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Abstract
A common approach to address multiobjective problems using reinforcement learning methods is to extend model-free,

value-based algorithms such as Q-learning to use a vector of Q-values in combination with an appropriate action selection

mechanism that is often based on scalarisation. Most prior empirical evaluation of these approaches has focused on

deterministic environments. This study examines the impact on stochasticity in rewards and state transitions on the

behaviour of multi-objective Q-learning. It shows that the nature of the optimal solution depends on these environmental

characteristics, and also on whether we desire to maximise the Expected Scalarised Return (ESR) or the Scalarised

Expected Return (SER). We also identify a novel aim which may arise in some applications of maximising SER subject to

satisfying constraints on the variation in return and show that this may require different solutions than ESR or conventional

SER. The analysis of the interaction between environmental stochasticity and multi-objective Q-learning is supported by

empirical evaluations on several simple multiobjective Markov Decision Processes with varying characteristics. This

includes a demonstration of a novel approach to learning deterministic SER-optimal policies for environments with

stochastic rewards. In addition, we report a previously unidentified issue with model-free, value-based approaches to

multiobjective reinforcement learning in the context of environments with stochastic state transitions. Having highlighted

the limitations of value-based model-free MORL methods, we discuss several alternative methods that may be more

suitable for maximising SER in MOMDPs with stochastic transitions.

Keywords Multiobjective reinforcement learning � Multiobjective MDPs � Stochastic MDPs

1 Introduction

Multiobjective reinforcement learning (MORL) aims to

extend the capabilities of reinforcement learning (RL)

methods to enable them to work for problems with multi-

ple, conflicting objectives [15]. RL algorithms generally

assume that the environment is a Markov Decision Process

(MDP) in which the agent is provided with a scalar reward

after each action and must aim to learn the policy that

maximises the long-term return based on those

rewards [20]. In contrast, MORL algorithms operate within

multiobjective MDPs (MOMDPs), in which the reward

terms are vectors, with each element in the vector corre-

sponding to a different objective. This creates a number of

new issues to be addressed by the MORL agent. Most

notably there may be multiple optimal policies (in terms of

Pareto optimality), and which policy the agent should learn

is not immediately obvious.

In the utility-based paradigm of MORL [15, 40], the

preferences of the user are captured using a utility function

f and associated parameters w, and the aim of the agent is

to learn the policy which produces vector returns that

maximise the utility to the user as defined by f and

w. Various approaches have been explored for the form of

the utility function—some may be better suited to express

the preference of the user within a particular problem

domain, while others offer benefits from an algorithmic

perspective. A simple weighted linear scalarisation has

been widely used because of its simplicity (for exam-

ple, [2, 4, 12]). Linear scalarisation transforms an MOMDP
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into an equivalent single-objective MDP and enables

existing RL approaches to be directly applied [15]. How-

ever, for many tasks this may not be able to accurately

represent the preferences of the user [15, 23] and so may

fail to discover the policy that is optimal with regards to

their true utility. As a result, numerous nonlinear scalari-

sation functions have been explored in the literature (for

example, [7, 33, 34]). These tend to produce algorithmic

complications, but are better able to represent the true

preferences of the user.

As well as the choice of scalarisation function and

parameters, a second factor must be considered within this

utility-based paradigm—the time-frame over which the

utility is being maximised. Roijers et al. [15] identified two

distinct possibilities. The agent may aim to maximise the

expected scalarised return (ESR). That is, it is assumed the

returns are first scalarised, and then the agent aims for the

policy which maximises the expected value of that scalar,

so that the scalar value of a policy p for any given state

under ESR is given by Eq. 1, where w is the parameter

vector for f, rk is the vector reward on time-step k, and c is
the discounting term.

Vp
wðsÞ ¼ f ðVpðsÞ;wÞ ¼ f E

X1

k¼0

ckrk j p; s0 ¼ s

" #
;w

 !

ð1Þ

This ESR approach is suited to problems where the aim is

to maximise the expected outcome within any individual

episode. For example, when producing a treatment plan for

a patient that trades off the likelihood of a cure versus the

extent of negative side-effects—any individual patient will

only undergo this treatment once, and so they care about

the utility obtained within that specific episode.

In other contexts, we may be concerned about the mean

utility received over multiple episodes. In this situation, the

agent should aim to maximise the scalarised expected

return (SER)—that is, it estimates the expected vector

return per episode and then maximises the scalarisation of

that expected return as shown in Eq. 2.

Vp
wðsÞ ¼ E½f

X1

k¼0

ckrk;w

 !
j p; s0 ¼ sÞ ð2Þ

For example, consider an agent controlling a manufactur-

ing process which can produce several different items. The

amount of each item produced per day may be reflected in

a corresponding objective. We may desire to output the

maximal amount possible for each product. However,

assuming the existence of suitable warehousing facilities, it

may be beneficial to focus on the mean per-day production

of each item, rather than trying to produce a particular

number of all items on each individual day.

As demonstrated in Roijers et al. [17], the optimal

policy for a particular MOMDP under the ESR and SER

settings may differ considerably, even if the same utility

function and parameters are used in both cases. The

majority of existing work in MORL has considered SER

optimization, although this has often been implicitly rather

than explicitly stated [14, 17]. In addition, much of this

SER-focused work has been based on benchmark envi-

ronments such as those of Vamplew et al. [25], the

majority of which are deterministic MOMDPs. Conse-

quently, there has been very little work contrasting ESR

and SER formulations in non-deterministic MOMDPs.

