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Abstract
Thousands of new malware codes are developed every day. Signature-based methods, which are employed by common

malware detectors, are susceptible to code obfuscation and novel malware. In this paper, we present an alternative method

for malware detection, which makes use of assembly opcode sequences obtained during runtime. First, for sequential

opcode data, we utilize natural language processing and deep learning techniques to facilitate the extraction of deeper

behavioral features. Due to these features, this method can be impervious to code obfuscation and effective against novel

malware. Finally, these features are fed to various machine learning algorithms for classification. The experiments on a

more class balanced dataset of 26869 samples demonstrated that MCC (Matthew’s correlation coefficient) score as high as

0.95 is achievable with this approach. The MCC score results for the experiments conducted on imbalanced and artificially

balanced datasets are 0.81 and 0.83, respectively.
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1 Introduction

Malware is any type of software created intentionally to

cause malicious effects on software-based systems, such

as computers, servers, and industrial control systems.

[23] summarizes some of the malicious effects such as

disrupting the ordinary course of computer operation,

gathering or eliminating sensitive information through

encrypting or gaining access to a computer system. A

malware detector (more commonly known as an anti-

virus program) is a specialized computer program that

attempts to locate and eliminate malware. [32] states that

detecting all kinds of malware with a high success rate is

still an unsolved problem as attackers develop new kinds

of malware and evasion techniques every day. Kaspersky

[17], which is one of the most prominent anti-virus

vendors, states that in 2017 the number of malware they

encountered attained 360000 mark in a day. [38] states

that the vast majority of most common commercial

malware detectors utilize a detection approach that relies

on signatures. This signature approach involves a lookup

of a pre-existing database for query signature. The suc-

cess of this strategy naturally depends on how fast the

database is updated with new malware samples. There-

fore, the fact that an enormous amount of new malware

is being produced every day makes it gradually harder

for the signature-based detection approach to be effec-

tive. Another approach, which is called heuristic-based

malware detection in the malware research community,

as defined by [2] aims to extract behavioral information

of malware by primarily utilizing predictive modeling

techniques such as traditional machine learning method

or less commonly deep learning methods. This approach,

unlike the signature-based approaches, can be successful

against unseen samples from the real world. Based on

these arguments, in this work, we primarily aim to study

deep learning techniques on dynamic opcode input to

assess its potential of becoming a generalizable malware

detector.

& Enes Sinan Parildi

enessinan.parildi@mail.utoronto.ca

1 Department of Electrical and Computer Engineering,

University of Toronto, 27 King’s College Cir, Toronto, ON,

Canada

2 Department of Chemical Engineering & Applied Chemistry,

University of Toronto, 27 King’s College Cir, Toronto, ON,

Canada

123

Neural Computing and Applications (2021) 33:11963–11983
https://doi.org/10.1007/s00521-021-05861-7(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-6220-8056
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-05861-7&amp;domain=pdf
https://doi.org/10.1007/s00521-021-05861-7


Static analysis and dynamic analysis are two well-

known general forms of malware analysis. Static analysis,

which is more ubiquitous than dynamic analysis, tries to

identify malware under inspection before its execution

using structural information (sequence of codes). For

instance, the signature-based method is a common form of

static analysis. Static analysis can also be applied in a

heuristic-based setting. Conversely, dynamic analysis

attempts to identify the malware during its execution or

after execution using only the runtime information such as

behavior or actions of the malware. In dynamic analysis,

suspected malware is executed on a virtual operating sys-

tem. After that, memory access, order of memory access,

assembly instructions (opcodes), and system call statistics

are analyzed. [29] claims that static techniques, while in

general work quite well against most threats, code obfus-

cation methods, which aim to make machine code more

difficult to analyze, can make the malware most of the

times undetectable. As exemplified by [3], junk code

insertion, code transposition, code substitution are some of

the common examples of code obfuscation methods. [28]

states that dynamic techniques, on the other hand, are

inherently more resistant to code obfuscation methods but

are more resource-intensive. This resistance stems from the

fact that dynamic analysis only considers the instructions

executed during runtime.

In an effort to assist the development of much more

effective heuristic-based malware detection methods, [6]

introduces a dataset that consists of dynamically yielded

opcodes belonging to various malware and benign exe-

cutables. These opcodes were obtained from runtime trace

using virtual machine-aided dynamic analysis. Conse-

quently, this runtime opcode dataset is valuable to develop

an advanced malware detection system, provided that the

dataset is combined with effective predictive modeling

techniques. This system has the potential to be effective

against novel malware as well as various concealment and

code obfuscation strategies employed by the malware

developers according to [6]. The skeleton of our work

originates from this dataset. Figure 1 illustrates a small

snapshot of this dataset in its unprocessed form.

1.1 Motivations and contributions

The main objective of this research is to assess the effec-

tiveness of various machine learning-based predictive

model pipelines for malware detection when these pipeli-

nes admit runtime, in other words, dynamic opcode type

input. In general, to the best of our knowledge, this work

constitutes one of the largest-scale work on x86 architec-

ture runtime opcode-based Windows malware detection

that involves a novel application of cutting edge natural

language processing (NLP) and deep learning methods. We

hypothesize that the most widespread techniques used in

NLP could facilitate effective and robust feature extraction

by providing heightened comprehension from raw opcode

sequence data. The predictive modeling pipeline applied to

the dataset consists of preprocessing, embedding, deep

learning feature extraction, and a classification stage. The

same pipeline is assessed for a variety of deep learning and

machine learning method in order to compare their per-

formances when it comes to relatively unstudied opcode

sequence data from a predictive modeling perspective. The

comparison could be important since different deep learn-

ing algorithms may have distinct inductive biases. Sec-

ondly, it is crucial to state that the original dataset from [6]

has disproportionately more malware than benign instan-

ces. This inadequacy can be critical because class imbal-

ance may severely disturb classification performance by

exacerbating false positive error rate. As stated in [18], the

false-positive error rate is a lingering issue within com-

mercial signature-based malware detectors. Therefore, a

special focus is given to investigate and alleviate the effect

of data imbalance. Accordingly, the experiments are fur-

ther organized to assess the effect of the data augmentation

methods, sample weighting, and natural data collection.

Thirdly, motivated by the fact that deep learning operations

may require substantial computing power and resources, a

version of our pipeline that omits deep learning is

employed and assessed in a number of experiments. This

pipeline mainly relies on self-supervised opcode embed-

dings, which is much more lightweight in terms of memory

usage and computation time. Fourthly, considering that

runtime opcode-based detection is relatively less covered

in the literature, we hope that our work gives a compre-

hensive overview to the wider research community about

the capabilities of runtime opcodes for the purpose of

malware detection. In this sense, our work can be regarded

as complementary to the [6] and [7]. Finally, in order to

rectify the aforementioned data imbalance, we imple-

mented a data collection pipeline that begins with the

benign executable collection and ends with 1000 runtime

opcodes. The pipeline has generated 6405 samples so far.

The same pipeline can be used to generate more. We

believe that the benign runtime opcode dataset we have

collected so far can be beneficial to the wider research

community and industrial applications. Moreover, the

unprocessed version of the benign executable corpus can

be used to build a malware detector classifier based on

techniques other than runtime opcodes, and therefore, it

can be useful for the research community in other ways.

Our contributions are summarized as follows:

– We proposed an effective prediction pipeline that

consists of a data collection, data preprocessing, feature
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extraction, and classification process, tailored for

detecting malware using runtime opcode sequence.

– We carried out a large number of experiments that

assess our pipeline in the imbalanced dataset setting,

artificially balanced dataset setting, and naturally

balanced dataset setting. The experiments demonstrated

that our method could distinguish malware from benign

with close to 98% accuracy.

– We demonstrated that even simple classification algo-

rithms that primarily utilize the mean of self-supervised

Word2Vec-based opcode embeddings without expen-

sive deep learning operations can achieve

respectable classification performance from only 1000

opcodes.

– Building upon [6] and [7], we further validate the

effectiveness of runtime (dynamically yielded) opcodes

for malware detection with our method.

– We developed a data collection pipeline for runtime

opcodes similar to the one described in [6]. In contrast,

our pipeline focuses on collecting and processing

benign samples.

Section 2 presents some existing literature. The emphasis

is given to the works that include deep learning techniques.

Section 3 explains the methodology by first describing the

original dataset and then the data collection pipeline. The

next subsection presents the preprocessing of the dataset

and the generation of the embedding vectors. Then, the

three deep learning algorithms that we used for the feature

extraction are introduced. Section 4 presents all the results

of the three categories of dataset settings. Section 5 first

covers the general discussions of our approach, the results,

and some possible next steps to further this work.

