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Abstract
A malicious data miner can infer users’ private information in online social networks (OSNs) by data mining the users’

disclosed information. By exploring the public information about a target user (i.e. an individual or a group of OSN users

whose privacy is under attack), attackers can prepare a training data set holding similar information about other users who

openly disclosed their data. Using a machine learning classifier, the attacker can input released information about users

under attack as non-class attributes and extract the private information as a class attribute. Some techniques offer some

privacy protection against specific classifiers;, however, the provided privacy can be under threat if an attacker uses a

different classifier (rather than the one used by the privacy protection techniques) to infer sensitive information. In reality,

it is difficult to predict the classifiers involved in a privacy attack. In this study, we propose a privacy-preserving technique

which first prepares a training data set in a similar way that an attacker can prepare and then takes an approach independent

of the classifiers to extract patterns (or logic rules) from the training data set. Based on the extracted rule set, it then

suggests the target users to hide some non-class attribute values and/or modify some friendship links for protecting their

privacy. We apply our proposed technique on two OSN data sets containing users’ attribute values and their friendship

links. For evaluating the performance of the proposed technique, we use conventional classifiers such as Na€ive Bayes,

Support Vector Machine and Random Forest on the privacy-protected data sets. The experimental results show that our

proposed technique outperforms the existing privacy-preserving algorithms in terms of securing privacy while maintaining

the data utility.
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1 Introduction

Online social networks (OSNs), also known as social

attribute networks (SANs) [1], can contain a wide variety of

users’ data such as ‘‘Age’’, ‘‘Relationship Status’’, ‘‘Reli-

gious View’’, and ‘‘Political View’’. Data mining of the

users’ information can be useful for identifying interaction

patterns among the users [2], information credibility

assessment [3], and other research purposes. However, it

can also create a serious privacy breach to the OSN users

by leaking a sensitive attribute or private information about

the users [4]. Such data mining technology has reached the

public eye through media reports (e.g. published by ABC

News [5] and the Boston Globe [6]) because extremely

delicate data such as a user’s ‘‘Sexual Orientation’’ can be

correctly predicted by analysing their disclosed nonsensi-

tive information [7].
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The ability to infer sensitive information about a target

user by analysing the disclosed nonsensitive information is

usually known as an attribute inference attack [8, 9]. By

‘‘target user’’, we refer to an individual or a group of OSN

users whose privacy is currently under threat. It is impor-

tant to note that attackers can take any approach to launch

this attack. We now illustrate a data mining approach to

carry out this type of attacks.

1.1 The privacy attack model

The attribute inference attack [8, 9] profits from the use of

supervised learning. Well before the emergence of deep

learning, most data-mining deployments centred around

classification tasks [10]. At present, conventional classi-

fiers are widely used in various applications and specific

industrial settings such as construction [11], flood man-

agement systems (FMS) [12, 13], wind and solar energy

applications [14], biodiesel production [15], hydrogen

production [16], and evaporation prediction [17]. Today,

fields such as computer vision [18] and Internet of

Things [19] are dominated by applications that build and

deploy classifiers. A classifier is the output of supervised

learning, and the input is called a training set. It is called

learning as it can make prediction on unseen information

based on the labels in the training set. We show here the

framing of the attack as a supervised learning model.

Consider a SAN model GðN;A; EÞ containing a set of

user nodes N (where N ¼ fu1; u2; . . .upg), a set of attribute

nodes A (A ¼ fA1;A2; . . .Ang), and a set of links E. In the

SAN model, users and attribute values are considered as

vertices of a graph.

A link between a user ui and a node An ¼ v represents

the user ui having the value v for the attribute An. For

example, if ui discloses Married as his/her ‘‘Relationship

Status’’, then a connection is placed between ui and Rela-

tionship Status = Married. Therefore, ui does not have any

connection with other ‘‘Relationship Status’’ values. The

SAN model also places an edge between two users if they

are friends in the OSN. Figure 1 shows a sample SAN

model. We first present our notation and its corresponding

descriptions in Table 1.

Consider an attacker Z who wants to know the ‘‘Polit-

ical View’’ of a user u6 (shown in Fig. 1) who considers

this information as sensitive and therefore did not disclose

it on his/her OSN profile. Therefore, there is no link

between u6 and the values (i.e. Labour or Liberal) of the

‘‘Political View’’ attribute. In this example, the user u6 is

seen as a target user and for simplicity we use u6 and

u interchangeably from this point forward.

To launch the attack, Z can prepare a training data set

Dtr. At first, Z may collect some information such as

‘‘Profession’’ and ‘‘Relationship Status’’ about u6 by

exploring G (shown in Fig. 1). Z then can select a set of

users who disclose their ‘‘Political View’’ information as

well as the other information (i.e. ‘‘Profession’’ and ‘‘Re-

lationship Status’’ in this example) that u6 discloses. Z can

also utilise the users’ friendship information to launch the

attack. Z may utilise metrics that evaluate principles of

social influence that suggest users mimic those they are

connected to [9, 20]. Also, the inverse also happens [21],

and users with common attributes are likely to be con-

nected [22, 23]. Equation (1) shows one such metric, the

Adamic–Adar metric [24],

mðui;An ¼ vÞ ¼
X

t2CsþðuiÞ\CsþðAn¼vÞ

wðtÞ
logjCþðtÞj

: ð1Þ

If a user assigns v as a value for An, then we denote

An ¼ v. CsþðuiÞ is a set of user nodes in G connected to a

user ui and CAþðuiÞ is a set of neighbour attribute-value

nodes connected to user ui. For example, in Fig. 1,

CAþðu1Þ ¼ fEntrepreneur;Married; Liberalg and

CAþðu2Þ ¼ fEntrepreneur;Widowed;Labourg.

On the other hand, CsþðAn ¼ vÞ is the set of users in G

who assign v as a value for the attribute An. For instance,

in Fig. 1, CsþðProfession ¼ EntrepreneurÞ ¼ fu1; u2g. The

degree of ui can be denoted as jCþðuiÞj where

Fig. 1 A sample SAN model
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jCþðuiÞj ¼ jCsþðuiÞ [ CAþðuiÞj. For example, jCþðu1Þj ¼
6 and jCþðu2Þj ¼ 5 in Fig. 1.

User t is a friend of ui who has an attribute-value

An ¼ v and t 2 CsþðuiÞ \ CsþðAn ¼ vÞ. The weight

w(t) of the link between user ui and user t is applicable

when there is reason to believe some connections have a

stronger meaning than another, for the purposes of this

study, we model all link weights in G equally, setting

wðtÞ ¼ 1, for all t. The higher the metric value

mðui;An ¼ vÞ, the higher the impact of v on ui. The

attacker Z can calculate mðui;An ¼ vÞ as per Eq. (1) to

incorporate the influence of friendship information into the

data set Dtr (see Table 2).

After preparing Dtr, Z may select ‘‘Political View’’ as a

class attribute and the rest of the attributes as non-class

attributes. While selecting a user to include in the data

set Dtr, Z follows a strategy of collecting users who have

disclosed directly or indirectly their ‘‘Political View’’. For

this example, we assume there are only two possible val-

ues: they are ‘‘Liberal’’ and ‘‘Labour’’. Our sample data set

is illustrative of what could be prepared in a real-world

scenario with an even larger set of attributes.

Table 1 Notations used in this

paper
Notation Description

G A graph of an online social network

D A data set

Dtr and Dts A training and test data set, respectively

N Number of records in D

C Set of sensitive attributes in D

c Number of sensitive attributes in D i.e. c ¼ jCj
Co oth sensitive attribute where Co 2 C

Dtr;Co
A training data set where Co is selected as a class attribute

Dts;Co
A test data set where Co is selected as a class attribute

u The 3LPEx user

ui ith user in G

A Set of non-class attributes in D

Ar and Al A set of regular and link attributes, respectively where Ar;Al 2 A
An nth attribute

v Value of An attribute

Z An attacker or a malicious data miner

b Number of non-class attributes, i.e. b ¼ jAj
d The domain size of an attribute

L Value of Co

R Set of generated rules

Ra ath rule where Ra 2 R
NRa

Number of records that trigger the ath rule

Nþ
Ra

Number of records correctly classified by the ath rule

Sa Sensitivity value of the ath rule

h User defined sensitivity threshold

Ru Set of sensitive rules for user u

r Number of sensitive rules i.e. r ¼ jRuj
t A friend of ith user ui

q The degree of both number of friends and attribute values of each friend of u

H A d � b matrix

CsþðuiÞ A set of user nodes in G connected to ui

CAþðuiÞ A set of neighbour attribute-value nodes connected to ui

CsþðAn ¼ vÞ A set of users in G who assign v as a value for the attribute An

jCþðuiÞj The degree of ui

PðCoÞ The probability of class attribute Co
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Table 2 presents such sample data set Dtr where rows

are users’ records and columns hold attributes. We name

the attributes directly related to the users’ information

(such as ‘‘Relationship Status’’ and ‘‘Profession’’) as reg-

ular attributes and the attributes derived from metrics of

friendship links (such as, m_relation, m_profession, and

m_political) as link attributes. Link attributes are computed

using Eq. (1).

Z can use a classifier (for example, a decision forest) to

extract the rules from the data set Dtr and apply the learned

classifier on the data of user u6, (refer to Table 3), to breach

his/her privacy. Figure 2 shows a sample of a decision

forest generated from Table 2. In Fig. 2, the leaves appear

as ovals while rectangular boxes are used for internal

nodes. The path between a root node (the node at the top)

and a leaf represents the logic rule for the leaf. For

example, the logic rule for Leaf 1 (see Fig. 2a) states that

‘‘if the value of the attribute ‘‘Profession’’ is ‘‘En-

trepreneur’’ and the value of the attribute ‘‘m_profession’’

is less than or equal to 0.57, then the class value is

‘‘Labour’’, and there is 1 record from Dtr that the model

classifies correctly as ‘‘Labour’’ in this leaf. Here, the

attributes ‘‘Profession’’ and ‘‘m_profession’’ are in the

antecedent of the rule and the attribute ‘‘Political View’’ is

in the consequent. m_profession of u6 is 0.72 (see Table 3)

which is the link attribute, for u6 and Profession = Sales-

man, computed by Eq. (1).

By applying these learned rules on public data, on the

public information about u6, (refer to Table 3), Z can

predict the ‘‘Political View’’ of user u6. The possibility of

this attack is experimentally described in previous studies

as well [25, 26].

1.1.1 Privacy definition

For an OSN user ui with an attribute value L of a sensitive

attribute Co, attribute inference may occur with a confi-

dence c when PðCo ¼ LÞ� c.

Table 2 A sample of training

data set with friendship

information

User Relationship status m_relation Profession m_profession m_political Class attribute

u1 Married 0.72 Entrepreneur 0.62 0.72 Liberal

u2 Widowed 0 Entrepreneur 0.56 0 Labour

u3 Single 0 Student 0 0 Labour

u4 Married 0.56 Salesman 0 0.56 Liberal

u5 Single 0.56 Student 0.56 0.72 Labour

Table 3 A sample of test data

set with friendship information
User Relationship status m_relation Profession m_profession m_political Class attribute

u6 Widowed 0.72 Salesman 0.72 1.34 ?

Fig. 2 Decision trees built on the sample data set given in Table 2.

Here, ‘‘Lib’’ indicates ‘‘Liberal’’ and ‘‘Lab’’ indicates ‘‘Labour’’
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1.2 Related work

To try to eliminate the possibility of this privacy breach, a

commercially available privacy preserving technique

NOYB [27] uses a non-machine learning technique to guide

what to obfuscate. NOYB takes a random suppression

approach to select and suppress the regular attribute val-

ues, in the testing data set, that could be predictors of the

class label. In an extreme scenario, NOYB may obfuscate

all the regular attribute values for the sake of providing

privacy.

