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Abstract
This study investigated the AISI 1040 steel turning in dry environment with four cutting inserts of different corner radii

coated by CVD method. Experimental investigations were performed for different levels of cutting speeds, feeds and

depths of cut using a randomized full factorial design. Quality characteristics of the workpiece machined surface were

measured (arithmetical mean roughness) as well as the cutting inserts tool life characteristics (average width of flank wear).

Machining times and chip volume were calculated, and based on this, chip quantity in time (material removal rate). The

response surface approach and analysis of variance were used to determine the effects of input process parameters on the

response variables. Based on the derived regression models, multi-objective optimization of output process parameters was

performed using genetic algorithm. The objective function was simultaneous minimization of flank wear, minimization of

surface roughness and maximization of material removal rate. The parameters of the genetic algorithm (crossover ratio,

crossover fraction, mutation rate, Pareto front population fraction) were varied to obtain the optimal values of the objective

function. Additionally, a sensitivity analysis was performed, which showed that the selected values of genetic algorithm

parameters gave the best (minimum) value of objective function. Instead of the usual approach of obtaining only one

combination of optimal parameters as a final solution, the basic idea was to obtain multiple combinations of optimal input

process parameters depending on the importance of each output process parameter, i.e. requirements of production.

Accordingly, the results of multi-objective optimization showed that there are a large number of Pareto optimal solutions.

To validate the optimal input and output process values, confirmation experiments were conducted for selected trials of

Pareto optimal results obtained from multi-objective optimization. A mean error percentage of 1.478% and 1.146% for

flank wear and arithmetical mean roughness, respectively, proves that the predicted optimum values are confirmed by

experimental results.

Keywords Turning � Arithmetical mean roughness � Flank wear � Material removal rate � AISI 1040 steel �
Multi-objective optimization

1 Introduction

Up-to-date production is faced with numerous require-

ments such as to reduce costs, minimize time, reduce

power, reduce energy consumption, maximize flexibility,

increase productivity, increase quality of products and

minimize negative effect on environment. All of these

requirements need to be addressed in the optimal way. This

is a long, often iterative process with an uncertain ending,

in particular if stochastics and a great number of mutually

conflicting and contradictory requirements are taken into

consideration. On the other hand, a great number of

& Goran Simunovic

gsimunovic@unisb.hr

1 Faculty of Technical Sciences, University of Novi Sad, Trg

Dositeja Obradovica 6, 21000 Novi Sad, Serbia

2 Mechanical Engineering Faculty in Slavonski Brod,

University of Slavonski Brod, Trg Ivane Brlic Mazuranic 2,

35000 Slavonski Brod, Croatia

3 Faculty of Engineering, University of Kragujevac, Sestre

Janjic 6, 34000 Kragujevac, Serbia

123

Neural Computing and Applications (2021) 33:12445–12475
https://doi.org/10.1007/s00521-021-05877-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-7159-2627
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-05877-z&amp;domain=pdf
https://doi.org/10.1007/s00521-021-05877-z


experiments are necessary for a complete study of the

process, which considerably increases the costs. Therefore,

a balance between the number of experiments and the

necessary pieces of information has to be made in order to

minimize the required resources, costs and time. This is

why scientific researches lay great stress on modelling,

prediction and optimization of all requirements facing

contemporary production. In this way, costs and time are

reduced and productivity is increased. To solve the men-

tioned problems, various optimization techniques and

methods are applied [1–4]. On the other hand, it is neces-

sary to perform full discretization of the process in order to

analyse the full region of feasible solutions and to obtain

the region of optimal solutions for the given constraints. In

this way, it is possible to obtain a greater number of

optimal solutions of the input process parameters depend-

ing on the required output process parameters, i.e.

requirements of production.

Numerous factors affect efficiency of output process

parameters of machining. Their realization requires ade-

quate technological equipment, processes, machining

parameters, etc. Various machining operations are applied

in mechanical engineering industry. One of the most fre-

quently used machining operations is turning. It is mostly

applied in machining cylindrical workpieces at all series

levels. Using this operation, workpieces can be machined

roughly, as semi-finished or finished to final measure.

Workpieces from different materials can be machined by

turning. Steels are a group of materials that are most often

used in manufacturing engineering products. Their groups

and number are various. Carbon steels belong to a special

group of steels whose demand has lately been in constant

increase. Significant is the application of AISI 1040 steel in

different industrial sectors. This steel is used in couplings

and crankshafts, as well as in production of different kinds

of bolts, rods, springs, studs, etc.

Turning of workpieces made of AISI 1040 carbon steel

has been researched from different perspectives and on

various bases through numerous theoretical, simulation and

experimental studies. Tuffy et al. [5] evaluated the influ-

ence of TiN coating thickness on the performance of

turning inserts made of WC. Gunay et al. [6] evaluated the

effect of rake angle on the cutting forces during turning.

Yaldiz et al. [7] presented a fuzzy rule-based model for

estimating the cutting forces depending on the cutting

speed, feed and depth of cut. Saglam et al. [8] investigated

the influence of machining parameters, rake angle and

approach angle on cutting force component and tempera-

ture generated on the turning insert. Salgado and Alonso

[9] presented a system for online tool wear monitoring

applying the feed motor current and the sound signal.

Asilturk and Cunkas [10] used multiple regression and

artificial neural network (ANN) approach to estimate the

surface roughness varying the cutting speeds, feeds and

depths of cut. Neseli et al. [11] researched the influence of

corner radius, approach angle and rake angle on the surface

roughness by the use of response surface methodology

(RSM). Topal and Cogun [12] proposed an ANN model for

error estimation depending on cutting speed, depth of cut,

feed, workpiece diameter and length. Cohen et al. [13]

predicted cutting temperature by the use of the analytical

model of thermal distribution on the workpiece surface by

the use of ANN and multiple regression, Asiltur [14]

optimized cutting speed, feed, depth of cut, and insert

radius affecting the surface roughness using the Taguchi

method and analysis of variance (ANOVA). Venkata Rao

et al. [15] estimated the influence of turning parameters on

workpiece vibration, surface roughness and volume of

metal removed. Venkata Rao et al. [16] evaluated the

influence of cutting speed, insert radius and feed on tool

life analysing the surface roughness and workpiece vibra-

tion. Prasad et al. [17] demonstrated the 3D finite element

analysis to predict the workpiece displacements in feed

direction and corresponding tool wear. Venkata Rao et al.

[18] applied ANN to estimate surface roughness and

vibration of workpiece for different cutting speeds, feeds

and nose radii. Yadav [19] analysed the influence of cutting

speed, feed, primary and secondary depth of cut on average

surface roughness. Haque et al. [20] optimized roughness

characteristics under different cutting conditions using grey

relational analysis. Akkus [21] researched the influence of

cutting speed, feed and depth of cut on surface roughness

by the use of Taguchi method. Jhodkar et al. [22, 23]

described the comparative study of untreated and micro-

wave treated carbide inserts at different spindle speeds,

feeds and depths of cut.

Moreover, researches in the field of turning of steel have

also considered and analysed the application of alternative

cooling and lubricating techniques in machining aimed at

minimizing the negative effect on environment. Conven-

tional coolants and lubricants are replaced by other meth-

ods and techniques such as minimum quantity cooling

lubrication (MQCL), minimum quantity lubrication

(MQL), cryogenic cooling and lubrication and minimum

quantity solid lubrication. Dhar et al. [24] researched the

influence of cryogenic cooling on tool wear, dimensional

deviation and surface quality. Dhar et al. [25] compared the

performance of MQL to dry turning based on cutting

temperature, chip reduction coefficient, cutting forces, tool

wear, surface quality and dimensional deviation. Vamsi

Krishna et al. [26] developed an empirical model to esti-

mate the surface roughness and tool wear in turning per-

formed by the use of solid lubricant. Ramana et al. [27]

studied the influence of variation of nano level boric acid

particle size on the cutting forces, tool temperatures and

surface roughness. Vamsi Krishna et al. [28] studied the
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effect of cutting speed and feed on temperature, flank wear

and surface roughness varying the type of lubricants.

Amrita et al. [29] evaluated the temperature, tool wear and

cutting forces at different lubrication conditions. Srikiran

et al. [30] investigated the application of nano-level par-

ticulate graphite powder as a solid lubricant during turning.

Gupta et al. [31] investigated the effect of cryogenic

cooling on tool wear, surface roughness, cutting forces and

cutting temperature at various feeds and constant cutting

speed and depth of cut. Padmini et al. [32] evaluated the

main cutting force, temperature, surface roughness, and

flank wear to estimate the performance of vegetable oil

based nanofluids. Ajay Vardhaman et al. [33] evaluated the

influence of lubricants on tool wear, friction coefficient,

surface quality and chip morphology under dry, wet,

coconut oil and MQL cutting conditions. Mia and Dhar

[34] optimized the cutting speed, feed rate and workpiece

hardness to determine minimal surface roughness using

composite desirability function and genetic algorithm.

Usha and Rao [35] investigated the effect of MQL flow

rate, cutting speed, feed and depth of cut on cutting force,

surface roughness and temperature. Sahinoglu and Rafighi

[36] examined the influence of machining parameters and

workpieces hardness on surface roughness and power

consumption by the use of RSM and ANOVA. Gugulothu

and Pasam [37] examined machining performance in

turning at constant cutting conditions by the use of hybrid

nanofluids under MQL.

Most of the previously mentioned researches dealt with

the effects of machining parameters (cutting speed, feed,

depth of cut) on the AISI 1040 carbon steel turning output

process parameters. Some of the researches took into

consideration cutting tool geometry, energy consumption,

chip quantity, effects of coolants and lubricants, etc. The

most frequently analysed output process parameters of

turning were surface roughness of workpiece, cutting tool

life, machining time, etc. The previously mentioned

researches were performed as wet or dry turning, and some

of the researches were based on the minimization of the

coolants and lubricants’ negative effect on environment by

considering alternative techniques of cooling and lubri-

cating. The alternative techniques of cooling and lubricat-

ing have a smaller negative effect on environment.

However, negative effects are produced in these cases too,

only to a lesser extent. Costs are also increased due to the

additional equipment and the coolants and lubricants, the

fact that can have a negative effect on expenses, particu-

larly in the cases of small batch. In addition to experi-

mental investigations, a small number of investigators

reported on modelling and optimizing of machining per-

formances by the application of statistical methods and

artificial intelligence.

On the other hand, there are numerous studies in turning

operations, but not for AISI 1040 carbon steel, in which

single-objective and multi-objective optimization tech-

niques were applied [38, 39]. The optimization of the

turning process consists of two steps. In the first step, the

turning process is modeled. The model describes the

functional relationship between the input and output turn-

ing parameters. The methods that had the greatest appli-

cation for the modeling of the turning process are:

regression analysis (RA), artificial neural network (ANN),

fuzzy logic (FL), support vector machine (SVM), etc.

[40, 41]. When applying these methods, problems may

arise in collecting data in an economical and efficient way,

filtering outliers, extracting statistical characteristics of

data, etc. If these problems are solved successfully,

industrial application becomes possible. In the second step,

after modeling the turning process, the processing param-

eters are optimized. Optimization determines the values of

processing parameters that provide the optimal value of the

appropriate optimality criterion. The optimality criterion is

used to quantitatively describe the performance of the

turning process. Various techniques such as ant colony

optimization (ACO), simulated annealing (SA), particle

swarm optimization (PSO), genetic algorithm (GA), arti-

ficial bee colony (ABC), etc., were used for optimization

[42–47]. These techniques, due to the tolerance of impre-

cision, uncertainty and the possibility of approximation,

have great application for solving highly nonlinear, mul-

tidimensional, and complex problems that occur in the

turning process [48]. All modeling and optimization tech-

niques, and as some of their combinations, have certain

advantages but also disadvantages [49–53], and it is prac-

tically very difficult to define unambiguous and generally

accepted criteria for the selection of modeling and opti-

mization techniques, i.e. when and how to apply any of

these techniques. Different techniques require setting the

appropriate parameters, which vary depending on the

selected method. In studies that determined the results

obtained using different techniques, different results were

obtained. No technique has shown absolute dominance

over others. In fact, whether an adequate technique was

chosen and whether good parameters of that same tech-

nique were chosen, can be proven only with additional-

confirmation experiments and by comparing the obtained

results with their prediction, i.e. with the calculation of the

errors that occur. A review of the literature found that GA

was very often used in turning process optimization, and

that in most cases gave good results [54–60]. Furthermore,

in all previous research, one optimal solution was always

obtained, i.e. one optimal combination of input process

parameters and one optimal output process parameter. This

is not realistic, especially not from the point of view of

industrial application. One optimal solution is possible only
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for one combination of input process parameters. Output

parameters and thus input parameters, as well as the

manufacturing process, are a dynamic category [61]. It is

often necessary, due to the adaptation of the turning pro-

cess to the current manufacturing conditions, to change the

values of turning parameters in a certain range, so it is very

useful to provide more sets of optimal turning parameters

in different value ranges [62]. Furthermore, in previous

studies, the assessment of the validity of the developed

methodology has been performed typically through one

confirmation experiment, since there was only one optimal

solution to be validated. In doing so, small errors in the

confirmation experiment may be accidental. Therefore, it is

necessary to perform a larger number of confirmation

experiments to assess the validity of the applied method.

It seems that the study of the turning process based on

experimental data in combination with the methods of

optimization is the most promising for future researches.

By combining these two approaches, one or several output

process parameters can be optimized. The turning process

performances can be evaluated and improved in this way.

Besides, in the previous researches the variant multi-ob-

jective optimization of turning of AISI 1040 steel work-

pieces was not performed considering simultaneous

optimization of surface roughness, tool wear and produc-

tivity. Optimal combinations of machining parameters and

the cutting tool geometric and technologic characteristics

depend on numerous factors in view of the fact that the

turning process is characterized by a large number of the

process dynamics variables. For different conditions of

machining and different requirements of production, opti-

mal parameters are also different.

Different from previous, the present research provides a

multi-objective optimization of input process parameters,

but for various impacts of output process parameters. In

contrast to previous studies in which the main objective of

optimization was to obtain one optimal combination of

input process parameters, the basic idea of this research

was to obtain a range, i.e. more potential Pareto optimal

combinations. The main motivation was to generate opti-

mal combinations of input process parameters (cutting

speeds, feeds, depths of cut and corner radii) for various

requirements of output process parameters (arithmetical

surface roughness, average width of flank wear and mate-

rial removal rate). In fact, it means that different combi-

nations of input process parameters were obtained for the

different weights or importance of surface quality (arith-

metical mean roughness), tool life (average width of flank

wear) and productivity (material removal rate). In addition,

the novelty of the present paper is that a higher number of

turning inserts have been used with different corner radii

during the experimental research of AISI 1040 carbon

steel.

2 Materials and methods

The research methodology is presented in Fig. 1. Input

process parameters are the workpiece material, machining

parameters which are defined on the specific machine tool

and turning inserts which are located and clamped into a

corresponding toolholder.