Therefore, in this paper we examine the operation of

multiobjective Q-learning methods across several example

environments that vary in the stochasticity of their state and

reward dynamics and illustrate the differences between the

optimal policies that arise for the ESR and SER formula-

tions of the same problem.

Section 2 discusses the extension of Q-learning to han-

dle multiple objectives and presents the general algorithm

for multiobjective Q-learning which will form the basis for

our later discussion. Section 3 starts by considering the

simplest case where all aspects of the environment are

deterministic and demonstrates empirically that both ESR

and SER must use an augmented state definition in order to

ensure convergence to the optimal policy when using

nonlinear scalarisation. In Sect. 4, we consider environ-

ments with deterministic state-transitions but stochastic

rewards and show that the previous state augmentation

approach remains adequate for ESR agents, but demon-

strate that a novel form of state augmentation is required to

find SER-optimal deterministic policies in this context.

Finally, in Sect. 5, we examine MOMDPs with stochastic

state transitions and demonstrate by example that model-

free value-based MORL methods may fail to maximise the

SER utility within such environments and may in fact

converge to solutions which are not even Pareto-optimal.

2 An overview of multiobjective Q-learning

One of the most common approaches taken in the MORL

literature is to extend single-objective, model-free value-

based RL algorithms such as Q-learning or SARSA—for

example see [7, 10, 32]. For this paper, we will focus on a

single-policy form of multi-objective Q-learning as shown

in Algorithm 1 in which the utility function f is used to

filter the multiple Pareto-optimal actions that may be

available at any state, so as to obtain a single policy that is

optimal with regards to f.
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As can be seen from Algorithm 1, there are two key

changes required to extend value-based methods to multi-

ple objectives. The first is that as the rewards are vector-

valued, the Q-values must also be vectors—this is a

straightforward modification. The second, and more com-

plex, issue is that the selection of a greedy action is less

clear than in the single-objective case, as different actions

may have value-vectors that are non-dominated. The

solution taken is to use the scalarisation function f to create

an ordering over the vector values so as to allow the

selection of a greedy action.1

A further complexity arises when the scalarisation

function f is nonlinear. As discussed in Roijers et al. [15],

the returns under such a function are no longer additive,

which conflicts with the use of the Bellman equation within

the temporal-difference updates of the Q-values. Therefore,

selecting actions based on applying f to the Q-values for the

current state is insufficient to produce results that actually

maximise f over the return for the entire episode. Instead

the choice of action must be conditioned both on the cur-

rent state and also a summary of the history of the current

trajectory, such as by accumulating the reward for the

current episode and adding that on to the current state’s Q-

values before applying f. In addition, in order for the policy

to converge, the Q-values must also be conditioned on the

same factors. Geibel [8] refers to this as using an aug-

mented state formed by a concatenation of the environ-

mental state with the summed rewards from the current

episode (lines 10 and 15 of Algorithm 1). While this

expands the dimensionality of the state-space and therefore

may slow learning, it is in general necessary to guarantee

convergence of the policy. There may be limited circum-

stances under which such state augmentation is not

required. For example, Issabekov and Vamplew [10] note

it can be ignored where rewards are known to be zero at all

steps other than when a terminal state is reached. In the

later sections of this paper, we will identify some further

exceptions where state augmentation is not necessary—

being aware of such exceptions potentially allows faster

learning where we know the problem domain has these

characteristics.

1 Technically, f need not perform an explicit scalarisation of vectors,

as long as it provides a complete ordering over vectors—for example,

a lexicographic ordering of vectors can be used, even though this

cannot be directly represented as a scalarisation operation [5].
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Many options exist for the action-selection function f.

For the remainder of this paper, we will restrict discussion

to a linear-weighted sum (still widely used, despite its

limitations), and thresholded lexicographic ordering

(TLO) [7, 10] as an example of a nonlinear function. The

highly nonlinear nature of TLO will help to highlight some

of the issues that we wish to emphasise, but we note that

similar issues would be observed under any nonlinear f.

TLO aims to maximise the value of a certain objective,

subject to achieving at or above the threshold value for the

other objective(s). In cases where policies are equivalent

when considered in terms of the thresholded values, then

the unthresholded values for these objectives can be used

as a ‘tie-breaker’, to ensure the agent’s policy will be

Pareto-optimal. This is illustrated in Fig. 1. In this exam-

ple, if simple lexicographic ordering was applied, then

policy p6 would be selected as it maximises the first

objective, despite its very poor performance on the second

objective. However, if TLO is applied with a threshold of

0.6 for the first objective, then policy p4 will be preferred

as it maximises the second objective subject to satisfying

the threshold for the first objective.2

It has been previously shown that lexicographic ordering

cannot be represented as a scalarisation operation [5]. TLO

can be implemented via a discontinuous scalarisation, but

only if assumptions are made about the range of values

obtainable for each objective. However, the role played by

the scalarisation function f within Algorithm 1 is to identify

the greedy action selection, and this can be achieved

without explicit scalarisation, if the action selection is

instead represented in terms of an ordering operator for

vector values. This representation of TLO for the two-ob-

jective case is shown in Eq. 3, where T1 indicates the

threshold value for the first objective and U(s, a) represents

the summation of Q(s, a) and the accumulated reward

vector. This approach can easily be extended to any

number of thresholded objectives.

