodes, which is then transformed into matrix

Cs� . Notice that in our setting, an individual with a smaller

fitness value is considered to be a better solution.

Most of the EA based CSI methods in the literature (e.g.

[9, 16, 33, 38]) treat all the nodes in a WDN equally by

putting them in the same population for optimisation. This

Fig. 1 Framework of DLGEA
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means that the EAs have to search a large solution space

and in turn require intensive computation. To speed up the

searching process, we propose a dual-population evolution

method in which the search of the solution space is per-

formed independently within the two populations con-

structed by the first stage. The intuition is that there is a

large probability that the real source node is within the top

K nodes localised by the DNN model and by prioritising

towards these top K candidate source nodes the search

space of the EA based CSI methods can be optimised. The

detailed process is shown in Algorithm 1.

We run two EAs separately with two populations of

equal size. One population is constructed from only the top

K candidate nodes while the other population is constructed

from the rest N � K nodes. The intuition is that with fewer

candidate nodes (K 	 N), the search space of EA1 can be

largely reduced, which is likely to find the optimal solution

much faster if the real contamination source node is in the

set of K candidate nodes. On the other hand, in case the real

contamination source node is not in the K candidate nodes,

EA2 may still have certain probability of finding the opti-

mal solution. For both EA1 and EA2, after a fixed number

of iterations, the individuals are pooled together and the

one with the best fitness value will be selected as the final

solution. Note that the computational resources are evenly

split between the two EAs as they are running in parallel

with the same size of population and the same number of

iterations (generations).

In addition, as CSI problems are usually multimodal

problems, niching methods can be combined with EAs to

maintain the diversity of populations and achieve better

solutions [38]. In this paper, two niching EA based CSI

methods are used as baselines. The first one realises the

process of niching based on the concept of fitness sharing

[18]. The second one we implemented follows the work

presented by Yan et al. [39].

The main idea of fitness sharing is to transform the raw

fitness value of an individual into a shared one based on the

similarities between the individual and its neighbours.

Suppose we have two individuals i: ½ni; t0i; ti; qi� and j:

½nj; t0j; tj; qj�. The shared fitness value of individual i is:

fshareðiÞ ¼ f ðiÞ �
Xl

j¼1

shareði; jÞ ð5Þ

where l is the population size and f(i) is the raw fitness

value of individual i. The sharing function based on indi-

vidual distance is defined as:

shareði; jÞ ¼ 1� dði; jÞ
dshare

; if dði; jÞ\dshare

0; otherwise

8
<

: ð6Þ

If ni ¼ nj, the distance between them can be calculated as

follows:

dði; jÞ ¼ ðti � tjÞ2 þ ðt0i � t0jÞ2 þ ðqi � qjÞ2 ð7Þ

If the source nodes are not the same, i and j are considered

not in the same niche and their distance is set to a pre-

defined value dshare.

By applying the steps above, the raw fitness values of

the individuals are transformed into shared ones, which

helps to maintain the diversity of the population.

The second niching strategy used in this paper is from

Yan et al. [39]. The main idea is that an individual is

retained only if it has the lowest fitness value among all the

individuals with the same source node, otherwise it will be

replaced by a new individual which is randomly initialised

and evaluated. By doing so, the diversity of the source

nodes will be maintained in the evolving process.
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5 DataSet

Following the CSI literature (e.g. [9, 16, 22, 30, 33, 38]),

the data used in this paper are from the simulations with

EPANET. Specifically, we evaluate DLGEA using two

benchmark water distribution networks as shown in Figs. 2

and 3. The first network, denoted as WDN1, is an example

network provided by EPANET and has been widely used in

the literature for studying CSI problems (e.g.

[16, 22, 27, 30, 38]). It comprises of 97 nodes (N ¼ 97) and

117 pipes, together with a water hydraulic model and a

water quality model. The second network, denoted as

WDN2, is the Wolf-Cordera model [15] which comprises

of 1786 nodes and 1985 pipes, together with a water

hydraulic model and a water quality model. Based on these

two networks, EPANET is able to simulate the water

hydraulic and quality changes with different settings of

simulation duration (e.g. minutes, hours, days) and data

recording rate (e.g. minutes, hours).