Another technique, TOTAL_COUNT, and its variant

CUM_SENSITIVITY [28], are based on calculating

heuristics rank of the possibility of a regular attribute to be

a strong predictor. The heuristics behind TOTAL_COUNT

and CUM_SENSITIVITY are derived from logic rules

obtained from the SysFor decision forest algorithm [29].

Based on the rules, it then ranks the attributes that appear

most often in the rules with sensitivity larger than 1.006

and iteratively suggest the OSN user to suppress its value.

The Sensitivity of each rule is a function of the rule’s

Support and Confidence calculated as

Sj ¼ a� NRa

N

� �
þ b�

Nþ
Ra

NRa

� �
: ð2Þ

Here, NRa
refers to the number of records that trigger the

ath rule, and Nþ
Ra

indicates the number of records correctly

classified by the ath rule. The constants a and b are

parameters of the method which the authors recommend to

be set to 1 [28], which shows that the accuracy of the rule,

relative to the number of users, is the main contributor to

the sensitivity.

In our running example, the sensitivity of Rule 1

(refer to Fig. 2a) is calculated as:

S1 ¼ 1 � 1

5

� �
þ 1 � 1

1

� �
¼ 1:2.

Considering both regular and link attributes in Dtr

suggests that the users shall add and hide friends from the

friend list [30, 31] to reduce the possibility of a privacy

breach. However, how to minimise the number of friends

to hide or add or how to achieve an effective balance rel-

ative to the privacy level is left open.

A privacy protection technique based on Naı̈ve Bayes

classifier (PrivNB for short [32]) can provide privacy by

suppressing attribute values and deleting friendship links.

None of the experiments supporting the earlier techniques

evaluates the effect of the method on the data utility of the

protected data set. This would require a model of how each

individual user interacts with the technique to achieve their

satisfactory level of privacy, and the resulting data set

global utility should be assessed after each of the inter-

ventions of each user.

Our earlier technique (3LP) [33] can provide privacy by

suggesting three layers of action to protect the users’ pri-

vacy. In Layer 1, it suggests to the user to suppress the

values of regular attributes as ranked by the heuristics.

However, if the user chooses not to use regular attributes or

there are not any more regular attributes to achieve a sat-

isfactory privacy level, in Layer 2, 3LP suggests to the user

to hide some friends from the friend list. If Layer 2 still

does not offer a satisfactory level of privacy, in Layer 3,

3LP suggests to the OSN users to add a few OSN users

wisely in their friend list.

The 3LP algorithm can protect the privacy of a sensitive

attribute. But it would require re-application of 3LP if there

were more than one sensitive attribute.

We improved 3LP to 3LP? [34] to adopt a coordinated

approach to protect the privacy of multiple sensitive attri-

butes. This method uses a matrix to store the history of any

modification of friendship information during a run to

avoid a conflicting suggestion in a subsequent run.

The data utility is also an important element while

protecting privacy. A user can protect their privacy by

hiding all of their information, but it is an unwanted situ-

ation as the user wants to share some of their information

with their friends. Therefore, the goal for a privacy-pre-

serving technique should be a trade-off between privacy

and utility of users’ data.

The rest of this paper is organised as follows. Section 2

presents our proposed technique to protect privacy against

the inference attack. We discuss our experimental set up in

Sect. 3 and the results in Sect. 4. Finally, Sect. 5 gives the

concluding remarks.

2 Our technique

2.1 Our contributions

3LP appeared in an Information and Security Confer-

ence [33] and 3LP? in an Information Systems Security

and Privacy Conference [34].

The multiple application of 3LP would not use infor-

mation about several attributes being targeted as sensitive.

Therefore, such re-applications could be counterproductive

by loosing a lot more information than is required to be

lost. More importantly, the re-application can produce

contradictory suggestions that if acted upon could re-in-

troduce the risk of disclosure. For example, to protect the

privacy of ‘‘Political View’’ 3LP might suggest a user to

hide a friend from his/her friend list while a subsequent run

(say to protect the privacy of ‘‘Religious View’’) might

suggest the user to disclose the same friendship informa-

tion resulting in the loss of protection of ‘‘Political View’’.
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This is mainly because multiple runs of 3LP do not have

proper co-ordination among the runs.

On the other hand, 3LP and 3LP? [34] can both suffer

from a high attack success rate: if the attacker uses a dif-

ferent classifier (than the classifier to identify high pre-

dictor attributes in 3LP or 3LP?) to launch the attack. The

term attack success rate refers to the probability of infer-

ring users’ sensitive attribute values correctly; the lower

the attack success rate value, the higher the privacy.

In this paper, we present 3LPEx that generates the

sensitive rule set by considering all possible combinations

of the attribute values in a data set. Therefore, even if an

attacker uses a different classifier (i.e. not used by the

protection technique) to generate logic rules, 3LPEx should

be able to provide protection against those rules from

linking sensitive information. In addition, 3LPEx can pro-

tect users’ multiple sensitive information in one run while

maintaining data utility. We present other four major

contributions of this paper in Table 4 with their corre-

sponding section numbers. Any of these contributions has

never been published before.

2.2 Basic concept

A decision forest built from a training data set by an

algorithm (e.g. Random Forest [35]) can be different from

another decision forest produced by another algorithm (e.g.

Bagging [36]) as different algorithms take different

approaches to create the forests. So the logic rules dis-

covered by a decision forest algorithm can be different

from the logic rules discovered by another decision forest

algorithm. If we provide privacy based on the logic rules

discovered by a decision forest algorithm, we may not be

able to secure a user if the attacker builds the decision

forest using a different algorithm. Therefore, we need to

first build a set of logic rules that covers/matches the logic

rules obtained by any algorithm and then provide protec-

tion against this set of logic rules.

In this section, we experimentally demonstrate the dis-

similarity of different logic rules by exploiting a set of

decision forest algorithms such as Random Forest [35],

Random Subspace [37], SysFor [29], AdaBoost [38],

Bagging [36], J48 [39], and ForestPA [40] that the

attacker may utilise to compromise privacy. We apply

these algorithms separately on an OSN data set [41],

denoted as D1, to extract a set of logic rules TR, and then

follow the procedure described in Sect. 1.1 to prepare a set

of sensitive rules SR. In the data set, we chose ‘‘Political

View’’ as the class attribute (the details of the data set are

presented in Sect. 3.1).

For each algorithm Alg, we evaluate how good Alg is to

match the sensitive rules generated by another algorithm

Alk. Table 5 offers a row for each choice of algorithm Alg
and a column for each choice of algorithm Alk. The number

of rules generated by Alg can be seen in the diagonal values

of the table since the set of rules generated by an algorithm

always matches with itself. However, the other values in a

row are informative as follows. Consider the row for

Alg=Random Forest (RF), where 627 rules are generated by

Random Forest as we can see in the 2nd column of the 2nd

row in Table 5. We can also see that Random Subspace

(RS) generates 12 rules (see the 4th column of Row 1).

There is only one rule (out of 12 rules generated by Ran-

dom Subspace) that is matched by one or more rules of the

set of 627 rules generated by Random Forest. Similarly,

there are only two rules (out of 402 rules generated by

AdaBoost) that are matched by the set of 627 rules gen-

erated by Random Forest. Obviously, the more rules

(generated by an algorithm) that are matched by the rules

generated by Random Forest, the better privacy can be

provided by using the rules generated by Random Forest.

A rule R1 is considered to be matched by a rule R2 if

one of the following three conditions is met.

1. The antecedents of the rules completely match each

other. By complete matching, we mean all the splitting

attributes and their splitting points in the antecedent of R1

are exactly the same as the splitting attributes and splitting

Table 4 Major contributions of this study

Contribution

number

Description of the contributions Presented in

section

1 We experimentally scrutinise the level of privacy protection of some existing privacy providing techniques

if Z launches the attack using a different decision forest classifier rather than the one used by the technique

2.2

2 We propose a new algorithm 3LPEx that provides privacy for multiple sensitive attributes 2.3, 2.4

3 A synthetic data generator is presented to generate OSN data sets for the experimental purposes 3.1

4 We empirically demonstrate the superiority of 3LPEx over some existing techniques, even when Z uses a set

of different classifiers to breach privacy

4.2

5 We also evaluate the data utility of 3LPEx and compare with some existing privacy preserving techniques 4.3
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points in the antecedent of R2 (even if the attributes are

tested in different order in the tree, they represent the same

antecedent as the logical conjunction and conjunction is a

connective that commutes). For example, Rule 3 in Fig. 2a

and Rule 7 in Fig. 2b are considered to be matched.

2. The antecedent of R2 is an refinement of the ante-

cedent of R1. By the refinement of logic rules, we mean the

antecedent of R2 has all the splitting attributes and points

exactly the same as the antecedent of R1 plus some addi-

tional splitting attributes and points (the refinement will

apply to a subset of the cases that satisfy the original rule;

that is the refinement is more precise). For example, let us

assume R1 is: if Profession = Salesman �!then Lib: 1 and R2

is: if Profession = Salesman & m_political[0.31 �!then Lib:

1. In this example, R2 is an refinement of R1. R2 repre-

sents records those are a subset of the records represented

by R1. Therefore, if the system were to suggest the

obfuscation of attributes in the antecedent of R1, records

that are classified by R2 are also protected. This is why we

consider R2 is matched by R1 for our purpose (in a sense

this is analogous to the anti-monotone property of support

in the analysis of frequent item sets by the apriori

algorithm).

3. Either of the above two conditions is met except that

the splitting point of a numerical splitting attribute varies

within 10% of the domain range of the attribute. For

example, if the domain of the attribute m_profession =

[0,1], R1 is: if Profession = Entrepreneur & m_profession

[0.57 �!then Lib: 1 and R2 is: if Profession = Entrepreneur

& m_profession[0.54 �!then Lib: 1 then we consider R2 is

matched by R1.

Because of the difference of what is found by one

method among the rules produced by another, we can take

the following approach. We name RuleBank ðAlkÞ the

union of all the rules generated by all algorithms except

Alk, and we check how well all other algorithms do in

terms of covering Alk. The results of this ‘‘all others versus

one left out’’ appear as the row for RuleBank. Column 3 of

Row 8 suggests that the RuleBank combining all algo-

rithms except Random Forest can only match 62 rules (out

of 627 rules) generated by Random Forest. We see that

even if we use all other algorithms, we only match a small

fraction of the rules generated by a single algorithm as long

as that one is not included in the RuleBank. This lack of

power of an assemble of algorithms emphasises that for

maximising privacy protection one algorithm to choose

sensitive rules is clearly insufficient.

We also consider 5% and 15% difference of the domain

range of the attribute but an insignificant difference (from

the 10% of the domain range results) has been observed

(see ‘‘Appendix 1’’).

Table 5 Sensitive rules matching

Row Algorithms: RF RS AdaBoost Bagging SysFor J48 FPA

SR (TR) SR = 627 SR = 12 SR = 402 SR = 141 SR = 58 SR = 2 SR = 721

1 RF: SR = 627 (TR = 23,393) 627 1 2 7 18 0 17

2 RS: SR = 12 (TR = 2910) 5 12 0 7 0 0 8

3 AdaBoost: SR = 402 (TR = 20,562) 8 0 402 7 0 0 7

4 Bagging: SR = 141 (TR = 8914) 12 2 0 141 0 0 3

5 SysFor: SR = 58 (TR = 2666) 2 2 0 12 58 2 1

6 J48 - 1 tree: SR = 2 (TR = 298) 0 0 0 1 11 2 0

7 FPA: SR = 721 (TR = 38,453) 23 3 5 7 1 1 721

8 RuleBank - exclude the rules generated by the

selected algorithm: SR = 1963 (TR = 97,196)

62 10 7 56 27 2 37

9 Exhaustive: SR = 65,218 (TR = 563,830) 593 10 344 89 56 2 285

* TR = total number of rules, SR = number of sensitive rules, FPA = forest PA, RF = random forest, RS = random subspace
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2.3 Exhaustive approach

In this Exhaustive approach, a set of logic rules is created

by considering all possible combinations of the non-class

attribute values (see Algorithm 1). The entire approach is

completed in two steps. In Step 1, the attribute values of

each non-class attribute (obtained from the training data set

Dtr) are stored in a matrix H. In Step 2, a set of sensitive

rules is generated by utilising the H. We describe each step

as follows.