8s; a; a0 Uðs; aÞ �
TLO

Uðs; a0Þ ()

minðU1ðs; aÞ; T1Þ[ minðU1ðs; a0Þ;T1Þ
_ ð minðU1ðs; aÞ;T1Þ ¼ minðU1ðs; a0Þ;T1Þð Þ ^ U2ðs; aÞ[U2ðs; a0Þð Þð Þ
_ minðU1ðs; aÞ;T1Þ ¼ minðU1ðs; a0Þ;T1Þð Þ ^ ðU2ðs; aÞ ¼ U2ðs; a0ÞÞðð
^ðU1ðs; aÞÞ[U1ðs; a0ÞÞÞ

ð3Þ

3 Fully deterministic MOMDPs

We first consider the case of MOMDPs where all of the

environmental properties (choice of starting state, state

transitions and rewards) are deterministic. The widely used

Deep Sea Treasure (DST) benchmark [25] serves as an

illustrative example of this type of environment. As shown

in Fig. 2, the DST is a 2D grid. A submarine controlled by

the agent starts at the shore and must travel out to one of

several points on the sea-bed to retrieve treasure, trading

off the time taken to reach the treasure against the value of

the treasure at that location. The set of possible trade-offs

available via following different policies is shown in

Fig. 3.

As shown in Vamplew et al. [23], because the Pareto-

front is concave the only solutions that can be found using
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Fig. 1 An illustration of TLO selection over vector values. The blue

points p1 to p6 correspond to the vector returns achieved by six

different policies on an MOMDP with two objectives. The red dashed

line marks the threshold value for the first objective, and the red

points p04 to p06 show the result of thresholding the original policy

values (p1 to p3 are unaffected by the thresholding as their first

objective value is below the threshold). In this case, TLO would select

policy p4 as it achieves the highest reward for objective 2 out of the

policies which meet or exceed the threshold value for objective 1

2 Note that this policy could not be found via linear selection, as it

does not lie on the convex hull of the Pareto set of solutions.
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a linear scalarisation for f are the two at the extremities of

the front—(- 1, 1) and (- 19, 124). This is true regardless

of the choice made for the weights of f and has previously

been empirically confirmed by Issabekov and Vam-

plew [10]. This illustrates a key limitation of linear

scalarisation, while it is computationally straightforward

and avoids the need for state augmentation, it may be a

poor match for the true utility of the user [15].

In contrast when using a nonlinear f such as TLO, all

possible solutions are actually obtainable provided the

correct parameters are set for f (for TLO, this means

choosing a suitable threshold). For a fully deterministic

MOMDP-like DST, the value of the accumulated reward

P must still be taken into account when selecting a greedy

action (i.e. basing the action selection on the augmented

state as calculated on Line 16 of Algorithm 1). However, as

both the environment and the policy are deterministic, the

value of P will always be the same whenever the agent

reaches a particular state of the environment, and hence, it

is sufficient to condition the Q-values simply on the envi-

ronmental state rather than the augmented state.

Figure 4 summarises the results of an empirical com-

parison of a TLO agent with action-selection conditioned

only on the unaugmented environmental state and one

conditioned on the augmented state. These results were

based on twenty independent runs of each algorithm, using

softmax-t exploration [27] with the temperature parameter

decayed from 30 to 0.01 over 10,000 learning episodes,

with learning rate a ¼ 0:3, k ¼ 0:95, c ¼ 1, and the

threshold for the time objective set to - 16. For that

threshold, the optimal policy obtains a treasure reward of

50 with a time penalty of - 14. It can be seen that the

agent using accumulated reward to augment the state

converges to the desired policy, while the unconditioned

TLO agent performs very poorly with regards to the trea-

sure objective.

The unaugmented TLO agent ignores the time already

expended in the current episode when deciding whether the

outcome of its future actions will result in it exceeding the

time threshold. For example, if after 13 time steps, it has

reached the grid-cell directly above the 50 reward cell in

Fig. 2, the correct action would be to move down. How-

ever, it can reach the 124 treasure in 6 more steps, and as

the future cost of reaching that larger treasure is equal to

- 6 (which is above the threshold of - 16) the agent will

instead move to the right. The effects of this erroneous

decision propagate back into the Q-values for earlier states,

and the agent learns that moving to the right ultimately

leads to it exceeding the time threshold, and therefore, it

converges to a policy that instead leads to one of the

rewards closest to the starting point, ensuring that the time

threshold is satisfied, but with severely sub-optimal out-

comes regarding the treasure objective.

For the ESR formulation, the deterministic policy found

using Algorithm 1 in combination with nonlinear f will be

optimal. However, for the SER formulation, there may be

benefits from allowing the agent to follow policies which

are either stochastic or non-stationary [24]. Consider an

agent that alternates between the policies that achieve the

returns (- 1, 1) and (- 19, 124). The mean return for this

agent will be (- 10, 62.5). Looking at Fig. 3, clearly this

solution Pareto-dominates many of the deterministic poli-

cies and so may be superior in terms of the user’s true

utility. The MO Q-learning approach from Algorithm 1

cannot directly find such policies. However, it can be used

to find ‘base policies’ which can be combined in a non-

stationary manner, as in the Q-steering algorithm of [28],

which was demonstrated on the DST in [26]. For example,

at the start of each episode the agent could compare the

average return received so far against the threshold

parameter specified for the TLO function. If the return for

the treasure objective is below the threshold, the agent

follows the policy with return (- 19, 124), otherwise it

follows the policy with return (- 1, 1). For any given

threshold value, this approach will result in the optimal

mean outcome and so will be appropriate if the user wishes

to maximise SER. Of course, many of the individual
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Fig. 2 The Deep Sea Treasure environment (reproduced from [23])
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Fig. 3 The Pareto front of solutions for the Deep Sea Treasure

environment (reproduced from [23])
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episode outcomes will fall below the threshold, and so this

approach would not be suitable if the aim is to maximise

ESR.