In this paper, given a contamination event, we run a

simulation of 24 h with EPANET using the default water

demand pattern and record the contaminant concentration

data at all nodes every 5 min (T ¼ 1). In this way, we

generate 10,000 contamination events for WDN1 and

100,000 for WDN2. However, in real-world systems, sen-

sor nodes are relatively sparse and thus we select 4 and 6

nodes (\7% nodes) as the sensor nodes for WDN1

(M ¼ 4; 6) following the literature [16, 17, 22, 27]. Simi-

larly, we select 10 and 30 nodes (\2% nodes) as the sensor

nodes for WDN2 (M ¼ 10; 30). After looking into the

sensor data of the 10,000 contamination events for WDN1

and the 100,000 contamination events for WDN2, we

notice that some of the contamination events do not have

any influence on any of the sensor nodes within certain

time limits (e.g. 30 and 60 min), i.e. the concentration data

recorded by the sensor nodes are all zeros. These con-

tamination events are excluded from our experiment as

they are not detectable.

As a result, we obtain four datasets under different

sensor nodes selections and time limits for both WDN1 and

WDN1, as shown in Table 1. For WDN1, the first dataset

consists of 3140 contamination events each of which is

represented by a time series of contamination concentration

collected from the four sensor nodes (M ¼ 4) within a time

limit of 30 min (T ¼ 6) after the first time the contami-

nation is detected by any of the four sensor nodes. The

second dataset, consisting of 3092 contamination events, is

collected from the same set of four sensor nodes within a

time limit of 60 min (T ¼ 12). The third and fourth datasets

for WDN1 are collected from six sensor nodes (M ¼ 6)

with a time limit of 30 min (T ¼ 6) and 60 min (T ¼ 12),

respectively. Similarly, the four datasets for WDN2 are

also collected within a time limit of 30 min and 60 min but

from a larger number of sensor nodes, i.e. M ¼ 10 and

M ¼ 30.

From Table 1 we can see that the dataset size under the

setting of T ¼ 12 is smaller than that of T ¼ 6. A larger

T means that we require sensor readings collected over a

longer time period since the first time the contamination is

detected by any of the sensor nodes. The reason why

increasing T results in less events is due to the fact that the

Fig. 2 Water distribution network WDN1

Fig. 3 Water distribution network WDN2

Table 1 Dataset size under different configurations

Configuration T ¼ 6 (30 min) T ¼ 12 (60 min)

WDN1, M ¼ 4 3140 3092

WDN1, M ¼ 6 4468 4363

WDN2, M ¼ 10 22,850 22,260

WDN2, M ¼ 30 30,529 29,758
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simulation is of 24 h. This means when a contamination

event is detected at a time point which is too close to the 24

h limit it will not have sufficient number of records to cover

T. Such events will be removed. For the same contami-

nation event, a larger T means more information is

provided.

In order to reflect the differences between the simulation

model and the real-world WDN, we consider two types of

uncertainties. The first type of uncertainty comes from the

fact that the demand pattern of each node in the WDN may

change over time. To capture such uncertainties, we

introduce a Gaussian noise into the nodal demands as

follows:

a0ðt; nÞ ¼ aðt; nÞ � maxð0;Nð1; hÞÞ ð8Þ

where aðt; nÞ indicates the water demand at time step t at

node n in the default demand pattern and N is a Gaussian

distribution used to simulate the demand changes. The

demand changes are re-sampled for each simulation. Fol-

lowing [30], h is set to 0.25.

The second type of uncertainty is caused by the fact that

the sensor measurements may not be accurate. Accord-

ingly, we introduce a random noise into the nodal con-

centration data as follows:

c0ðt;mÞ ¼ cðt;mÞ � Uð1� d; 1þ dÞ ð9Þ

where c(t, m) indicates the concentration value at time step

t at sensor node m obtained from EPANET, U is a uniform

distribution used to simulate the possible noise in the

sensor measurements. Following [24], d is set to 0.05.