Step 1: Store the attribute values in H.

As an input, the Exhaustive approach (see Step 1 of

Algorithm 1) first takes the main data set D, the training

data set Dtr, the set of non-class attributes A, the class

attribute Co, and the user u. A non-class attribute An can be

categorical or numerical. If An is categorical then it stores

all the domain values of An in a matrix H (shown in Step 1

of Algorithm 1).

On the other hand, if An is numerical, then it calculates

the gain ratios for the split points and selects the top five

gain ratios to store their corresponding splitting points in

the matrix H. At the end of Step 1, matrix H is prepared

and made ready for use by Step 2.

Step 2: Generate a set of sensitive rules for the 3LPEx

user.

In Step 2, a set of exhaustive rules is first generated by

considering all possible combinations of the attribute val-

ues stored in H. It is theoretically impossible to protect all

inferences when data on users are available. One cannot

release any data, but then OSN would not be interesting to

users. It is also impossible to anticipate what machine

learning tools would the attacker apply attempting to

compromise the privacy of OSN users. Thus, the first

alternative is what has been attempted before (see

Sect. 1.2): to anticipate what are the attributes that have

high predictive power by observing how frequently they

appear in the rules generated by some machine learning

algorithms. Here, for the first time, we inaugurate the

approach of being exhaustive and aim at inspecting all

rules regardless of how could they be generated (and in fact

most of these rules would have no predictive power). The

approach here surpasses previous approaches by being

agnostic to the identification of predictive attributes (while

all other machine learning algorithms introduce some

learning bias as they apply some induction principle).

Once the exhaustive rules are generated, sensitivity of

each rule is calculated by using Eq. (2) and the rules

having sensitivity value over a threshold are considered as

sensitive rules. Our earlier study [42] demonstrated
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experimentally that a sensitivity threshold lower than 1.006

can provide better privacy by suppressing more regular

attribute values. Therefore, following earlier stud-

ies [28, 33, 34], in this study we also consider the sensi-

tivity threshold to be 1.006. At the end of Step 2, a set of

sensitive rules is generated for the use by Algorithm 2.

While generating the set of exhaustive rules, we con-

sider the number of attributes tested in the antecedent of an

exhaustive rule to be bound at 3 (see Algorithm 1). That is,

we exhaustively generate all classification rules whose

antecedents have at most three terms/conditions in an

antecedent. Our algorithm does not require this number to

be 3 (i.e. our algorithm is not restricted to using 3 as a

bound on the size of the antecedent). However, as we will

see later, the algorithms complexity will be exponential on

this parameter. One can use a larger number of attributes in

the antecedent of a rule, provide more privacy protection,

but would consume more computational resources. As we

explained before, guaranteeing privacy protection to all

attacks would require either complete obfuscation of all

data (which would destroy all utility of the OSN) or

exhaustive generation of all rules of all types (not just

decision tree type with logic rules but oblique and regres-

sion rules such as in CART and all forms and mappings as

hyperspace mappings by support vector machines, etc.).

We will show with our experiments that the value 3

seems a good choice to highlight and made recommenda-

tions to users to obfuscate the least number of nonsensitive

attributes and minimise the need to fabricate friendships or

obfuscate genuine ones. Because of the anti-monotone

property mentioned earlier, by recommending obfuscating

attributes in rules with antecedent with capped size 3, any

refinement that uses any of these attributes becomes inef-

fective to disclose confidential attributes. However, the

possibility exists for larger antecedents which results in

extremely peculiar and precise rules that still jeopardise the

privacy of some users. Our experiments will also show that

at bound 3, we do not achieve total privacy protection. But

certainly much more protection than any previous method.

We now give an example of exhaustive rules with two

attributes in the antecedents and a class value. If two non-

class attributes being tested in the antecedents are A1

and A2 with domain values A1= {v11, v12} and A2= {v21,

v22}, and the class attribute is Co with domain values Co=

{Co1, Co2}, then the set of exhaustive rules is as follows.

Rule 1: If A1=v11 and A2=v21 �!
then

Co=either Co1 or Co2.

Note that the actual value of Co will be determined by

the majority class value of the records satisfying the

antecedent of the rule.

Rule 2: If A1=v11 and A2=v22 �!
then

Co=either Co1 or Co2.

Rule 3: If A1=v12 and A2=v21 �!
then

Co=either Co1 or Co2.

Rule 4: If A1=a12 and A2=v22 �!then Co=either Co1 or

Co2.

The attributes tested in the antecedent of an exhaustive

rule can be either categorical or numerical or a combina-

tion of both categorical and numerical. If an attribute is

numerical, then the split points stored in H are used one by

one in an exhaustive fashion. The effectiveness of the

sensitive rules obtained through the Exhaustive approach in

preserving privacy is also demonstrated in Row 9 of

Table 5. We can see that sensitive rules obtained this way

match with a high number of rules obtained by all other

algorithms. Therefore, if we protect the privacy of users

based on those exhaustive rules that highlight which attri-

butes are high predictors, then we can ensure higher pri-

vacy than the privacy provided based on the sensitive rules

obtained by any other approach that focuses on a single

algorithm (including RuleBank). This is illustrated across

Row 1 to Row 8 of Table 5.

2.4 Main steps of the 3LPEx

We now introduce our proposed privacy protection algo-

rithm, namely 3LPEx, Three Layers of Protection using an

Exhaustive set of rules. In the first layer, 3LPEx suggests

its users to hide some non-sensitive regular attribute values

that can be high predictor of a sensitive attribute value.

After the first layer, if any sensitive rule remains that can

reveal the users’ sensitive attribute value, then 3LPEx

suggests its users to hide some friendship links in the

second layer so that the metric value of a link attribute

becomes lower than mentioned in the sensitive rules. After

the first and second layer, if there are still some sensitive

rules that may disclose the users’ sensitive information,

only then 3LPEx uses third layer. In the third layer, 3LPEx

suggests its users to add some new friends on their profiles

so that the metric value of a link attribute becomes greater

than mentioned in the sensitive rules. We now discuss the

main steps of 3LPEx by assuming a target user u who uses

the 3LPEx to protect his/her sensitive attributes.

3LPEx takes, as an input, the main data set D, the

friendship network G, and a set of non-class attributes A.

Here A contains both regular attributes Ar and link

attributes Al. 3LPEx also takes a set C of attributes, that a

user u considers to be sensitive. For instance, if u considers

‘‘Political View’’ and ‘‘Religious View’’ to be sensitive

attributes, then C= {Political View, Religious View}.

3LPEx randomly chooses a sensitive attribute in C, and

one by one, 3LPEx aims to provide the privacy of the

sensitive attribute by using its 3 layers/steps of privacy

protection. In Layer 1 (i.e. Step 1), it suggests u to suppress

some attribute values, in Layer 2 it suggests to hide some

friendship links and in Layer 3 it suggests to add some new
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friends. Note that the layers are applied sequentially, and a

later layer (e.g. Layer 2) is used, only if the privacy of the

sensitive attribute is not protected by using an earlier layer.

Once the privacy of the current sensitive attribute is pro-

tected (at the end of an iteration of 3LPEx), the sensitive

attribute is removed from C. Once the privacy of all sen-

sitive attributes is protected, the set C becomes empty

and 3LPEx prompts a user to provide more sensitive

attributes, if any (see Algorithm 2).

In each iteration, 3LPEx protects the privacy for a sen-

sitive attribute. Hence, in this example where C ¼{ Polit-

ical View, Religious View}, 3LPEx iterates twice. The first

iteration protects the attribute-value pair ‘‘Political View’’

and later, the pair ‘‘Religious View’’.

An iteration begins when a user u agrees to protect his/

her sensitive attribute by giving a flag information (i.e.

Continue ¼ True) and the entire process will not stop until

u wishes to do so (i.e. Continue ¼ False).

Step 1: Compute Sensitivity of Each Attribute for a

User and Suggest the User to Suppress Regular Attribute

Values as Necessary.(Layer 1)

In Step 1 (see Algorithm 2), the 3LPEx first selects a

sensitive attribute Co (where Co 2 C) as a class attribute

and prepares a training data set Dtr. In this example, Co

can be either ‘‘Political View’’ or ‘‘Religious View’’.

3LPEx then takes the Exhaustive approach (by applying

Algorithm 1) to generate a set of sensitive logic rules,

denoted by Ru, for u. We represent the sensitive rules

generating process by using a function GetEx-

haustiveRuleset (D;Dtr;A;Co; u).

In Ru, a non-class attribute An can appear multiple

times. Therefore, 3LPEx counts the total number of

appearances of An in Ru. After counting the number of

appearances of An, it stores the number in the nth index of

a set Appear. Similarly, 3LPEx counts the number of

appearances of all other non-class attributes (in Dtr) and

stores the information in Appear.

Once the counting is completed, 3LPEx selects the

regular attribute An (i.e. An 2 Ar) with the highest num-

ber of appearances in Appear and recommends u to sup-

press the value of An.

If u accepts the recommendation of suppressing the

value of An, the set of sensitive rules in Ru containing An

in their antecedents are first added into a set T and then

removed from Ru. T is removed from Ru because T will no

longer be useful in breaching the privacy (i.e. predicting

the value) of the sensitive attribute due to the suppression

of An. At this stage, 3LPEx sets Appearn (i.e. the nth of the

set, Appear) to zero.

After the removal of T, if Ru is still not empty, then

3LPEx identifies another regular attribute An (with a dif-

ferent value for n) with the next highest number of

appearances. This suppression process continues as long as

Ru is not empty and Ru contains at least a rule containing a

regular attribute in its antecedent.

Step 2: Suggest the User to Hide Friendship Links as

Necessary if they are not fabricated previously. (Layer 2)

After Step 1, if a rule remains in Ru that predicts the

sensitive attribute value, then such rule can only contain

link attributes from the set Al in its antecedent. Unlike

the regular attributes, the link attributes’ values cannot be

suppressed (as they can be computed based on Eq. (1)) and

can only be modified by hiding or adding some OSN users

in the friend list of u.

If a user u satisfies the conditions of a rule Ru
j the

antecedent of which requires the value of a link attribute Al

to be � a splitting point SplitPoint, then 3LPEx aims to

change the value of Al for u to be \SplitPoint by hiding

some suitable friends in order to get u not satisfying the Ru
j

so that an adversary cannot use Ru
j to breach the privacy of

the sensitive attribute for u. In this step (i.e.

Layer 2), 3LPEx only hides suitable friends to remove u

from as many rules in Ru as possible.
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Similar to Step 1, 3LPEx first identifies the link attribute

An (where An 2 Al) which is most frequent in Ru and

computes An’s value, denoted as v, using Eq. (1). If v is

higher than the split point mentioned in Ru
j , then 3LPEx

suggests u to hide a friendship link to reduce the value

below the split point. While choosing a friendship

link, 3LPEx selects a friend ti (where i is a user index)

of u who has the smallest degree. If ti has not appeared in a

friendship matrix F0 (i.e. the friendship link between u and

Neural Computing and Applications (2021) 33:12397–12427 12407

123



ti was not previously modified by 3LPEx), 3LPEx recom-

mends u to hide ti so that it can reduce v the most. Here, F0

is a 1 � N matrix which stores the friendship Flag infor-

mation for u. If u follows the recommendation, 3LPEx

puts a Flag up in the ith column of the Friendship

matrix F0 and this user will no longer be recommended for

further hiding or adding. The 3LPEx then updates G0, F0,
and recomputes v (see Step 2).