In certain contexts, the wide variation between indi-

vidual episodes may also be undesirable, even if the user is

primarily concerned with maximising SER. For example,

consider a commercial fishing operation with a trade-off

between time spent at sea and the amount of fish caught. In

order to maintain a suitable cash-flow the company man-

agement may require an SER formulation. However, the

optimal mean performance may feature wide variations in

the catch between trips, leading to storage issues following

large catches, and dissatisfied customers following small

catches. This suggests a third possible approach to max-

imising utility in a multiobjective setting, which is to

maximise SER subject to achieving some constraint on the

variation between episodes. For example in the DST, we

might prefer a policy which alternates between the (- 5, 3)

and (- 14, 50) returns, even though the SER for this

approach is lower than for the policy which mixes the

(- 1, 1) and (- 19, 124) returns. While there is prior work

on reducing variance within risk-aware single-objective

RL [6, 21] and also on MORL approaches to risk-aware

RL [9, 35], we are not aware of any previous work that

addresses the issue of reducing the variance in returns

within the context of MORL.

A specific form of this reduced-variance SER optimi-

sation would be for the agent to identify the member of the

set of deterministic policies that maximises the value of

SER. We will refer to this as SER-deterministic optimi-

sation. In the context of fully deterministic environments

such as the DST, the same policy will be optimal for both

SER-deterministic and ESR, but in future sections we will

show that this is not necessarily the case for stochastic

environments.

4 MOMDPs with stochastic rewards

Consider the two-objective MOMDP shown in Fig. 5. Each

episode starts in state s0. Regardless of the action chosen

the environment always transitions to state s1, and returns a

reward of either (1,0) or (3, 0) with equal probability. From

s1 five actions are available, each transitioning to a terminal

state but giving a different Pareto-optimal trade-off

between the two objectives.

The stochasticity of the environment has no impact on

an agent using linear f. As was the case for the DST, it will

be restricted to finding solutions which lie on the convex

hull of the Pareto front (eliminating actions B and C from

consideration), and so in this case will converge to one of

three deterministic policies—always selecting action A,

always selecting D, or always selecting E. As before, these

options may not suitably match the true utility of the user.

Therefore, we may need to use a nonlinear definition of

f in order to better satisfy the user’s utility. However, there

is a critical difference between these scenarios and the

deterministic environments considered previously in that
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Fig. 4 Graphs of the mean

reward achieved over twenty

independent runs of the TLO Q-
learning agent (Algorithm 1) on

the DST problem using a time

threshold of - 16 (shown by the

red line). Two variants of the

algorithm are shown—one uses

only the environmental state

when selecting an action, while

the other uses an augmented

state consisting of both the

environmental state and the sum

of the rewards received so far in

the current episode
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Fig. 5 A simple MOMDP with deterministic state transitions and

stochastic rewards
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for these stochastic scenarios the value of the accumulated

reward P when a particular environmental state is reached

may vary between episodes. As a result, when using

methods based on nonlinear f in this type of stochastic

environment, it is vital that both the choice of action and

the Q-values take into account the value of P (i.e. the state

augmentation operations on Lines 10, 15 and 16 in Algo-

rithm 1 must be included).

Consider what the optimal behaviour would be for an

ESR-maximising agent, using the visualisation of reward

space shown in Fig. 6, and assuming a threshold of 4.4 for

the first objective. When a reward of (1,0) is received on

the first transition, then the optimal action for the agent is

E as this is the only choice which will produce a whole-of-

episode return satisfying that threshold. In contrast when

the initial reward is (3, 0), then all actions would give an

outcome satisfying this threshold, and so the agent is free

to perform action A which maximises the return for the

second objective. Note that this policy is non-deterministic

with respect to the environmental state, but is deterministic

with respect to the augmented state.

Consider now an SER-maximising agent which is

allowed to use stochastic or non-stationary policies. If it

selects at the start of each episode whether to follow action

A or action D in s1 then, as shown in Fig. 6, its mean return

(pSER�Stochastic) will lie along the line Am:::Dm. By selecting

between those actions in an appropriate ratio, the agent can

achieve a mean result which satisfies the threshold on the

first objective, while performing considerably better than

the ESR agent on the second objective. Of course, many of

the individual episodic returns under this mixture policy

would fall below the threshold, and so this approach would

not be appropriate for maximising ESR.