6 Experiments and result analysis

6.1 Experiment setup

To evaluate DLGEA, we carry out two sets of experiments.

The first set of experiments is based on the dataset obtained

fromWDN1 consisting of 97 nodes and the second is based

on the dataset obtained from WDN2 consisting of 1786

nodes, as described in Sect. 5.

6.1.1 DNN based search space division

Convolutional neural networks (CNNs) and Recurrent

neural networks (RNNs) are two popular DNN models that

have achieved the state-of-the-art performance in many

applications such as computer vision [12], speech and

audio processing [4, 25] and natural language processing

[2, 3]. In this paper, we investigate these two types of DNN

models for search space division as described in Sect. 4.1.

Specifically, we built a four-layer CNN model and a four-

layer RNN model with LSTM (Long Short-Term Memory)

[7] units. Given a set of contamination events, the inputs

for the CNN and LSTM models are sequences of readings

from all the sensor nodes in the WDN, and the outputs are

the probability of each node in the WDN being the source

of contamination. We use 60% of the contamination events

from each of the datasets shown in Table 1 for model

training and the rest 40% are evenly split into a validation

set and a test set.

For the design of the CNN model, considering that the

size of the data samples is relatively small (4� 12 or

30� 12), we use 4 convolutional layers. The number of

filters chosen for each of the four convolutional layers

increases linearly with a factor of 2, which follows the

common practice in the domains such as image classifi-

cation [12] and audio processing [11]. The first dimension

of the filter corresponds to the sensor nodes. Since the

sensor nodes are not directly dependent, the convolution

operation is not applied along this dimension. The second

dimension of the filter corresponds to the readings of each

sensor node. To capture their time dependencies, we

experimented with convolution sizes of 2 which are com-

monly used in the literature. In specific, the architecture of

the four-layer CNN model used in this paper is as follows:

the number of filters for the four CNN layers are, respec-

tively, 16, 32, 64 and 128, with a kernel size of 1� 2 and

the Relu activation function; each of the four CNN layers is

followed by a dropout layer with a dropout rate of 0.25; the

last dropout layer is followed by a Dense layer with 256

hidden units with a Relu activation function, and finally

another Dense layer with 97 hidden units with a Softmax

activation function for WDN1 and 1786 hidden units for

WDN2 to represent the probability of each node in the

WDN being the source of contamination.

For the design of the LSTM model, we follow the pre-

vious work on anomaly detection for water distribution

systems [23]. The architecture of the four-layer LSTM

model used in this paper is as follows: each of the four

LSTM layers has 128 hidden units and is followed by a

dropout layer with a dropout rate of 0.25; the last dropout

layer is followed by a Dense layer with 256 hidden units

with a Relu activation function, and finally another Dense

layer with 97 hidden units with a Softmax activation

function for WDN1 and 1786 hidden units for WDN2 to

represent the probability of each node in the WDN being

the source of contamination.

The categorical crossentropy is used as the loss function

for both the CNN and LSTM models. A batch size of 128

and the Adam optimizer are used with a learning rate of

0.001 to minimise the loss function. These hyper-parame-

ters are chosen experimentally.

Note that the focus of this paper is not on comparing the

performance of different DNN models, but to show the
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effectiveness of applying DNN models to the problem of

contamination source identification.

6.1.2 Dual-population evolution

As illustrated earlier in Sect. 4.2, an individual in EAs is

represented as a vector containing four variables, i.e. the

source node, starting time, duration and concentration. The

first three variables are discretised following [16] and

concentration is also discretised to simplify the experiment

settings. Details of the individual representation are shown

in Table 2.

As one of the most popular EAs, genetic algorithms

(GAs) [8] have been widely investigated for solving CSI

problems (e.g. [33, 36, 38, 39]). In this paper, two niching

genetic algorithms (NGAs) [39] are used as the EAs for

dual-population evolution as described in Sect. 4.2.