This process continues until v is lower than the Split-

Point mentioned in Ru
j . Once v is lower than the split point,

the process of hiding friends stops. 3LPEx then remo-

ves Ru
j and other rules (that require the value of An to be

� than the SplitPoint) from Ru. At the end of Step 2, if Ru

is not empty, then 3LPEx moves to Step 3, i.e. Layer 3.

Step 3: Suggest the User to Add Friendship Links as

Necessary if they are not fabricated previously. (Layer 3)

After Step 1 and Step 2 if Ru is still not empty, the

remaining rules contain only link attributes in their ante-

cedents. If u satisfies the condition of a rule Ru
j which

requires the value of a link attribute v to be less than a

splitting point SplitPoint, then 3LPEx recommends u to

add new friends wisely so that the value of v increases,

with the aim to make the value of v eventually greater than

the SplitPoint appearing in the set Ru
j of rules.

3LPEx recommends u to add a user ti in u’s friend list if

two conditions are fulfilled: 1. the flag in the ith column of

F0 matrix has previously been set to False and 2. The user

ti is chosen as having the smallest degree (i.e. the smallest

CþðtÞ value). If u follows the recommendation, 3LPEx

then sets True in the ith column of the matrix F0 so that

user ti will not be recommended for further hiding or

adding. 3LPEx also updates the friendship graph G0 and

increases the value of the link attribute value.

This process of adding friends continues as long as v is

smaller than SplitPoint. Once v is greater than SplitPoint,

Ru
j becomes ineffective for u to predict u’s sensitive attri-

bute value correctly and 3LPEx then removes Ru
j and other

rules (that require the value of An to be \ than the Split-

Point) from Ru. Adding an OSN user in the friend list

would be inconvenient as it depends on the other users

accepting the friendship invitation [43]. Therefore, 3LPEx

keeps Layer 3 as a last option for providing privacy.

At the end of Layer 3, Ru becomes empty, 3LPEx

removes the class attribute Co from C and asks u whether

to continue protecting privacy for the next sensitive attri-

bute or not. If u agrees to continue (i.e. Continue ¼ True)

and the list of sensitive attribute |C| is not empty, then the

entire process (i.e. Step 1 to Step 3) iterates over the next

sensitive attribute.

2.5 Complexity analysis

We now apply standard analysis of algorithms under the

uniform-cost measurement [44] (that is, every machine

operation, regardless of the size of the numbers involved

has constant cost) to obtain the time-complexity expres-

sions of our algorithms. Clearly, if we were to generate all

rules with antecedents having k attributes (out of a data set

with d attribute values), the complexity of the algorithm

would be dominated by a term of the form
d
k

� �
. Since

typically k is much less than d, the complexity would be

dominated by

ðd=k � 0:5Þkekffiffiffiffiffiffiffiffi
2pk

p

(by Stirling’s approximation). However, as we have indi-

cated, full privacy is only achievable with the unpalat-

able option of no data release. In what follows, we present

a detailed analysis when the practical choice of exhaustive

exploration of all rules with at most k ¼ 3 attributes is

adopted.

The overall complexity of 3LPEx is the sum of the

complexity of Algorithm 1 and Algorithm 2. First, we

analyse the complexity of Algorithm 1 and then the com-

plexity of Algorithm 2.

Step 1 of Algorithm 1 stores the domain values of each

non-class attribute. Hence, the complexity of storing the

domain values of an attribute is OðN2 þ N þ dÞ. Therefore,

the complexity of storing the domain values of b number of

attributes is OðbN2 þ bN þ bdÞ. Step 2 of Algorithm 1

generates a set of exhaustive rules and in each rule the

number of antecedents of each rule is considered to be 3.

Therefore, in our case, the number of attributes, b, in a data

set should not be less than 3 i.e. b� 3.

We assume a data set containing three attributes (e.g.

A1;A2 and A3), and each of the attribute’s domain value is

d. If the rules are generated using one attribute in their

antecedent, then the complexity of generating such rules is

O(d). Therefore, the complexity of generating the rules

with first two attributes is Oðd þ d2Þ, and the complexity

with the first three attributes is Oðd þ d2 þ d3Þ. As men-

tioned earlier, the number of antecedents of each rule is

considered to be 3 in our study, so the total complexity of

generating rules is dominated by the third attribute i.e.

Oðd3Þ. It is important to mention here that the number of

appearance of A3 attribute in the third antecedent position

of the generated rules is 1 as the matrix H propagates from

left to right while building a rule and attributes A1 and A2

cannot be in the third antecedent position of the generated

rules (see Step 2 of Algorithm 1).
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We now assume a data set containing four attributes and

the attributes are A1;A2;A3 and A4. Here, the number of

appearance of A3 attribute in the third antecedent position

of the generated rules is 1 (the combination is A1-A2-A3).

On the other hand, the number of appearance of A4 attri-

bute in the third antecedent position is 3 (A1-A2-A4, A1-

A3-A4, and A2-A3-A4 . Therefore, the complexity of

generating the exhaustive rules for four attributes is dom-

inated by the fourth attribute. We can calculate as Oðð4 �
2Þd3 þ ð4 � 3Þd3Þ or Oð3d3Þ. Similarly, for a data set with

five attributes (e.g. A1, A2, A3, A4, A5), the complexity of

generating exhaustive rules is Oðð5 � 2Þd3 þ ð5 � 3Þd3 þ
ð5 � 4Þd3ÞÞ or Oð6d3Þ.

Therefore, for the b number of attributes, We can write

the series, s, as:

s¼ ½fðb� 2Þþ ðb� 3Þþ ðb� 4Þþ ðb� 5Þþ � � �þ 1g� d3�
ð3Þ

By writing Eq. (3) backward, we get:

s¼ ½f1þ 2þ 3þ � � � þ ðb� 4Þ þ ðb� 3Þ þ ðb� 2Þg� d3�
ð4Þ

By adding Eqs. (3) and (4), we get

2s ¼ ½fðb� 1Þ þ ðb� 1Þ þ � � � þ ðb� 1Þg � d3� ð5Þ

The sum of this series is
ðb� 2Þðb� 1Þ

2
� d3.

Therefore, the complexity of Task 1 of Step 2 is

O
ðb� 2Þðb� 1Þ

2
� d3

� �
which can be simplified as

Oðb2d3Þ. To calculate the sensitivity of a rule, we

compare the antecedents of a rule with b number of attri-

butes of each record in D and hence the complexity is

OðbNjRjÞ. The overall complexity of Algorithm 1 is

OðbN2 þ b2d3 þ bNjRjÞ.
We now analyse the complexity of Algorithm 2. At first,

Step 1 of Algorithm 2 takes Algorithm 1 as an input

(Task 1). Therefore, the complexity of Algorithm 1 is

considered as the complexity of Task 1 i.e.

OðbN2 þ b2d3 þ bNjRjÞ. In Task 2, the number of

appearance of each attribute in the sensitive rule set is

counted. The complexity of counting an attribute in the

sensitive rule set is O(r). Therefore, the complexity of

counting b number of attributes in the sensitive rule set is

O(br). In Task 3, we suppress the regular attribute values

that appear most in the sensitive rule set. If the total

number of attributes is b and the total number of sensitive

rules is r, then the complexity of Task 3 is O(br). There-

fore, the overall complexity of Step 1 of Algorithm 2 is

OðbN2 þ b2d3 þ bNjRj þ 2brÞ.
In Step 2 of Algorithm 2, the appearance of each link

attribute in the sensitive rule set is first counted (Task 1).

Therefore, the complexity of counting b number of attri-

butes in the sensitive rule set is O(br). In Task 2, to get rid

of a sensitive rule, we calculate the metric value of the

most appeared link attribute for u by using Eq. (1). If u has

f number of friends and each friend having a degree of q,

then complexity is Oðf 2qÞ. The complexity to get rid of all

the sensitive rules r is Oðf 2qrÞ. So, the overall complexity

of Step 2 of Algorithm 2 is Oðbsþ f 2qrÞ.
The complexity of Step 3 of Algorithm 2 is almost

similar to the complexity of Step 2 of Algorithm 2 and that

is Oðbr þ N2qsÞ as u needs to search the N number of users

in the data set for adding friends.

The overall complexity of Algorithm 2 is OðbN2 þ
b2d3 þ bNjRj þ 3br þ f 2qr þ N2qrÞ for a user to protect a

sensitive attribute from attribute inference attack. The total

complexity of Algorithm 2 to protect the privacy for c

number of sensitive attributes is OðcbN2 þ cb2d3þ
cbNjRj þ cb2r þ cf 2qr þ cN2qrÞ. For low-dimensional

data sets (such as those used in this study), the complexity

of 3LPEx can be simplified to OðN2 þ d3Þ.

3 Experiments

3.1 Data sets and notation

We use two OSN data sets in this study for experimental

purposes and denoted as D1 and D2. Both data sets contain

users’ personal and friendship information that an attacker

may utilise to launch the attack. The details of the data sets

are given in Table 6. The first data set D1 [41] was used in

our earlier studies [33, 34]. We synthetically generate the

second data set D2 in this study. The synthetic data set D2

and the data generator is available here: https://drive.-

google.com/drive/folders/1My3V7h959X-UlEVe45F6f1y7

rHlEidKV?usp=sharing. In this section, we first describe

the data set D2 generation process and then the distribu-

tion of records in the training and test data sets for both

D1 and D2.

In order to generate records in D2, we first select ten

regular attributes, namely Age range, Relationship status,

City of residence, Number of friends on OSN, Number of

pages followed on OSN, Number of uploa-ded photos per

week, Number of comments made on contents per week,

Political view, Religion, and Profes-sion. Table 11 shows

that what attribute values users may upload on their pro-

files. From the users preference, our method selects attri-

butes randomly and categorises the attributes in three

groups: ‘‘users’ activities on OSN’’, ‘‘users’ personal

information’’ and ‘‘users’ sensitive information’’.

In order to get meaningful rules from the data set,

similar to previous studies [29, 45], we then generate the
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records based on some predefined logic rules. For example:

If Age range = 18-27 and Number of friends on OSN =

High �!then Profession = Student. We take advantage of the

Australian Bureau of Statistics website [46] to prepare the

logic rule set and based on the rules, we then generate

records in D2. The logic rules are provided in ‘‘Appendix

2’’.

In order to generate the friendship links among the

users, we set the probability of a link between two users by

calculating record-to-record distance (or R2RD 2 ½0; 1�) as

the Hamming distance divided by the number of total

attributes (i.e. 10). Users having similar attribute values

(i.e. low Hamming distance) are likely to have common

interests and thus are likely to have friendship links

between them. In D2, if the value of the R2RD distance of

any two records is 0.3 or less, we consider them as friends

and place a link between the two records. Thus, we gen-

erate 12,567,829 friendship links among the 10,000 records

and then calculate the link attribute values to insert into the

data set.

Table 6 shows our assumption: users in the data sets

consider up to three attributes as sensitive. For simplicity,

we denote them as C1, C2, and C3. We therefore prepare

three versions of each data set; in each version we select an

attribute as a class attribute and denote them accordingly.

For example, if we select C1 as the class attribute, then we

denote the training data sets as Dtr;C1
and the testing data

set as Dts;C1
.

On the other hand, when we consider a particular attri-

bute as a class attribute, then the rest of the sensitive

attributes are selected to be non-class attributes. For

instance, in Dtr;C1
, C2 and C3 are considered as non-class

attributes.

3.1.1 Distribution of records in the data sets

For the validation of experimental results, we follow ten-

fold cross-validation methods throughout our experiments.

V-fold cross-validation is standard technique in evaluation

of accuracy in machine learning and V=10 offers low

variance of the estimate, reliable estimation of the accuracy

and not excessive validation cost. Other values of V do not

provide much more precision on the estimate of a classifier

accuracy, but consume more time to perform. With tenfold

cross validation, the data are partitioned in ten random

parts. For each of the parts, the remaining data (containing

90% of the total records) perform the role of training set

and the part (containing 10% of the records) become the

test data set.