Finally, consider the case of SER-deterministic optimi-

sation. Unlike in the deterministic DST example, the

optimal deterministic policies for this task differ if the

agent is trying to maximise SER rather than ESR. In this

case, as shown in Fig. 6, the best deterministic policy with

regards to SER is to always select action C. The question is

how to condition the action-selection and Q-values of the

agent so as to achieve this policy. Algorithm 2 presents a

novel solution to this issue. As SER-optimisation cares

about the mean result over all episodes, conditioning the

actions and augmented state on the accumulated reward

within the current episode as done in Algorithm 1 is not

appropriate. Instead, the agent should accumulate the ex-

pected immediate reward for each action performed in the

current trajectory and use this vector to derive both the

augmented state and the choice of action. In order to

achieve this, the agent must maintain an estimate of these

expected immediate rewards (Lines 3 and 15 in Algorithm

2). Consider how this operates on our simple stochastic

MOMDP. The immediate reward estimates for all actions

in the initial state s0 will converge to (2,0). Therefore,

when the agent reaches state s1, the value of the accumu-

lated estimated rewards P will always be (2,0) regardless of

the actual reward received in this episode. When P is

combined with the values of Qðs1Þ, actions A and B will be

below the threshold for the first objective, and action C will

be selected from the remaining actions as it performs best
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Fig. 6 A visualisation of the solutions to the stochastic rewards

MOMDP. The green points and line labelled Aþ1...Eþ1 indicate the

total episodic reward and Pareto front when action A...E is executed

after a reward of (1,0) is returned on the first state transition; The blue

points Aþ3...Eþ3 do the same for the case where the initial reward is

(3, 0), and the black points Am...Em show the mean return for each

action over all episodes. The red dotted line shows the desired

threshold of 4.4 for the first objective. An ESR agent conditioned on

the accumulated reward will select action E following an initial

reward of (1,0) and action A following an initial reward of (3, 0),

thereby satisfying the first-objective threshold for all episodes, and

yielding a mean result of pESR ¼ ð4:6; 5Þ (shown in brown). A

stochastic SER agent which randomly selects between actions A and

D with equal probability regardless of the value of the initial reward,

will receive a mean outcome of pSER�Stochastic ¼ ð4:4; 7:5Þ (purple).

Finally, a deterministic SER agent which conditions actions based on

the accumulated expected reward will always select action C, giving a
mean outcome of Cm ¼ ð4:5; 6Þ
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for the second objective. From Fig. 6, it can be seen that

the mean return for this policy will be Cm which is

preferable from an SER perspective to the ESR agent’s

return (pESR). The SER-deterministic result is inferior to

that of the SER agent which is allowed to use stochastic

policies (pSER�Stochastic), as both meet the threshold for the

first objective and the mean return of the stochastic policy

outperforms the deterministic policy on the second objec-

tive. However, the SER-deterministic agent provides

greater consistency, with the same return achieved for the

second objective in all episodes, which for some applica-

tions may be preferable.

To highlight the difference made by using actual or

expected rewards in state augmentation, empirical trials of

the ESR and SER-deterministic algorithms were carried

out. A tabular implementation of each algorithm was

executed for 20 independent runs, with a ¼ 0:3, k ¼ 0:95

and c ¼ 1:0. Exploration used multiobjective softmax-

t [27], with the temperature parameter initialised to 10 and

decayed to 0.01 over the learning episodes. The accumu-

lated reward values (P) were quantised into three discrete

bins (p� 1:2, 1:2\P� 2:8, and P[ 2:8). Given the dis-

crete nature of the environment, the immediate reward

values for the SER-deterministic agent were estimated by

using the actual mean of the rewards received for each

state-action pair to that point in learning. Each run con-

sisted of 1000 learning episodes, followed by 200 off-line

episodes with no learning or exploration in order to eval-

uate the final policy.3

Figure 7 shows the mean offline result achieved by each

run of each algorithm. It can be seen that, as expected, the

results of the ESR agent lie along the line connecting the

returns from action Aþ3 and Eþ1. The variation between

3 We note that if the environment’s state transitions are deterministic

the value of P calculated at Line 16 of Algorithm 2 will be

conditioned on the current state s (once the agent is following a fully

deterministic policy). Therefore, the conditioning of Q-values on an

augmented state (line 17) is not necessary, and learning efficiency

may be improved by omitting this step. This is not true for Algorithm

1 as P will vary due to stochasticity in the rewards. We thank the

anonymous reviewer of the original submission of this paper for

alerting us to this potential for more efficient implementation of the

SER-deterministic agent for environments with deterministic state

transitions.
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these results depends entirely on the frequency with which

the ?1 and ?3 rewards were obtained for the first objective

during these offline episodes. The chart of the frequency

with which actions are selected, shown in Fig. 8, confirms

that the ESR agent has learned to select action E following

an initial reward of (?1,0) and action A after an initial

reward of (?3, 0), thereby guaranteeing that every episode

exceeds the threshold for the first objective.

Similarly, the results for all but one of the runs of the

SER-deterministic agent lie along the line joining Cþ1 and

Cþ3, and the action-selection frequencies shown in Fig. 9

confirm that this agent is always selecting action C in its

final policy. The variation in the stochastic rewards

obtained during the 200 offline episodes was sufficient that

for two runs, the mean offline return for the first objective

fell below the threshold of 4.4. The outcome observed for

the outlier at (5.24, 5) in Fig. 7 is explained by the

stochasticity of the rewards—in this particular run, the

mean reward returned for the first objective during the

1000 learning episodes was 1.891, which is low enough

that this agent learned the deterministic policy which

always chooses action D. These results reflect observations

made in earlier experiments within a different problem

domain, that the highly nonlinear nature of the TLO

operator can exaggerate small inaccuracies in estimated

state-action values into substantial variations in the final

policy [31].