2 Related research

Malware detection is a very broad problem, and it has been

investigated by many researchers from a large number of

different perspectives. Here, we only review the studies

that make use of machine learning and especially deep

learning. Other approaches that are less relevant to our

work and are mostly based on signature matching are

omitted for simplicity. Data mining or machine learning-

based malware detection methods can also be categorized

in itself with respect to the raw dataset type they use (op-

code sequence, opcode n-gram, system call, hexadecimal

bytes), how the dataset is yielded (dynamic, static), and the

platform they target (Windows, Android). In general,

methods that rely on dynamically yielded are rare com-

pared to others. Our method stands out among these studies

by relying primarily on a dynamically yielded opcode

dataset. Moreover, our method involves extensive usage of

advanced deep learning methods (CNN, LSTM, Trans-

former), which is also a very recent development in the

Fig. 1 Illustration of an assembly code sequence. First part of each line denotes an opcode. Second part is called operand
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malware detection problem. It is also worth noting that, to

our knowledge, Transformer has not been utilized in the

existing literature. Several properties arguably make

Transformer superior to CNN and LSTM in natural lan-

guage processing. Therefore, it is crucial to investigate

Transformer for malware detection as well.

[20] investigated the performance of a convolutional

neural network by treating dissembled opcode sequence as

a text. Thus, they modeled malware detection problem as a

text classification problem. The authors emphasized that a

deep learning approach is particularly useful in the sense

that it removes the reliance on feature engineering, since

convolutional neural network can discover its features.

These features can be complementary to hand-crafted

features produced by human experts. CNN (convolutional

neural network) is originally designed for processing

images; in this problem, when the opcode sequence passes

through the embedding layer, it obtains the same form as

image type, thus becoming suitable for convolutional

neural network. The authors achieved 97% f1 score on their

small dataset and 86% on their large dataset. Both datasets

are Android malware datasets. Reference [20] shares the

idea of modeling malware detection problem as a text

classification problem and extensive usage of deep learning

methods with our work. On the other hand, our method also

emphasizes Word2Vec, which facilitates deep learning-

based feature extraction greatly.

[7] tried to investigate if it is possible to improve

malware detection using dynamically yielded opcodes.

To achieve this objective and assist future research, they

assembled a huge, dynamically yielded opcodes dataset

consisting of 13 different malware types and benign

software with close to 48,000 samples. They merged 13

malware types into a single malware class and compared

them to benign set to perform binary classification. Since

the benign class only possesses 1045 samples in total,

synthetic minority oversampling technique was utilized

to boost the size of the benign class artificially. The size

was increased to five times the original size. Secondly,

they used n-gram representation for feature extraction. In

order to combat huge feature dimensionality, a feature

selection methods based on information gain ratio was

applied. Thirdly, they utilized the random forest algo-

rithm for the final classification. Some hyperparameters,

such as the number of trees and features, are optimized

via tenfold cross-validation and grid search. As a result,

they achieved an impressive 99% F1 score with 32K

opcodes. However, the f1 score drops to 93.8% when

only 1000 opcodes are used. Finally, note that most of

the malware samples used in this work are the extended

version of the malware section of our dataset. As future

work, we plan to use this extended version of the mal-

ware portion of the dataset.

[40] developed LSTM (long short-term memory)-based

hierarchical denoise network using hierarchical structure to

solve very long statically yielded opcode sequence learning

and gradient vanishing problems. The authors aimed to

process long opcode sequences without resorting to

n-grams. As a result, they showed that their method out-

performs the n-gram-based method and vanilla LSTM

without a hierarchical denoise network. Moreover, they

also compared methods for embedding opcodes. Specifi-

cally, they compared simple one-hot encoding with an

embedding learned from data and showed that opcode

embedding that is learned from data in a supervised way

improves the performance compared to one-hot encoding.

As a result, their method achieved accuracy close to 99%

percent on an open-source pre-crafted android malware

dataset. [40] relies on supervised learning of embedding as

opposed to Word2Vec. Supervised embedding learning

may require significantly more labeled data instances.

[15] tried to classify ten different malware clusters using

a combined deep learning method. More specifically, they

first obtained a tri-gram of dynamically yielded kernel API

call sequences (system calls) of malware, and then they

processed one hot encoded version of these sequences by

using a convolutional layer. Finally, they created a

sequential model by using LSTM cells. The dataset that

they utilized contains 4753 malware samples. As a result,

they achieved 89.4% accuracy. [15] primarily uses a one-

hot encoding and n-gram approach to encode tokens as

opposed to vector embeddings. [14] combined information

obtained from portable executable metadata such as names

of imported DLLs, timestamp of the compilation, and

statically yielded one-hot encoded opcode sequences. More

specifically, the authors used feed-forward neural network

layers to extract features from PE metadata and combined

convolutional layers to extract features from static opcode

sequences. In the end, the authors used a final dense layer

to get classification scores. They utilized the dataset of

22,694 malicious executables and 63 benign executables,

which is imbalanced. However, they noted that multi-class

classification, where they identified 13 different malware

types, alleviated the balance problem. As a result, the

authors achieved 93% on precision and recall with a 92%

on F1-measure [14] also relies on one-hot encoding instead

of Word2Vec. However, their approach of incorporating

executable metadata inside the deep learning context could

be implemented as future work.

[5] used Word2Vec algorithm to obtain a fixed vector

representation of statically yielded opcodes belonging to

executables. Word2Vec representation of opcodes (opcode

embeddings) was fed into gradient boosted trees for final

classification. The dataset they utilized was derived from

Microsoft Malware Classification Challenge Dataset. In the

end, the authors achieved 96% accuracy on 8 class
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malware classification. [5] utilizes Word2Vec to obtain

semantically meaningful representations of opcodes but

does not attempt to perform sequence learning from

Word2Vec representations. Similarly, opcode embedding

approach in conjunction with CNN is also applied by [27]

to statically yielded opcodes.

[39] used a shallow ensemble of CNN (convolutional

neural network) and LSTM (long short-term memory) to

build a malware detection system that relies on static

analysis. More specifically, the CNN part of the system

uses greyscale images generated from a raw binary file.

LSTM part utilizes statically yielded opcodes. A simple

logistic regression classifier generates classification labels

using a stacked ensemble feature vector of LSTM and

CNN. For the LSTM classification of opcode sequences,

the authors employed various strategies to reduce the noise

present in the statically yielded opcode sequence as well as

to facilitate long sequence learning. As the dataset, they

used a dataset derived from Microsoft Malware Classifi-

cation Challenge Dataset. In the end, the authors achieved

accuracy close to 99% on binary malware-benign classifi-

cation. [39] also makes use of executable metadata, which

is not included in our method.

A very recent study by [25] highlights the fact that the

traditional signature-based malware detection approach

may underperform to detect malware in drones and their

ground control stations. They propose another detection

approach based on the fastText model and bidirectional

LSTM to classify different malware types. More specifi-

cally, they utilize the fastText model to create input

embeddings that are lower-dimensional than vectors cre-

ated by the one-hot encoding approach. After that, Bi-

LSTM analyzes statically yielded opcode sequences to

obtain classification results. Moreover, static opcode

sequences are augmented by extra features based on API

function names. They utilized the Microsoft Malware

Classification Challenge Dataset in their experiments.

Finally, their method demonstrates a performance

improvement of 1.87% compared to performance obtained

by a one-hot encoding-based approach. Furthermore, their

deep learning-based method achieves performance

improvement of 0.76% over a similar decision tree-based

approach.

Another recent study by [26] explores a hybrid deep

learning approach that combines convolutional autoen-

coder and dynamic recurrent neural network. They utilize

statically yielded opcode sequences with a random branch

selection strategy to approximate the execution path to

detect malware. More specifically, CNN at the front end

compresses long opcode sequences to shorter sequences,

and after that, a dynamic recurrent neural network performs

the detection from the compressed sequence. The dataset

that they constructed for the experiments consists of 1000

malware 1000 benign. As a result, they achieved 96%

accuracy score.

[9] implemented a lightweight and simple android

malware detection method that relies on statically yielded

opcode sequences. First, they utilized a symbol-based

simplification method to abstract the Dalvik opcode

sequence. Second, they employed an n-gram that converts

sequential data to a fixed-size feature vector (vectoriza-

tion). Most well-known machine learning algorithms

accept fixed-size features, unlike sequential data. Third,

they experimented with random forest, support vector

machine (SVM), the k-nearest neighbors (k-NN), and naive

Bayes method to build the final classifier. They achieve the

maximum of 0.988 recall and 0.921 precision score on

2400 balanced samples with their 3-gram random forest

model. They also applied tenfold cross-validation.