In a real-world scenario, OSN users may have a diverse

range of information that they consider to be sensitive.

Therefore, we assume that different records (i.e. OSN

users) in a test data set consider the set of sensitive attri-

butes differently. While some users may consider C1 as a

sensitive attribute, some others may consider C1 as a non-

sensitive attribute. Moreover, while some users may con-

sider only one attribute to be sensitive, some other users

may consider two or three attributes to be sensitive. Hence,

we labelled the records of the test data set into three groups

(named as Group 1, Group 2, and Group 3) based on the

number of sensitive attributes considered by the test data

set users. Group 1 contains 6% of users who consider any

one (either ‘‘C1’’ or ‘‘C2’’ or ‘‘C3’’) attribute as sensitive,

Group 2 contains 3% of users who consider any two

attributes as sensitive, and finally Group 3 contains 1% of

users who consider all the three attributes as sensitive.

Group 1 is again divided into three subgroups, they are

subgroup 11: contains 2% of users who consider ‘‘C1’’ as

sensitive only, subgroup 12: contains 2% of users who

consider ‘‘C2’’ as sensitive only, subgroup 13: contains 2%

of users who consider ‘‘C3’’ as sensitive only. Similarly,

Table 6 Data sets at a glance

Data

set

Number of

links

Number of

records

Number of nonclass

attributes

Class

attributes

Class values

D1 50,397 1000 21 Political view Far left, left, centre left, centre, centre right, right, far right

Religion Christian, Muslim, Jewish, Hindu, Buddhist, Sikh, No-

religion, Other-religion

Sexual

orientation

Absent sexual information, bisexual, heterosexual,

homosexual

D2 12,567,829 10,000 19 Political view Liberal, labour, green party

Religion Christian, Muslim, Hindu, No-religion, Other-religion

Profession Govt.-employee, salesman, entrepreneur, student, retired-

person
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Group 2 is again divided into three subgroups, they are

subgroup 21: contains 1% of users who consider ‘‘C1’’ and

‘‘C2’’ as sensitive only, subgroup 22: contains 1% of users

who consider ‘‘C1’’ and ‘‘C3’’ as sensitive only, sub-

group 23: contains 1% of users who consider ‘‘C2’’ and

‘‘C3’’ as sensitive only.

While preparing a test data set (say Dts;C1
), we select the

records who consider ‘‘C1’’ as sensitive and leave all other

records in the training data set Dtr;C1
. For example, Dts;C1

contains 5% of the total records, i.e. subgroup11 (2%),

subgroup 21 (1%), subgroup 22 (1%), and Group 3 (1%)

records and Dtr;C1
contains 95% of the total records.

3.2 Experimental set-up

In this experimental set up, we consider that there are at

most three attributes that can be considered to be sensitive.

We present the experimental set-up here in three phases. In

each phase, the privacy techniques secure a sensitive

attribute. For example, privacy of sensitive attribute C1 is

protected in Phase I, C2 in Phase II, and C3 in Phase III.

3.2.1 Phase I

Phase I is comprised of five steps.

Step 1: Preparation of training and test data sets.

At the beginning of Phase 1, shown in Fig. 3, the pri-

vacy preserving techniques randomly select a sensitive

attribute C1 (from the set of sensitive attributes) as a class

attribute and prepare training data set Dtr;C1
and testing data

set Dts;C1
from the main data set D.

Step 2: Application of existing classifiers before apply-

ing any privacy techniques on the test data sets.

After preparing the training and test data sets, we

investigate the attack success rate of an attacker Z to infer

private information about the users in the test data set

before applying any privacy preserving technique. To do

so, we train a set of existing classifiers (that Z might use to

breach privacy) on Dtr;C1
and we denote the classifiers as

‘‘Classifiers 1’’ as shown in Fig. 3. We then apply Clas-

sifiers 1 on Dts;C1
to identify the attack success rate in

absence of any privacy technique. The results are analysed

and compared with the results that will be achieved later in

Step 4. We use the same set of classifiers (in Classifiers 1,

Classifiers 2, ...Classifiers 6) throughout our experiments to

test the attack success rate.

Step 3: Application of privacy techniques to ensure

privacy of attributes users consider confidential.

In this step, we apply the privacy techniques, namely

3LP?, PrivNB, and our proposed algorithm 3LPEx, to

provide privacy to the users in the test data set (i.e. Dts;C1
).

Please note that due to the modification of friendship links

in test data sets (for the sake of providing privacy), there

may be a change in link attribute values in the training data

set as there are friendship links among the users in the

training and test data set. We use (from this point forward)

two different superscripts ‘‘ 0’’ and ‘‘ �’’ to denote the

modified data sets. The data sets modified by our proposed

technique 3LPEx are denoted by ‘‘ 0 ’’. On the other hand,

the data sets modified by any other privacy preserving

technique (e.g. 3LP? and PrivNB) are denoted by ‘‘ � ’’.

For example, the resultant secure test data sets D0
ts;C1

is

secured by 3LPEx and D�
ts;C1

is secured by another privacy

technique. Note that in these experiments we only secure

records in test data sets.

Fig. 3 Phase I of the

experiments
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Step 4: Application of existing classifiers after applying

privacy techniques on the test data sets.

In this step, the robustness of secured test data sets

against an attack is analysed and compared with the results

achieved in Step 2. We first train the classifiers (denoted as

Classifiers 2) with a modified training data set D0
tr;C1

or

D�
tr;C1

. Please note that Classifiers 2 obtained from D0
tr;C1

(see the top right rectangle of Fig. 3) are different from the

Classifiers 2 obtained from D�
tr;C1

(see the bottom right

rectangle of Fig. 3), in the sense that they are built from

different training data sets. We then apply Classifiers 2 on

secure test data sets D0
ts;C1

and D�
ts;C1

; respectively. We also

apply Classifiers 1 on D0
ts;C1

and D�
ts;C1

to evaluate the at-

tack success rate with and without the privacy protection

techniques. Attack success rate refers to the number of

users in test data sets whose class values can be correctly

inferred by the classifiers. Smaller accuracy indicates

better privacy protection. Step 4 is divided in two substeps:

Step 4a and Step 4b.

In Step 4a, we analyse the accuracy of Classifiers 1 on

secure test data sets D
0
ts;C1

and D�
ts;C1

. In Step 4b, we

analyse the accuracy of Classifiers 2 (trained by modified

training data set) on secure test data sets D
0
ts;C1

and D�
ts;C1

.

Step 5: Measurement of data utility and inclusion of the

records from secured test data set into the main data set.

We calculate data utility of the secure test data sets, i.e.

D0
ts;C1

and D�
ts;C1

; in this step. The data utility is measured in

terms of the number of suppressed attribute values where

the less number of suppression indicates higher utility. At

the end of Step 5, we return all the records (from training

and testing data sets) to D and the original data set D is

now modified to D0 and D�.

Please note that irrespective of the classification algo-

rithms used by the privacy techniques (i.e. 3LPEx uses an

exhaustive set of axis -parallel rules while 3LP? uses

SysFor). In our experiments, to evaluate the potential

penetration by an adversary, we use a number of classifi-

cation algorithms such as Random Forest, Support Vector

Machine (SVM), and Logistic Regression. For the full list

of classification algorithms used in the experiments, please

see Fig. 9. Classifiers 1, Classifiers 2, . . . Classifiers 6 (see

Figs. 3, 4, 5) use all of these classification algorithms, one

by one, in our experiments. The goal of these experiments

is to evaluate the attack success rate of each of these

classification algorithms, to understand the impact of the

use of these algorithms on the privacy of the users. In the

experiment where we use a particular classification algo-

rithm (say Logistic Regression) as Classifiers 1, we con-

tinue to use the same classification algorithm for all other

classifiers, i.e. Classifiers 2, Classifiers 3 etc.

It is also important to clarify that Classifiers 2 in the top

rectangle and bottom rectangle on the right side of Fig. 3

are not the same classifiers. While Classifiers 2 on the top

rectangle are built from D0
tr;C1

and the Classifiers 2 on the

bottom rectangle are built from D�
tr;C1

. However, Classifiers

1 are built from Dtr;C1
as shown in the left side rectangle in

Fig. 3.

Classifiers 3 in the top left side and top right-side rect-

angles of Fig. 4 are built from D0
tr;C2

. Classifiers 3 in the

bottom left side and bottom right-side rectangles of Fig. 4

are built from D�
tr;C2

. However, Classifiers 4 in the top right

side rectangle are once built from D20

tr;C2
and another time

from D20
tr;C1

and then tested on D20
ts;C2

and D20
ts;C1

, respec-

tively. Similarly, Classifiers 4 in the bottom right side

rectangle are once built from D2�
tr;C2

and another time from

D2�
tr;C1

and then applied on D2�
ts;C2

and D2�
ts;C1

, respectively.

3.2.2 Phase II

Similar to Phase I, Phase II is also completed in five steps:

Step 6 to Step 10 as shown in Fig. 4.

Step 6: Preparation of the training and test data sets.

At the beginning of Phase II, 3LPEx randomly selects a

sensitive attribute C2 (from the set of sensitive attributes)

as a class attribute and then prepares the training data set

D0
tr;C2

and test data sets D0
ts;C2

from D0. Similarly, D�
tr;C2

and

D�
ts;C2

are prepared from D� by the other privacy techniques

(see Fig. 4).

Step 7: Application of existing classifiers before apply-

ing the privacy techniques on the test data sets.

In Step 7, before applying any privacy technique, a set

of classifiers, namely Classifiers 3, are first trained from the

training data sets D0
tr;C2

and D�
tr;C2

. It is important to note

that Classifiers 3 trained by D0
tr;C2

are different from

Classifiers 3 trained by D�
tr;C2

. For simplicity, we denote the

both classifier models here as Classifiers 3 and shown in

the left-side rectangle in Fig. 4. Once the classifier models

are built, they are applied on the test data sets, i.e. D0
ts;C2

and D�
ts;C2

. The Classifiers 3 results are kept for analysing

and comparing with the Classifiers 4 results that will be

achieved in Step 9.

Step 8: Application of privacy techniques to secure

users in test data sets.

In this step, we apply 3LPEx and other two privacy

preserving techniques (i.e. 3LP? and PrivNB) on D0
ts;C2

and

D�
ts;C2

; respectively, to secure the privacy of the users. It is

important to mention that both of these test data sets were

secured previously in Phase I for C1. In Phase II, we

implement the privacy techniques to secure them for C2.

Due to the implementation of the privacy techniques, the
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training and testing data are changed. Here, we denote the

modified test and training data sets by D20
ts;C2

and D20
tr;C2

for

3LPEx. Similarly we denote D2�
ts;C2

and D2�
tr;C2

to represent

the test and training data sets modified by the other privacy

preserving techniques.

Step 9: Application of existing classifiers after applying

the privacy techniques on the test data sets.

In this step, a classifier model, i.e. Classifiers 4, is

trained from the D20
tr;C2

and D2�
tr;C2

separately (as shown in

the right side in Fig. 4) and then applied on test data sets

D20
ts;C2

and D2�
ts;C2

; respectively. We also apply Classifiers 3

on D20
ts;C2

and D2�
ts;C2

for analysing and comparing the

number of insecure users, and prediction accuracy of dif-

ferent conventional classifiers (as mentioned in Step 7).

Therefore, Step 9 is divided in two substeps: Step 9a and

Step 9b.

In Step 9a, we analyse the accuracy of Classifiers 3 on

secure test data sets D20
ts;C2

and D2�
ts;C2

. In Step 9b, we

analyse the accuracy of Classifiers 4 (trained by modified

training data set) on secure test data sets D20

ts;C2
and D2�

ts;C2
.

Step 10: Measurement of data utility and return the

secure test data set records into the main data set.