The research was conducted on workpieces made of

carbon steel AISI 1040 whose chemical composition is:

(98.6–99) % Fe, (0.60–0.90) % Mn, (0.37–0.44) %

C, B 0.05% S and B 0.040% P. Furthermore, the

mechanical, physical and thermal characteristics of carbon

steel AISI 1040 are: density = 7.845 g/cm3, hard-

ness = 201 HB, tensile strength = 620 MPa, yield

strength = 415 MPa, modulus of elasticity = 200 GPa,

Poisson ratio = 0.29, thermal conductivity (at

0 �C) = 51.9 W/mK and thermal expansion co-effi-

cient = 11.3 lm/m �C.
Considering the environment protection principles, the

present research was conducted in dry environment. In dry

machining conditions, special attention must be given to

cutting tool selection and machining parameters opti-

mization. The values of machining parameters as well as

the geometric and technologic characteristics of cutting

tool have to be selected in the way that they do not speed

up the processes of the cutting tool wear.

Machining was performed with four turning inserts

(designation: CNMG120404, CNMG120408,

CNMG120412, CNMG120416) set into the same tool-

holder (designation: DCLBR3232M12). The turning inserts

were selected in accordance with recommendations of the

manufacturer, for the operation of longitudinal turning and

the workpiece material AISI 1040 steel. Selected inserts are

suitable for dry turning in all types of production. This is

due to their geometry, material, coating process and spe-

cially designed chipbreaker.

The turning inserts differ in the size of corner radius (4

levels; r = 0.4–0.8–1.2–1.6 mm), the other geometric and

technological parameters being identical:

• Grade: Duratomic grade TP2501-CVD coated,

• Coating: Ti(C,N) ? Al2O3,

• Clearance angle major: 0�,
• Insert side clearance angle: 5�,
• Rake angle: - 6�,
• Inclination angle: - 6�,
• Lead angle: 95�,
• Insert included angle: 80�,
• Fixing hole diameter: 5.2 mm,

• Inscribed circle diameter: 12.70 mm,

• Theoretical cutting edge length: 12.90 mm.
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Moreover, based on the manufacturer of the turning

inserts, the following machining parameters were selected:

• 4 levels for feed, f = 0.1–0.2–0.3–0.4 (mm/rev),

• 3 levels for cutting speed, vc = 300–350–400 (mm/

min),

• 3 levels for depth of cut, ap = 2–2.5–3 (mm).

The machine tool used for machining was CNC lathe

DMG Mori Seiki CTX. Locating and clamping of work-

piece was performed by means of the chuck and rotating

centre. Machine tool and fixtures were selected so that the

machining could be performed reliably, with high accuracy

and stability of the machining process, aimed at minimiz-

ing vibrations of the workpiece and compliance of the

workpiece-fixtures system. The original workpiece diam-

eter was Ø60 mm and the length was 450 mm. Turning was

carried out in 5 passes. For each experiment, a new turning

insert was used.

Experimental research was conducted in accordance

with randomized full factorial design, which enabled the

Fig. 1 Research methodology
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research of all combinations of levels of input variables.

Considering the fact that 4 levels were adopted for corner

radius, 4 levels for feed, 3 levels for cutting speed and 3

levels for depth of cut, total number of experiments was

4 9 4 9 3 9 3 = 144.

After the experimental researches, the turning insert

flank wear and the machined surface roughness were

measured. The turning insert flank wear VB measuring was

carried out on MT8500 microscope. Surface roughness

measurement (of parameter Ra) was conducted on mea-

suring instrument Talysurf with probe tip radius rt = 2 lm.

Measurement was performed with a cut-off length of

0.8 mm and sampling length of 4 mm. Roughness was

measured in 3 directions moved by 120 degrees in relation

to the workpiece axis. The surface roughness Ra values

were calculated as average values from three different

directions of measuring.

Material removal rate (chip quantity in time) was cal-

culated by equation [63]:

Q ¼ V

t
mm3=s
� �

ð1Þ

where V is total chip volume, t is turning time.

Turning time for the ith pass at external longitudinal

turning equals [63]:

ti ¼
60 � li
fi � ni

ðsÞ ð2Þ

where li (mm) is turning length for the ith pass, fi (mm/rev)

is feed for the ith pass, and ni (rev/min) is number of

revolutions for the ith pass.

Number of revolutions for the ith pass equals [63]:

ni ¼
1000 � vci
p � di

rev/minð Þ ð3Þ

where vci (m/min) is cutting speed for the ith pass, di (mm)

is diameter after the ith pass.

Diameter after the ith pass equals [63]:

di ¼ dk � 2 � api ðmmÞ ð4Þ

where dk (mm) is diameter before the ith pass, api (mm) is

depth of cut for the ith pass.

Substitution of Eqs. (3) and (4) into Eq. (2) gives the

turning time for the ith pass:

ti ¼
60 � li

fi � 1000�vcip�di
¼ 60 � p � li � di

fi � 1000 � vci

¼
60 � p � li � dk � 2 � api

� �

fi � 1000 � vci
ðsÞ ð5Þ

If machining is performed with constant cutting speed

(vc = vci = const), constant feed (f = fi = const), constant

depth of cut (ap = api = const) and at constant length of cut

(l = li = const), machining time for the ith pass is:

ti ¼
60 � p � l � di
f � 1000 � vc

¼
60 � p � l � dk � 2 � ap

� �

f � 1000 � vc
ðsÞ ð6Þ

For the machining in n passes, total turning time is:

t ¼
Xn

i¼1

ti ðsÞ ð7Þ

where n is total number of passes.

Chip volume for the ith pass is equal to the volume

before and after the ith pass:

Vi ¼
dk
2

� �2

� di
2

� �2
 !

� p � li mm3
� �

ð8Þ

Substitution of Eq. (4) to (8) gives:

Vi ¼
dk
2

� �2

� dk � 2 � api
2

� �2
 !

� p � li mm3
� �

ð9Þ

For turning in n passes, total chip volume equals:

V ¼
Xn

i¼1

Vi ðmm3Þ ð10Þ

If several passes machining is performed with constant

depth of cut (ap = api = const) and at constant length of cut

(l = li = const) total chip volume equals:

V ¼
Xn

i¼1

Vi ¼
dmax

2

� �2

� dmin

2

� �2
 !

� p � l ðmm3Þ ð11Þ

where dmax is original diameter, dmin is final diameter.

As final diameter of machining equals:

dmin ¼ dmax � 2 � ap � i ðmmÞ ð12Þ

Substitution of Eq. (12) to (11) gives total chip volume

after i passes, at constant depth of cut (ap = api = const)

and constant length of cut (l = li = const), being equal to:

V ¼ dmax

2

� �2

� dmax � 2 � ap � i
2

� �2
 !

� p � l ðmm3Þ ð13Þ

In case the machining is carried out with constant cut-

ting speed (vc = vci = const), constant feed (f = fi = const),

constant depth of cut (ap = api = const) and at constant

length of cut (l = li = const), chip quantity in time (mate-

rial removal rate) equals:

Q ¼ V

t
¼

dmax

2

� �2� dmax�2�ap�i
2

� �2� �
� p � l

Pn
i¼1

60�p�l�di
f �1000�vc

mm3=s
� �

ð14Þ

Following the performed experimental investigations,

statistical processing, i.e. regression modelling, was con-

ducted for obtained results. The regression modelling was

conducted for different levels of four factors, i.e. four input

parameters—corner radius (r), cutting speed (vc), feed
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(f) and depth of cut (ap). After obtaining regression equa-

tions, transformation and reduction were performed in

order to obtain models with a high coefficient of determi-

nation to predict the measured responses (output process

parameters)—flank wear of turning insert (VB) and surface

roughness (Ra). Analysis of variance (ANOVA) was per-

formed, as well as diagnostics and adequacy checking of

regression models.

Multi-objective optimization is suitable for solving

complex optimization problems whose individual objective

functions are conflicting, i.e. one is opposed to the other. In

this paper, GA is applied to multi-objective optimization.

The main idea is to determine the optimal values of input

process parameters (cutting speeds, feeds, depths of cut and

corner radii) in order to minimize the flank wear (VB) and

the surface roughness (Ra) and at the same time to maxi-

mize the material removal rate (Q). These quantities are

expressed using regression model, described in the next

chapter.

To conduct the multi-objective optimization, some

modification of standard GA must be made. In this

research, a version of elitist genetic algorithm [64] is used,

which favours individuals with better fitness value. Also,

some boundary constraints to input parameters, described

in detail in the next chapter, must be obeyed during the

optimization.

The input process parameters (cutting speeds, feeds,

depths of cut) are real numbers in different, given ranges,

and corner radii have discrete values, as mentioned before,

which represent boundary-type constraints (the solution

must be within these given constraints). Total number of

parameters, i.e. variables, is four. Therefore, GA individ-

uals are defined as vectors of four values representing these

parameters.

The algorithm starts by creating the initial population,

consisting of known number of individuals, defined as

population size. The individuals are created randomly,

using uniform distribution, and considering the feasible

space defined by boundary constraints. The fitness function

is then evaluated for each individual. According to the

fitness value, all individuals are ranked in the following

way:

• All undominated individuals [64] have the rank 1.

• Rank 2 individuals are those dominated only by rank 1

individuals. In general, rank k is given to individuals

dominated by individuals of rank k - 1 and lower.

• Having in mind that during the optimization process

some infeasible individuals can occur, their rank value

is always worse than of any feasible individual. Among

the infeasible part of population, the rank is sorted by

the infeasibility measure (individuals with less feasi-

bility discrepancy have lower rank).

After the ranking procedure is conducted, the next phase

of the algorithm is selection. The individuals are selected

using binary tournament selection function. Two pairs of

individuals are chosen randomly, and the ranks of indi-

viduals in each pair are compared. The individual with

lower rank is selected. If the individuals have the same

rank, the one with higher distance measure is selected.

Distance measure shows how far the individual is from the

other individuals of the same rank [64]. In this way, the

population diversity is kept during the optimization pro-

cess. The ‘‘wining’’ individuals from both pairs are chosen

as parents.

The next step is the crossover phase. As the variables are

dominantly real numbers, heuristic crossover has been

used, meaning that the new individual (child) is created on

the line containing both parents, in the vicinity of the better

ranked parent. The parameter named crossover ratio

determines how far from the better parent will a child be

positioned. This parameter is usually taken in the range

[0.8, 1.6]. The value 1.2, for example, means that the child

is positioned away from the better parent at the distance of

20% of total distance between parents, in the direction

opposite to the worse parent.

After the crossover, the mutation operator will be

applied. Mutation means that some fractions of individuals

will be changed. The probability of mutation for each

fraction of individual (i.e. the variable) is determined by

parameter named mutation rate, usually taken in the range

[0.005, 0.02]. The fractions chosen for mutation are then

replaced by random number selected uniformly from the

range for that variable.

Final step consists of creation of new generation of

individuals. The new generation consists of two parts. First

part represents elite individuals, i.e. a part of the Pareto set

of the current generation, determined by the parameter

named Pareto front population fraction. The value of this

parameter is usually in the range [0.2, 0.5], meaning that

20–50% of Pareto set will be kept for the next generation,

as elite individuals. The second part of new generation is

created by crossover and mutation. The number of indi-

viduals created by crossover is determined by parameter

named crossover fraction, which is usually in the range

[0.7, 0.9], meaning that 70–90% of this part is created by

crossover, while the rest of the individuals are the result of

mutation.

The described procedure is repeated for a given number

of iterations. After the final iteration is completed, the

undominated individuals, creating the Pareto front for the

considered multi-objective optimization problem, are taken

as a solution.

After the multi-objective optimization, optimal combi-

nations of output process parameters (VBopt, Raopt, Qopt)

are obtained with the corresponding optimal combinations
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of input process parameters (fopt, vcopt, apopt, ropt). After

generating optimal values of input and output process

parameters confirmation experiments were conducted to

validate the use of genetic algorithm for multi-objective

optimization. Finally, the obtained results were analysed

and discussed.

3 Results and discussion

3.1 Experimental research

Results of measuring and calculating output process

parameters for different combinations of input process

parameters are displayed in Table 1.

Obtained results point to the significant dispersion of

results. Appropriate selection and various combinations of

cutting speed, feed, depth of cut and corner radius can

result in different values of surface roughness, flank wear

and material removal rate. In other words, appropriate

selection i.e. appropriate combination of input process

parameters, can significantly affect output process param-

eters. In the conducted experimental researches, depending

on the input process parameters, flank wear appears in the

wide range from 0.147 to 0.293 mm. This means that lower

but also higher flank wear can be obtained by the appro-

priate choice of the input process parameters. The lowest

flank wear (VB = VBmin = 0.147 mm) is achieved at

machining with the lowest values of machining parameters

(vc = vcmin = 300 m/min, f = fmin = 0.1 mm/rev, ap-
= apmin = 2 mm) and the highest corner radius (r = rmax-
= 1.6 mm), but then the chip quantity in time is also the

lowest (Q = Qmin = 1041.67 mm3/s). The highest flank

wear (VB = VBmax = 0.293 mm) is obtained at machining

with the highest values of machining parameters (vc-
= vcmax = 400 m/min, f = fmax = 0.4 mm/rev, ap = apmax-
= 3 mm) and the lowest corner radius

(r = rmin = 0.4 mm), but then the chip quantity in time is

also the highest (Q = Qmax = 8571.43 mm3/s).

Results of experimental research reveal that smaller

roughness of machined surface and smaller flank wear are

obtained at higher corner radii of turning insert, smaller

feeds, smaller cutting speeds and smaller depths of cut.

Different from this, shorter turning time and higher chip

quantity are obtained at higher cutting speeds, higher feeds

and higher depths of cut. It actually means that better

quality of machined surface and longer tool life are

obtained if corner radius is at maximal level and machining

parameters at minimal level. Different from this, the

highest material removal rate is reached if machining

parameters are at maximal level. It is evident that there are

conflicting requirements if output process parameters are

considered separately, i.e. independently ones from the

others (Table 2).

3.2 Regression modelling

Statistical processing of measured data for VB and Ra is

carried out by Design Expert software. Significant quad-

ratic, transformed and reduced regression models are

obtained (non-significant terms with the probability of type

I error, p value, greater than 0.05 are removed).

Final equations in terms of actual factors are shown in

Tables 3 (for VB) and 4 (for Ra) for each level of turning

insert type (corner radius r) as a categorical factor.

Tables 5 and 6 present the analysis of variance

(ANOVA) for the regression model for VB and for Ra.

These tables also present the coefficients of determination:

R2, R2 adjusted and R2 for prediction, as well as the other

ANOVA output (adequate precision, standard deviation,

mean, coefficient of variation, predicted residual sum of

squares).

From Tables 5 and 6, it is visible that the regression

models for VB and Ra are statistically significant because

the probabilities for the F variable, i.e. p values are smaller

than 0.05 (probability of type I error, i.e. significance

level). It means that the null hypothesis should be rejected

and alternative one accepted (at least one of the regression

variables significantly contributes to the model, i.e. has a

regression coefficient different from zero).

Normal probability plots of the internally studentized

residuals to check for normality are shown in Fig. 2a (for

VB) and b (for Ra).