Specifically, the population size is set to 40, and the

evolving process is stopped once 100 generations of pop-

ulation are evaluated. Tournament selection, uniform

mutation and single point crossover are used as selection,

mutation and crossover operators, respectively. For tour-

nament selection, the best one out of three random indi-

viduals is selected for crossover and mutation operations.

For single point crossover, the crossover rate is 0.8 and the

value of the crossover point is chosen from 1 to 3 since

there are four variables (genes) in each solution (chromo-

some). Suppose we have two individuals i1 ¼
½n1; t01; t1; q1� and i2 ¼ ½n2; t02; t2; q2� for crossover and the

crossover point is 1, then the new generated individuals

will be: i01 ¼ ½n1; t02; t2; q2�, i02 ¼ ½n2; t01; t1; q1� . The uni-

form mutation is performed on one of the four variables,

which means for the individual to be mutated, the position

is randomly selected from 1 to 4 first and the corresponding

variable at that position will be re-initialised following the

bounds with a mutation rate set to 0.8. The sharing radius

dshare used for fitness sharing is set to 100. In addition, the

elitist strategy is adopted and two elites is kept during the

evolving process. All the parameters are set

experimentally.

In this paper, we use two NGAs as baseline CSI meth-

ods. To demonstrate the efficiency of the proposed DLGEA

presented in Sect. 4, we evaluate the performance of

DLGEA with 300 randomly selected contamination events,

respectively, from the test set ofWDN1 under the setting of

(M ¼ 4; T ¼ 12) and WDN2 under the setting of

(M ¼ 30; T ¼ 12). Instead of running experiments for a

single contamination event multiple times, we carry out

experiments on a larger number of events to show the

effectiveness of the proposed CSI method.

6.2 Evaluation metrics

As illustrated in Sect. 4, DLGEA has outputs in both

stages, i.e. DNN based search space division and dual-

population evolution. Accordingly, two sets of metrics are

used for evaluation. The first set of metrics is based on

accuracy to evaluate the percentage of instances in which

the real source node is found. The second set of metrics is

based on topological distance and nodal concentration

similarity.

In the stage of search space division, the DNN models

estimate the probability of each node in a WDN being the

source node. Depending on the topology of the WDN,

some closely located nodes may have similar reactions in

response to certain contamination events. In such cases, it

is likely that these nodes would have comparable proba-

bilities of being the source node. Therefore, in stead of

evaluating the accuracy of the top 1 node predicted by the

DNN models, we look at the the top K accuracy. Given W

contamination events, the top K accuracy AccK achieved

by a DNN model is defined as follows:

AccK ¼
PW

w¼1

PN
i;j¼1

PK
k¼1 1ði ¼¼ jÞ � Csw

i;j;k

W
ð10Þ

where sw indicates a contamination event; Csw 2
f0; 1gN�N�K

is a three dimensional matrix representing a

prediction of the event in which its first dimension repre-

sents the index of the real source node with respect to the

contamination event sw, the second dimension represents

the index of the predicted source node and the third

dimension indicates the ranking of the predictions in terms

of their probability being the source node. For example,

Cs3
5;16;2 ¼ 1 means that the index of the real source node is 5

and Node 16 is ranked at the second highest position.

However, this prediction will not be counted as a correct

prediction due to the restriction bounded by 1ði ¼¼ jÞ.
For dual-population evolution, we use two metrics for

evaluation. The first metric is called average topological

distance (ATD) [29] that quantifies the predictions of the

source node by considering the topological properties of

the WDN. Given W contamination events, ATD can be

defined as follows:

ATD ¼
PW

w¼1

PN
i¼1

PN
j¼1 C

sw
i;j;1Ai;j

W
ð11Þ

Table 2 Individual representation

Variable Data type Lower bound Upper bound

Source node n Integer 0 97/1786

Starting time t0 Integer 0 23

Duration t Integer 1 23� t0

Concentration q Integer 5 300
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where Ai;j contains the minimum topological distance

between the nodes indexed by i and j.