Fig. 4 Phase II of the

experiments

Fig. 5 Phase III of the

experiments
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In this step, we measure data utility for each test data set

D20

ts;C2
and D2�

ts;C2
. After that, we return all the records to the

main data set. The main data set is now modified to D20 and

D2� for 3LPEx and other privacy preserving algorithms,

respectively.

For the sake of providing privacy to the users (who

consider C2 as sensitive attribute), there can be a privacy

breach for the other users who consider C1 as sensitive.

Therefore, we also investigate the safety of users (who

consider C1 as sensitive) in D20
ts;C1

and D2�
ts;C1

in this step.

3.2.3 Phase III

The privacy techniques provide privacy for the third sen-

sitive attribute C3 in Phase III. Similar to Phase I and

Phase II, Phase III is also completed in five steps: Step 11

to Step 15 as shown in Fig. 5.

Step 11: Preparation of the training and test data sets.

In this step, 3LPEx selects the remaining sensitive

attribute, i.e. C3; (from the set of sensitive attributes) as a

class attribute and then prepares training data set D20
tr;C3

and

testing data sets D20
ts;C3

from D20 . Other privacy preserving

techniques also prepare training data set D2�

tr;C3
and test data

set D2�
ts;C3

from D2� in the similar manner.

Step 12: Application of Classifiers’ performance to

invade privacy.

In this step, a set of classifiers, namely Classifiers 5, are

first trained from the training data sets D20
tr;C3

and D2�
tr;C3

(before applying any privacy preserving techniques) as

shown in the left side in Fig. 5. Classifiers 5 is then applied

on the test data sets D20
ts;C3

and D2�
ts;C3

; respectively. The

results are kept for analysis and comparing purposes with

the results which will be achieved in Step 14.

Step 13: Application of privacy techniques to secure

users.

In this step, 3LPEx and other privacy preserving tech-

niques are on D20
ts;C3

and D2�
ts;C3

. It is important to mention

that both D20
ts;C3

and D2�
ts;C3

were secured previously in Phase

I for C1 and in Phase II for C2. In this phase, we apply the

privacy techniques to secure the users who consider C3 as

sensitive attribute. After application of 3LPEx, the training

and testing data are modified and denoted as D30

ts;C3
and

D30
tr;C3

for 3LPEx. Similarly, we use D3�
tr;C3

and D3�
ts;C3

to

denote the modified training and test data sets by the other

privacy preserving techniques.

Step 14: Application of existing classifiers after apply-

ing the privacy techniques on the test data sets.

In this step, classifier model, i.e. Classifiers 6, is trained

from D30
tr;C3

and D3�
tr;C3

separately and then applied on test

data sets D30
ts;C3

and D3�
ts;C3

; respectively. On the other hand,

Classifiers 5 is also applied on D30

ts;C3
and D3�

ts;C3
for ana-

lysing and comparing with the attack success rate achieved

in Step 12. Therefore, Step 14 is divided in two substeps:

Step 14a and Step 14b.

In Step 14a, we analyse the accuracy of Classifiers 5 on

privacy-protected test data sets D30
ts;C3

and D3�
ts;C3

. In

Step 14b, we analyse the accuracy of Classifiers 6 (trained

by modified training data set) on secure test data sets D30
ts;C3

and D3�
ts;C3

.

Step 15: Measurement of data utility and inclusion of

the privacy-protected test data set records into the main

data set.

After securing the test data sets, similar to Phase II, In

Step 15a and Step 15b, respectively, we again analyse the

attack success rate in D30
ts;C1

, D3�
ts;C1

, and D30
ts;C2

D3�
ts;C2

(who

consider C1 and C2 as sensitive attribute). The privacy-

protected test data sets (including D30

ts;C3
and D3�

ts;C3
) are also

analysed for the utility.

Therefore, in our experiments, Step 15 is divided in two

substeps: Step 15a and Step 15b. In Step 15a, we analyse

the classifiers’ accuracy of breaching users’ (who consider

C1 as a sensitive attribute) privacy in D30
ts;C1

and D3�
ts;C1

after

protecting users’ privacy for C3. In Step 15b, we analyse

the classifiers’ accuracy of breaching users’ (who consider

C2 as a sensitive attribute) privacy in D30
ts;C2

and D3�
ts;C2

after

protecting users’ privacy for C3. After securing the privacy

for C3, we return all the records to the main data set which

becomes D30 and D3� for 3LPEx and other privacy tech-

niques, respectively.

The descriptions of the main experimental steps (de-

scribed in Phase I to Phase III and shown in Figs. 3, 4 and

5) are summarised in Table 7.

4 Experimental results and discussion

We present the experimental results here in four subsec-

tions. In Sect. 4.1, we present the experimental results (i.e.

the degree of privacy) achieved by 3LPEx against an

attacker who uses the exhaustive approach (i.e. uses the

exhaustive approach to build the classifiers) to launch the

attack. In Sect. 4.2, we present the experimental results of

3LPEx, if an attacker uses a well-known existing classifier

to launch the attack. Finally, in Sect. 4.3, we analyse and

compare the data utility of the proposed technique in terms

of the number of suppressed regular attribute values. In

Sect. 4.4, we analyse the inference risk of a sensitive

information after protected by the 3LPEx algorithm.
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The experimental results, presented in Sects. 4.1 and

4.2, are shown in terms of attack success rate percentage

(y-axis) observed at each step (x-axis).

4.1 Protection against the exhaustive approach

In Fig. 6, we present the number of insecure users whose

class values can still be inferred if an attacker applies the

same classifier (i.e. exhaustive approach) to breach the

privacy. We first provide privacy by 3LPEx and the two

other privacy preserving techniques (i.e. 3LP? and

PrivNB) separately as described in Sect. 3.2. Then, we

apply an exhaustive approach to build a classifier for

classifying the records in the test data set.

Similar to our previous study [34], in this study, we also

utilise attack success rate as a scale to determine the per-

centage of users whose privacy is compromised. We

observe in Fig. 6a that the attack success rate for 3LP?

and PrivNB is much higher than 3LPEx except in Step 2. In

Fig. 6b, we can see a similar pattern of attack success rate

for D2. In both data sets, 3LPEx outperforms 3LP? and

PrivNB.

Compared to other steps, we observe a high attack

success rate in Step 2, Step 6, and Step 11 of Fig. 6a and b

as these steps are the initial steps of Phase I, Phase II, and

Phase III, respectively. Please see the first, fourth, and

eighth rows of Table 7 for the description of Step 2,

Step 6, and Step 11, respectively.

In our experiments, Step 2 indicates the initial stage

where privacy protection techniques are yet to be imple-

mented on the test data sets. Therefore, the attack success

rate, in Step 2, is the same for all the three protection

techniques. In Step 6 and in Step 11, the second and third

sensitive attributes are selected, respectively, as class

attributes of a data set and the privacy preserving algo-

rithms are yet to be applied on the data set.

4.2 Protection against the existing classifiers

An attacker can utilise any classifier rather than the one

used by the privacy preserving technique to infer the target

users’ hidden information. Therefore, we test the perfor-

mance of our proposed technique against different classi-

fiers and present the results in terms of attack success rate

observed in each step.

In order to conduct the experiments of this subsection,

we utilise the classifier packages from WEKA [47]. In a

real-world scenario, an attacker could use any machine

learning algorithm; in particular, the WEKA package offers

a diversity of classifier learning algorithms whose imple-

mentations is acknowledged as robust by the community as

it won the 2005 SIGKDD Data Mining and Knowledge

Discovery Service Award. We select a set of existing

classifiers, namely Naı̈ve Bayes (NB) [48], SVM [49, 50],

Table 7 Summary of the main experimental steps

Steps Description of the steps

2 The initial stage before applying any privacy preserving techniques on the test data sets

4a The classifiers’ (trained by unmodified training data set) accuracy on protected test data set (for the first sensitive attribute) after applying

privacy preserving techniques

4b The classifiers’ (trained by modified training data set) accuracy on protected test data set (for the first sensitive attribute) after applying

privacy preserving techniques

6 The initial stage (for the second sensitive attribute) before applying any privacy preserving techniques on the test data sets

9a The classifiers’ (trained by unmodified training data set) accuracy on protected test data set (for the second sensitive attribute) after

applying privacy preserving techniques

9b The classifiers’ (trained by modified training data set) accuracy on protected test data set (for the second sensitive attribute) after applying

privacy preserving techniques

10 The classifiers’ (trained by modified training data set) accuracy on protected test data set (for the first sensitive attribute) after applying

privacy preserving techniques

11 The initial stage (for the third sensitive attribute) before applying any privacy preserving techniques on the test data sets

14a We analyse the accuracy of Classifiers 5 (trained by unmodified training data set) on secure test data sets D30
ts;C3

and D3�
ts;C3

14b We analyse the accuracy of Classifiers 6 (trained by modified training data set) on secure test data sets D30
ts;C3

and D3�
ts;C3

15a We analyse the classifiers’ accuracy of breaching users’ privacy (who consider C1 as sensitive attribute) in D30
ts;C1

and D3�
ts;C1

after

protecting users’ privacy for C3

15b We analyse the classifiers’ accuracy of breaching users’ privacy (who consider C2 as sensitive attribute) in D30

ts;C2
and D3�

ts;C2
after

protecting users’ privacy for C3
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Logistic Regression [51], and J48 [52]. In addition, we

consider some decision forest algorithms, namely Random

Forest (RF) [35], AdaBoost [38], Bagging [36], Sys-

For [29], ForestPA [40], and Random Subspace [37], that

an attacker may utilise for inferring private information

from D1 and D2.

We present the results of D1 in Fig. 7 and D2 in Fig. 8.

Figure 7a shows the attack success rate when an attacker

uses Naı̈ve Bayes (denoted as NB) to breach privacy of

records protected by the privacy preserving techniques. We

can see from Fig. 7a that 3LPEx provides better privacy

than the other privacy techniques in each step.

In Step 2, the attack success rate is the same for all the

privacy techniques but it drops significantly (more than 40

percent) when we apply 3LPEx. Similar trend is observed

Fig. 6 Attack success rate accuracy of exhaustive approach to invade

privacy on two data sets

Fig. 7 Attack success rate accuracy of different classifiers to invade

privacy on first data set D1
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throughout the experimental steps, and it is obvious that

our technique clearly outperforms the existing privacy

techniques. We can see a similar results for the Support

Vector Machine classifier shown in Fig. 7b. Similar to the

Naı̈ve Bayes and SVM results, 3LPEx outperforms the

previous privacy preserving techniques for all other

classifiers.

We present the results of D2 in Fig. 8 where we can

observe a similar trend.

The two classifiers against which 3LPEx can reduce the

attack success rate value the most, in D2 data set, are also

NB and SVM as shown in Fig. 8a and b, respectively. The

average of all the classifiers’ attack success rate percent-

age, shown in Fig. 8c, indicates the superiority of 3LPEx

over the existing privacy techniques.

Although 3LPEx provides higher privacy than the

existing privacy preserving techniques, we can see from

Figs. 6, 7, and 8 that the attack success rate is still not zero.

That is, often an attacker can be successful in inferring the

sensitive information of a user. However, 3LPEx signifi-

cantly reduces the attack success rate reducing the confi-

dence level of an attacker. according to the privacy

definition provided in Sect. 1.1.1 the reduced confidence

will support privacy protection by making PrðCo ¼ LÞ\c.

Moreover 3LPEx can provide higher privacy by lower-

ing the threshold for sensitive rules. Hence, we conduct an

experiment, on data set D1, by reducing the sensitive

threshold values to observe the change in attack success

rate. The result is presented in Fig. 9. In Fig. 9, the x-axis

represents different sensitivity threshold levels and the y-

axis represents the attack success rate. Figure 9 shows that,

by reducing the sensitivity threshold values, we can reduce

the attack success rate.