Graphical presentations of internally studentized resid-

uals versus predicted values (obtained by regression mod-

els) to check for constant error are given in Fig. 3a (for VB)

and b (for Ra). It is visible from Figs. 2a and 3a that out of

144 internally studentized residuals, there is deviation of

only 3 data for VB (- 5.145, 4.686 and 4.682 for runs 40,

90 and 120, Table 1), while in Figs. 2b and 3b the question

is about the deviation of only 2 data for Ra (- 3.453 and

- 3.327 for runs 15 and 105, Table 1).

Externally studentized residuals to look for outliers, i.e.

influential values (Fig. 4a, b), show that for runs 40, 90 and

120 (Table 1) for VB there are deviations out of limits

(Fig. 4a), while it is not the case for Ra (Fig. 4b) for runs

15 and 105, Table 1. However, for runs 90 and 120

(Table 1) for VB, for measures DFFITS (Difference in fits)

and Cook’s distance there is no deviation in relation to

other runs (they are 1.8204, 1.8183 and 0.23197, 0.23152,

respectively). These measures do not deviate from other

runs even for runs 15 and 105, Table 1 for Ra (they are

- 1.6593, - 1.4289 and 0.15728, 0.11748, respectively).

Out of 5 analysed runs (3 for VB and 2 for Ra), only for run

40, Table 1, for VB, there is measure DFFITS which has a
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Table 1 Results of measuring and calculating

Run Input process parameters Output process parameters

r (mm) f (mm/rev) vc (m/min) ap (mm) VB (mm) Ra (lm) t (s) V (mm3) Q (mm3/s)

1 1.2 0.3 300 3 0.180 4.211 197.82 953,775.00 4821.43

2 0.4 0.2 300 3 0.210 6.790 296.73 953,775.00 3214.29

3 1.2 0.3 350 2.5 0.199 4.061 181.67 838,968.75 4618.06

4 0.4 0.3 300 3 0.223 15.126 197.82 953,775.00 4821.43

5 0.8 0.1 400 2.5 0.219 0.689 476.89 838,968.75 1759.26

6 1.2 0.1 300 2.5 0.156 0.444 635.85 838,968.75 1319.44

7 0.8 0.4 300 3 0.209 11.208 148.37 953,775.00 6428.57

8 1.2 0.2 350 2 0.187 1.705 290.67 706,500.00 2430.56

9 0.4 0.4 400 2 0.284 22.884 127.17 706,500.00 5555.56

10 1.6 0.3 400 3 0.214 3.265 148.37 953,775.00 6428.57

11 0.8 0.2 400 3 0.234 2.980 222.55 953,775.00 4285.71

12 1.6 0.2 350 2.5 0.181 1.356 272.51 838,968.75 3078.70

13 1.2 0.4 350 3 0.213 7.612 127.17 953,775.00 7500.00

14 0.8 0.1 400 2 0.217 0.655 508.68 706,500.00 1388.89

15 0.4 0.1 300 3 0.197 1.685 593.46 953,775.00 1607.14

16 0.8 0.2 350 3 0.211 2.859 254.34 953,775.00 3750.00

17 0.8 0.2 350 2.5 0.207 2.709 272.51 838,968.75 3078.70

18 1.2 0.4 300 2 0.186 6.661 169.56 706,500.00 4166.67

19 1.2 0.2 350 2.5 0.189 1.805 272.51 838,968.75 3078.70

20 0.4 0.1 400 2.5 0.248 1.581 476.89 838,968.75 1759.26

21 1.2 0.4 400 2 0.229 6.937 127.17 706,500.00 5555.56

22 0.4 0.4 350 2.5 0.261 24.843 136.25 838,968.75 6157.41

23 1.2 0.1 350 3 0.182 0.478 508.68 953,775.00 1875.00

24 0.8 0.4 300 2 0.203 10.005 169.56 706,500.00 4166.67

25 1.6 0.3 400 2.5 0.211 3.095 158.96 838,968.75 5277.78

26 1.6 0.3 350 3 0.193 3.209 169.56 953,775.00 5625.00

27 1.2 0.4 350 2.5 0.212 7.211 136.25 838,968.75 6157.41

28 1.6 0.3 350 2 0.188 2.868 193.78 706,500.00 3645.83

29 1.2 0.3 300 2.5 0.177 3.978 211.95 838,968.75 3958.33

30 0.4 0.2 400 2.5 0.261 6.325 238.44 838,968.75 3518.52

31 0.4 0.4 400 2.5 0.287 25.309 119.22 838,968.75 7037.04

32 1.6 0.4 300 3 0.182 5.611 148.37 953,775.00 6428.57

33 1.2 0.3 400 3 0.224 4.361 148.37 953,775.00 6428.57

34 1.2 0.2 400 2.5 0.211 1.838 238.44 838,968.75 3518.52

35 1.6 0.4 350 2.5 0.202 5.411 136.25 838,968.75 6157.41

36 1.6 0.1 300 3 0.152 0.361 593.46 953,775.00 1607.14

37 0.4 0.1 300 2 0.191 1.373 678.24 706,500.00 1041.67

38 1.2 0.1 400 2.5 0.201 0.458 476.89 838,968.75 1759.26

39 1.2 0.3 350 3 0.202 4.279 169.56 953,775.00 5625.00

40 1.6 0.4 400 3 0.221 5.815 111.27 953,775.00 8571.43

41 1.6 0.2 400 2.5 0.201 1.378 238.44 838,968.75 3518.52

42 0.4 0.2 350 3 0.237 6.849 254.34 953,775.00 3750.00

43 1.2 0.2 300 3 0.170 1.866 296.73 953,775.00 3214.29

44 0.8 0.1 350 2 0.193 0.636 581.35 706,500.00 1215.28

45 0.8 0.3 300 2 0.192 5.623 226.08 706,500.00 3125.00

46 0.8 0.3 300 2.5 0.194 5.964 211.95 838,968.75 3958.33

47 0.4 0.2 350 2.5 0.234 6.214 272.51 838,968.75 3078.70
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Table 1 (continued)

Run Input process parameters Output process parameters

r (mm) f (mm/rev) vc (m/min) ap (mm) VB (mm) Ra (lm) t (s) V (mm3) Q (mm3/s)

48 1.2 0.4 350 2 0.208 6.806 145.34 706,500.00 4861.11

49 0.4 0.3 350 2 0.244 12.628 193.78 706,500.00 3645.83

50 1.6 0.1 300 2.5 0.149 0.333 635.85 838,968.75 1319.44

51 1.6 0.1 400 2 0.189 0.325 508.68 706,500.00 1388.89

52 0.4 0.4 300 2.5 0.232 24.384 158.96 838,968.75 5277.78

53 1.2 0.3 350 2 0.197 3.825 193.78 706,500.00 3645.83

54 1.2 0.4 300 2.5 0.187 7.067 158.96 838,968.75 5277.78

55 1.2 0.1 400 3 0.203 0.488 445.10 953,775.00 2142.86

56 0.8 0.4 350 2 0.228 10.205 145.34 706,500.00 4861.11

57 0.8 0.3 350 2 0.216 5.735 193.78 706,500.00 3645.83

58 0.8 0.3 350 2.5 0.218 6.079 181.67 838,968.75 4618.06

59 0.8 0.3 400 2.5 0.242 6.184 158.96 838,968.75 5277.78

60 0.8 0.4 400 2.5 0.254 11.011 119.22 838,968.75 7037.04

61 1.2 0.2 300 2.5 0.166 1.769 317.93 838,968.75 2638.89

62 1.6 0.1 300 2 0.147 0.313 678.24 706,500.00 1041.67

63 1.6 0.3 300 3 0.172 3.159 197.82 953,775.00 4821.43

64 1.2 0.1 400 2 0.198 0.437 508.68 706,500.00 1388.89

65 0.4 0.2 300 2.5 0.206 6.095 317.93 838,968.75 2638.89

66 0.8 0.1 300 3 0.174 0.711 593.46 953,775.00 1607.14

67 0.8 0.4 350 3 0.233 11.411 127.17 953,775.00 7500.00

68 0.8 0.2 300 3 0.186 2.807 296.73 953,775.00 3214.29

69 1.6 0.1 400 3 0.194 0.368 445.10 953,775.00 2142.86

70 1.6 0.4 400 2.5 0.221 5.507 119.22 838,968.75 7037.04

71 1.2 0.2 350 3 0.192 1.909 254.34 953,775.00 3750.00

72 0.8 0.3 300 3 0.197 6.307 197.82 953,775.00 4821.43

73 0.4 0.1 350 2.5 0.221 1.554 545.01 838,968.75 1539.35

74 0.4 0.4 300 2 0.230 22.005 169.56 706,500.00 4166.67

75 0.4 0.4 350 2 0.257 22.437 145.34 706,500.00 4861.11

76 1.6 0.4 350 2 0.198 5.107 145.34 706,500.00 4861.11

77 0.4 0.1 350 2 0.218 1.402 581.35 706,500.00 1215.28

78 1.2 0.3 300 2 0.175 3.752 226.08 706,500.00 3125.00

79 0.4 0.4 350 3 0.263 27.368 127.17 953,775.00 7500.00

80 1.2 0.1 350 2.5 0.178 0.456 545.01 838,968.75 1539.35

81 0.8 0.4 350 2.5 0.231 10.811 136.25 838,968.75 6157.41

82 0.4 0.1 300 2.5 0.193 1.523 635.85 838,968.75 1319.44

83 0.4 0.3 350 3 0.251 15.396 169.56 953,775.00 5625.00

84 1.2 0.2 400 2 0.208 1.736 254.34 706,500.00 2777.78

85 1.6 0.2 300 3 0.162 1.409 296.73 953,775.00 3214.29

86 1.6 0.2 400 3 0.204 1.461 222.55 953,775.00 4285.71

87 0.4 0.3 400 2.5 0.274 14.237 158.96 838,968.75 5277.78

88 1.2 0.1 300 2 0.154 0.419 678.24 706,500.00 1041.67

89 1.2 0.4 400 3 0.235 7.739 111.27 953,775.00 8571.43

90 0.4 0.1 400 3 0.256 1.749 445.10 953,775.00 2142.86

91 1.2 0.3 400 2.5 0.221 4.123 158.96 838,968.75 5277.78

92 0.8 0.2 300 2.5 0.182 2.650 317.93 838,968.75 2638.89

93 0.4 0.4 300 3 0.236 26.886 148.37 953,775.00 6428.57

94 0.4 0.3 400 3 0.278 15.702 148.37 953,775.00 6428.57
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Table 1 (continued)

Run Input process parameters Output process parameters

r (mm) f (mm/rev) vc (m/min) ap (mm) VB (mm) Ra (lm) t (s) V (mm3) Q (mm3/s)

95 1.6 0.1 350 2 0.168 0.318 581.35 706,500.00 1215.28

96 1.6 0.2 400 2 0.199 1.304 254.34 706,500.00 2777.78

97 0.4 0.4 400 3 0.293 27.851 111.27 953,775.00 8571.43

98 1.2 0.1 300 3 0.159 0.471 593.46 953,775.00 1607.14

99 1.6 0.1 400 2.5 0.191 0.343 476.89 838,968.75 1759.26

100 0.4 0.3 300 2 0.217 12.371 226.08 706,500.00 3125.00

101 0.8 0.3 400 2 0.240 5.854 169.56 706,500.00 4166.67

102 1.2 0.3 400 2 0.219 3.905 169.56 706,500.00 4166.67

103 1.6 0.2 300 2.5 0.159 1.328 317.93 838,968.75 2638.89

104 1.2 0.4 400 2.5 0.232 7.334 119.22 838,968.75 7037.04

105 0.4 0.1 350 3 0.225 1.711 508.68 953,775.00 1875.00

106 0.8 0.2 400 2.5 0.231 2.759 238.44 838,968.75 3518.52

107 0.4 0.2 300 2 0.204 5.503 339.12 706,500.00 2083.33

108 0.4 0.2 400 3 0.265 6.990 222.55 953,775.00 4285.71

109 1.2 0.2 400 3 0.214 1.938 222.55 953,775.00 4285.71

110 1.6 0.3 400 2 0.209 2.925 169.56 706,500.00 4166.67

111 1.2 0.1 350 2 0.176 0.424 581.35 706,500.00 1215.28

112 0.8 0.1 300 2.5 0.171 0.664 635.85 838,968.75 1319.44

113 0.4 0.1 400 2 0.245 1.434 508.68 706,500.00 1388.89

114 0.8 0.1 400 3 0.223 0.729 445.10 953,775.00 2142.86

115 1.6 0.4 300 2 0.177 5.009 169.56 706,500.00 4166.67

116 0.4 0.3 350 2.5 0.247 13.976 181.67 838,968.75 4618.06

117 0.8 0.3 400 3 0.246 6.533 148.37 953,775.00 6428.57

118 0.8 0.2 300 2 0.180 2.509 339.12 706,500.00 2083.33

119 0.4 0.2 400 2 0.258 5.725 254.34 706,500.00 2777.78

120 0.8 0.4 400 3 0.261 11.621 111.27 953,775.00 8571.43

121 0.8 0.4 300 2.5 0.205 10.609 158.96 838,968.75 5277.78

122 1.6 0.2 350 2 0.178 1.275 290.67 706,500.00 2430.56

123 0.8 0.1 300 2 0.169 0.624 678.24 706,500.00 1041.67

124 1.6 0.4 350 3 0.203 5.714 127.17 953,775.00 7500.00

125 1.6 0.3 350 2.5 0.191 3.013 181.67 838,968.75 4618.06

126 1.2 0.2 300 2 0.165 1.669 339.12 706,500.00 2083.33

127 0.8 0.1 350 2.5 0.195 0.675 545.01 838,968.75 1539.35

128 1.6 0.3 300 2 0.167 2.812 226.08 706,500.00 3125.00

129 0.8 0.1 350 3 0.198 0.714 508.68 953,775.00 1875.00

130 0.8 0.2 350 2 0.204 2.554 290.67 706,500.00 2430.56

131 0.4 0.3 300 2.5 0.219 13.719 211.95 838,968.75 3958.33

132 0.4 0.3 400 2 0.271 12.872 169.56 706,500.00 4166.67

133 0.4 0.2 350 2 0.231 5.612 290.67 706,500.00 2430.56

134 1.6 0.4 400 2 0.219 5.207 127.17 706,500.00 5555.56

135 1.6 0.3 300 2.5 0.169 2.983 211.95 838,968.75 3958.33

136 1.6 0.2 300 2 0.157 1.253 339.12 706,500.00 2083.33

137 1.6 0.1 350 3 0.173 0.359 508.68 953,775.00 1875.00

138 1.2 0.4 300 3 0.191 7.469 148.37 953,775.00 6428.57

139 1.6 0.2 350 3 0.183 1.429 254.34 953,775.00 3750.00

140 0.8 0.4 400 2 0.251 10.407 127.17 706,500.00 5555.56

141 1.6 0.4 300 2.5 0.179 5.311 158.96 838,968.75 5277.78
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value different from other runs (it is - 2.04), however with

a good indicator of Cook’s distance (it is 0.2796).