A large majority of the aforementioned papers have

several deficiencies. First, [9], and many other works uti-

lize the n-gram approach that enables conversion of

sequence to a fixed size feature vector, but it ignores most

of the temporal information in the sequence. Increasing n

would mitigate this issue, but in turn, can create a huge

number of features. [7] achieves high performance with

dynamic opcode n-gram feature set, which is obtained from

32K opcodes, by using feature selection and random forest.

However, for the same settings, the performance is much

poorer when 1000 opcodes are used instead. Note that in all

settings, we use 1000 opcodes. Using longer opcode

sequences can be advantageous in terms of predictive

power. On the other hand, longer opcode sequences incur

much higher computation time during the initial raw exe-

cutable processing stage. The computation time spent on

extracting 32K runtime opcodes from each sample would

be significantly higher than 1000 runtime opcodes. Fur-

thermore, the natural benign dataset in their experiments is

quite limited in number. [40] demonstrates that full

sequential learning can be superior to n-gram when it

comes to Android malware detection. Moreover, [21]

asserts that for natural language, neural language models

such as Word2Vec, which is used extensively in our work,

performs better than n-gram. Moreover, in terms of speed

and scalability, Word2Vec offers several advantages. It

also does not require labeled data. On the other hand, only

three papers [40, 20] and [14] attempt to detect malware

from full sequential modeling using advanced deep learn-

ing methods similar to the general approach embraced in

our work. However, each of these three papers has its own

distinctions and weaknesses. The most glaring weakness

common in [14, 20] and [40] is that they all rely on stati-

cally yielded opcodes that could make their method more

vulnerable to code obfuscation. Additionally, in [40] stat-

ically yielded long opcode sequences undergo extensive

preprocessing to be suitable for LSTM. Dynamic opcode
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sequence requires significantly less preprocessing in our

case. Secondly, [40] and [20] primarily target the Android

operating system, unlike our work, which exclusively tar-

gets Windows operating system. These two operating

systems are based on distinct instruction set architecture,

and thus opcodes. Thirdly, in terms of predictive modeling

methods, [40] and [20] are similar to our work when it

comes to usage of LSTM-RNN (LSTM recurrent neural

network) and convolutional network (CNN). One differ-

ence is, in their method, opcode embeddings are trained in

a supervised manner along with the rest of the network. In

our work, opcode embeddings are generated in a self-su-

pervised manner using Word2Vec, which overall is similar

in terms of performance but gives our method more flexi-

bility. This flexibility can be crucial in the case of a semi-

supervised setting since Word2Vec does not require any

labels. Once the Word2Vec embeddings are obtained from

a larger and cheaper unlabeled corpus, they can be used in

any new labeled samples very efficiently. This property of

Word2Vec also addresses the scalability and speed issue

emphasized in [9]. Moreover, the results of an experiment

done on the Transformer architecture, which will be

introduced in Sect. 3.3, showed that attempting to learn

embeddings jointly with the rest of the network yielded a

poorer classification performance compared to using

Word2Vec embeddings directly. On the other hand, [14]

utilize one-hot encoding instead of explicit opcode

embedding. One-hot encoding is simple, but it creates huge

vector dimensionality and sparse input that does not

include semantic information of words. Huge vector

dimensionality at the input requires a larger deep learning

architecture, which can be undesirable in many ways.

According to [40], one-hot encoding may yield worse

training stability with LSTM. [25] also emphasizes and

demonstrates that high dimensionality incurred by one-hot

encoding may decrease learning efficiency and the final

classification performance. It is also important to state that

vanilla LSTM, which is utilized by many works in the

literature, could be inefficient at learning patterns in very

long sequences. We propose an extension to vanilla LSTM

in order to mitigate this issue. Finally, we addressed the

dataset imbalance issue, which is another largely unstudied

subject in malware detection literature. We think that

addressing data imbalance better reflects real-life

conditions.

3 Methodology

3.1 Dataset

As it has been emphasized before, the original skeleton of

the sequential opcode dataset is adopted from [6]. This first

version of the sequential dataset contains 731 benign,

18827 malware samples in total. According to reference,

[6], benign samples were harvested from native Windows 7

applications and a compendium of games. Likewise, mal-

ware samples were collected from VirusShare.com. Evi-

dently, the imbalance class issue is present in this original

dataset. This issue will be addressed in the next sec-

tion. Each sample consists of the first 1000 opcodes of their

respective runtime trace, meaning each data point is a fixed

1000 length sequence. All possible x86 opcodes here can

be used to build a dictionary of tokens similar to the text

preprocessing done in natural language processing. By

considering these fundamental properties of our dataset, we

can draw an analogy between our opcode sequence clas-

sification and the text classification problem. More

specifically, each opcode can be projected as words, and

likewise, a whole opcode sequence can be processed as a

long sentence or text. This treatment of the opcode dataset

enables us to take advantage of some of NLP (natural

language processing) methods by adapting them to our

needs. Note that, despite some similarities, opcode

sequences are very different from natural languages.

However, since the NLP methods that we utilize in this

work and most of the recent well-known language models

are statistical in nature, differences are less impactful than

similarities. A statistical language model could learn and

encode the necessary statistical properties of opcode

sequences from scratch.

3.2 Dataset class imbalance

In the original dataset, which is adopted from [6], the ratio

of the negative benign class size to the size of the positive

malware class is 0.038. Machine learning algorithms and

deep learning algorithms, in general, perform poorly when

the class imbalance is severe. The ratio value of 0.038, in

our case, definitely indicates that class imbalance can be a

severe issue. We explored four different strategies to

combat class imbalance and prevent it from severely

undermining an underlying classifier’s performance. The

first strategy involves using resampling methods such as

Synthetic Minority Over-sampling Technique (SMOTE) or

perform over-sampling using Adaptive Synthetic (ADA-

SYN). According to [39], due to their reliance on Eucli-

dean measures, these methods are not directly applicable to

sequential data. One way to resolve this issue is to utilize

LSTM Autoencoder to get compressed fixed vector repre-

sentation and apply resampling methods on this com-

pressed fixed vector representation. We plan to try out this

method as future work. The second set of strategies is

related to modifications or extensions to the loss function,

such as weighted cross-entropy loss. Several experiments

done with the weighted cross-entropy loss demonstrated no
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noticeable improvement as well. In the end, a data aug-

mentation method can be directly applied to raw sequences

before any preprocessing is applied. The technique was

used solely to boost the number of benign examples in the

training set. This method starts by splitting each input

sequence that belongs to the particular class into two

chunks; 200 length at the beginning and 800 length at the

end. After that, new instances are created by appending the

first chunk to a second chunk from another sample. This

method generates variability in the newly created instances

while retaining most of the local structure in the original

sequences. The malicious opcode sequences are mostly

preserved inside the local structures. This data augmenta-

tion method can be considered similar to the sentence or

text piece shuffling method used in some NLP tasks as a

method for data augmentation [19]. The results of the

experiments that include this data augmentation strategy

will be analyzed under the title artificially balanced dataset

classification.

3.3 Natural dataset collection

In the end, we decided to gather additional benign instan-

ces to assess the capabilities of our approach more pre-

cisely, especially when it comes to recognizing the benign

behavior of executables by exposing our approach to a

larger number of benign samples. This section describes

the data collection process, and the related experiment

results will be covered under the title naturally balanced

dataset classification.

The data collection pipeline starts with gathering a large

number of benign legitimate software executables. Exe-

cutable in this context refers to 32-bit Windows PE format.

Unlike in the case of malware for which we have

virusTotal.com or virusShare.com as repositories, there is

no centralized benign software repositories or benign

software corpus. We designated several sources to provide

us with reliable, clean benign software samples. These

sources are listed as follows: Fresh 32-bit Windows 10

installation in a virtual machine, filehippo.com, softonic.-

com, and chocolatey package manager for Windows. In

order to extract benign executables from the aforemen-

tioned website sources, we first developed a web crawler.

Secondly, for the chocolatey package manager, several

PowerShell scripts were developed. Finally, for Windows

10 installation, a C?? program that searches for exe-

cutables in all directories recursively was deployed. These

three methods, in the end, after some additional filtering,

yielded about 10431 executables.

The second stage of the data collection pipeline involves

feeding the resultant exes to specialized reverse engineer-

ing debugger software, in our case called Immunity

Debugger. These debugger programs are used to analyze

target software when the source code is not available. In

particular, Immunity Debugger also comes with several

plugins that help to fend off anti-debugging and anti-vir-

tualization efforts. This analysis, besides many other fea-

tures, includes disassembling runtime trace. Finally,

feeding all 10431 exes manually using GUI would take an

immense amount of time and effort. Thus, to reduce the

time and effort, an automation script was designed to feed

exes one by one, send necessary commands to the debug-

ger, handle errors from the debugger, and obtain the output.