5 MOMDPs with stochastic state transitions

Having examined the impact of stochastic rewards on

value-based MORL agents, we now consider the case of

MOMDPs in which the transitions between states are

stochastic. While it might be expected that both forms of

environmental stochasticity would have similar effects, we

will see that this in fact is not the case, and that stochastic

transitions can pose a significant problem for value-based

MORL.

As an example of this class of MOMDPs, we propose

the novel Space Traders MOMDP shown in Fig. 10. This is

a finite-horizon task with a horizon of two time-steps. It

consists of two non-terminal states, with three actions

available in each state. The agent starts at its home planet

(state A) and must travel to another planet (state B) to

deliver a shipment and then return home with the payment.
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Fig. 7 The results of the greedy

final policy in 20 independent

runs of the ESR agent

(Algorithm 1, brown diamonds),

and the SER-deterministic agent

(Algorithm 2, black triangles).

A zoomed-in portion of the

fronts and threshold values

shown in Fig. 6 have been

included to highlight how these

results arise from the

combination of actions selected

by each agent
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Fig. 8 The frequency with which actions are selected in a randomly

selected run of the ESR-maximising TLO agent (Algorithm 1) where

actions and Q-values are conditioned on the sum of the actual rewards

received in the current episode). The upper graph shows the action

selected following an initial reward of (1,0), and the lower-graph

shows the action selected following an initial reward of (3,0)
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The agent receives a reward with two elements—the first is

0 on all actions, except that a reward of 1 is received when

the agent successfully returns home, while the second

element is a negative value reflecting the time taken to

execute the action.

There are three possible pathways between the two

planets. The direct path (actions shown by solid black lines

in Fig. 10) is fairly short, but there is a risk of the agent

being waylaid by space pirates and failing to complete the

task. The indirect path (grey lines) avoids the pirates and so

always leads to successful completion of the mission, but

takes longer. Finally, the recently developed teleportation

system (dashed lines) allows instantaneous transportation,

but has a higher risk of failure. The figure also details the

probability of success, and the reward for the mission-

success and time objectives for each action—due to vari-

ations in local conditions such as solar winds and the

location of the space pirates, the time values for the out-

ward and return journeys on a particular path may vary.

Table 1 summarises the transition probabilities and

rewards of the MOMDP and also shows the mean imme-

diate reward for each action from each state, weighted by

the probability of success. As there are three actions from

each state there are a total of nine deterministic policies

available to the agent. The mean reward per episode for

each of these policies is shown in Table 2 and illustrated in

Fig. 11. The solid points in the figure highlight the policies

which belong to the Pareto front, and the dashed grey line

indicates the convex hull (only those policies lying on the

convex hull can be located via methods using linear

scalarisation—this set of policies is referred to as the

Convex Coverage Set [16]).

For the remainder of the paper, we will assume that the

agent’s aim is to minimise the time taken to complete the

delivery and return home, subject to having at least an 88%

probability of successful completion. That is, the user’s

utility function f ðvÞ ¼ v2 if v1 [ 0:88 and �1 otherwise.

This type of task in which the aim is to achieve a

threshold level of the probability of occurrence of some

stochastic event fits poorly with the ESR-based approach to

maximisation. Specifying any threshold value for mission

success that must be met by every episode is equivalent to

requiring that each individual episode’s probability-of-

success must be maximised. For the Space Traders envi-

ronment, this can only be achieved by following the strictly

safe indirect route on both legs of the journey.

SER maximisation is a more natural fit for this type of

task, as the concept of a probability-of-success implies that

the user is concerned about the mean performance over

multiple episodes. Under this assumption, the optimal

policy is to follow the direct path to B and then the indirect

path back to A (policy DI). This will on average exceed the

desired threshold for mission success, while outperforming

on time both other policies (ID and II) which also meet this

threshold.
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Fig. 9 The frequency with which actions are selected in a randomly

selected run of the SER-deterministic TLO agent (Algorithm 2) where

actions and Q-values are conditioned on the sum of the expected

rewards so far in the current episode). The upper graph shows the

action selected following an initial reward of (1,0), and the lower-

graph shows the action selected following an initial reward of (3,0)
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Fig. 10 The Space Traders

MOMDP. Solid black lines

show the Direct actions, solid

grey lines show the Indirect

actions, and dashed lines

indicate Teleport actions. Sold

black circles indicate terminal

(failure) states
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5.1 Applying multiobjective Q-learning to Space
Traders

Clearly from Fig. 11, the return achieved by the desired

policy DI lies in a concavity in the Pareto front, and so

linear methods will not be able to converge to this policy.

This result is not surprising, and we mention it here simply

for the sake of completeness.

Assume instead that f is the TLO operator and that a

thresholding parameter of 0.88 is applied to the first ele-

ment of the Q-value vector. If this operator could be

applied directly to the mean returns of each policy from

Table 2, then clearly policy DI would be selected.