After the conducted diagnostics of regression models, it

can be concluded that the models can be applied as inputs

for multi-objective optimization as, in addition to the

above-mentioned analysis connected with outliers and

influential values (Figs. 2, 3, 4), the other indicators are

also very good (high and equivalent values of Adj R-

Squared and Pred R-Squared, small MSE, that is, St. Dev.,

small values of indicator PRESS and high values of indi-

cator Adeq Precision), which can be seen from Tables 5

and 6. Furthermore, the correlation between measured and

predicted regression values for VB and Ra is given in

Fig. 5. Evaluation of obtained results was performed based

on the following errors and coefficient [64]:

MAEx ¼
1

n

Xn

i¼1

xipv � ximv
�� �� i ¼ 1; 2; . . .; 144

x ¼ VB;Ra

ð15Þ

RMSEx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 xipv � ximv
� �2

n

s

i ¼ 1; 2; . . .; 144

x ¼ VB;Ra

ð16Þ

MREx ¼
1

n

Xn

i¼1

xipv � ximv
ximv

����

���� i ¼ 1; 2; . . .; 144

x ¼ VB;Ra

ð17Þ

Rx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

x2imv �
Pn

i¼1 xipv � ximv
� �2
Pn

i¼1 x
2
imv

vuut i ¼ 1; 2; . . .; 144

x ¼ VB;Ra

ð18Þ

where MAE—mean absolute error, RMSE—root mean

square error, MRE—mean relative error, R—coefficient of

correlation, xipv—predicted value, ximv—measured value.

The statistical measures—mean absolute error (MAE),

root mean square error (RMSE), mean relative error (MRE)

and coefficient of correlation (R) given in Table 7 prove

that there is a very strong correlation between measured

and predicted values obtained by the regression models.

Finally, the calculated p values for the correlation are much

smaller than 0.05 which means that the correlation is sta-

tistically significant (i.e. alternative hypothesis at signifi-

cance level of 0.05 should be accepted).

The results of regression analysis show that smaller

flank wear, i.e. higher turning insert life is obtained at

smaller depths of cut, smaller feeds, smaller cutting speeds

and higher corner radii of turning inserts (Fig. 6). In this

process, the highest influence on flank wear is exerted by

the corner radius of turning insert (correlation coefficient,

r = - 0.655), somewhat smaller is the influence of cutting

speed (r = 0.614), even smaller is the influence of feed

(r = 0.400), and the smallest is the influence of depth of cut

(r = 0.075).

Table 1 (continued)

Run Input process parameters Output process parameters

r (mm) f (mm/rev) vc (m/min) ap (mm) VB (mm) Ra (lm) t (s) V (mm3) Q (mm3/s)

142 1.6 0.1 350 2.5 0.171 0.334 545.01 838,968.75 1539.35

143 0.8 0.2 400 2 0.228 2.603 254.34 706,500.00 2777.78

144 0.8 0.3 350 3 0.222 6.414 169.56 953,775.00 5625.00

Minimum 0.147 0.313 111.27 706,500.00 1041.67

Maximum 0.293 27.851 678.24 953,775.00 8571.43

Mean 0.208 5.663 287.80 833,081.25 3858.03

Standard deviation 0.032 6.266 166.95 101,388.06 1948.78

Ratio 1.993 88.981 6.095 1.350 8.229

Table 2 Optimal values of input process parameters if output process parameters are considered independently one from the other

Turning parameters Minimum VB VB = 0.147 (mm) Minimum Ra Ra = 0.313 (lm) Maximum Q Q = 8571.43 (mm3/s)

vc (m/min) 300 300 400

f (mm/rev) 0.1 0.1 0.4

ap (mm) 2 2 3

r (mm) 1.6 1.6 –
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In this research, only fine tracks of abrasive wear of the

flank and rake surface were visible on microscope, which

means that the cutting insert had good toughness and

resistance to wear even when machining at higher cutting

speeds. Increased feed results in increased flank wear. The

smaller the feed, the less the wear, and as the feed

increases, so does the wear. Increased feed results in

increased amount of work of cutting insert. Increasing the

feed affects the increase in cutting forces, and thus the

increase in temperature. Increased feed results in increased

chip thickness and accordingly increased cutting forces and

temperature in the machining zone. In the present research

the feed did not affect flank wear as much as corner radius

and cutting speed, due to the ability of cutting insert to

resist heat and fracture. Increased depth of cut can be of

influence to the increase of dynamic loads, therefore to the

increase of temperature. In the present research, the effect

of depth of cut to the increase of flank wear is very small.

The effect of depth of cut on flank wear is minimized by

the hardness of CVD coating. Appropriate combination of

feed and depth of cut can result in the mimimization of

their common negative effect.

Flank wear appears as a result of abrasive wear. It is the

result of friction between the cutting tool flank surface and

the workpiece. The increased friction generates higher

heat, i.e. temperature in the machining zone. In conditions

of high temperatures, flank wear is intensified. The increase

of cutting speed, feed and depth of cut results in the

increase of friction between the turning insert and the

workpiece. The increased friction generates higher tem-

perature in the machining zone. The higher temperature, at

the same value of the corner radius of turning insert, causes

higher wear. At this, the cutting speed has a higher influ-

ence on temperature increase, feed has a smaller influence

and depth of cut the smallest. By increasing corner radius

of turning insert, the contact surface between the turning

insert and the workpiece is increased while at smaller

values of the turning insert radius the contact surface

between the turning insert and the workpiece is reduced.

For the same values of cutting speed, feed and depth of cut,

if the contact surface is bigger (higher corner radius) the

generated heat is disposed at the turning insert bigger

surface so the turning insert wear is also smaller. Gener-

ally, at higher corner radii of turning inserts with smaller

speed, feed and depth of cut, lower temperature is gener-

ated in the machining zone and at this, it is simultaneously

disposed at the turning insert bigger surface. This directly

causes reduction of the turning insert flank wear. At smaller

corner radii of turning inserts, higher cutting speeds, feeds

and depths of cut, higher temperature is generated in

Table 3 Regression equations for flank wear VB for each corner radius r

Corner radius r (mm) Regression equation

0.4 lnVB ¼ �2:902316273� 0:009204749 � ap þ 1:095838685 � f þ 0:00484147 � vc � 0:017319213 � ap � f
�0:00128037 � f � vc þ 0:008257836 � a2p � 0:114209488 � f2 � 3:18162 � 10�6 � v2c

0.8 lnVB ¼ �3:025348666� 0:009204749 � ap þ 1:095838685 � f þ 0:00484147 � vc � 0:017319213 � ap � f
�0:00128037 � f � vc þ 0:008257836 � a2p � 0:114209488 � f2 � 3:18162 � 10�6 � v2c

1.2 lnVB ¼ �3:11644376� 0:009204749 � ap þ 1:095838685 � f þ 0:00484147 � vc � 0:017319213 � ap � f
�0:00128037 � f � vc þ 0:008257836 � a2p � 0:114209488 � f2 � 3:18162 � 10�6 � v2c

1.6 lnVB ¼ �3:16345538� 0:009204749 � ap þ 1:095838685 � f þ 0:00484147 � vc � 0:017319213 � ap � f
�0:00128037 � f � vc þ 0:008257836 � a2p � 0:114209488 � f2 � 3:18162 � 10�6 � v2c

Table 4 Regression equations for surface roughness Ra for each corner radius r

Corner radius r (mm) Regression equation

0.4 Ra0:37 ¼ 0:09778824þ 0:102695042 � ap þ 7:562630695 � f þ 5:2741 � 10�5 � vc þ 0:260760914 � ap � f
þ0:000713465 � f � vc � 2:924702941 � f2

0.8 Ra0:37 ¼ 0:204364402þ 0:00547981 � ap þ 5:703020293 � f þ 5:2741 � 10�5 � vc þ 0:260760914 � ap � f
þ0:000713465 � f � vc � 2:924702941 � f2

1.2 Ra0:37 ¼ 0:178414942� 0:005411175 � ap þ 4:98566363 � f þ 5:2741 � 10�5 � vc
þ0:260760914 � ap � f þ 0:000713465 � f � vc � 2:924702941 � f2

1.6 Ra0:37 ¼ 0:156616488� 0:010167075 � ap þ 4:540891052 � f þ 5:2741 � 10�5 � vc þ 0:260760914 � ap � f
þ0:000713465 � f � vc � 2:924702941 � f2

Neural Computing and Applications (2021) 33:12445–12475 12457

123



machining zone and is concentrated at the smaller contact

surface of the turning insert. As a result, the wear of the

turning insert is increased.

Duratomic CVD coating technique provides a balance

between two opposite requirements—good hardness and

good toughness of cutting insert. Besides, these cutting

inserts are characterized by sharp cutting edges and zones

enriched by cobalt and aluminium oxide. This helps to

improve tribological effects at the point of contact of the

workpiece and the cutting insert, i.e. there is less friction,

which results in lower temperatures and contact pressures.

In this way, mechanical properties of the cutting insert are

improved as well as the thermal and chemical inertia in a

wide range of possible input process parameters. Temper-

ature reduction resulted in reduction of abrasive, adhesion

and diffusion wear. Higher temperatures can reduce yield

strength, therefore the workpiece hardness as well. High

stresses and temperatures can cause flaking and chipping of

material, thus causing formation of micro-welds on rake

and flank surface of the cutting insert. Besides, specially

Table 5 ANOVA table—flank wear VB

Source Sum of squares Degrees of freedom Mean square F value p value Prob[F

Model 3.257144 11 0.296104 31,795.174 \ 0.0001

A-Depth of cut 0.0184877 1 0.0184877 1985.176 \ 0.0001

B-Feed 0.53918 1 0.53918 57,896.285 \ 0.0001

C-Cutting speed 1.263252 1 1.263252 135,645.981 \ 0.0001

D-Turning insert type 1.428868 3 0.476289171 51,143.170 \ 0.0001

AB 8.99865 9 10-5 1 8.99865 9 10-5 9.66261 0.0023

BC 0.004918 1 0.004918 528.0912 \ 0.0001

A2 0.000136 1 0.000136 14.64466 0.0002

B2 0.0001878 1 0.0001878 20.16897 \ 0.0001

C2 0.002025 1 0.002025 217.3922 \ 0.0001

Residual 0.0012293 132 9.31286 9 10-6

R2 0.99962 Standard deviation 0.0030517

R2 adjusted 0.999597 Mean - 1.579915

R2 for prediction 0.999537 Coefficient of variation % 0.193156

Adequate Precision 774.74377 Predicted residual sum of squares 0.001508

Table 6 ANOVA table—surface roughness Ra

Source Sum of squares Degrees of freedom Mean square F value p value Prob[F

Model 70.38974 15 4.692649315 36,865.844 \ 0.0001

A-Depth of cut 0.1872923 1 0.1872923 1471.3839 \ 0.0001

B-Feed 47.505607 1 47.505607 373,208.0125 \ 0.0001

C-Cutting speed 0.0128186 1 0.0128186 100.70342 \ 0.0001

D-Turning insert type 20.092089 3 6.697362817 52,615.0408 \ 0.0001

AB 0.0203989 1 0.0203989 160.25527 \ 0.0001

AD 0.0513925 3 0.017130835 134.58127 \ 0.0001

BC 0.001527 1 0.001527 11.99699 0.0007

BD 2.3954387 3 0.798479556 6272.92198 \ 0.0001

B2 0.123176 1 0.123176 967.68074 \ 0.0001

Residual 0.016293 128 0.00012729

R2 0.999769 Standard deviation 0.011282

R2 adjusted 0.9997414 Mean 1.666192

R2 for prediction 0.9996946 Coefficient of variation % 0.6771297

Adequate Precision 734.0627022 Predicted residual sum of squares 0.021502375
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Fig. 2 Normal probability plot. a Flank wear VB, b surface roughness Ra

Fig. 3 Internally studentized residuals versus predicted values. a Flank wear VB, b surface roughness Ra

Fig. 4 Externally studentized residuals versus run number. a Flank wear VB, b surface roughness Ra
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designed geometry of chipbreaker is incorporated in the

cutting insert which can be successfully used for the final

as well as medium and rough machining. For selected

levels of the input process parameters, this geometry pro-

vided reliable chip control and its breaking apart. During

experimental researches, the chip short form was prevail-

ing. This is the most desirable form of the chip considering

the fact that it causes less damage.

The results of the regression analysis indicate that

smaller surface roughness, i.e. better quality of machined

surface, is achieved at smaller depths of cut, smaller feeds,

smaller cutting speeds and higher radii of turning inserts

(Fig. 7). Feed (correlation coefficient r = 0.676) and corner

radius of turning insert (r = - 0.521) exert the highest

effect on surface roughness while the effect of depth of cut

and cutting speed is small (correlation coefficients are

r = 0.058 and r = 0.014).

There is interaction between feed and turning insert type

(corner radius) (Fig. 8). At higher values of corner radius

of turning insert (1.2 and 1.6 mm), by increasing feed,

surface roughness increase is less expressed. At smaller

corner radii of turning insert (0.8 mm) and particularly at

the smallest corner radius of turning insert (0.4 mm) the

effect of feed on surface roughness is more expressed, i.e.

by higher feed, surface roughness increases fastest for the

smallest corner radius of turning insert. At smaller feeds

the effect of corner radius of turning insert on surface

roughness is less expressed. At higher feeds the turning

insert corner radius effect on surface roughness is more and

more expressed and it increases as the feed increases. It can

also be seen from Fig. 8 that higher corner radius of turning

insert, at the same feed, generates smaller values of surface

roughness i.e. better quality of machined surface. Higher

values of feed at the same value of corner radius of turning

insert generate higher values of surface roughness, i.e.

worse quality of the machined surface. Increased surface

roughness at small corner radii of turning inserts and higher

feeds is the result of obtaining wider and higher peaks as

well as of wider and higher valleys in the machined sur-

face. Therefore, the highest surface roughness is achieved

at the smallest corner radius of turning insert and the

highest feed.

It was found that during the turning process, the surface

roughness increases, in different amount, however, under

different combinations of input parameters of machining.

The surface roughness increase is similar to the trend of

flank wear increase. It is more or less identical for all

combinations of the input process parameters. These

observations point to the strong interdependence of flank

wear and surface roughness. It has to be pointed out that

the technology of coating forming of used cutting inserts

also provides for obtaining sharp cutting edges and smooth

Fig. 5 Predicted versus measured values. a Flank wear VB, b surface roughness Ra

Table 7 Statistical measures for comparison of predicted and measured values

Response Mean absolute error MAE Root mean square error RMSE Mean relative error MRE Coefficient of correlation R

VB (mm) 0.000392 0.000639 0.00185 0.999779

Ra (lm) 0.06331 0.1075 0.0143 0.999856
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surface of a cutting insert which helps in obtaining

smoother surface of the workpiece, and this again adds to

creating more suitable tribological conditions i.e. smaller

generation of friction and less generated heat in the zone of

machining.