Since API functionality for Immunity Debugger was

regarded as inadequate for this task, the GUI automation

strategy was embraced. A GUI automation script that pri-

marily interacts with the command line interface of

Immunity Debugger was implemented. In the end, the

automation script generated an opcode sequence for 6405

new benign samples. Note that noticeable attrition occurs

between the number of input exes to the debugger and the

number of final output samples. According to [6], the

attrition can be attributed to missing DLL, lock-outs, and

forced reboots. Moreover, a subset of all benign proprietary

software may have applied strategies to resist debugging in

order to prevent reverse engineering efforts. More sophis-

ticated reverse engineering tools may resolve these issues.

Finally, a bespoke parser processed each runtime trace and

saved clean number-coded opcode sequences in a CSV file.

The data collection process is illustrated in Fig. 2.

3.4 Dataset preprocessing and embeddings

The preprocessing consists of two stages: Tokenization and

opcode embedding generation. Before the opcode embed-

ding generation stage by the technique called Word2Vec,

for the tokenization stage, we applied some modifications

to each raw opcode sequence to facilitate prediction. The

first modification was made to eliminate synonym opcodes

present in x86 assembly language, such as JNE, JNZ pair.

The second modification involved fixing the extremely rare

and out of vocabulary opcodes issue. Some of the opcodes

are rarely encountered in the training set. Moreover, some

of the unseen opcodes absent in the dictionary might be

encountered in new test samples. Both issues are detri-

mental to the Word2Vec technique used to generate opcode

embedding vectors; since the Word2Vec technique

assumes an established universal dictionary for all training

or test samples possible. The presence of unseen opcodes

breaks this assumption. Secondly, Word2Vec is likely to

produce embedding vectors of lesser quality for rarer

opcodes. To mitigate this issue, we took two precautions:

First, all opcodes that appear less than three times in all

training set was assigned to the single special token and

second, unseen opcodes in external test samples, inferred to

be rare overall, were assigned to this same token before
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they were fed to our predictive model for inference. Input

opcode embeddings were generated according to the dic-

tionary, which includes the unique rare opcode token. This

simple practice is common in natural language processing

[11]. Note that this practice could be satisfactory and

straightforward, but it may not be ideal for opcodes. Rare

opcodes are likely to have a high predictive value. By

tuning the negative sampling parameters, Word2Vec

learning algorithm can be adjusted to favor rare opcodes

more. A negative sampling strategy can be preferred

instead of dropping extremely rare opcodes in the training

set. Unknown token, in this case, should only be used for

unseen opcodes in the test set. To finalize the tokenization

stage, a dictionary of tokens was created. The large

majority of tokens correspond to a unique opcode. How-

ever, tokens are not exactly opcodes. They are abstractions

of opcodes in order to facilitate self-supervised learning of

statistical patterns in dynamic opcode sequences through

the Word2Vec algorithm.

Each token in the dictionary must be encoded or

embedded appropriately before it can be fed to any pre-

dictive model. One-hot encoding is a common way to

implement this encoding. It is simple but poses two prob-

lems: First, it is very inefficient space-wise. This ineffi-

ciency could mean a considerable increase in computation

time and memory usage, especially when it comes to deep

learning methods. Secondly, by assigning all opcodes

practically the same vector, one hot encoding completely

ignores any contextual information that opcodes may carry

concerning each other. Better encoding schemes may

induce better performance in terms of both computation

time and accuracy. As a better encoding scheme, we opted

for Word2Vec, noting that it has been beneficial in various

NLP tasks [31]. Moreover, the practice that is first utilizing

a self-supervised method such as Word2Vec to obtain

dense representations of tokens and then fine-tuning those

representations with a supervised learning method has

recently gained serious traction in the NLP community.

Our overall pipeline approximately follows this practice.

Word2Vec model consists of a shallow feed-forward

neural network with one hidden layer. In our case, this

neural network is trained to optimize the objective likeli-

hood of the surrounding opcodes within a context window

conditioned on the center word of that window. This

objective likelihood function learns statistical patterns

among opcodes within a particular context inside each

input sequence. The parameters of the final fully trained

network yield an N-dimensional vector for each token.

Two particular vectors created by this method tend to be

close in Euclidean space, if the corresponding opcodes

appear in a similar context. The length of the context

window is chosen to be 10 tokens. This is larger than the

typical length of context window chosen for natural lan-

guage. Since the implementation of even simple high-level

programming operations such as printing, looping, or

conditional blocks may require long opcode sequences,

Fig. 2 Illustration of the data collection pipeline. The first column

represents the raw executable collection section. The second column

represents a set of python scripts that are used for the automation of

debugger and parsing of debugger output. The third column shows

snapshots from the debugger software and its output
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capturing the context of the higher-level operations is only

possible with larger windows. In our experiments, the

second important parameter N parameter is set to be 64.

Note that, in our case, the choice of 64 was made heuris-

tically. An ideal way to determine the optimal value would

be doing extensive hyperparameter optimization on this

parameter. However, this particular hyperparameter opti-

mization would be costly in terms of computation. For the

English language, which has thousands of words, NLP

practitioners typically choose values between 300 and 500.

For our dataset, which has approximately 300 token dic-

tionary size, intuitively, this dimensionality value should

optimally be lower such as between 50 and 100. [40] uses

30 dimensionality value in their supervised embeddings for

their 218 size Android opcode dictionary. Based on these

arguments, we decided that 64 should correspond to a

sweet spot; moreover, several experiments with 100

dimensionality values show no drastic change in

performance.

3.5 Feature extraction and classification

Feature extraction was done through deep learning-based

approaches that have been demonstrated to be ground-

breakingly successful at many tasks involving large

amounts of high-dimensional and unstructured data. Deep

learning algorithms, which provided an adequate amount of

data, can automatically engineer useful features from the

data. These features can be determinant alone, or they can

be complementary to the handcrafted features produced by

experts. More specifically, this property of deep learning

algorithms also makes them very handy at malware

detection based on predictive modeling, since feature

engineering from malware, just like in any other domain, is

instrumental to the predictive model’s success. In our

problem, we have a reasonably large dataset that resembles

a large text corpus; therefore, it is sensible that deep

learning approaches may perform well in our dataset. This

dataset can be expanded considerably in the future by

harvesting additional executables. Furthermore, although

not exactly the same as natural language, opcode sequences

can be considered high-dimensional and unstructured data.

One disadvantage of deep learning-based feature extraction

is that these features are not directly interpretable. On the

other hand, input attribution methods are available for deep

learning algorithms. They can provide some level of

interpretation, such as which opcodes in the sequence

influence the classification result most. A user-friendly

library introduced by [37] implements many input attri-

bution methods. As future work, the library can be used to

investigate the influence of each opcode on the final model

result.

We decided to introduce three distinct deep learning

model types to our opcode sequence detection problem. All

three model types commonly make use of backpropagation

algorithm to update their learnable parameters; however,

the types of mathematical operations they utilize to process

input are distinct. The three different deep learning algo-

rithms also impose distinct inductive biases, which are the

set of assumptions taken a priori. For LSTM-RNN, the

specific inductive bias takes the form of sequentiality; the

same function is applied to all-time steps recurrently. For

CNN, it is spatial invariance, meaning that the same kernel

is applied to the different spatial locations. On the other

hand, the self-attention operation used in the Transformer

architecture maintains a structure closer to fully connected

computation and therefore assumes weaker inductive bias.

Weaker inductive bias could lead to more expressive

models overall. On the other hand, models that assume

weaker inductive bias may require more training data.

Therefore, in situations where a structural prior can be

deduced either from the target task or the data type, using

an appropriate version of stronger inductive bias may lead

to more accurate and data-efficient models. In this context,

data types can be images, short sentences, long text, or

opcode sequences. In our case, the a priori universal

properties of runtime opcode sequences, unlike more

ubiquitous images and text, are not well known and well

studied. It is also important to emphasize that these prop-

erties might be wholly different for static opcode sequen-

ces. For instance, some of these properties might indicate

whether recognizing long-range interactions in opcode

sequences is useful or not for malware detection. Since all

these specific properties are not clear at this point, we

decided to assess all three algorithms to gain a better

understanding possibly. That being said, discovering

specific properties of the opcode sequence is not among the

purposes of our experiments. Further research is required to

discover and understand the specific, intrinsic properties of

runtime opcode sequences.

The next three subsections provide a brief introduction

to each deep learning architecture used for feature extrac-

tion. As a separate experiment, we also utilized simple

mean of opcode embeddings as the main way to extract

features for the downstream classification algorithms. Most

specifically, each instance that has 1000 � 64 dimension-

ality is mean reduced to M 2 R64. The vector M is used as

the input for the downstream classification algorithms.