Table 1 The probability of

success and reward values for

each state-action pair in the

Space Traders MOMDP

State Action P(success) Reward on success Reward on failure Mean reward

A Indirect 1.0 (0, - 12) n/a (0, - 12)

Direct 0.9 (0, - 6) (0, - 1) (0, - 5.5)

Teleport 0.85 (0,0) (0,0) (0, 0)

B Indirect 1.0 (1, - 10) n/a (1, - 10)

Direct 0.9 (1, - 8) (0, - 7) (0.9, - 7.9)

Teleport 0.85 (1, 0) (0, 0) (0.85, 0)

Table 2 The mean episodic

return vector for each of the

nine deterministic policies

available for the Space Traders

MOMDP

Policy identifier Action in state A Action in state B Mean return

II Indirect Indirect (1, - 22)

ID Indirect Direct (0.9, - 19.9)

IT Indirect Teleport (0.85, - 12)

DI Direct Indirect (0.9, - 14.5)

DD Direct Direct (0.81, - 12.61)

DT Direct Teleport (0.765, - 5.5)

TI Teleport Indirect (0.85, - 8.5)

TD Teleport Direct (0.765, - 6.715)

TT Teleport Teleport (0.7225, 0)

II

DI

TI

ID

DD

TD

IT

DT

TT

-25

-20

-15

-10

-5

0

0.7 0.75 0.8 0.85 0.9 0.95 1

Ti
m

e
pe

na
lty

Probability of mission success

Fig. 11 The mean return per episode for the nine possible determin-

istic policies for the Space Traders MOMDP. Each policy’s return is

labelled with a bigram specifying its actions. I, D, T refer to the

indirect, direct and teleport actions so, for example, policy DI selects

the direct action in state A and the indirect action in state B. Solid

markers indicate policies that are members of the Pareto-front, and

hollow markers indicate dominated policies. The dashed grey lines

illustrate the convex hull formed by mixture combinations of the

policies that make up the Convex Coverage Set (CCS). The dashed

red vertical line indicates the threshold value of 0.88 for the

probability of mission success, and the red square marker is the DI

policy which is the SER-deterministic optimal policy for that setting

of the threshold
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However, the results of empirical trials show that this does

not occur in practice, while also further highlighting the

impact that noisy estimates of action values can have on

the behaviour of TLO agents. The results shown in Fig. 12

are from the final greedy policies learned by 20 indepen-

dent runs of the SER-deterministic agent (Algorithm 2) for

20,000 training episodes, with a ¼ 0:01, k ¼ 0:95, c ¼ 1,

and the softmax-t temperature parameter decayed from an

initial value of 10 down to 2. Even with parameters chosen

in this way to reduce the variance in the estimates of action

values, the highly varying stochastic outcomes of the Space

Traders task coupled with the proximity of the threshold to

the true values of the actions in both states leads to a large

amount of variation in the policy learned between different

runs of the agent. The most common outcome (12/20 runs)

is the ID policy, as predicted by our earlier analysis, but the

II policy (4 repetitions) and IT policy (2) also occur in

some runs. One run leads to the desired DI policy, but this

is due to random factors and is not reproducible.

A closer examination of the behaviour of the agent

reveals that this inconsistent behaviour is due to occasional

sequences of unsuccessful or successful runs leading the Q-

values for an action to move from one side of the threshold

to the other. In particular, if the currently greedy action’s

estimate falls below the threshold late in training (when

exploration is low), the action may not be selected suffi-

ciently often for its estimated value to rise above the

threshold again before the policy is finalised at the end of

training. When all actions’ values are being estimated with

sufficient accuracy, the agent converges to the ID policy,

but when one (or more) actions’ estimated values are too

noisy, convergence to other policies occurs. Figure 13

illustrates this for a sample run (this run decayed the

exploration parameter to 0.01 to highlight this problem). It

can be seen that after the initial period of near random

exploration, the agent starts to favour the Direct action.

However, at around 8500 and 9500 episodes, there are

spikes in the selection of Teleport, indicating that the

estimated value of this action incorrectly rose to be above

the threshold, making it the preferred greedy action. This is

later corrected as the agent correctly learns that Teleport’s

true value is below the threshold. From about 12,000 epi-

sodes onwards the agent strongly favours Direct (and was

at this point following the ID policy), but the selection of

-23

-21

-19

-17

-15

-13

-11

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Ti

m
e 

pe
na

lty

Probability of mission success

ID

II

IT

DI

Fig. 12 The mean return across

200 offline (greedy) episodes

for 20 independent runs of the

SER-deterministic TLO agent

(Algorithm 2), using a threshold

of 0.88 for mission success, as

indicated by the red dashed line.

Colours of dots indicate which

policy produced each outcome,

while size indicates the

frequency of occurrence (three

of the ID policy outcomes

occurred twice each, while the

II outcome occurred 4 times)
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Fig. 13 The frequency with

which actions are selected in

State B of the Space Traders

environment for a single run of

the SER-Deterministic agent

(Algorithm 2). This agent

ultimately converged to the II

policy
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this action plummets at around 13,500 episodes. At this

point, the estimated value of Direct fell below the thresh-

old, and with minimal exploration occurring at this stage in

learning, the Direct action was never executed sufficient

times for its estimated value to rise above the threshold

again. With indirect now favoured in State B, we might

expect the agent to switch to the DI policy, but the Direct

action was also not selected sufficiently in state A to allow

this to occur, and so the agent incorrectly converged to the

II policy.