3.3 Multi-objective optimization

As introduced earlier, individual objective functions are

minimization of flank wear (VB), minimization of surface

roughness (Ra) and maximization of material removal rate

(Q). Based on this, the following multi-objective function

is defined:

F ¼ MINðwVB � VBxÞ þMIN wRa � Raxð Þ þMAXðwQ � QxÞ
ð19Þ

where wVB, wRa, wQ are weight coefficients, VBx, Rax, Qx

are normalized—transformed values of output process

parameters.

Normalized values of output process parameters are

calculated using the following equations:

VBx ¼
VB� VBmin

VBmax � VBmin

;Rax ¼
Ra� Ramin

Ramax � Ramin

;Qx

¼ Q� Qmin

Qmax � Qmin

ð20Þ

It is however necessary to define the constraints, which

limit the multi-objective optimization process to the

desired feasible region. These constraints are defined by

technological equipment performance (machine tool and

measuring instrumentations), experimental research con-

ditions and the obtained experimental results (Table 8).

After defining the objective function and boundary

constraints for input parameters, the characteristic GA

parameters must be set. When performing some initial test,

it has been noticed that the objective function converges

after approximately 200 iterations and stays within a nar-

row range for the rest of the optimization process, with the

population size set to 100. In the current research, the

Fig. 6 Influence of machining parameters and corner radius of turning insert on flank wear. a Flank wear versus turning insert type, b flank wear

versus cutting speed, c flank wear versus feed, d flank wear versus depth of cut
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problem is solved offline, and the results are stored for the

future use, so duration of the optimization process is not

essential. Therefore, the maximum number of generations

and the population size are set to 400 and 100, respectively,

to ensure the quality of the optimization results. To the

authors’ best knowledge, the values of other GA parame-

ters, crossover ratio, mutation rate, crossover fraction and

Pareto front population fraction have more crucial

Fig. 7 Influence of machining parameters and corner radius of turning insert on surface roughness. a Surface roughness versus feed, b surface

roughness versus turning insert type, c surface roughness versus depth of cut, d surface roughness versus cutting speed

Fig. 8 Feed-turning insert type

interaction

12462 Neural Computing and Applications (2021) 33:12445–12475

123



influence to the optimization quality. Setting of these

parameters is a very complex task, since there is no exact

recommendation for values of these parameters; it is

strictly problem-dependent. Therefore, it is common to

apply trial-and-error procedure to determine the appropri-

ate parameter values. However, in this research, a more

systematic approach has been applied. All parameter values

have been varied in ranges recommended in the literature,

listed in the previous chapter, and for each combination,

the calculation of objective function value was performed.

Based on the obtained results, the parameters providing the

best value of the objective function have been chosen:

crossover ratio is set to 1.2, mutation rate is set to 0.01,

crossover fraction is set to 0.8 and Pareto front population

fraction is set to 0.35. In order to determine the influence of

GA parameter values to the optimization results and to

confirm the parameter tuning procedure, a sensitivity

analysis has been performed.

In order to conduct sensitivity analysis, the authors

investigated how a change in GA parameters will affect a

change in multi-objective function (expression 19). Four

GA parameters, Pareto front fraction, crossover ratio,

mutation rate and crossover fraction, were varied at three

levels. The level adopted as optimal after the initial anal-

ysis was the reference, as shown in Table 9.

By statistical processing of all 81 (34) combinations of

parameter levels, a significant quadratic reduced model was

obtained with p value less than 0.05, which can be seen in

Table 10 showing the analysis of variance. Some non-

significant terms (A—Pareto front fraction, C—mutation

rate and D—crossover fraction) are retained in the model

because of the hierarchy. The terms which significantly

contribute to the model are B—crossover ratio, interaction

CD between mutation rate and crossover fraction as well as

quadratic terms of all GA parameters.

Based on the response surface of the model, shown in

Fig. 9, it was proved that the best value (minimum) of

multi-objective function is achieved at the initially adopted

level of GA parameters.

Thus, by the sensitivity analysis of GA parameters, it

was proved that decreasing or increasing the value of the

parameters relative to the optimal level would affect the

increase of the multi-objective function value. It means that

the initially adopted values (optimal ones) gave the best

value (minimum) of multi-objective function.

Using the GA settings explained above, multi-objective

optimization has been performed, resulting in optimal

Pareto set consisting of totally 60 points. These points were

used to generate the Pareto diagram shown in (Fig. 9) for

the defined objective function (Eq. 19). The surface in the

diagram (Fig. 9) represents an optimal surface, meaning

that the points that are on the surface give one of the

combinations of optimal solution, i.e. to every point of this

surface corresponds one Pareto optimal solution of output

process parameters—optimal surface roughness (Raopt),

optimal flank wear (VBopt) and optimal material removal

rate (Qopt). To every optimal combination of output process

parameters corresponds an optimal combination of input

process parameters—optimal feed (fopt), optimal cutting

speed (vcopt), optimal depth of cut (apopt) and optimal

corner radius (ropt). It has to be mentioned that the surface

shown in the diagram (Fig. 9) is obtained by cubic inter-

polation among 60 points which represent individual

solutions obtained by genetic algorithm in a feasible region

of possible optimal solutions (Fig. 10). The values of the

output and input process parameters in the mentioned

points are presented in Table 15 (Appendix).

Based on the results of multi-objective optimization, it

can be concluded that the optimal surface roughness is in

the range Raopt = 0.315–5.808 lm, optimal flank wear is in

the range VBopt = 0.150–0.218 mm, and optimal material

removal rate is in the range Qopt = 1088.384–8228.571

mm3/s. Also, optimal value of corner radius of turning

insert is always at maximal level ropt = 1.6 mm. Optimal

values of machining parameters cover the nearly complete

feasible region i.e. ranges of input process parameters.

Optimal value of feed is in the range fopt = 0.10–0.40 mm/

rev. Optimal value of cutting speed is in the range vcopt-
= 307–384 mm/min. Optimal value of depth of cut is in

the range apopt = 2.04–3 mm. In fact, it means that, for the

given conditions of experimental research, turning has

always to be performed with the turning insert of the

highest corner radius, and that optimal combination of

machining parameters can vary depending on production

demands, i.e. on surface quality, tool life and productivity.

In order to substantially comprehend the influence of

obtained results of multi-objective optimization, it is pos-

sible to divide the region of optimal solutions in Fig. 10

into 27 equal areas (Fig. 11, 2D displays, gray arrows). In

this way, the individual, but also common influences of

input process parameters on output process parameters can

be easily observed. In accordance with this, a decomposi-

tion of each of the output process parameters is performed

into three equal ranges (three levels)—low, mid and high.

This is done by dividing the ranges of obtained optimal

values (Raopt = 0.315–5.808 lm, VBopt-

= 0.150–0.218 mm, Qopt = 1088.384–8228.571 mm3/s)

into three equal parts (Table 11).

In an ideal case, for the three levels (three ranges in

Table 11) and three variables (optimal levels of the output

process parameters), all possible combinations, i.e. all

together 3 9 3 9 3 = 27 combinations, can be generated.

However, in this concrete case it is not possible to generate

all the combinations in view of the fact that for some

combinations (e.g. low Raopt, low VBopt, high Qopt; etc.) the

areas do not exist in the region of feasible optimal values of
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output process parameters (Fig. 11). This is a consequence

of the conflicting individual objective functions for Ra, VB,

on the one hand and Q, on the other. In accordance with the

foregoing, Table 12 displays possible combinations (for the

regions for which solutions exist) of the optimal output

process parameters along with the corresponding optimal

combinations of the input process parameters.

The obtained results (Table 12) point to the following:

• high quality of machined surface (low level Raopt) can

be realized in correspondence with small or medium

flank wear (low level VBopt and mid-level VBopt) and

small or mid-level productivity (low level Qopt or mid-

level Qopt).

• mid-quality of machined surface (mid-level Raopt) can

be realized only in correspondence with the simultane-

ous low flank wear and low productivity (low level

VBopt and low level Qopt) or with the simultaneous mid-

flank wear and mid-level productivities (mid-level

VBopt or mid-level Qopt).

• high level of cutting tool life (low level VBopt) can be

realized only in correspondence with the simultaneous

better quality of machined surface and low productiv-

ities (low level Raopt and low level Qopt), or with better

quality of machined surface and mid-level productivity

(low level Raopt and mid-level Qopt), or with mid-

quality of machined surface and low level productivity

(mid-level Raopt and low level Qopt).

• mid-level of cutting tool life (mid-level VBopt) can be

realized in correspondence with the simultaneous low

quality of machined surface and low productivity (low

level Raopt and low level Qopt), mid-quality of

machined surface and mid-level of productivity (mid-

level Raopt and mid-level Qopt), low quality of

machined surface and higher productivity (high Raopt
and high Qopt), as well as in combination of higher

quality of machined surface and mid-level productivity

(low level Raopt and mid-level Qopt) and low quality of

Table 8 Multi-objective optimization process constraints

Optimal

parameter

Constraint Value type Decimal

place

Description (constraint, value type, decimal place)

Feed fopt (mm/

rev)

fmin B fiopt B fmax
0.1 B fiopt B 0.4

8i 2 ½1; . . .; n�

Continuous 3 In accordance with the experimental research conditions

(recommendations of the manufacturer turning inserts), the

accuracy of the machine tool and the possibility of setting the

feed on the machine tool

Cutting speed

vcopt (mm/

min)

vcmin B vciopt B vcmax
300 B vciopt B 400

8i 2 ½1; . . .; n�

Continuous 3 In accordance with the experimental research conditions

(recommendations of the manufacturer turning inserts), the

accuracy of the machine tool and the possibility of setting the

cutting speed on the machine tool

Depth of cut

apopt (mm)

apmin B apiopt B apmax
2 B apiopt B 3

8i 2 ½1; . . .; n�

Continuous 3 In accordance with the experimental research conditions

(recommendations of the manufacturer turning inserts), the

accuracy of the machine tool and the possibility of setting the

depth of cut on the machine tool

Corner radius

riopt (mm)

rimin B riopt B rimax
riopt = 0.4_0.8_1.2_1.6
8i 2 ½1; . . .; n�

Categorical

(discrete)

1 In accordance with the standard values of the corner radius of the

manufacturer of turning inserts

Flank wear

VBopt (mm)

VBmin B VBiopt B VBmax

0.147 B VBiopt B 0.293

8i 2 ½1; . . .; n�

Continuous 3 In accordance with the measuring range and accuracy of the

measuring device used to measure flank wear

Surface

roughness

Raopt (lm)

Ramin B Raiopt B Ramax
0.313 B Raiopt B 27.851

8i 2 ½1; . . .; n�

Continuous 3 In accordance with the measuring range and accuracy of the

measuring device used to measure surface roughness

Material

removal rate

Qopt (mm3/s)

Qmin B Qiopt B Qmax

1041.67 B Qiopt B 8571.43

8i 2 ½1; . . .; n�

Continuous 1 In accordance with the calculated experimental results

Table 9 The levels of GA parameters

Minimum Mean (optimum) Maximum

Pareto front fraction 0.25 0.35 0.45

Crossover ratio 0.8 1.2 1.6

Mutation rate 0.005 0.01 0.015

Crossover fraction 0.7 0.8 0.9
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machined surface (high level Raopt) and mid-level

productivity (mid-level Qopt).

• mid-level productivity (mid-level Qopt) can be realized

in correspondence with the simultaneous higher quality

of machined surface and/or low and mid-level flank

wear (low level Raopt and/or low level VBopt), mid-

quality of machined surface and mid-level flank wear

(mid-level Raopt and mid-level VBopt), mid- or worse

quality of machined surface and mid- or higher flank

wear (mid- or high level Raopt and mid- and high level

VBopt).

• high productivity (high level Qopt) can be realized in

correspondence with mid- or low quality of machined

surface (mid-level Raopt or high level Raopt) and/or mid-

or low level of cutting tool life (mid-level VBopt or high

level VBopt), but not with the simultaneous mid-quality

of machined surface and mid-level of cutting tool life

(mid-level Raopt and mid-level VBopt).

For the purpose of validation of optimal points obtained

by multi-objective optimization, confirmation experiments

were conducted. The confirmation experiments were car-

ried out in accordance with the plan presented in Table 13.

The experiments were performed for 12 optimal points, i.e.

12 optimal combinations of input process parameters (fopt,

vcopt, apopt, ropt). Following the conducted additional

experiments, measurement of flank wear (VB) and arith-

metical mean roughness (Ra) was carried out. Ordinal

numbers of optimal points shown in Table 13 correspond

with ordinal numbers of optimal points presented in

Figs. 10 and 11. Optimal combinations of input process

parameters were selected to include the complete optimal

surface shown in Figs. 10 and 11. This was done so that 10

Table 10 ANOVA table—multi-objective function

Source Sum of squares Degrees of freedom Mean square F value p value Prob[F

Model 0.939997887 9 0.10444421 107.220069 \ 0.0001

A-Pareto front fraction 0.000336002 1 0.000336002 0.34493173 0.5589

B-Crossover ratio 0.006225334 1 0.006225334 6.390787495 0.0137

C-Mutation rate 0.001348001 1 0.001348001 1.383827145 0.2434

D-Crossover fraction 0.002436135 1 0.002436135 2.500881223 0.1182

CD 0.00301401 1 0.00301401 3.094114659 0.0829

A2 0.008267551 1 0.008267551 8.487281489 0.0048

B2 0.18399526 1 0.18399526 188.8853826 \ 0.0001

C2 0.080249082 1 0.080249082 82.38189736 \ 0.0001

D2 0.654126511 1 0.654126511 671.511517 \ 0.0001

Residual 0.069161855 71 0.000974111

R2 0.931465899 Standard deviation 0.031210746

R2 adjusted 0.922778478 Mean 0.937946914

R2 for prediction 0.911777907 Coefficient of variation % 3.327559916

Adequate Precision 37.75476151 Predicted residual sum of squares 0.089030185

Fig. 9 3D response surface of

multi-objective function
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optimal points were selected from the limits of optimal

surface and 2 points from the mid-part of optimal surface.

In this way, objectivity in the selection of points was

achieved owing to the fact that all of the points were not

concentrated in a single part of the optimal surface; this

might have happened in the case of random selection of the

points for confirmation.

Quantitative evaluation of obtained results was per-

formed based on the following equations:

PExi ¼
xipov � ximv
�� ��

ximv
� 100% i ¼ 1; 2; . . .; 12

x ¼ VB;Ra

ð21Þ

MPEx ¼
100%

n

Xn

i¼1

xipov � ximv
ximv

����

���� i ¼ 1; 2; . . .; 12

x ¼ VB;Ra

ð22Þ

where PE—percentage error, MPE—mean percentage

error, xipv—predicted optimal value, ximv—measured value.

Errors were calculated only for the output process

parameters that were measured i.e. for flank wear (VB) and

arithmetical mean roughness (Ra). Error was not calculated

for material removal rate (Q), this being the output process

parameter that was being calculated. Very low values of

PE and MPE are to be noticed. PE for flank wear is in the

range (1.130–1.878) %, for arithmetical mean roughness it

is in the range (1.025–1.286) %. MPE are 1.478% and

1.146%, for flank wear and arithmetical mean roughness,

respectively.