Mean of embedding classification is also included in

Imbalanced Dataset Classification Setting to make com-

parison with results reported in [6]. Mean of opcode

embeddings provides a computationally lightweight

alternative.
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For the final classification stage, five different machine

learning algorithms were utilized. These algorithms are

logistic regression, support vector machine, the k-nearest

neighbors classifier, the random forest classifier, and gra-

dient boosted trees. The classifiers in this stage operate on

the fixed vector representation of the input, which is gen-

erated by the upstream deep learning algorithm, as opposed

to sequential data. The five algorithms that we assess are

not directly applicable to sequential data. The deep learn-

ing stage enables the conversion of raw sequences to fixed-

size vector features. Usage of these machine learning

algorithms provides flexibility when it comes to tuning the

whole predictive model for some specific needs. It also

brings performance improvement. Moreover, these

machine learning algorithms are much less cumbersome

than deep learning methods when it comes to hyperpa-

rameter optimization, tuning, and retraining, if necessary.

In our experiments, parameters of machine learning are

optimized with fivefold cross-validation. The cross-vali-

dation is performed on output embedding data, not on raw

sequences. On the other hand, performing direct hyperpa-

rameter optimization on deep learning algorithms can be

incredibly expensive in terms of computation. Using more

nimble machine learning methods at the end of the pipeline

makes the whole pipeline more robust. High performance

is not strictly tied to a specific hyperparameter set of deep

learning algorithms, which could be hard to find. The

performance gap caused by non-optimal hyperparameters

could be filled with machine learning algorithms in the end.

Usage of machine learning algorithms decreases the reli-

ance on rigorous hyperparameter search. Our experimental

results also confirm this argument. Machine learning

algorithms, especially nonlinear ones, provide an accuracy

boost. Similar to the three deep learning algorithms, the

five machine learning algorithms have a set of distinct

properties, such as the type of inductive bias, that make

them worthwhile to investigate separately.

3.5.1 Convolutional neural network

Convolutional neural network (CNN), in its current form,

which is introduced by [16] has been shown to be very

successful at tasks that involve understanding and infer-

ence from visual imagery. [12] demonstrated that CNN

could be applied successfully to the sentence classification

task, despite the irrelevance of the sentence classification

task to the image-related tasks. Inspired from [12], we

decided to use a CNN model in our opcode sequence

classification task. A convolutional neural network typi-

cally consists of several building blocks and smaller-scale

operations between them. First, some of the common

building blocks include 2D convolution block, which per-

forms 2D convolution operation on its 2D input, max-

pooling block, which performs downsampling operation to

reduce input size and summarize the information. Finally,

the fully connected layer gathers features from upstream

convolution layers and performs an affine transformation

on its input. Second, intermediate smaller operations

include nonlinearity function, dropout, and batch normal-

ization. Given our data’s unique nature, instead of using

well-known architectures, we decided to use our two cus-

tom small and larger CNN architectures. These architec-

tures are illustrated in Figs. 3 and 4.

3.5.2 LSTM recurrent neural network

Recurrent neural network (RNN) is a special type of deep

neural network that contains internal memory or state.

Having a memory makes RNN well-suited to process and

learn from sequences. Their internal memory can extract

and hold temporal information hidden in sequences. LSTM

(long short-term memory) refers to the particular archi-

tecture of a RNN’s main cell. LSTM architecture was

developed by [10] to tackle the vanishing gradient problem

that prevents vanilla RNN from being able to handle long-

term dependencies in a sequence. Since then, by the agency

of more powerful computation, LSTM has become the

most successful variant of RNN, which achieved tremen-

dous successes in speech, handwriting recognition tasks.

An LSTM cell, at each time steps, performs several

operations on input value at time or position t which is xt,

previous cell state memory Ct�1, previous output ht�1 to

update the cell state and compute an output at time t, h
denotes model parameters; g denotes generic function to

highlight arguments. More specifically, for cell state:

Ct ¼ gðCt�1; xt; ht�1; hÞ ð1Þ

Cell state acts like long-term memory which typically does

not see a drastic change in a single time step. On the other

hand, hidden state ht which is also the output, change more

drastically at every step, acts as a short-term memory:

ht ¼ f ðCt; xt; ht�1; hÞ ð2Þ

For vanilla LSTM if we unroll these equations:

ft ¼ rðWf ½Ct�1; ht�1; xt� þ bf Þ ð3aÞ

it ¼ rðWi½Ct�1; ht�1; xt� þ biÞ ð3bÞ

ot ¼ rðWo½Ct�1; ht�1; xt� þ boÞ ð3cÞ

ut ¼ tanhðWu½ht�1; xt� þ buÞ ð3dÞ

Ct ¼ ft � Ct�1 þ it � ut ð3eÞ

ht ¼ ot � tanhðCtÞ ð3fÞ
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To further increase robustness for long sequence learning,

we employed a special variety of LSTM cell called phased

LSTM cell which was introduced by [22]. Phased LSTM

cell contains some extensions which makes it more effi-

cient at handling very long sequences compared to vanilla

LSTM. More specifically, phased LSTM introduces a new

time gate kt. This time, the gate is governed by three

learnable parameters and it ensures that Ct and ht get an

update once in while, not at each time step. This mimics

the effect of time truncated backpropagation and increases

robustness against very long sequences by blocking gra-

dient from flowing too long. Imposing a shorter time range

on backpropagation mitigates vanishing and exploding

gradient issue. Truncated backpropagation through time

achieves the robustness by splitting the whole sequence

into shorter subsequences.

The LSTM architecture used in the experiments is

bidirectional; the input is processed in both a forward and

backward manner. The bidirectional architecture produces

a pair of output vector for each time step. The bidirec-

tionality could increase robustness for very long sequences

by providing additional context from the backward direc-

tion. Moreover, [25] reports slightly higher accuracy with

Bi-LSTM compared to regular LSTM. Finally, the self-

attention mechanism processes these output vectors to

yield the final single context vector. The exact architecture

is described in Fig. 5.

3.5.3 Transformer architecture

The Transformer architecture, which was introduced by

[33], was designed to overcome the shortcomings of

recurrent and convolutional models. More specifically, it is

emphasized in the paper that despite all the proposed

modifications, the sequential nature of recurrent models

prevents full parallel computation within the training

dataset. Incompatibility with parallel computation leads to

diminished robustness and efficiency, especially in a long

sequence regime. Additionally, in convolutional models,

the number of operations required to connect two positions

in sequence grows linearly with respect to the distance

between these positions. It is argued that linear growth here

is suboptimal. On the other hand, Transformer architecture

relies primarily on the self-attention mechanism, and it

does not utilize convolutional and recurrent computation

whatsoever. In self-attention, the aforementioned number

of operations this time is reduced to a constant rate. Fur-

thermore, self-attention, unlike sequential computation, is

Fig. 3 Illustration of the larger

CNN architecture. In conv2d

block, the first two dimensions

are the size of a convolution

filter, which is a rank two

matrix. The third is the number

of filters in a block. In max pool

blocks, the numbers define the

downsampling rate of spatial

dimensions. In FC (fully

connected) blocks, it is the size

of the linear transformation

matrix

Fig. 4 Illustration of the smaller CNN architecture
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fully parallelizable. The downside of the Transformer

architecture is that memory requirement is quadratic with

respect to the input sequence length. The quadratic mem-

ory complexity might cause limitations when it comes to

very long opcode sequences. An extension to the Trans-

former architecture called the Reformer has recently been

proposed to address the huge memory requirement caused

by very long sequences [13]. An alternative to the Refor-

mer, the Longformer architecture, which was introduced by

[4] also aims to tackle memory-efficient processing of

extremely long sequences. With these two extensions,

much longer opcode sequences can be processed. There-

fore, it could be possible to process an entire code sequence

of an executable at once with this extension. The Trans-

former-based architectures may lead to fast and powerful

automatic malware detection systems.

Secondly, closely related to the earlier discussion about

inductive bias, the Transformer architecture follows a

somewhat different paradigm than LSTM-RNN and CNN.

Specifically, the architecture assumes, by virtue of self-

attention, a more relaxed inductive bias than LSTM-RNN

and CNN. As has been emphasized before, a more relaxed

form of inductive bias can be advantageous in data-rich

situations. It can also be a better choice when prior

knowledge about the data is limited. As accentuated earlier

in the first subsection of this section, the task of processing

opcode sequence satisfies both of these conditions. There-

fore, the Transformer architecture is a viable option.

The Transformer architecture in total consists of encoder

and decoder parts. Encoder–decoder paradigm is common

to almost all competitive models that aim to solve the

sequence to sequence tasks. Since we are only concerned

about the classification task, we omit the decoder section

entirely. An encoded context embedding vector is used in

the classification layer.