The second metric is the average accumulated error

(AAE) between the changes of the contamination concen-

tration returned by the predicted contamination event and

that returned by the real contamination event, which is

defined as follow:

AAE ¼
PW

w¼1

PT
t¼1

PM
m¼1½Cswðt;mÞ � Cs�wðt;mÞ�2

W � T �M
ð12Þ

6.3 Result analysis

6.3.1 DNN based search space division

For the stage of DNN based search space division, Acc1
and Acc5 are used for evaluating the performance of the

DNN models, i.e. the percentage of instances in which the

real contamination source node is found in the top 1 and

top 5 nodes returned by the DNN model. Tables 3 and 4,

respectively, shows the test accuracy of the top 1 and top 5

nodes returned by the CNN and LSTM models in the case

of WDN1 when there are 4 sensor nodes and 6 sensor

nodes deployed and in the case ofWDN2 when there are 10

sensor nodes and 30 sensor nodes deployed.

It can be seen that for bothWDN1 andWDN2 in general

the test accuracy increases when T is larger. This may be

due to two reasons. One reason is that larger T means more

information is provided. The other reason is that larger T

results in less events as explained in Sect. 5. On the other

hand, when more sensors are deployed more contamination

events could be detected. For example, in the case of

WDN1, out of 10000 contamination events, 3140 events

can be detected with 4 sensor nodes within 6 time steps,

whereas 4468 events can be detected with 6 sensor nodes

within 6 time steps. Since source identification is often

initiated after contamination is detected, the test accuracy

shown in Tables 3 and 4 only considers the cases when a

contamination event can be detected by the sensors within

the time limit. Therefore, the test accuracy between dif-

ferent numbers of sensors are not directly comparable.

For WDN1, the CNN model in general achieves better

performance than the LSTM model. As for WDN2, the

CNN model achieves higher Acc1 whereas the LSTM

model achieves higher Acc5. In both cases, among the top 5

nodes, a test accuracy of more than 85.0% is achieved. This

shows that using the DNN models there is a big probability

that the real contamination source node could be localised

within a small set of candidate nodes compared to the total

number of nodes in the WDNs. It has to be emphasised that

this paper is not intended to provide a comprehensive

comparison of different DNN models for the task of source

node localisation but rather to demonstrate the effective-

ness of using DNN models to localise the contamination

source nodes.

6.3.2 Dual-population evolution

Tables 5 and 6 show the performance of two groups of CSI

methods. The first group is based on NGAs (GA with the

niching method from [39] is denoted as NGA1 and GA

with fitness sharing is denoted as NGA2) and the second

group is based on DLGEA which combines the pre-trained

CNN model with NGAs (denoted as CNN?NGA1 and

CNN? NGA2). It can be seen that by using the pre-trained

CNN model to instruct the composition of two populations,

for NGA1, the performance has been improved by more

than 33.2% (89.0%) in terms of ATD and by more than

34.7% (81.3%) in terms of AAE in the cases of WDN1

Table 3 Test accuracy of the DNN models with 4 and 6 sensor nodes

in WDN1 (97 nodes in total)

Models (WDN1) M ¼ 4 M ¼ 6

T ¼ 6 T ¼ 12 T ¼ 6 T ¼ 12

CNN Acc1 0.431 0.470 0.473 0.561

Acc5 0.890 0.919 0.875 0.904

LSTM Acc1 0.407 0.447 0.460 0.500

Acc5 0.880 0.873 0.854 0.876

Table 4 Test accuracy of the DNN models with 10 and 30 sensor

nodes in WDN2 (1786 nodes in total)

Models (WDN2) M ¼ 10 M ¼ 30

T ¼ 6 T ¼ 12 T ¼ 6 T ¼ 12

CNN Acc1 0.408 0.420 0.525 0.525

Acc5 0.703 0.726 0.848 0.852

LSTM Acc1 0.377 0.409 0.486 0.484

Acc5 0.693 0.742 0.853 0.858

Table 5 Evaluations of ATD and AAE in the case ofWDN1 (N ¼ 97,

M ¼ 4, T ¼ 12)

Methods ATD AAE TD ¼ 0 TD ¼ 1

NGA1 1.853 41.107 41.3% 13.3%

CNN?NGA1 1.237 26.825 55.7% 13.0%

NGA2 1.933 66.535 39.0% 16.0%

CNN?NGA2 1.470 55.483 50.0% 17.3%
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(WDN2) while for NGA2, the performance has been

improved by more than 23.9% (80.0%) in terms of ATD

and by more than 16.6% (77.4%) in terms of AAE in the

cases of WDN1 (WDN2).