The same as for the regression models, the correlation

between confirmed measured and obtained optimal GA

values for VB and Ra is given in Fig. 12. The statistical

measures—mean absolute error MAE, root mean square

error RMSE, mean relative error MRE and coefficient of

correlation R given in Table 14 prove that there is a very

strong correlation between confirmed measured and

obtained optimal GA values.

Finally, the calculated p values for the correlation

between measured and obtained GA optimal values are

much smaller than 0.05 which means that the correlation is

statistically significant.

The results of multi-objective optimization support the

hypothesis that it is possible to define a great number of

optimal combinations of input parameters. At this the

combination of optimal values of feed, cutting speed and

depth of cut is interdependent. It depends on the require-

ments of output process parameters, i.e. on the importance

and interrelation of surface quality, tool life and

productivity.

With the increase of requirements for higher quality of

machined surface, the importance of the machined surface

roughness also increases. In these cases, if there are no high

requirements for productivity, it is necessary to adopt feeds

ranging from minimal level to somewhat less than mid-

level (fopt = 0.1–0.19 mm/rev), cutting speeds ranging

from close to minimal level to close to mid-level (vcopt-
= 307–342 m/min) and depths of cut in a wide range from

minimal to maximal level (apopt = 2.04–2.9 mm). As the

significance of productivity increases, feed also increases

(fopt = 0.23–0.25 mm/rev) as well as cutting speed (vcopt-
= 329–381 mm/rev) and depth of cut (apopt-
= 2.53–2.82 mm). Higher corner radii of turning inserts

ensure better quality of machined surface. In doing so, the

higher radius compensates for the negative effect of

increasing feed on the quality of machined surface.

Therefore, the higher corner radius of turning insert enables

Fig. 10 Optimal surface and points for different combinations of output process parameters
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the machining even with higher feeds and obtaining the

corresponding quality of machined surface.

With increased requirements for dimensional accuracy

and precision, higher requirements for geometric specifi-

cations of products and higher requirements for reducing

costs, the importance of the turning insert wear also

increases. In these cases, the feed should be adopted

ranging from the minimal to the mid-level (fopt-
= 0.1–0.24 mm/rev), depth of cut in a wide range from the

minimal to the maximal level (apopt = 2.04–2.9 mm), and

Fig. 11 Discretized areas—regions with optimal points in which there are combinations of output process parameters
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cutting speed ranging from close to minimal level to close

to mid-level (vcopt = 307–342 m/min). As the significance

of productivity increases, feed also increases (fopt-
= 0.23–0.25 mm/rev) as well as cutting speed (vcopt-
= 324–374 mm/rev) and depth of cut

(apopt = 2.53–2.82 mm). The level of the cutting speed,

feed and depth of cut rises gently with the increase of

requirements for higher productivity and decreases gently

with the increase of requirements for the quality of

machined surface.

By increasing the batch size and/or reducing the times of

production, the importance of productivity also increases,

i.e. the importance of material removal rate (chip quantity

in time). In such cases, feeds should be adopted ranging

from close to mid-level to maximal level (fopt-
= 0.32–0.4 mm/rev), cutting speeds in the range from

close to mid-level to close to maximal level (vcopt-
= 340–384 mm/rev) and depth of cut is either close to

maximal level or is at the maximal level (apopt-
= 2.69–3 mm). As the importance of the machined surface

quality and the cutting insert wear increases, lower values

of feed (close to the mid-level, fopt = 0.32 mm/rev) and

lower values of cutting speed (close to the mid-level

vcopt = 334–340 mm/rev) should be adopted as well as

higher values of the depth of cut (close to maximal level,

apopt = 2.79–2.87 mm). This is the result of the fact that

Table 11 Ranges of optimal output process parameters

Level Output process parameters

Raopt (lm) VBopt (lm) Qopt (mm3/s)

Range Description Range Description Range Description

Low 0.315–2.131 High quality of machined surface 0.150–0.172 Low flank wear 1088.384–3456.706 Low productivity

Mid 2.199–3.846 Mid-quality of machined surface 0.174–0.195 Mid-flank wear 3468.370–5817.206 Mid-productivity

High 4.084–5.808 Low quality of machined surface 0.196–0.218 High flank wear 5892.356–8228.571 High productivity

Table 12 Possible combinations of optimal input and output process parameters

Case Optimal point

number (Figs. 5,

6, 7)

Output process

parameters level

Optimal values of output process parameters Optimal values of input process

parameters

Raopt VBopt Qopt Raopt (lm) VBopt (mm) Qopt (mm3/s) fopt (mm/

rev)

vcopt (m/

min)

apopt
(mm)

ropt
(mm)

1 1, 2, 3, 4, 5, 6, 8,

9, 10, 11, 12,

13, 16

Low Low Low 0.315–1.153 0.15–0.172 1088.384–2586.276 0.1–0.19 307–342 2.04–2.9 1.6

2 22 Low Low Mid 1.966 0.171 3468.37 0.24 319 2.57 1.6

3 7, 14, 15, 17, 18,

19, 20

Low Mid Low 0.581–1.815 0.175–0.188 2394.66–3456.706 0.13–0.23 329–381 2.55–2.84 1.6

4 21, 23, 24 Low Mid Mid 1.899–2.131 0.174–0.195 3608.298–4307.589 0.23–0.25 324–374 2.53–2.82 1.6

5 25 Mid Low Low 2.199 0.168 3049.678 0.26 310 2.17 1.6

6 27, 28, 30, 31 32,

33, 35, 36, 37,

40, 41

Mid Mid Mid 2.389–3.846 0.177–0.194 4199.616–5537.449 0.26–0.33 319–357 2.52–2.96 1.6

7 26, 29, 34 Mid High Mid 2.236–3.268 0.196–0.204 4549.807–5722.441 0.25–0.3 372–378 2.76–2.85 1.6

8 38, 39 Mid High High 3.679–3.726 0.2–0.203 5892.356–6064.285 0.32 363–372 2.79–2.93 1.6

9 43 High Mid Mid 4.084 0.195 5817.206 0.34 347 2.78 1.6

10 47, 51, 52 High Mid High 4.34–4.962 0.191–0.195 5966.851–6129.646 0.35–0.38 334–340 2.69–2.87 1.6

11 42 High High Mid 4.025 0.199 5645.321 0.34 359 2.62 1.6

12 44, 45, 46, 48, 49,

50, 53, 54, 55,

56, 57, 58, 59,

60

High High High 4.121–5.808 0.198–0.218 6171.103–8228.571 0.34–0.4 340–384 2.73–3 1.6
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Table 13 Results of confirmation experiments

Optimal

point

Optimal combinations of input process

parameters

Calculated output

process parameter

Predicted optimal

output process

parameters

Measured output

process parameters

Percentage

error

fopt
(mm/

rev)

vcopt
(mm/min)

apopt
(mm)

ropt
(mm)

Qopt (mm3/s) VBopt

(mm)

Raopt
(lm)

VBmeas

(mm)

Rameas (lm) PEVB

(%)

PERa

(%)

1 0.1 307 2.04 1.6 1088.384 0.150 0.315 0.152 0.311 1.316 1.286

6 0.12 342 2.7 1.6 1960.644 0.170 0.483 0.168 0.488 1.190 1.025

7 0.13 381 2.73 1.6 2394.66 0.188 0.581 0.185 0.574 1.622 1.220

16 0.19 316 2.05 1.6 2139.528 0.163 1.153 0.165 1.141 1.212 1.052

19 0.2 341 2.69 1.6 3245.163 0.177 1.383 0.174 1.367 1.724 1.170

25 0.26 310 2.17 1.6 3049.678 0.168 2.199 0.171 2.174 1.754 1.150

29 0.27 376 2.85 1.6 5142.556 0.200 2.646 0.197 2.674 1.523 1.047

37 0.32 319 2.52 1.6 4528.094 0.179 3.469 0.177 3.505 1.130 1.027

42 0.34 359 2.62 1.6 5645.321 0.199 4.025 0.202 3.974 1.485 1.283

45 0.34 381 2.82 1.6 6486.923 0.209 4.171 0.213 4.215 1.878 1.044

56 0.39 340 2.97 1.6 7025.867 0.198 5.406 0.195 5.339 1.538 1.255

60 0.4 384 3 1.6 8228.571 0.218 5.808 0.221 5.878 1.357 1.191

Minimum

PE (%)

1.130 1.025

Maximum

PE (%)

1.878 1.286

MPE (%) 1.478 1.146

Fig. 12 Optimal GA versus measured values. a Flank wear VB, b surface roughness Ra

Table 14 Statistical measures for comparison of predicted GA optimal and measured values

Response Mean absolute error MAE Root mean square error RMSE Mean relative error MRE Coefficient of correlation R

VB (mm) 0.00275 0.00281 0.01478 0.990052

Ra (lm) 0.030417 0.03777 0.01146 0.999797
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depth of cut has no essential impact on surface roughness

and flank wear. In other words, the higher the importance

of productivity for machining process, the higher depths of

cut are to be used.

Based on the foregoing the following statements in

connection with the common action of two of the three

considered output process parameters can be presented.

Better surface quality and higher tool life are achieved at

smaller feeds and smaller cutting speeds. In case of smaller

requirements for productivity, depth of cut is to be smaller.

With increased requirements for productivity, it is desirable

to increase depth of cut. The increased depth of cut has the

least negative effect on surface roughness increase and

flank wear. Better surface quality and higher productivity

are achieved at smaller feed and higher depths of cut. In

case of less requirements for tool wear, cutting speed is to

be higher. With increasing requirements for smaller wear,

it is desirable to keep cutting speed reducing. Increasing

the depth of cut has the least negative effect on declining

the surface quality and productivity. Longer tool life and

higher productivity are achieved at smaller cutting speeds

and higher depths of cut. In case of smaller requirements

for surface quality, feed is to be higher. With increased

requirements for better surface quality, it is desirable to

reduce feed.

Lower levels of optimal combinations of values of sur-

face roughness, flank wear and productivity (material

removal rate) are achieved at maximal values of corner

radius of turning insert (ropt = 1.6 mm), feeds in the range

from minimal values to those close to mid-level (fopt-
= 0.1–0.19 mm/rev), cutting speeds in the range from

minimal values to close to mid-values (vcopt = 307–342 m/

min) and depths of cut in the wide range from minimal

values to maximal values (apopt = 2.04–2.9 mm). Produc-

tivity increase is easiest to achieve on account of depth of

cut.

Mid-levels of optimal combinations of values of surface

roughness, flank wear and productivity (material removal

rate) are achieved at maximal values of corner radius of

turning insert (ropt = 1.6 mm), feeds that correspond to

mid-values (fopt = 0.26–0.233 mm/rev), cutting speeds in

the range from those close to minimal value to those close

to mid-value (vcopt = 319–357 m/min) and depths of cut in

the range from mid-values to maximal values (apopt-
= 2.52–2.96 mm). In this case, smaller values of cutting

speed correspond to higher values of feed and vice versa.

Higher levels of optimal value combinations of surface

roughness, flank wear and productivity (material removal

rate) are achieved at maximal values of corner radius of

turning insert (ropt = 1.6 mm), feeds in the range from the

values close to mid-values to maximal values (fopt-
= 0.34–0.4 mm/rev), cutting speeds in the range from

close to mid-values to close to maximal values

(vcopt = 340–384 m/min) and depths of cut in the range

from values close to mid-values to maximal values

(apopt = 2.73–3 mm).

Roughness of machined surface is a parameter of qual-

ity, which depends on geometric and technologic require-

ments of production. It may be an essential matter but a

less essential as well in particular if some other finishing

machining operation is performed after the operation of

turning. As a rule, the flank wear of cutting insert directly

affects the dimensional and geometric accuracy of

machining. Apart from this it also affects machining costs

considering the fact that the cutting insert which wears

quicker becomes unusable and has to be replaced. The chip

quantity is an essential output characteristic in case of

larger batches or when production times are very short. In

these cases, it is necessary to remove chip as soon as

possible. That is why it is not always necessary to insist on

general combination of optimal output process parameters.

The essential point is to achieve the necessary values, i.e.

optimal combinations in the complete feasible region. The

achieved results of multi-objective optimization show that

without regard to technological requirements of produc-

tion, it is always suitable to perform turning with higher

corner radii of turning inserts. This is the consequence of

the fact that the turning inserts with bigger corner radius

wear slower and at the same time generate a better quality

surface i.e. surface with smaller roughness. Moreover, by

increasing the importance of machined surface quality and/

or tool life, machining should always be performed with

higher corner radii of turning inserts, smaller cutting

speeds, smaller feeds and higher depths of cut. With

increased depth of cut, productivity (material removal rate)

is also increased without notably affecting the surface

quality and tool life.

4 Conclusion

In the present research, the authors conducted multi-ob-

jective optimization of cutting speed, feed, depth of cut and

corner radius of turning insert from the point of their effect

on the surface roughness, flank wear and material removal

rate. Instead of the usual approach of obtaining only one

combination of optimal parameters, a large number of

combinations of optimal input process parameters were

obtained, depending on the importance of each output

process parameter, i.e. requirements of production.

Based on experimental researches, the arithmetical

mean roughness of the surface is in the range Ra =

0.313–27.851 lm. This means that by an appropriate

choice of the input process parameters exceptionally high

quality of a machined surface can be obtained, but worse

quality as well. In other words, by an appropriate
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combination of the input process parameters the turning

operation can be conducted as finish machining, medium

machining and rough machining. Further on, a cutting

insert flank wear covers the range of VB = 0.147–0.293

mm. The ratio maximum to minimum is approximately 2.

This means that an appropriate combination of the input

process parameters can result in a considerable influence

on the intensity of cutting insert wear. Consequently, there

is a possibility of considerable influence on the necessary

dimensional accuracy and precision, geometric specifica-

tions and costs. To be noticed is also the possibility of

considerable influence on productivity taking into consid-

eration its wide range of Q = 1041.67–8571.43 mm3/s.

Optimal combinations of input process parameters

(Raopt = 0.315–5.808 lm, VBopt = 0.150–0.218 mm, Qopt-

= 1088.384–8228.571 mm3/s) vary on a large scale.

Optimal combinations of input process parameters depend

on requirements defined in production plan, i.e. on

importance of output process parameters. For different

relations in importance of surface quality, tool life and

productivity, different optimal combinations of input pro-

cess parameters are obtained (Raopt = 0.315–5.808 lm,

VBopt = 0.150–0.218 mm, Qopt = 1088.384–8228.571

mm3/s). The trend of the optimal input parameters’ influ-

ence on the optimal output process parameters is similar to

that for experimental researches. It is of the essence to

emphasize that there are very small differences in the

ranges of experimental results and optimal results. This

means that the possibilities will not be limited largely by

optimization, and on the other hand, there is a possibility to

have a considerable impact on obtaining better output

parameters of the turning process.