Fig. 8 Attack success rate accuracy of different classifiers to invade

privacy on second data set D2

Fig. 9 Privacy levels achieved by 3LPEx when different classifiers

used to breach the privacy. We use different sensitivity thresholds to

see their impact on privacy protection
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At lower sensitivity threshold, 3LPEx considers more

logic rules as sensitive than at higher sensitivity threshold

values. More sensitive rules suggest the user suppresses

more regular attribute values.

4.3 Data utility

We explore the data utility of 3LPEx and compare the

results with 3LP? and PrivNB as both of these techniques

suggest their users to suppress necessary regular attribute

values in order to eliminate this privacy attack. Therefore,

we compare the number of suppressed attribute values

suggested by each privacy preserving technique. As men-

tioned earlier, the data utility is high when the number of

suppressed attribute values is low. The results are presented

in Fig. 10 where the x-axis represents the three phases of

the experiments and the y-axis represents the number of

suppressed values.

As mentioned in Sect. 3.1, each test data set contains

5% of the total records and each record contains at most ten

nonclass regular attributes in D1 and nine nonclass regular

attributes in D2. Therefore, in D1, each test data set con-

tains 500 regular attribute values (50 records multiplied

with 10 regular attribute values) before applying any pri-

vacy techniques.

As shown in Sect. 3.1.1, some of the records may con-

sider more than one attribute as sensitive and hide that

attribute value. Therefore, the number of attribute values

varied in different test data sets. As an example, for D1, in

the test data set Dts;C1
exactly 20 users consider a single

attribute as sensitive, 20 more users consider two attributes

as sensitive, and ten other users consider three attributes as

sensitive. Therefore, the maximum number of attribute

values in Dts;C1
is 460 (i.e. 20 users � 10 regular attri-

butes ?20 users �9 regular attributes?10 users � 8

regular attributes=460). For D2 data set, the avail-

able regular attribute values in Dts;C1
is 4100.

However, this number is not the same for the rest of the

two phases’ test data sets i.e. Dts;C2
, and Dts;C3

. After

applying the privacy preserving techniques on Dts;C1
, the

available number of regular attribute values will be dif-

ferent on Dts;C2
, and Dts;C3

, but less than Dts;C1
.

It is obvious from both Fig. 10a and b that both 3LPEx

and 3LP? outperform PrivNB in maintaining the data

utility. For D1, the average number of attribute value

suppressions in each phase by PrivNB was 170, whereas

for 3LPEx and 3LP? the number of suppressed values is

less than 50. On the other hand, the number of suppressed

attribute values by 3LPEx is less than 3LP? in the first two

phases. However, in Phase III, 3LP? outperforms our

proposed algorithm 3LPEx. In the case of data set D2,

shown in Fig. 10b, 3LP? can provide slightly better utility

than 3LPEx.

While generating the sensitive rules, 3LPEx takes an

exhaustive approach by considering all attributes in a data

set. Therefore, both regular and link attributes get the equal

opportunity to be considered as antecedents in sensitive

rules. However, 3LP? uses SysFor algorithm that takes a

greedy approach to generate rules where the attributes are

selected as antecedents based on their gain ratio. In our

experiments, the sensitive rules those generated by 3LP?

contain more link attributes than the rules generated by

3LPEx. Therefore, less suppressions are required for 3LP?

than 3LPEx to protect users’ privacy. Although the sup-

pression number is higher for 3LPEx, we observe

that 3LPEx offers better privacy than 3LP? in all the three

phases (see Figs. 6, 7, 8).

Fig. 10 Comparison of the number of suppressed values
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4.4 Inference risk analysis

We, throughout this study, consider that an attacker laun-

ches the attack by utilising the full network information.

For example, we consider that the same number of records

used both in the protection techniques and the inference

attack. Therefore, the calculated link attribute values used

in the data sets are the same for the protection techniques

and the inference attack. However, in a real-world scenario,

the attacker may have limited access to an OSN and thus

the privacy protected by the proposed protection technique

using full information of the OSN can be vulnerable

against the attribute inference attack that launched by

using partial network information. Therefore, in this sec-

tion, we analyse the inference risk of a sensitive informa-

tion after protected by 3LPEx. Here, ‘‘inference risk’’

defines the probability of a sensitive information being

inferred by an attacker.

Consider a target user u considers Co attribute to be

sensitive where Co has two values Co1 and Co2. If A is the

set of non-class attributes that u disclosed their values, then

the posterior probability of class value Co1 can be calcu-

lated by using Naı̈ve Bayes [48] equation as follows:

PðCo1jAÞ ¼ðPðA1jCo1Þ � PðA2jCo1Þ � . . .

�PðAnjCo1ÞÞ � PðCo1Þ
ð6Þ

Here, PðCo1jAÞ is the posterior probability of class value

Co1 for A, PðCo1Þ is the probability of class value Co1,

PðAnjCo1Þ is the likelihood of PðAnÞ for the Co1 class

value. Similarly, we can calculate the posterior probability

of Co2. A high value of posterior probability indicates the

high chance for the attacker to infer u’s sensitive attribute

value (i.e. either Co1 or Co2 in this running example). On

the other hand, the posterior probability, presented in

Eq. (6), can be reduced by hiding the non-class attribute

values. We now experimentally demonstrate the inference

risk (in terms of attack success rate) can be reduced sig-

nificantly if the number of disclosed attribute values are

reduced in the training data set.

We utilise D1 data set for this experiment where we first

consider a training data set containing full friendship net-

work and all the attributes (as given in D1). The 3LPEx

algorithm takes the training data set as an input to generate

sensitive rule set and then applied on the test data sets to

secure users’ privacy. We follow the same experimental

set-up as described in Sect. 3.2.

Once the protection has been given to the test data set

users, we then launch the attribute inference attack by

reducing the number of attributes in the training data sets.

To do so, we first randomly select three nonclass attributes

and then six non-class attributes. That is, we first build a

classifier model by using a training data set that containing

three non-class attributes and using the classifier model, we

launch the attack to infer the sensitive attributes. Similarly,

we repeat this procedure for six attributes.

We present the experimental results in Fig. 11 where

x axis represents the steps and y axis represents attack

success rate. We use different classifiers such as NB, SVM,

SysFor, and RF that the attacker may use to infer sensitive

Fig. 11 Different machine learning algorithms being used to breach

privacy in the test data set
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information. We follow the same steps in our experiments

as mentioned in Table 7.

The experimental results, presented in Fig. 11, indicate

that as we reduce the number of nonclass attribute from 10

to 3, the attack success rate reduces significantly at all

steps. Figure 11a presents the attack success rate when an

attacker uses NB classifier to breach privacy of records

protected by 3LPEx. For NB classifier, presented in

Fig. 11a, we can see a drop of around 30% in attack suc-

cess rate at all steps (except Step 2). At Step 2, we can

observe an attack success rate drop of about 65%. We can

see a similar trend for SVM, SysFor, and RF as presented in

Fig. 11b–d.

We also experimentally demonstrate the inference risk

analysis by varying the number of records in the training

data sets. We follow a distribution of 25%, 50%, and 75%

randomly selected records from the full OSN network. That

is, we first consider a sub-OSN containing 25% randomly

selected records (out of the total records) and a friendship

network containing those 25% user nodes only. From this

sub-OSN network, we calculate the link attribute values

and insert them in the training data set. We name this

training data set as ‘‘Training Data Set containing 25% of

Total records’’.

We build a classifier model by using the classifiers (such

as NB, SVM, SysFor, and RF) on ‘‘Training Data Set

containing 25% of Total records’’. We then apply classifier

model on the secure test data set to infer the sensitive

attributes. We follow this similar procedure for 50% and

75% distribution of the total records.

The experimental results are presented in Fig. 12 where

the steps are the same as mentioned in Table 7. We can see

from Fig. 12a that when an attacker uses the entire network

(indicated as 100% records), then the attack success rate is

higher at all steps. As we reduce the number of training

data set records from 100 to 75%, this attack success rate

drops from 76 to 42% at Step 2. This reduction of attack

success rate goes further when 50% and 25% of the total

records are used in the training data set (presented in

Fig. 12). The above results confirm that the inference risk

of a sensitive attribute value, after providing privacy

by 3LPEx using a full OSN information, can be reduced

significantly if the attacker has a limited access to the OSN.

4.5 Time complexity analysis

Throughout this study, we set the number of antecedents in

sensitive rules those generated by 3LPEx to 3 and sensi-

tivity threshold to 1.006. We now analyse the time com-

plexity of the 3LPEx algorithm if these values are changed.

We use D1 data set for this experiment where 3LPEx first

generates a set of sensitive rules (from the training data set)

where each rule containing two antecedents. 3LPEx then

uses the generated sensitive rules to secure users’ privacy

on the test data set. We follow the same experimental set-

up as described in Sect. 3.2. Once the test data set is

secured by 3LPEx, we then apply NB, SVM, and RF on the

test data sets to analyse the attack success rate and the

required time to secure the users. We also analyse the data

Fig. 12 Different machine learning algorithms being used to breach

privacy in the test data set
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utility of the secured test data sets. Similarly, we conduct

experiments for the sensitive rules containing three ante-

cedents, six antecedents and then compare the results with

the two antecedents’ results. While varying the number of

antecedents in the sensitive rules, we fixed the sensitivity

threshold to 1.006. We present the results in Figure 13.

From Fig. 13, we can see that the sensitive rules con-

taining six antecedents provide better privacy by

minimising the attack success rate for all the three classi-

fiers. However, in terms of time consumption, it takes

longer time to secure the test data set than two antecedents

and three antecedents based sensitive rules as shown in

Table 8. We also observe that the sensitive rules containing

six antecedents reduce the data utility in the test data set

more than the sensitive rules containing two antecedents

and three antecedents as shown in Fig. 14a. On the other

hand, 3LPEx can reduce the attack success rate more if it

uses the sensitive rules containing three antecedents rather

than the sensitive rules containing two antecedents. Data

utility is also high if 3LPEx uses the sensitive rules con-

taining 3 antecedents.

We also conduct experiments by varying the sensitivity

thresholds where the number of antecedents in sensitive

rules is fixed to 3. We vary the sensitivity threshold from

1.006 to 0.75 and then 0.5. The results are presented in

Figure 9 where we can see the lower sensitivity threshold,

i.e. 0.5 can provide better privacy. This is because, in lower

Fig. 13 Different machine learning algorithms being used to breach

privacy in the test data set. We vary the number of antecedents in the

sensitive rules generated by the 3LPEx algorithm while sensitivity

threshold is set to 1.006

Table 8 Summary of the

required time for the

experiments

Number of antecedents Sensitivity thresholds

2 3 6 0.5 0.75 1.006

Required time (in mins) 11 13 95 112 79 13

Fig. 14 Comparison of the number of suppressed values for different

number of antecedents in the sensitive rules and different sensitivity

thresholds
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sensitivity threshold, 3LPEx considers more rules as sen-

sitive and provide privacy accordingly. However, at 0.5

sensitivity threshold, it takes longer time compared to the

sensitivity threshold of 0.75 and 1.006 as shown in Table 8.

On the other hand, at higher sensitivity threshold (i.e.

1.006) the secure test data set’s data utility is higher than

the other two sensitivity thresholds as shown in Fig. 14b.

Therefore, these results justify the use of 1.006 sensitivity

threshold and three antecedents in sensitive rules in our

experiments.

5 Conclusion and future work

We addressed the attribute inference attack on online

social networks (OSNs). We showed that an attacker can

successfully infer users’ private information with high

probability by applying various data mining algorithms on

the non-sensitive information disclosed by the users. We

use a parameter, namely attack success rate, to measure

the effectiveness of the privacy preserving techniques. We

propose a new privacy preserving technique, name-

ly 3LPEx, that can protect users’ multiple sensitive infor-

mation (that the users consider to be sensitive). Our

experimental results indicate that 3LPEx outperforms the

existing privacy preserving techniques by reducing the

attack success rate even if the attacker applies different

existing classifiers (rather than the one used by the privacy

technique). Our experimental results also show that 3LPEx

can maintain a high data utility compared to the existing

techniques by suppressing less attribute values while pre-

serving privacy.