Moreover, we further look into the metric of ATD by

examining the distribution of the source nodes in the pre-

dicted contamination events in terms of their topological

distance from the real source nodes. TD ¼ 0 indicates that

the predicted source node is the real source node, and

TD ¼ 1 indicates that the predicated source node is the

direct neighbour of the real source node. It is shown in

Tables 5 and 6 that CNN?NGA1 and CNN?NGA2

achieve higher accuracy for both TD ¼ 0 and TD ¼ 1 than

NGA1 and NGA2. In particular, for more than half of the

events, CNN?NGA1 and CNN?NGA2 are able to find the

real source nodes.

In addition, to evaluate the computational time of

DLGEA, we adopt the metric of the first hitting time (FHT)

[6, 40]. FHT of EAs is the time used to find an optimal

solution for the first time in each single run. In our case,

FHT is quantified by the number of individuals that have

been evaluated as the time used for individual evaluations

is the same for all the contamination events in the same

WDN. Moreover, considering that the optimal solutions

obtained by different CSI methods may be different, we

also report the first hitting time of the comparable optimal

solution, denoted as FHT*. The comparable optimal solu-

tion here refers to the best solution that can be achieved by

every CSI method. Table 7 shows the average FHT and

FHT* of all the contamination events for both WDN1 and

WDN2 with respect to each CSI method. It can be seen that

for both WDN1 and WDN2, the average FHT of NGAs

gets shorter when the CNN model is applied. In terms of

FHT*, the improvement is more significant.

To provide an intuitive understanding, Fig. 4 shows the

evolution of the best solutions returned by NGA1, NGA2,

CNN?NGA1 and CNN?NGA2 for WDN1 and WDN2 in

terms of the average of the best fitness values of (a) all the

300 randomly selected contamination events, (b) the con-

tamination events in which the real source node is in the

top 5 candidate nodes returned by the CNN model, and

(c) the contamination events in which the real source node

is not in the top 5 candidate nodes returned by the CNN

model.

For WDN1, it can be seen that CNN?NGA1 and

CNN?NGA2 converge faster than NGA1 and NGA2 in all

the three cases. In the cases of Fig. 4a1 and b1, the optimal

solutions obtained by NGA2 and CNN?NGA2 have sim-

ilar fitness values while the optimal solution obtained by

CNN?NGA1 outperforms the one obtained by NGA1. In

the case of Fig. 4c1 where the CNN model fails to identify

the real source node, NGA2 in general found better solu-

tions than CNN?NGA2 while CNN?NGA1 found better

solutions than NGA1. An explanation is that even when the

top 5 nodes returned by the CNN model does not include

the real source node, it is still likely that the real source

node is close to the 5 nodes returned by the CNN model

and NGA1 could benefit more from such information.

Another observation is that the fitness value of the indi-

viduals in Fig. 4c1 is much smaller than that in Fig. 4a1

and b1. This indicates that in the cases where the real

source node was not in the top 5 nodes returned by the

CNN model the differences of the fitness values of dif-

ferent solutions are smaller. Similar trends can be observed

in the results of WDN2 as shown in Fig. 4a2, b2 and c2

except that the fitness value of the optimal solution

obtained by CNN?NGA1 and CNN?NGA2 in (a2) and

(b2) is much smaller than that obtained by NGA1 and

NGA2. As shown in all the six sub-figures in Fig. 4,

CNN?NGA1 and CNN?NGA2 converge constantly faster

than NGA1 and NGA2. Moreover, CNN?NGA1 and

CNN?NGA2 are able to find relatively better sub-optimal

solutions in about 20 generations whereas NGA1 and

NGA2 need more than 40 generations to converge and may

not even get a solution close to the one found by

CNN?NGA1 and CNN?NGA2.