The obtained results indicate that AISI 1040 steel

workpiece turning with CVD coated turning inserts is

convenient to perform with larger corner radii of turning

inserts (r = 1.6 mm) regardless of production require-

ments. For the same machining parameters, turning inserts

with larger corner radii always generate better quality of

the machined surface and less flank wear, i.e. greater tool

life. Depth of cut shows the least negative effect on flank

wear and machined surface quality in terms of their getting

worse. At the same time, higher depth of cut affects the

increase of material removal rate. Therefore, optimal val-

ues of depth of cut increase with increase of the importance

(weight) of productivity. It is appropriate to conduct

machining with higher depths of cut for almost the com-

plete feasible region of solutions. High depths of cut should

not be applied only in case of small batches and in case the

times of production are not short.

Earlier application of GA in turning operations indicated

some disadvantages. Convergence of the GA is not always

guaranteed. There exists no universal rule for selection of

appropriate GA parameters. Also, GA may need substantial

time to arrive at optimal solutions, accompanied by low

speed of convergence and repeatability of results. There-

fore, as a rule, a confirmation experiment is conducted to

confirm or refute the validity of the model. The model is

considered applicable in practice, if the MPE occurred is

less than 5%, since these errors ensure that the turning

operation is performed within the machining tolerances and

the geometric product specifications. In this study, the

results of confirmation experiments confirmed the validity

of results obtained by optimization, proving that in spite of

possible disadvantages, the solutions close to global opti-

mum could be found by the use of genetic algorithm. The

calculated PE and MPE, between the results obtained by

multi-objective optimization and the results obtained by

measuring after the confirmation experiments, are low.

MPE of 1.478% for flank wear and 1.146% for arithmetical

mean roughness are considered highly acceptable for

practical application of multi-objective optimization based

on genetic algorithm, in industry.

The applied methodology is limited to conditions,

equipment and parameters used in performing this experi-

mental research and to the workpiece material AISI 1040

steel. This presents its basic limitation. However, the

methodology is quite generalized and universal so that with

additional experimental researches it can also be applied to

other machining operations, workpiece materials, condi-

tions of machining, etc. In addition, all types of wear

mechanisms and chip morphology will be analysed in

detail in future research. Furthermore, future researches

will be directed to considering higher number of input

process parameters. This will contribute to the optimization

of the process considering a higher number of criteria. In

addition, in the future it is planned to develop, apply and

compare the performance of different modeling and opti-

mization techniques, as well as the development of hybrid

approaches, in order to improve the turning process.

Appendix

See Table 15.
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Table 15 Optimal combinations of input process parameters for different optimal combinations of output process parameters

Optimal point Optimal combinations of output process parameters Optimal combinations of input process parameters

Raopt (lm) VBopt (mm) Qopt (mm3/s) fopt (mm/rev) vcopt (mm/min) apopt (mm) ropt (mm)

1 0.315 0.150 1088.384 0.1 307 2.04 1.6

2 0.319 0.152 1201.549 0.1 310 2.22 1.6

3 0.382 0.152 1256.993 0.11 308 2.13 1.6

4 0.456 0.153 1405.273 0.12 308 2.18 1.6

5 0.463 0.155 1543.494 0.12 311 2.36 1.6

6 0.483 0.170 1960.644 0.12 342 2.7 1.6

7 0.581 0.188 2394.660 0.13 381 2.73 1.6

8 0.634 0.159 1807.467 0.14 315 2.34 1.6

9 0.672 0.172 2457.285 0.14 340 2.9 1.6

10 0.722 0.157 1828.125 0.15 310 2.25 1.6

11 0.736 0.160 2016.005 0.15 315 2.43 1.6

12 0.843 0.163 2194.135 0.16 320 2.44 1.6

13 0.871 0.172 2586.276 0.16 337 2.71 1.6

14 0.977 0.176 2650.096 0.17 347 2.55 1.6

15 0.989 0.184 2830.507 0.17 366 2.58 1.6

16 1.153 0.163 2139.528 0.19 316 2.05 1.6

17 1.246 0.180 3138.904 0.19 350 2.67 1.6

18 1.268 0.182 3374.928 0.19 352 2.84 1.6

19 1.383 0.177 3245.163 0.2 341 2.69 1.6

20 1.815 0.175 3456.706 0.23 329 2.59 1.6

21 1.899 0.195 4307.589 0.23 374 2.82 1.6

22 1.966 0.171 3468.370 0.24 319 2.57 1.6

23 2.007 0.178 3818.096 0.24 333 2.7 1.6

24 2.131 0.174 3608.298 0.25 324 2.53 1.6

25 2.199 0.168 3049.678 0.26 310 2.17 1.6

26 2.236 0.196 4549.807 0.25 372 2.76 1.6

27 2.389 0.190 4434.380 0.26 357 2.7 1.6

28 2.539 0.185 4295.735 0.27 344 2.62 1.6

29 2.646 0.200 5142.556 0.27 376 2.85 1.6

30 2.877 0.177 4199.616 0.29 321 2.56 1.6

31 2.947 0.181 4602.970 0.29 327 2.74 1.6

32 3.048 0.189 5251.061 0.29 343 2.96 1.6

33 3.183 0.188 5019.464 0.3 342 2.76 1.6

34 3.268 0.204 5722.441 0.3 378 2.84 1.6

35 3.360 0.186 4961.327 0.31 335 2.7 1.6

36 3.443 0.194 5490.819 0.31 351 2.84 1.6

37 3.469 0.179 4528.094 0.32 319 2.52 1.6

38 3.679 0.203 5892.356 0.32 372 2.79 1.6

39 3.726 0.200 6064.285 0.32 363 2.93 1.6

40 3.841 0.187 5448.819 0.33 331 2.81 1.6

41 3.846 0.190 5537.449 0.33 339 2.79 1.6

42 4.025 0.199 5645.321 0.34 359 2.62 1.6

43 4.084 0.195 5817.206 0.34 347 2.78 1.6

44 4.121 0.205 6171.103 0.34 371 2.76 1.6

45 4.171 0.209 6486.923 0.34 381 2.82 1.6

46 4.329 0.203 6193.335 0.35 366 2.73 1.6

47 4.340 0.191 5966.851 0.35 334 2.87 1.6

12472 Neural Computing and Applications (2021) 33:12445–12475

123



Acknowledgements The results presented in this paper are obtained

in the framework of the Project No. SV001 entitled ‘‘Modelling and

optimizing processes applicable in maintenance’’ funded by the

University of Slavonski Brod, Mechanical Engineering Faculty in

Slavonski Brod, Republic of Croatia, and within the Project No.

451-03-68/2020-14/200156 entitled ‘‘Innovative scientific and artistic

research from the FTS (activity) domain’’ funded by the Ministry of

Education, Science and Technological Development of Republic of

Serbia.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Gok A (2015) A new approach to minimization of the surface

roughness and cutting force via fuzzy TOPSIS, multi-objective

grey design and RSA. Measurement 70:100–109. https://doi.org/

10.1016/j.measurement.2015.03.037

2. Dureja J, Gupta V, Sharma VS, Dogra M, Bhatti MS (2016) A

review of empirical modeling techniques to optimize machining

parameters for hard turning applications. Proc Inst Mech Eng B J

Eng Manuf 230:389–404. https://doi.org/10.1177/

0954405414558731

3. Singh R, Dureja JS, Dogra M, Randhawa JS (2019) Optimization

of machining parameters under MQL turning of Ti–6Al–4V alloy

with textured tool using multi-attribute decision-making methods.

World J Eng 16:648–659. https://doi.org/10.1108/WJE-06-2019-

0170

4. Nguyen TT (2020) An energy-efficient optimization of the hard

turning using rotary tool. Neural Comput Appl. https://doi.org/10.

1007/s00521-020-05149-2

5. Tuffy K, Byrne G, Dowling D (2004) Determination of the

optimum TiN coating thickness on WC inserts for machining

carbon steels. J Mater Process Technol 155–156:1861–1866.

https://doi.org/10.1016/j.jmatprotec.2004.04.277

6. Gunay M, Seker U, Sur G (2006) Design and construction of a

dynamometer to evaluate the influence of cutting tool rake angle

on cutting forces. Mater Des 27:1097–1101. https://doi.org/10.

1016/j.matdes.2005.04.003

7. Yaldiz S, Unsacar F, Saglam H (2006) Comparison of experi-

mental results obtained by designed dynamometer to fuzzy model

for predicting cutting forces in turning. Mater Des

27(10):1139–1147. https://doi.org/10.1016/j.matdes.2005.03.010

8. Saglam H, Unsacar F, Yaldiz S (2006) Investigation of the effect

of rake angle and approaching angle on main cutting force and

tool tip temperature. Int J Mach Tools Manuf 46:132–141. https://

doi.org/10.1016/j.ijmachtools.2005.05.002

9. Salgado DR, Alonso FJ (2007) An approach based on current and

sound signals for in-process tool wear monitoring. Int J Mach

Tools Manuf 47:2140–2152. https://doi.org/10.1016/j.ijmach

tools.2007.04.013

10. Asilturk I, Cunkas M (2011) Modeling and prediction of surface

roughness in turning operations using artificial neural network

and multiple regression method. Expert Syst Appl 38:5826–5832.

https://doi.org/10.1016/j.eswa.2010.11.041

11. Neseli S, Yaldiz S, Turkes E (2011) Optimization of tool

geometry parameters for turning operations based on the response

surface methodology. Measurement 44(3):580–587. https://doi.

org/10.1016/j.measurement.2010.11.018

12. Topal ES, Cogun C (2011) Computer-based estimation and

compensation of diametral errors in CNC turning of cantilever

bars. J Intell Manuf 22:853–865. https://doi.org/10.1007/s10845-

009-0360-0

13. Cohen G, Gilles P, Segonds S, Mousseigne M, Lagarrigue P

(2012) Thermal and mechanical modeling during dry turning

operations. Int J Adv Manuf Technol 58:133–140. https://doi.org/

10.1007/s00170-011-3372-9

14. Asilturk I (2012) Predicting surface roughness of hardened AISI

1040 based on cutting parameters using neural networks and

multiple regression. Int J Adv Manuf Technol 63:249–257.

https://doi.org/10.1007/s00170-012-3903-z

15. Venkata Rao K, Murthy BSN, Mohan Rao N (2013) Cutting tool

condition monitoring by analyzing surface roughness, work piece

vibration and volume of metal removed for AISI 1040 steel in

boring. Measurement 46:4075–4084. https://doi.org/10.1016/j.

measurement.2013.07.021

Table 15 (continued)

Optimal point Optimal combinations of output process parameters Optimal combinations of input process parameters

Raopt (lm) VBopt (mm) Qopt (mm3/s) fopt (mm/rev) vcopt (mm/min) apopt (mm) ropt (mm)

48 4.376 0.202 6369.139 0.35 362 2.83 1.6

49 4.636 0.202 6584.845 0.36 357 2.88 1.6

50 4.679 0.212 6992.740 0.36 382 2.86 1.6

51 4.730 0.194 6009.966 0.37 340 2.7 1.6

52 4.962 0.195 6129.646 0.38 339 2.69 1.6

53 5.150 0.199 6895.276 0.38 345 2.95 1.6

54 5.251 0.211 7572.857 0.38 372 3 1.6

55 5.252 0.213 7638.861 0.38 378 2.98 1.6

56 5.406 0.198 7025.867 0.39 340 2.97 1.6

57 5.429 0.211 7441.366 0.39 371 2.89 1.6

58 5.521 0.217 7935.096 0.39 384 2.97 1.6

59 5.782 0.217 8117.366 0.4 383 2.97 1.6

60 5.808 0.218 8228.571 0.4 384 3 1.6

Neural Computing and Applications (2021) 33:12445–12475 12473

123

https://doi.org/10.1016/j.measurement.2015.03.037
https://doi.org/10.1016/j.measurement.2015.03.037
https://doi.org/10.1177/0954405414558731
https://doi.org/10.1177/0954405414558731
https://doi.org/10.1108/WJE-06-2019-0170
https://doi.org/10.1108/WJE-06-2019-0170
https://doi.org/10.1007/s00521-020-05149-2
https://doi.org/10.1007/s00521-020-05149-2
https://doi.org/10.1016/j.jmatprotec.2004.04.277
https://doi.org/10.1016/j.matdes.2005.04.003
https://doi.org/10.1016/j.matdes.2005.04.003
https://doi.org/10.1016/j.matdes.2005.03.010
https://doi.org/10.1016/j.ijmachtools.2005.05.002
https://doi.org/10.1016/j.ijmachtools.2005.05.002
https://doi.org/10.1016/j.ijmachtools.2007.04.013
https://doi.org/10.1016/j.ijmachtools.2007.04.013
https://doi.org/10.1016/j.eswa.2010.11.041
https://doi.org/10.1016/j.measurement.2010.11.018
https://doi.org/10.1016/j.measurement.2010.11.018
https://doi.org/10.1007/s10845-009-0360-0
https://doi.org/10.1007/s10845-009-0360-0
https://doi.org/10.1007/s00170-011-3372-9
https://doi.org/10.1007/s00170-011-3372-9
https://doi.org/10.1007/s00170-012-3903-z
https://doi.org/10.1016/j.measurement.2013.07.021
https://doi.org/10.1016/j.measurement.2013.07.021


16. Venkata Rao K, Murthy B, Mohan Rao N (2015) Experimental

study on surface roughness and vibration of workpiece in boring

of AISI 1040 steels. Proc Inst Mech Eng B J Eng Manuf

229:703–712. https://doi.org/10.1177/0954405414531247

17. Prasad BS, Babu MP, Reddy YR (2016) Evaluation of correlation

between vibration signal features and three-dimensional finite

element simulations to predict cutting tool wear in turning

operation. Proc Inst Mech Eng B J Eng Manuf 230:203–214.

https://doi.org/10.1177/0954405414554018

18. Venkata Rao K, Vidhu KP, Kumar TA, Rao NN, Murthy

PBGSN, Balaji M (2016) An artificial neural network approach to

investigate surface roughness and vibration of workpiece in

boring of AISI1040 steels. Int J Adv Manuf Technol 83:919–927.

https://doi.org/10.1007/s00170-015-7621-1

19. Yadav RN (2017) A hybrid approach of Taguchi-response sur-

face methodology for modeling and optimization of duplex

turning process. Measurement 100:131–138. https://doi.org/10.

1016/j.measurement.2016.12.060

20. Haque T, Kumar S, Upadhaya D, Barman M, Mukhopadhyay A

(2017) Optimization of multiple roughness characteristics for

turning of AISI 1040 steel under different cutting conditions. Int J

Eng Technol 10:1–10. https://doi.org/10.18052/www.scipress.

com/ijet.10.1

21. Akkus H (2018) Optimising the effect of cutting parameters on

the average surface roughness in a turning process with the

Taguchi method. Mater Tehnol 52:781–785. https://doi.org/10.