The encoder part as a whole is composed of several

computation blocks stacked on top of each other. Each

computation block consists of two sub-parts which output

LayerNormðxþ subLayerðxÞÞ. Here, sublayer can be either

a dense feed-forward or attention layer. Layer normaliza-

tion is applied to the output.

The Transformer architecture mainly utilizes an offshoot

of self-attention, which is called scaled dot-product atten-

tion. Mathematically, for the encoder, it is defined as

follows:

AttentionðQ;K;VÞ ¼ softmax
QKT

ffiffiffiffiffi

dk
p

� �

V ð4Þ

In Eq. 4, Q, K, and V refer to query, key, and value,

respectively. These three have distinct meanings in the

context of the decoder. However, in the context of the

encoder, they are the same. The scaled dot-product atten-

tion aims to learn a similarity function between input

tokens. The similarity function is used to construct a con-

text vector that indicates which part of the input the net-

work should attend to. Furthermore, the Transformer

architecture, in order to boost its expressive power,

employs the scaled dot-product attention (Eq. 4) a number

of times in parallel with distinct learnable linear projection

matrices. This operation is called multi-head attention.

Each head learns distinct weight matrices and representa-

tion. In the end, each head’s output is concatenated and

then again projected linearly to obtain the final output.

Multi-head attention is described as follows:

Fig. 5 Illustration of LSTM-

RNN architecture used in

experiments taken from [41]. In

this image, the layer outputs are

annotated. All layers shown

here have their own parameter

set. In our case, the parameters

of the embedding layer are

trained first and separately from

the rest of the architecture in an

unsupervised manner by

utilizing Word2Vec technique
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Qi ¼ XWQ
i ;Ki ¼ XWK

i ;Vi ¼ XWV
i ; i ¼ 1; . . .;N ð5Þ

where headi ¼ AttentionðQi;Ki;ViÞ ð6Þ

MultiHeadAttentionðXÞ ¼ ½Head1; . . .;HeadN �W0 ð7Þ

In Eqs. 5, 6 and 7, X refers to input sequence after

embedding mapping and WQ, WK , WV and W0 are

parameter matrices to be learned. The formulation given

above is only valid for the encoder part.

Considering that our task is more uncomplicated than

large-scale NLP applications and the dataset is much

smaller than a typical NLP corpus, we used the reduced

version of the Transformer architecture. In this version,

only two layers are used, and the number of heads is 4. The

original architecture is significantly larger. The architecture

can be expanded with respect to the size opcode sequence

dataset. As an addition to the regular Transformer encoder

architecture above, we included a final dense layer to the

end in order to reduce the dimensionality of output

encoding. Epoch number and learning rate were again

adjusted manually during the whole training process.

3.6 A practical illustration of the methodology

In a more practical setting, the methodology should be

considered under two different stages; training and testing

or deployment stage. First, in the training stage, a training

raw executable dataset needs to be gathered. Several

sources and strategies to gather raw executable are covered

in Sect. 3.3. Malware examples can be gathered from

various repositories to ensure variety. It is highly advisable

to ensure that the training dataset stays balanced in terms of

class distribution. Second, a debugger tool, such as

Immunity Debugger, processes raw executable dataset to

generate dynamic opcode sequence dataset. In this step,

alternative tools can be considered. Conversion to dynamic

opcodes largely removes the effects of the code obfusca-

tion. Dynamic opcode sequences undergo several data

preprocessing as outlined in Sect. 3.4. The data prepro-

cessing steps can be implemented as a Python program.

After that, Word2Vec embeddings can be trained with all

of the data, including unlabeled data using the recom-

mended hyperparameters. For the feature extraction step,

one of the three deep learning algorithms or alternatively

mean of embeddings-based classification needs to be cho-

sen. The choice depends on the factors such as available

computation resources, target performance, and training

dataset size. For the classification step, this time one of the

five machine learning algorithms needs to be chosen. The

selection criteria are similar to deep learning algorithms.

The results section provides an example comparison

between all the algorithms with respect to the dataset used

in this work. A hyperparameter optimization on a separate

validation set may also be utilized to select the best algo-

rithm and its respective parameters.

The second stage consists of the deployment and

maintenance of the trained model. The fully trained model

can preferably be used in conjunction with a signature-

based malware detector within a malware detection system

to accelerate the overall rate of inference. The incoming

sample should be first quarantined inside a secure sandbox.

Several different sandbox implementations exist for mal-

ware analysis. Then, inside the sandbox, the dynamic

opcode sequence belonging to the sample can be collected.

After that, the output sequence should go through the data

preprocessing pipeline. Finally, the model inference can be

obtained. Periodically, opcode embeddings can be fine-

tuned with the number of newly obtained opcode sequen-

ces without ground truth labels. When the ground truth

labels are obtained through expert analysis, the machine

learning algorithm at the top can be retrained easily with

measly computation power and requirements. Less fre-

quently, the deep learning model can also be retrained. The

deep learning model retraining can be less desirable due to

the much higher computation time and cost associated with

it.

4 Results

All experiment setups follow the process illustrated in

Fig. 6. Before the main classification experiments, a

detailed analysis of opcode Word2Vec embeddings is

presented in the first subsection. After that, all the experi-

ments in this section are presented in three groups. The

groups are formed with respect to the properties of the

source dataset type these experiments utilize. In all of these

sections, the experiments were conducted by utilizing

Python library TensorFlow-GPU 1.12.0 for the imple-

mentation of deep learning models. Scikit-Learn library is

used for the implementation of the machine learning

models in the classification layer. Furthermore, Pandas,

Numpy, and Scipy libraries were utilized for auxiliary data

loading, manipulation, and computation operations. In all

experiments, the experiments were done on the single fold

with a 7/3 train-test split. The results are assessed with

respect to four metrics: accuracy, Matthew’s correlation

coefficient (MCC), precision, and recall.

4.1 Opcode Word2Vec embeddings

Before the actual deep learning training and classification

part of experiments, our sequence-based classification

process involves unsupervised learning of dense vector
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representation of each opcodes using the Word2Vec algo-

rithm. The Word2Vec embeddings matrix was generated

before the actual training of deep learning models by using

Python NLP library Gensim [30]. During the deep learning

layer training, they were loaded as a fixed pre-trained

constant lookup matrix that maps opcode tokens to their

dense vector representation.

Figure 7 demonstrates the visualization of Word2Vec

vector embeddings with their associated opcodes. Some of

the opcodes that have similar purposes and functionalities

cluster close to each other. For example, LODS and SCAS

load and scan string instructions. SETLE, SETG, SETNS,

and SETGE are instructions that set byte according to

various different conditions. BT and BTR are bit test and

reset instructions. JNB, JB, JNC, and JNE are all condi-

tional jumps. SHR and ROL, which are shifting and

rotating instructions, are also close to each other. In addi-

tion, in general, frequent and common instructions are

clustered the left-down section of figure 4.1. Less frequent,

more specialized instructions, such as floating-point

instructions, are dispersed around the outside of the area

that hosts common instructions. Common instructions are

approximately located in the third quadrant. As you may

also see, some of the floating-point instructions are also

Fig. 6 Illustration of the predictive modeling pipeline. N is the input

embedding dimensionality, which is 64. M is the output embedding

dimensionality, which can be 128, 256 or 512 depending on the deep

learning model type. This illustration does not include mean of

embeddings classification, for which both M and N are 64

Fig. 7 Illustration of the opcode

embedding vectors when they

are reduced to two dimensions

using the TSNE algorithm.

Their original dimensionality is

64. Significant opcode clusters

are annotated with red circles
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clustered into several subgroups. For instance, it may be

hard to see from the image, but MOVAPD and

MOVDDUP, which are two different instructions for

moving floating-point values, are also very close. Another

hard to discern cluster is located at the fourth quadrant,

which contains FUCOMP, FUCOM, UCOMISS instruc-

tions, which are all related to comparing floating-point

data.

Note that it is implausible to infer the same significance

between opcodes clustered together since, for some of the

opcodes, their vectors might not be too accurate due to the

rarity of their corresponding opcodes in the dataset. This

can be mitigated by employing the subsampling of frequent

opcodes for future works. Moreover, the well-known word

vector representations in NLP typically are trained from

billions of tokens. In our case, the opcode embeddings

were trained from approximately 20M tokens. A larger

opcode sequence corpus will lead to more accurate vectors.

The critical advantage is that for Word2Vec the opcode

sequences do not need to be labeled at all. Therefore, each

opcode vector can become gradually more accurate by

merely processing more unlabeled data, which is cheaper to

obtain.