From both the evaluation of ATD and AEE as well as

the evolution of the best fitness values, we can see that the

improvement of CNN?NGA1 and CNN?NGA2 is more

Table 6 Evaluations of ATD and AAE in the case of WDN2

(N ¼ 1786, M ¼ 30, T ¼ 12)

Methods ATD AAE TD ¼ 0 TD ¼ 1

NGA1 9.950 21.041 7.0% 6.0%

CNN?NGA1 1.090 3.928 79.3% 6.7%

NGA2 10.490 33.020 7.0% 6.0%

CNN?NGA2 2.096 7.433 61.3% 12.3%

Table 7 The average of the number of individuals evaluated to find

the optimal solution for the first time over all the contamination

events

Metrics Methods WDN1 WDN2

FHT NGA1 2068.06 2283.14

CNN?NGA1 1705.54 1607.5

NGA2 1817.26 2349.64

CNN?NGA2 1746.96 1614.34

FHT* NGA1 1971.92 2193.84

CNN?NGA1 1210.02 717.92

NGA2 1708.58 2273.26

CNN?NGA2 1285.26 663.96
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Fig. 4 Evolution of the average of the best fitness values of the contamination events in WDN1 and WDN2
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significant in WDN2 with 1786 nodes compared to WDN1

with 97 nodes, which indicates that DLGEA has potential

in large-scale WDN applications.

6.4 Sensitivity analysis

To investigate the effectiveness of DLGEA under different

layouts of sensor nodes and different assignments of K (the

top K source nodes predicted by the DNN models), we

carry out another two sets of experiments.

For the layout of sensor nodes, we randomly generate

100 layouts of 4 sensor nodes for WDN1. We found that

the number of detectable contamination events of these 100

layouts ranges from 2000 to 6000. To explore the influence

of sensor node layout to the performance of DLGEA, we

choose another three layouts of sensor nodes under the

setting of M ¼ 4 and T ¼ 12 for WDN1, and the corre-

sponding numbers of detectable contamination events are

shown in Table 8. The layout of sensor nodes for WDN1

with M ¼ 4 introduced in Sect. 5 and Table 1 is indicated

by layout 1. Please refer to Appendix A for the details of

these four layouts of sensor nodes. In this way, we provide

an evaluation of DLGEA when layouts of sensor nodes

with different sensing capabilities are considered.

Table 8 shows the test accuracy of the top 1 and top 5

nodes returned by the CNN model with respect to the three

layouts of sensor nodes. It can be seen that when the

number of detectable events increases, the accuracy of

identifying the contamination source node decreases. This

can be explained by the fact that when more events can be

detected it is more likely that different contamination

events lead to similar sensor readings.

Table 9 shows the performance of different methods in

terms of ATD, AAE, TD ¼ 0 and TD ¼ 1 with respect to

the three layouts of sensor nodes. It can be seen that in

general ATD gets worse when the number of

detectable events increases for all the CSI methods. As for

AAE, since it is a metric relating to contamination con-

centrations which may differ a lot from event to event, the

results of AAE are not directly comparable across different

layouts of sensor nodes. With the same layout of sensor

nodes, it can be seen that the CSI methods under the

DLGEA framework, i.e. CNN?NGA1 and CNN?NGA2,

obtain smaller ATD, AAE and higher accuracy in terms of

TD ¼ 0, TD ¼ 1 compared to the baselines NGA1 and

NGA2. This shows that DLGEA can improve the

performance of EA based CSI methods under different

layouts of sensor nodes with varying sensing capabilities.