17222/mit.2018.110

22. Jhodkar D, Amarnath M, Chelladurai H, Ramkumar J (2018)

Performance assessment of microwave treated WC insert while

turning AISI 1040 steel. J Mech Sci Technol 32:2551–2558.

https://doi.org/10.1007/s12206-018-0512-2

23. Jhodkar D, Amarnath M, Chelladurai H, Ramkumar J (2018)

Experimental investigations to enhance the machining perfor-

mance of tungsten carbide tool insert using microwave treatment

process. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/

s40430-018-1096-6

24. Dhar NR, Paul S, Chattopadhyay AB (2002) The influence of

cryogenic cooling on tool wear, dimensional accuracy and sur-

face finish in turning AISI 1040 and E4340C steels. Wear

249:932–942. https://doi.org/10.1016/s0043-1648(01)00825-0

25. Dhar NR, Ahmed MT, Islam S (2007) An experimental investi-

gation on effect of minimum quantity lubrication in machining

AISI 1040 steel. Int J Mach Tools Manuf 47:748–753. https://doi.

org/10.1016/j.ijmachtools.2006.09.017

26. Vamsi Krishna P, Rao DN, Srikant RR (2009) Predictive mod-

elling of surface roughness and tool wear in solid lubricant

assisted turning of AISI 1040 steel. Proc Inst Mech Eng J Eng

Tribol 223:929–934. https://doi.org/10.1243/13506501jet475

27. Ramana SV, Ramji K, Satyanarayana B (2010) Studies on the

behaviour of the green particulate fluid lubricant in its nano

regime when machining AISI 1040 steel. Proc Inst Mech Eng B J

Eng Manuf 224:1491–1501. https://doi.org/10.1243/

09544054jem1862

28. Vamsi Krishna P, Srikant RR, Nageswara Rao D (2010) Exper-

imental investigation on the performance of nanoboric acid sus-

pensions in SAE-40 and coconut oil during turning of AISI 1040

steel. Int J Mach Tools Manuf 50:911–916. https://doi.org/10.

1016/j.ijmachtools.2010.06.001

29. Amrita M, Srikant R, Sitaramaraju A, Prasad M, Krishna PV

(2013) Experimental investigations on influence of mist cooling

using nanofluids on machining parameters in turning AISI 1040

steel. Proc Inst Mech Eng J Eng Tribol 227:1334–1346. https://

doi.org/10.1177/1350650113491934

30. Srikiran S, Ramji K, Satyanarayana B, Ramana S (2014) Inves-

tigation on turning of AISI 1040 steel with the application of

nano-crystalline graphite powder as lubricant. Proc Inst Mech

Eng C J Mech Eng Sci 228:1570–1580. https://doi.org/10.1177/

0954406213509612

31. Gupta MK, Singh G, Sood PK (2015) Experimental investigation

of machining AISI 1040 medium carbon steel under cryogenic

machining: a comparison with dry machining. J Inst Eng India

Ser C 96:373–379. https://doi.org/10.1007/s40032-015-0178-9

32. Padmini R, Krishna PV, Mohana Rao GK (2016) Experimental

evaluation of nano-molybdenum disulphide and nano-boric acid

suspensions in vegetable oils as prospective cutting fluids during

turning of AISI 1040 steel. Proc Inst Mech Eng J Eng Tribol

230:493–505. https://doi.org/10.1177/1350650115601694

33. Ajay Vardhaman BS, Amarnath M, Jhodkar D, Ramkumar J,

Chelladurai H, Roy MK (2018) Influence of coconut oil on tri-

bological behavior of carbide cutting tool insert during turning

operation. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/

s40430-018-1379-y

34. Mia M, Dhar NR (2019) Prediction and optimization by using

SVR, RSM and GA in hard turning of tempered AISI 1060 steel

under effective cooling condition. Neural Comput Appl

31:2349–2370. https://doi.org/10.1007/s00521-017-3192-4

35. Usha M, Rao GS (2020) Optimization of multiple objectives by

genetic algorithm for turning of AISI 1040 steel using Al2O3

nano fluid with MQL. Trib Ind 42:70–80. https://doi.org/10.

24874/ti.2020.42.01.07

36. Sahinoglu A, Rafighi M (2020) Optimization of cutting param-

eters with respect to roughness for machining of hardened AISI

1040 steel. Mater Test 62:85–95. https://doi.org/10.3139/120.

111458

37. Gugulothu S, Pasa VK (2020) Experimental investigation to

study the performance of CNT/MoS2 hybrid nanofluid in turning

of AISI 1040 steel. Aust J Mech Eng. https://doi.org/10.1080/

14484846.2020.1756067

38. Yildiz AR (2012) A comparative study of population-based

optimization algorithms for turning operations. Inf Sci

210:81–88. https://doi.org/10.1016/j.ins.2012.03.005

39. Ahilan C, Kumanan S, Sivakumaran N, Edwin Raja Dhas J

(2013) Modeling and prediction of machining quality in CNC

turning process using intelligent hybrid decision making tools.

Appl Soft Comput 13:1543–1551. https://doi.org/10.1016/j.asoc.

2012.03.071

40. Chandrasekaran M, Muralidhar M, Krishna CM, Dixit US (2010)

Application of soft computing techniques in machining perfor-

mance prediction and optimization: a literature review. Int J Adv

Manuf Technol 46:445–464. https://doi.org/10.1007/s00170-009-

2104-x

41. Garg A, Bhalerao Y, Tai K (2013) Review of empirical mod-

elling techniques for modelling of turning process. Int J Model

Identif Control 20:121–129. https://doi.org/10.1504/ijmic.2013.

056184

42. Sibalija TV (2019) Particle swarm optimisation in designing

parameters of manufacturing processes: A review (2008–2018).

Appl Soft Comput 84:105743. https://doi.org/10.1016/j.asoc.

2019.105743

43. Yusup N, Zain AM, Hashim SZM (2012) Evolutionary tech-

niques in optimizing machining parameters: review and recent

applications (2007–2011). Expert Syst Appl 39:9909–9927.

https://doi.org/10.1016/j.eswa.2012.02.109

44. Leo Kumar SP (2017) State of the art-intense review on artificial

intelligence systems application process i planning and manu-

facturing. Eng Appl Artif Intell 65:294–329. https://doi.org/10.

1016/j.engappai.2017.08.005

45. Sterpin Valic G, Cukor G, Jurkovic Z, Brezocnik M (2019)

Multi-criteria optimization of turning of martensitic stainless

steel for sustainability. Int J Simul Model 18:632–642. https://doi.

org/10.2507/IJSIMM18(4)495

12474 Neural Computing and Applications (2021) 33:12445–12475

123

https://doi.org/10.1177/0954405414531247
https://doi.org/10.1177/0954405414554018
https://doi.org/10.1007/s00170-015-7621-1
https://doi.org/10.1016/j.measurement.2016.12.060
https://doi.org/10.1016/j.measurement.2016.12.060
https://doi.org/10.18052/www.scipress.com/ijet.10.1
https://doi.org/10.18052/www.scipress.com/ijet.10.1
https://doi.org/10.17222/mit.2018.110
https://doi.org/10.17222/mit.2018.110
https://doi.org/10.1007/s12206-018-0512-2
https://doi.org/10.1007/s40430-018-1096-6
https://doi.org/10.1007/s40430-018-1096-6
https://doi.org/10.1016/s0043-1648(01)00825-0
https://doi.org/10.1016/j.ijmachtools.2006.09.017
https://doi.org/10.1016/j.ijmachtools.2006.09.017
https://doi.org/10.1243/13506501jet475
https://doi.org/10.1243/09544054jem1862
https://doi.org/10.1243/09544054jem1862
https://doi.org/10.1016/j.ijmachtools.2010.06.001
https://doi.org/10.1016/j.ijmachtools.2010.06.001
https://doi.org/10.1177/1350650113491934
https://doi.org/10.1177/1350650113491934
https://doi.org/10.1177/0954406213509612
https://doi.org/10.1177/0954406213509612
https://doi.org/10.1007/s40032-015-0178-9
https://doi.org/10.1177/1350650115601694
https://doi.org/10.1007/s40430-018-1379-y
https://doi.org/10.1007/s40430-018-1379-y
https://doi.org/10.1007/s00521-017-3192-4
https://doi.org/10.24874/ti.2020.42.01.07
https://doi.org/10.24874/ti.2020.42.01.07
https://doi.org/10.3139/120.111458
https://doi.org/10.3139/120.111458
https://doi.org/10.1080/14484846.2020.1756067
https://doi.org/10.1080/14484846.2020.1756067
https://doi.org/10.1016/j.ins.2012.03.005
https://doi.org/10.1016/j.asoc.2012.03.071
https://doi.org/10.1016/j.asoc.2012.03.071
https://doi.org/10.1007/s00170-009-2104-x
https://doi.org/10.1007/s00170-009-2104-x
https://doi.org/10.1504/ijmic.2013.056184
https://doi.org/10.1504/ijmic.2013.056184
https://doi.org/10.1016/j.asoc.2019.105743
https://doi.org/10.1016/j.asoc.2019.105743
https://doi.org/10.1016/j.eswa.2012.02.109
https://doi.org/10.1016/j.engappai.2017.08.005
https://doi.org/10.1016/j.engappai.2017.08.005
https://doi.org/10.2507/IJSIMM18(4)495
https://doi.org/10.2507/IJSIMM18(4)495


46. Ghosh T, Martinsen K (2020) Generalized approach for multi-

response machining process optimization using machine learning

and evolutionary algorithms. Eng Sci Technol Int J 23:650–663.

https://doi.org/10.1016/j.jestch.2019.09.003

47. Chavez-Garcia H, Castillo-Villar KK (2018) Simulation-based

model for the optimization of machining parameters in a metal-

cutting operation. Simul Model Pract Theory 84:204–221. https://

doi.org/10.1016/j.simpat.2018.02.008

48. Weichert D, Link P, Stoll A, Ruping S, Ihlenfeldt S, Wrobel S

(2019) A review of machine learning for the optimization of

production processes. Int J Adv Manuf Technol 104:1889–1902.

https://doi.org/10.1007/s00170-019-03988-5

49. Rana N, Latiff MSA, Abdulhamid SM, Chiroma H (2020) Whale

optimization algorithm: a systematic review of contemporary

applications, modifications and developments. Neural Comput

Appl 32:16245–16277. https://doi.org/10.1007/s00521-020-

04849-z

50. Srinivasan S, Ramakrishnan S (2011) Evolutionary multi objec-

tive optimization for rule mining: a review. Artif Intell Rev

36:205–248. https://doi.org/10.1007/s10462-011-9212-3

51. Ojha M, Singh KP, Chakraborty P, Verma S (2019) A review of

multi-objective optimisation and decision making using evolu-

tionary algorithms. Int J Bio Inspir Com 14:69. https://doi.org/10.

1504/ijbic.2019.101640

52. Liu Q, Li X, Liu H, Guo Z (2020) Multi-objective metaheuristics

for discrete optimization problems: a review of the state-of-the-

art. Appl Soft Comput 93:106382. https://doi.org/10.1016/j.asoc.

2020.106382

53. Gullu H (2017) A novel approach to prediction of rheological

characteristics of jet grout cement mixtures via genetic expres-

sion programming. Neural Comput Appl 28:407–420. https://doi.

org/10.1007/s00521-016-2360-2

54. Quiza Sardinas R, Rivas Santana M, Alfonso Brindis E (2006)

Genetic algorithm-based multi-objective optimization of cutting

parameters in turning processes. Eng Appl Artif Intell

19:127–133. https://doi.org/10.1016/j.engappai.2005.06.007

55. D’Addona DM, Teti R (2013) Genetic algorithm-based opti-

mization of cutting parameters in turning processes. Procedia

CIRP 7:323–328. https://doi.org/10.1016/j.procir.2013.05.055

56. Lv J, Zhao JB, Liu QG (2013) Optimization of cutting parameters

based on multi-objective genetic algorithm NSGA- II. Appl Mech

Mater 281:517–522. https://doi.org/10.4028/www.scientific.net/

amm.281.517

57. Klancnik S, Hrelja M, Balic J, Brezocnik M (2016) Multi-ob-

jective optimization of the turning process using a gravitational

search algorithm (GSA) and NSGA-II approach. Adv Prod Eng

Manag 11:366–376. https://doi.org/10.14743/apem2016.4.234

58. Manav O, Chinchanikar S (2018) Multi-objective optimization of

hard turning: a genetic algorithm approach. Mater Today

5:12240–12248. https://doi.org/10.1016/j.matpr.2018.02.201

59. Sathiya Narayanan N, Baskar N, Ganesan M (2018) Multi

objective optimization of machining parameters for hard turning

OHNS/AISI H13 material, using genetic algorithm. Mater Today

5:6897–6905. https://doi.org/10.1016/j.matpr.2017.11.351

60. Venkatesan D, Kannan K, Saravanan R (2009) A genetic algo-

rithm-based artificial neural network model for the optimization

of machining processes. Neural Comput Appl 18:135–140.

https://doi.org/10.1007/s00521-007-0166-y

61. Jasiewicz M, Miadlicki K (2020) An integrated CNC system for

chatter suppression in turning. Adv Prod Eng Manag 15:318–330.

https://doi.org/10.14743/apem2020.3.368

62. Yang MS, Ba L, Xu EB, Li Y, Gao XQ, Liu Y, Li Y (2019) Batch

optimization in integrated scheduling of machining and assembly.

Int J Simul Model 18:689–698. https://doi.org/10.2507/

IJSIMM18(4)CO17

63. Tschatsch H (2009) Applied machining technology. Springer,

Berlin. https://doi.org/10.1007/978-3-642-01007-1

64. Kalyanmoy D (2001) Multi-objective optimization using evolu-

tionary algorithms. Wiley, Chichester

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:12445–12475 12475

123

https://doi.org/10.1016/j.jestch.2019.09.003
https://doi.org/10.1016/j.simpat.2018.02.008
https://doi.org/10.1016/j.simpat.2018.02.008
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00521-020-04849-z
https://doi.org/10.1007/s00521-020-04849-z
https://doi.org/10.1007/s10462-011-9212-3
https://doi.org/10.1504/ijbic.2019.101640
https://doi.org/10.1504/ijbic.2019.101640
https://doi.org/10.1016/j.asoc.2020.106382
https://doi.org/10.1016/j.asoc.2020.106382
https://doi.org/10.1007/s00521-016-2360-2
https://doi.org/10.1007/s00521-016-2360-2
https://doi.org/10.1016/j.engappai.2005.06.007
https://doi.org/10.1016/j.procir.2013.05.055
https://doi.org/10.4028/www.scientific.net/amm.281.517
https://doi.org/10.4028/www.scientific.net/amm.281.517
https://doi.org/10.14743/apem2016.4.234
https://doi.org/10.1016/j.matpr.2018.02.201
https://doi.org/10.1016/j.matpr.2017.11.351
https://doi.org/10.1007/s00521-007-0166-y
https://doi.org/10.14743/apem2020.3.368
https://doi.org/10.2507/IJSIMM18(4)CO17
https://doi.org/10.2507/IJSIMM18(4)CO17
https://doi.org/10.1007/978-3-642-01007-1

	Multi-objective optimization of steel AISI 1040 dry turning using genetic algorithm
	Abstract
	Introduction
	Materials and methods
	Results and discussion
	Experimental research
	Regression modelling
	Multi-objective optimization

	Conclusion
	Appendix
	Acknowledgements
	References