4.2 Imbalanced dataset classification setting

The imbalanced dataset refers to the original state of the

dataset taken from [6] before the application of dataset

augmentation methods and inclusion of the new benign

dataset introduced. The Transformer model also was

unintroduced at this point. Moreover, in this setting, the

smaller CNN architecture and Bidirectional RNN with

vanilla LSTM cells were utilized.

You may refer to Table 1 for the results of this sec-

tion. The CNN model overall gives slightly better results

than the LSTM model, and for both models, accuracy is

very high. CNN may have gained a slight edge over LSTM

in this setting due to its better robustness. LSTM model, in

general, exhibited less adequate robustness than CNN

when it comes to training stability. The lack of robustness

may impact LSTM more severely than CNN when it comes

to the imbalanced setting. CNN is faster in terms of

training and inference time. On the other hand, CNN incurs

a larger model size than LSTM. In memory constraint

devices, LSTM may be a better choice. The k-nearest

neighbors, which is in general quite simple, fast, and robust

algorithm, performs quite well on the top of both LSTM

and CNN. Gradient boosted trees and random forest, which

may require more extensive tuning, especially if dataset

class imbalance is present, perform somewhat worse than

the k-nearest neighbors. Gradient boosted trees also takes

significantly longer to fit. Finally, despite being linear

classifiers, logistic regression and support vector machine

perform quite satisfactorily.

Mean of embeddings largely performs worse than CNN

and LSTM. On the other hand, its performance is still

respectable despite its simplicity. Different from CNN and

LSTM, nonlinear classifiers, such as gradient boosted trees,

random forest, and the k-nearest neighbors algorithm, seem

to make a huge difference for mean of embeddings. Evi-

dently, nonlinear interactions need to be modeled for high

classification performance. CNN and LSTM can handle

nonlinear interactions. For mean of embeddings, nonlinear

classifiers can model nonlinear interactions and thus

achieve better performance. Additionally, due to underly-

ing Word2Vec, mean of embeddings can utilize unlabeled

data making it potentially more powerful and practical.

Note that, [6] using HMM reports %11 benign class

accuracy, %99 malware class accuracy which amounts to

approximately 0.11 MCC Score. Results from the mean of

embeddings classification are clearly an improvement

compared to the sequence-based classification method

outlined in [6]. On the other hand, [6] also reports %85

benign class accuracy, %99 malware class accuracy, and

combined %98.4 using random forest on 1-gram repre-

sentations. We replicated this experiment and obtained

approximately the same performance. This performance is

almost equal to the results achieved by the k-nearest

neighbors algorithm and gradient boosted trees classifica-

tion on the mean of embeddings features in terms of MCC

score. Sequential learning with CNN and the k-nearest

neighbors algorithm and gradient boosted trees achieves

Table 1 Results of the imbalanced classification setting

Accuracy MCC Precision Recall

CNN

Logistic regression 0.9873 0.7981 0.8531 0.7587

Support vector machine 0.9867 0.7753 0.9416 0.6482

Random forest 0.9722 0.6521 0.5652 0.7839

Gradient boosted trees 0.9882 0.8079 0.8963 0.7386

K-nearest neighbors 0.9885 0.8131 0.9074 0.7386

LSTM

Logistic regression 0.9867 0.7805 0.8810 0.7035

Support vector machine 0.9717 0.6409 0.5608 0.7638

Random forest 0.9846 0.7626 0.7823 0.7587

Gradient boosted trees 0.9764 0.6793 0.6255 0.7638

K-nearest neighbors 0.9853 0.7544 0.8741 0.6633

Mean of embeddings

Logistic regression 0.864 0.3807 0.2 0.8812

Support vector machine 0.8595 0.3686 0.1928 0.8675

Random forest 0.9841 0.7481 0.8867 0.6438

Gradient boosted trees 0.9847 0.7607 0.8848 0.6666

K-nearest neighbors 0.9848 0.7706 0.8779 0.6894
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more superior performance than both in terms of MCC

score. Overall good performance of simple 1-gram repre-

sentations, in this case, can be attributed to the quality of

dynamic opcode features, since [40] reports much worse

detection performance when they use N-gram static

android opcodes features compared to full sequential

learning. Likewise, for dynamic opcode features the per-

formance can be boosted by utilizing sequential learning.

Finally, Fig. 8 shows the TSNE (t-distributed stochastic

neighbor embedding) visualization of the final output

context vector produced by the CNN model from the

training data. TSNE, which was introduced by [8], is an

algorithm that probabilistically projects each high-dimen-

sional vector to a lower-dimensional vector such that two

instances close to each other in the high dimension with

respect to Euclidean distance are likely to be close in the

low dimension as well. In the figure, the position of clusters

and their separation can be easily modeled by the classi-

fication layer. Therefore, this visualization gives us valu-

able insight into how the preceding deep learning model

models the data. For instance, first, some of the malware

instances produced their own cluster. We have not verified

this, but these clusters may correspond to different malware

types. However, TSNE fails to generate a clear cluster for a

substantial number of malware instances. These instances

instead form a sparse giant cloud in the middle. The

formation of this cloud could be explained by the fact that

not all malware instances can be categorized unambigu-

ously. As stated by [34], malware instances are character-

ized on the basis of their primary function, and many

malware instances are multi-functional primary or sec-

ondary. Therefore, for some malware instances, clear cat-

egorization may not exist. Second, except for some

contested instances from both sides, the benign and

Fig. 8 TSNE visualization of the final context feature vector produced by the CNN model on imbalanced training setting. TSNE reduces the

dimensionality from 512 to 2. This illustration only depicts the training set

Table 2 Results of the artificially balanced classification setting

Accuracy MCC Precision Recall

CNN

Logistic regression 0.9899 0.8238 0.8722 0.7899

Support vector machine 0.9885 0.8158 0.8837 0.7638

Random forest 0.9892 0.8281 0.9096 0.7587

Gradient boosted trees 0.9894 0.8285 0.9107 0.7638

K-nearest neighbors 0.9884 0.8153 0.8540 0.7939

LSTM

Logistic regression 0.9890 0.8250 0.8857 0.7758

Support vector machine 0.9884 0.8071 0.9571 0.6934

Random forest 0.9894 0.8285 0.9101 0.7638

Gradient boosted trees 0.9890 0.8239 0.8947 0.7688

K-nearest neighbors 0.9892 0.8259 0.9047 0.7638
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malware clusters are clearly separated. Interestingly, the

model, in general, is quite good at recognizing the large

majority of the correct malware instances. However, for

some of the benign instances, it makes mistakes. The dis-

parity here can be explained by the fact the amount of

benign instances is simply not adequate for proper learning.

Therefore, the model is not able to learn the general data

distribution for the benign class. Furthermore, it could be

difficult to discern it from the figure due to the low number

of benign instances. However, the correct benign instances

do not establish many apparent tight clusters like some

malware instances establish. Lack of clear clusters may

indicate that benign data distribution shows substantial

intraclass variance, probably more than the intraclass

variance of the malware class. That being said, a richer

dataset of benign instances would give us a clearer idea

about this matter.

4.3 Artificially balanced classification setting

The set of experiments in this section utilizes the same

methods as an imbalanced dataset classification setting.

The primary distinction is that in this set of experiments,

the training dataset was bolstered by the data augmentation

method explained earlier. Note that the test dataset was not

bolstered similarly. The test dataset itself only consists of

legitimate samples, not artificially crafted samples in any

way.

You may refer to Table 2 to see the result of this sec-

tion. Recall scores in this section are better than the pre-

vious imbalanced training setting, and accordingly, MCC

values are also better in general. This improvement means

in this experiment, better performance at benign class does

not completely devastate classification performance at

malware class across all classification algorithms. Better

performance in this section can be attributed to more

stable training of the deep learning models. Artificial bal-

ancing probably mimicked the effect of balanced mini-

batch sampling, which is a common method to tackle the

class imbalance issue in deep learning. The balanced mini-

batches provide more stable training of the deep learning

models. Our data augmentation method also provides some

level of variability, which is something balanced mini-

batch sampling cannot provide. Moreover, data augmen-

tation has been repeatedly proven to be effective in

supervised deep learning.[24] Finally, the CNN and LSTM

models, as well as all their respective machine learning

models, perform almost equally. Random forest and gra-

dient boosted trees, which are in general more powerful

than the other algorithms, gain a slight edge in this setting

due to the more balanced dataset. The discussion made in

the previous section regarding the model size and training

time efficiency of CNN and LSTM applies here as well.