To investigate the influence of the value of K (top K

nodes predicated by the DNN models) to the performance

of DLGEA, we explore different values for K ranging from

1 to 8 with CNN?NGA2 under the setting of M ¼ 4 and

T ¼ 12 for WDN1 using the first layout of sensor nodes

(please refer to Table 1 for the dataset size and Appen-

dix A for the layout of the sensor nodes). Figure 5 shows

the changes of prediction accuracy of the CNN model, the

ATD and AAE of CNN?NGA2 along with an increasing

K. It can be seen that both ATD and AAE are relatively

high when K is set to 1 and then gradually decrease when

K gets larger. This matches with the fact that when K is too

small the source node prediction accuracy of the CNN

model is relatively low, i.e. the top K nodes returned by the

CNN model has a larger probability to miss the real source

node. When K gets substantially large, the prediction

accuracy of the CNN model will not change much.

Accordingly, both ATD and AAE started to increase as

there are more candidate nodes to be explored and it is

more likely for the NGA to find a sub-optimal solution.

Table 8 Test accuracy of the

CNN model with different

sensor nodes layouts in WDN1

(N ¼ 97, M ¼ 4, T ¼ 12)

Sensor nodes layouts Layout 2 Layout 3 Layout 4

# Of detectable contamination events 4184 5107 6118

CNN Acc1 0.4109 0.3747 0.2745

Acc5 0.8518 0.7964 0.6348

Table 9 Evaluations of ATD and AAE in the case of WDN1 with

different sensor nodes layouts (N ¼ 97, M ¼ 4, T ¼ 12))

Methods Metrics Layout 2 Layout 3 Layout 4

NGA1 ATD 2.490 3.457 4.600

AAE 67.181 60.132 39.014

TD ¼ 0 37.7% 27.3% 18.7%

TD ¼ 1 16.3% 13.7% 11.0%

CNN?NGA1 ATD 1.253 2.047 3.640

AAE 49.338 50.301 36.217

TD ¼ 0 62.7% 46.7% 25.0%

TD ¼ 1 14.7% 14.7% 13.7%

NGA2 ATD 2.230 3.473 4.587

AAE 61.982 69.668 38.040

TD ¼ 0 41.3% 26.0% 15.3%

TD ¼ 1 11.3% 12.3% 11.7%

CNN?NGA2 ATD 1.503 2.330 3.880

AAE 48.709 50.460 34.775

TD ¼ 0 58.0% 43.7% 24.3%

TD ¼ 1 13.0% 15.0% 13.3%
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7 Conclusion

In this paper, we propose a deep learning guided evolu-

tionary algorithm DLGEA for CSI problems which opti-

mises the search space of EAs and thus speed up the

searching efficiency. In particular, we use a DNN model to

localise the set of nodes in a WDN that are most likely to

be the contamination source nodes, based on which an EA

can identify the contamination events more quickly. To

train the DNN model, we exploit the contamination data

obtained from the simulation tool EPANET. By carrying

out a set of experiments, we show that the DLGEA out-

performs the CSI method purely based on EAs in terms of

accuracy, average topological distance as well as the

accumulated concentration error. Moreover, we investi-

gated the performance of DLGEA with both a medium-size

WDN and a large-scale WDN, and showed empirically that

DNN?EA outperforms EA under both settings. We also

carried out a sensitivity study to prove the effectiveness of

DLGEA under different layouts of sensor nodes with

varying sensing capabilities and to investigate the perfor-

mance of DLGEA with different values of K (top K nodes

returned by the DNN models).

There are several directions for future work. First, we

intend to train DNN models to provide an estimation of the

other variables of the contamination event, i.e. starting

time, duration, concentration, to further reduce the search

space of EAs. Another important extension is to improve

DLGEA to deal with multiple sources of contamination.

Moreover, we will also investigate the possibility of

transfer learning, i.e. applying DLGEA to an unseen WDN.

Appendix: Layouts of sensor nodes

Figures 6, 7, 8 and 9 show the locations of the 4 sensor

nodes in WDN1 with respect to the four layouts of sensor

nodes used in this paper. The blue triangles indicate the

locations of the sensor nodes and the numbers next to the

blue triangles indicate the ID of the sensor nodes in WDN1.

Fig. 5 ATD and AAE with different assignments of K in WDN1

(N ¼ 97, M ¼ 4, T ¼ 12)

Fig. 6 The first layout of sensor nodes for WDN1 (N ¼ 97, M ¼ 4)
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