In this study, we have considered that only the user or a

few others in the user’s network are consumers of the

protection techniques. If all friends in a user’s friend list

continually used and adopted the recommendations of the

3LPEx algorithm, the calculation would be different and

dynamic. Therefore, a future research could demonstrate

the analysis of that calculation. Another future research

effort should focus on generalisation of attribute values

(rather than the suppression) suggested by the 3LPEx

algorithm.

Appendix 1: sensitive rules matching

The results for 5% and 15% difference of the domain range

are presented in Tables 9 and 10, respectively.

Table 9 Sensitive rules matching (when maximum 5% numerical value mismatch in between two rules is considered as the same rules)

Row Algorithms: RF RS AdaBoost Bagging SysFor J48 FPA

SR (TR) SR = 627 SR = 12 SR = 402 SR = 141 SR = 58 SR = 2 SR = 721

1 RF: SR = 627 (TR = 23,393) 627 1 2 7 18 0 17

2 RS: SR = 12 (TR = 2910) 5 12 0 7 0 0 8

3 AdaBoost: SR = 397 (TR = 20,562) 8 0 402 7 0 0 7

4 Bagging: SR= 140 (TR=8914) 12 2 0 141 0 0 3

5 SysFor: SR= 58 (TR = 2666) 2 2 0 12 58 2 1

6 J48 - 1 tree: SR = 2 (TR = 298) 0 0 0 1 8 2 0

7 FPA: SR = 718 (TR = 38,453) 23 3 5 7 1 1 721

8 RuleBank - exclude the rules generated by the

selected algorithm: SR = 1963 (TR = 97,196)

60 10 7 56 24 2 37

9 Exhaustive: SR = 65,218 (TR = 5,63,830) 593 10 344 89 56 2 285

* TR= total number of rules, SR = number of sensitive rules, FPA = forest PA, RF = random forest, RS = random subspace

12422 Neural Computing and Applications (2021) 33:12397–12427

123



Appendix 2: the properties of the synthetic
data set D2

In Table 11, we present the list of attributes and their

corresponding attribute values used to generate the syn-

thetic data set D2. Each record of the data set D2 has been

created using a logic rule, and they are as follows:

Residence = A value is generated using

the

following probability distribution:

30% probability for each of Brisbane,

Sydney,

Melbourne and 10% for Bathurst;

if(Residence = Bathurst) {

Age range = A value is generated using

the following probability distribution:

40% probability for the age 50?, 20%

probability for each of the age range

48-57

and 38-47, 10% probability for each of

the

age range 28-37 and 18-27;

Friends on OSN = A value is generated

using the following probability

distribution:

60% probability for low, 25% probability

for

medium and 15% probability for high;

if(Age range = 18-27) {

Relationship status = 45% probability

for

Table 11 List of attributes and their corresponding values utilised in synthetic data set D2

Types of

information

Attribute name Attribute values

Activities on OSN Number of friends on OSN Low (1–100), medium (101–500), high (501 and above)

Number of pages followed on OSN Low (0–9), medium (10–19), high (20 and above)

Number of uploaded photos per week Low (0–5), medium (6–10), high (11 and above)

Number of comments made on other users’ contents per

week

Low (0–9), medium (10–19), high (20 and above)

Personal

information

Age range 18–27, 28–37, 38–47, 48–57, 58 and above

Current city of residence Sydney, Melbourne, Brisbane, Bathurst

Relationship status Single, in-a-relationship, married, not mentioned

Sensitive

information

Political view Labour, Liberal, Green

Religion Christianity, Islam, Others, Buddhism, no religion

Profession Government employee, entrepreneur, salesman, retired person,

student

Table 10 Sensitive rules matching (when maximum 15% numerical value mismatch in between two rules is considered as the same rules)

Row Algorithms: RF RS AdaBoost Bagging SysFor J48 FPA

SR (TR) SR = 627 SR = 12 SR = 402 SR = 141 SR = 58 SR = 2 SR = 721

1 RF: SR = 627 (TR = 23,393) 627 1 2 7 18 0 17

2 RS: SR = 12 (TR = 2910) 5 12 0 7 0 0 8

3 AdaBoost: SR = 402 (TR = 20,562) 8 0 402 7 0 0 7

4 Bagging: SR = 141 (TR = 8914) 12 2 0 141 0 0 3

5 SysFor: SR = 58 (TR = 2666) 2 2 0 12 58 2 1

6 J48 - 1 tree: SR = 2 (TR = 298) 0 0 0 1 11 2 0

7 FPA: SR = 721 (TR = 38,453) 23 3 5 7 1 1 721

8 RuleBank - exclude the rules generated by the

selected algorithm: SR = 1963 (TR = 97,196)

62 10 7 56 27 2 37

9 Exhaustive: SR = 65,218 (TR = 5,63,830) 595 10 347 90 56 2 286

* TR = total number of rules, SR = number of sensitive rules, FPA = forest PA, RF = random forest, RS = random subspace
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single, 30% probability for in-a-

relationship,

23% probability for not-mentioned and 2%

probability for married; }

else if(Age range = 28-37 or 38-47){

Relationship status = A value is

generated

using the following probability

distribution:

45% probability for married, 30%

probability

for in-a-relationship, 15% probability

for

single and 10% probability for not-

mentioned;

}

else {

Relationship status = 55% probability

for

married, 35% probability for in-a-

relatio-

nship, 5% probability for single and 5%

probability for not-mentioned;}

if(Number of Friends on OSN = low) {

Number of uploaded photos or comments or

pages followed = A value is generated

using

the following probability distribution:

65% probability for low, 25% probability

for medium and 10% probability for high.}

if(Number of Friends on OSN = medium)

{ Number of uploaded photos or comments or

pages followed = A value is generated

using the following probability

distribution:

30% probability for low, 45% probability

for medium and 25% probability for high.}

else {

Number of uploaded photos or comments or

pages followed = A value is generated

using

the following probability distribution:

55%

probability for high, 40% probability

for

medium and 5% probability for low.}

} // End of if(Residence = Bathurst)

else(Residence = Sydney or Melbourne or

Brisbane) {

Age range = A value is generated using

the following probability distribution:

42%

probability for the age range 18-27, 25%

probability for the age range 28-37,

15% probability for each of the age range

38-47,

48-57 and 5% probability for the age 58

and above;

Friends on OSN = A value is generated

using the following probability

distribution:

50% probability for high, 35%

probability

for medium and 15% probability for low;

if(Age range = 18-27) {

Relationship status = A value is

generated

using the following probability

distribution:

55% probability for single, 25%

probability

for in-a-relationship, 18% probability

for not-mentioned and 2%

probability for married;

Number of uploaded photos or comments

or pages followed = A value is generated

using the following probability

distribution:

85% probability for high, 10%

probability

for medium and 5% probability for low.}

else if(Age range = 28-37 or 38-47 or

48-57) {

Relationship status = A value is

generated

using the following probability

distribution:

35% probability for in-a-relationship,

30%

probability for married, 15% probability

for single and 10% probability for not-

mentioned;

Number of uploaded photos or comments

or pages followed = A value is generated

using the following probability

distribution:

40% probability for medium, 30%

probability

for each low and high.}

else {

Relationship status = A value is

generated using the following

probability

distribution: 55% probability for

married,
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30% probability for in-a-relationship,

10%

probability for single and 5%

probability

for not-mentioned;

Number of uploaded photos or comments

or pages followed = A value is generated

using the following probability

distribution:

70% probability for low, 28% probability

for

medium and 2% probability for high.}

} // End of if(Residence = Sydney or

Melbourne or Brisbane)

if(Age range = 48-57 or 58 and over; and

Relationship Status = Married)

Religion = Christian;

else if (Age range = 48-57 or 58 and over;

and Relationship Status = Single or

in-a-relationship or Not Mentioned)

Religion = No religion;

else if (Age range = 18-27 and

Relationship Status = married)

Religion = 25% Probability for each of

Christian, Islam,

Buddhism and others;

else

Religion = 44% Probability of being

No-religion, 50% probability of being

Chri-

stian, 2% probability for each of Islam,

Buddhism, Others;

if(Age range = 18-27 and Relationship

Status = single and Number of friends and

uploaded photos or comments or pages

follow-

ed = medium or high) Profession =

student;

if(Age range = 28-37 or 38-47 and

Relation-

ship Status = in-a-relationship and

Number of

friends and uploaded photos or comments

or

pages followed = medium or low)

Profession

= salesman;

else if (Age range = 58 and over; and

Relationship Status = Married or

in-a-relationship) Profession =

Retired_person;

else if (Age range = 28-37 or 38-47 or

48-57 and Relationship Status = Married

or

in-a-relationship)

Profession = Government employee;

else

Profession = entrepreneur;

if(Number of uploaded photos or comments

or

pages followed = medium or High and

Relation-

ship Status = single or in-a-relation-

ship or

not-mentioned)

Political view = Green;

if(Number of uploaded photos or comments

or

pages followed = low and Relationship

Status =

married or in-a-relationship and Number

of

friends = medium or low

Political view = Labour;

else

Political view = Liberal;
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43. Gürses G, Berendt B (2010) The social web and privacy: prac-

tices, reciprocity and conflict detection in social networks. In:

Privacy-aware knowledge discovery, novel applications and new

techniques. CRC Press, pp 395–429

44. Aho A, Hopcroft J, Ullman J (1974) The design and analysis of

computer algorithms. Addison-Wesley Publishing Co., Reading

45. Islam MZ (2007) Privacy preservation in data mining through

noise addition. University of Newcastle, Brisbane

46. Australia YB (2008) Australian bureau of statistics. Canberra,

Australia, p 161

12426 Neural Computing and Applications (2021) 33:12397–12427

123

https://doi.org/10.3390/w9030186
https://doi.org/10.3390/w9030186
https://doi.org/10.1007/s13042-018-0834-5
https://doi.org/10.1007/s13042-018-0834-5
http://dl.acm.org/citation.cfm?id=3020548.3020595


47. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten

IH (2009) The WEKA data mining software: an update. SIGKDD

Explor 11(1):10–18

48. John GH, Langley P (1995) Estimating continuous distributions

in Bayesian classifiers. In: Proceedings of the eleventh confer-

ence on uncertainty in artificial intelligence. Morgan Kaufmann

Publishers Inc, pp 338–345

49. Platt J (1998) Sequential minimal optimization: a fast algorithm

for training support vector machines. https://www.microsoft.com/

en-us/research/publication/sequential-minimal-optimization-a-

fast-algorithm-for-training-support-vector-machines/

50. Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK (2001)

Improvements to Platt’s SMO algorithm for SVM classifier

design. Neural Comput 13(3):637–649

51. le Cessie S, van Houwelingen J (1992) Ridge estimators in

logistic regression. Appl Stat 41(1):191–201

52. Quinlan JR, et al (1996) Bagging, boosting, and C4. 5. In: AAAI/

IAAI, vol 1. pp 725–730

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:12397–12427 12427

123

https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/

	Privacy protection of online social network users, against attribute inference attacks, through the use of a set of exhaustive rules
	Abstract
	Introduction
	The privacy attack model
	Privacy definition

	Related work

	Our technique
	Our contributions
	Basic concept
	Exhaustive approach
	Main steps of the 3LPEx
	Complexity analysis

	Experiments
	Data sets and notation
	Distribution of records in the data sets

	Experimental set-up
	Phase I
	Phase II
	Phase III


	Experimental results and discussion
	Protection against the exhaustive approach
	Protection against the existing classifiers
	Data utility
	Inference risk analysis
	Time complexity analysis

	Conclusion and future work
	Appendix 1: sensitive rules matching
	Appendix 2: the properties of the synthetic data set D_2
	References