Memory constraint environment would better suit LSTM

due to the smaller model size. On the other hand, assuming

GPU resources are abundant, CNN provides faster training

and inference. In terms of machine learning-based classi-

fication algorithms, gradient boosted trees, random forest,

and the k-nearest neighbors algorithm bring slight

improvement over linear classifiers. However, in this case,

especially the k-nearest neighbors algorithm and logistic

regression can be preferred over all others due to their

computational simplicity.

4.4 Naturally balanced classification setting

The set of experiments explained in this section involves

all legitimate, benign samples collected by the pipeline

introduced in the section, as well as the original imbal-

anced dataset. These two datasets make in total 7450

benign samples, 18827 malware samples. This class ratio is

still somewhat imbalanced but not to the extent that it can

cause serious problems. In general, in this set of experi-

ments, some of the deep learning methods have some

differences compared to the previous two sections. First,

Table 3 Results of the naturally balanced classification setting

Accuracy MCC Precision Recall

CNN

Logistic regression 0.9787 0.9479 0.9800 0.9459

Support vector machine 0.9775 0.9452 0.9679 0.9539

Random forest 0.9785 0.9476 0.9782 0.9469

Gradient boosted trees 0.9755 0.9401 0.9802 0.9342

K-nearest neighbors

0.9788

0.9482 0.9791 0.9469

LSTM

Logistic regression 0.9791 0.9492 0.9748 0.9526

Support vector machine 0.9789 0.9485 0.9744 0.9522

Random forest 0.9789 0.9507 0.9783 0.9513

Gradient boosted trees 0.9797 0.9504 0.9770 0.9522

K-nearest neighbors 0.9795 0.9501 0.9762 0.9526

Transformer

Logistic regression 0.9787 0.9479 0.9748 0.9526

Support vector machine 0.9793 0.9495 0.9804 0.9474

Random forest 0.9788 0.9482 0.9791 0.9469

Gradient boosted trees 0.9786 0.9479 0.9787 0.9469

K-nearest neighbors 0.9779 0.9461 0.9861 0.9369

Mean of embeddings

Logistic regression 0.8769 0.7171 0.7501 0.8619

Support vector machine 0.8788 0.7234 0.7499 0.8724

Random forest 0.9436 0.8615 0.9246 0.8768

Gradient boosted trees 0.9504 0.8788 0.9222 0.9049

K-nearest neighbors 0.9466 0.8695 0.8992 0.9369
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the larger CNN architecture is used, and RNN with phased

LSTM cell is utilized. Second, the Transformer model is

added to deep learning methods in this section.

Table 3 shows the results from the phased LSTM, CNN,

and the Transformer model, respectively. The phased

LSTM model, this time, yields the best overall perfor-

mance. The Transformer comes second, and CNN comes

the last. There are no drastic performance differences

between machine learning algorithms across the three deep

learning algorithms. Phased LSTM combined with random

forest or gradient boosted trees achieves the best perfor-

mance. In general, for all the models, both MCC score and

recall are much higher compared to before due to the effect

balanced dataset. Higher MCC scores clearly indicate that

our predictive modeling pipeline performs well for both a

wide variety of benign instances collected from wild and

existing malware instances from the original dataset. Fur-

thermore, we believe that the high accuracy obtained from

the Transformer is significant considering it is a very recent

model and unlike CNN and LSTM, the training recipes, the

good hyperparameter set has not been established, and the

Transformer model type has not been tried extensively

except for NLP tasks. Note that, in this section, phased

LSTM is utilized instead of Vanilla LSTM. Phased LSTM

may provide an extra performance boost in this setting. On

the other hand, as is emphasized before, LSTM and phased

LSTM require significantly more time to train. The huge

training time requirement is especially noticeable for large

datasets. Transformer, assuming adequate GPU memory is

provided, is much faster to train. Especially with its several

extensions, the Transformer can be very efficient for large

datasets while retaining high prediction performance.

CNN, compared to LSTM, is also quite fast to train.

However, it has a larger model size, and in this setting, it

achieves poorer performance than Transformer.

Finally, Fig. 9 shows TSNE visualization of final con-

text vectors produced by the CNN from the training data.

This figure shows a somewhat different structure than

Fig. 8 because of the probabilistic nature of the TSNE

algorithm and different underlying deep learning-based

feature extraction model. On the other hand, reminiscent of

Fig. 8, in Fig. 9, several dense malware clusters are visible

again. The possible cause that leads to the formation of

these clusters is explained before for Fig. 8. The same

cause is valid for Fig. 9. Secondly, in contrast to Fig. 8,

there are a lot fewer misplaced benign instances in Fig. 9.

In the naturally balanced setting, the underlying model can

learn the characteristics of the benign data distribution

adequately. Thirdly, similar to Fig. 8, no markedly

observable dense benign data cluster is present in Fig. 9.

Reinforced by the fact that the larger number of benign

instances utilized the naturally balanced setting, it is evi-

dent that benign executable set demonstrates significantly

more intra-class variance than malware. This argument also

makes sense considering that the space of functions benign

executable may perform much larger than the space of

functions primarily defined by maliciousness. Fourthly, the

inter-cluster distances do not seem well adjusted. The main

malware cloud is equally far away from malware clusters

and the main benign cloud. Inter-cluster distances or global

Fig. 9 TSNE visualization of the final context feature vector produced

by the CNN model on naturally balanced training setting. TSNE

reduces the dimensionality from 512 to 2. This illustration only

depicts the training set. Just like Fig. 8, red represents malware, and

blue represents benign
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structure may not always be adequately preserved.

According to [36], an alternative UMAP algorithm, which

was introduced by [35], could arguably preserve global

structure better than TSNE. As future work, UMAP algo-

rithm can be utilized for visualization. Finally, the visual-

ization clearly demonstrates that malware and benign

clusters are clearly separated for the vast majority of

instances.

5 Conclusion

In this project, we proposed an effective malware detection

method that uses runtime opcodes of the executable at its

input. Using runtime opcode sequences for prediction fil-

ters unnecessary noise in executable code, and directly

focuses on useful behavioral features of executable. Our

method then utilizes Word2Vec algorithm to generate

vector representation of opcodes. Finally, the hybrid pre-

diction algorithm, which combines deep learning methods

and machine learning methods, is performed. The deep

learning methods enable feature engineering without any

expert knowledge. Word2Vec algorithm brings two bene-

fits to our predictive modeling pipeline first by drastically

compressing input representation and second by encoding

contextual information. Word2Vec also has the advantage

of not requiring labeled data, making it more scalable.

Moreover, we demonstrated that classification based on

simple averaging of opcode vectors achieves a

respectable performance. We can expect that weighted

averaging of Word2Vec vector could achieve even more

superior performance. TF-IDF method or smooth inverse

frequency introduced by [1] on opcodes can be utilized to

obtain weights. Furthermore, we also developed a data

collection pipeline geared toward extracting opcode

sequences from benign executables during their runtime.

Our pipeline collected and processed a total of 6405 benign

executables as well as 592 malware executables, which

could be very useful for future research.

It is also worth noting that a combination of 1-gram

opcode features and TF-IDF weighted average of opcode

embeddings could also potentially achieve a

respectable performance without rather expensive deep

learning operations. This method could especially be useful

in environments where operations required for deep

learning inference are regarded as too computationally and

memory intensive.

Consequently, the results demonstrate that our method

yields an overall high classification performance on the

runtime opcode sequence dataset. Additionally, it should

be emphasized that apart from CNN and LSTM, the per-

formance of the Transformer architecture is remarkable.

Due to its efficiency and performance, the Transformer has

become a staple building block of many successful large-

scale NLP models. Therefore, we think that it is significant

to show that the Transformer-based models can potentially

be utilized to build a large-scale commercial malware

detector. The best choice for a deep learning algorithm

depends on the situation. Observably, CNN generally

provides better efficiency in terms of memory usage,

convergence (training) speed, and inference speed than

LSTM. On the other hand, CNN has the largest overall

model size. LSTM has slower convergence (training) speed

and inference speed but also has the smallest model size

and sometimes better accuracy. On the other hand, the

Transformer provides a balanced trade-off between infer-

ence speed and model size. Experiments in the naturally

balanced classification setting clearly demonstrate that the

Transformer provides better accuracy than CNN while

being slightly worse than phased LSTM. As a result,

considering its computational efficiency and performance,

the Transformer can be a viable option to build a malware

detection system. On the other hand, our method has some

possible limitations. First, the initial dynamic analysis of

executables is very costly in terms of time. Better dynamic

analysis tools might mitigate the inefficiency of the

dynamic analysis process. Second, currently, our method

only operates on the first 1000 opcode of the executable.

The performance can be boosted by using sequences longer

than 1000 opcodes. That being said, the amount of infor-

mation can be easily increased by concatenating statistical

features from header files, system calls, or static opcodes to

the output embedding generated by the deep learning

methods.
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