Even when the action values are learned with sufficient

accuracy, the agent converges to the ID policy rather than

the DI policy which is actually optimal with regards to the

user’s utility function. This failure can be understood by

examining how the TLO operator selects actions during the

execution of a policy. Regardless of the path selected at

state A, if state B is successfully reached, then a zero

reward will have been received by the agent for the first

objective. Therefore, the choice of action at state B is

independent of the previous action. Looking at the mean

action values reported in Table 1, it can be seen that action

T will be eliminated as it fails to meet the threshold for the

first objective, and that action D will be preferred over I as

both meet the threshold, and D has a superior value for the

time objective. So it can already be seen that this agent will

not converge to the desired policy DI. This would be true

for an agent using an unaugmented state, and also for either

of the state augmentation methods considered in Sect. 4.

Knowing that action D will be selected at state B, we

can calculate the Q-values for each action at state A, as

shown in Table 3. The TLO action selector will eliminate

actions D and T from consideration as neither meets the

threshold of 0.88 for the probability-of-success. Action I

will be selected giving rise to the overall policy ID. Not

only is this not the desired DI policy, but as is evident from

Fig. 11 its average outcome is in fact Pareto-dominated by

DI.

5.2 The interaction of local decision-making
and stochastic state transitions

The failure of the nonlinear value-based MORL algorithms

on the Space Traders MOMDP can be explained by the

analysis of stochastic-transition MOMDPs previously car-

ried out by Bryce et al. [3] in the context of probabilistic

planning. This analysis has been largely overlooked by

MORL researchers so far, and so one of the aims of this

paper is to bring this work to the attention of the MORL

research community.

Figure 14 illustrates a simple MDP reproduced from

Bryce et al. [3], with a stochastic branch occurring on the

transition from the initial state. The table in the lower half

of this figure specifies the mean return for the four possible

deterministic policies. Keeping in mind that this MOMDP

is phrased in terms of minimising cost (rather than max-

imising the inverse of the cost), it can be seen that unlike

Space Traders, there are no Pareto-dominated policies for

this MOMDP.4

The aim of the agent is to minimise the cost, subject to

satisfying at least a 0.6 probability of success. Within an

ESR formulation of the problem (i.e. ensure the probability

of success threshold is achieved in each episode), the

optimal policy is to select sub-plan p1 at branch b1 and p3
at branch b2 as both of these sub-plans individually satisfy

the probability threshold. However, if considered from the

SER perspective, the optimal plan is to execute p2 at

branch b1 and p3 at branch b2—while p2 itself fails to

achieve the probability threshold, this branch is executed

with a low probability and so the mean outcome of the two

sub-plans will achieve the threshold while also producing a

significant cost saving.

As identified by [3], whether the overall policy meets

the constraints depends on the probability with which each

branch is executed as well as the mean outcome of each

branch. Determining the correct sub-plan to follow at each

branch requires consideration of the sub-plan options

available at each other branch in combination with the

probability of branch execution.

This requirement is fundamentally incompatible with

the localised decision-making at the heart of model-free

value-based RL methods like Q-learning, where it is

assumed that the correct choice of action can be deter-

mined purely based on information available to the agent at

the current state. The provision of state augmented by the

sum of either actual or expected rewards as used in Sect. 4

is insufficient, as this still only provides information about

the branch which has been followed in this episode, rather

than all possible branches that might have been executed.

The conclusion to be drawn from both this example and

Space Traders is that value-based model-free MORL

methods are inherently limited when applied in the context

of SER optimisation of nonlinear utility on MOMDPs with

non-deterministic state transitions. These methods may fail

Table 3 The Q-values which will be learned for each action in state

A, under the assumption that the Direct action will be selected in State

B

Action in state A Policy Q(A, a)

Indirect ID (0.9, - 19.9)

Direct DD (0.81, - 12.61)

Teleport TD (0.765, - 6.715)

4 While clearly illustrating the problem, this MOMDP also lacks the

narrative drama of Space Traders!
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to discover the policy that maximises the SER (i.e. the

mean utility over multiple episodes). To the best of our

knowledge, this limitation has not previously been identi-

fied in the MORL literature. It is particularly important as

the combination of SER, stochastic state transitions and

nonlinear utility may well arise in important areas of

application such as AI safety [30].

5.3 Potential solutions

In this section, we will briefly review and critique various

options which may address the issue identified above.

5.3.1 Non-stationary or non-deterministic policies

As discussed earlier, for the SER formulation policies

formed from a non-stationary or non-deterministic mixture

of deterministic policies can Pareto-dominate deterministic

policies [24, 28]. For example, for Space Traders an agent

that randomly selects between policies TI and II with

appropriate probabilities at the start of each episode can

produce a mean outcome which exceeds that of policy DI,

as shown in Fig. 15. The issues with stochastic transitions

identified by [3] only arise in the context of nonlinear

scalarisation (due to the non-additivity of returns). There-

fore, an SER agent could use linear scalarisation to find the

base policies TI and II and use them as the basis for a

mixture policy.

However, as discussed earlier, the use of policies which

vary so widely may not be appropriate in all contexts and

so methods to find SER-optimal deterministic policies for

stochastic MOMDPs are still required.

5.3.2 Multi-policy value-based MORL

As well as the single-policy value-based MORL methods

examined in this paper, several authors have proposed

multi-policy methods. These operate by retaining sets of

vectors at each state. These can correspond to either all

Pareto-optimal values obtainable from that state, or (for

purposes of efficiency) be constrained to store only those

values that can help construct the optimal value function

under some assumptions about the nature of the overall

utility function f [16]. Multi-policy algorithms were first

proposed for variants of dynamic programming [36, 37]

and more recently have been extended to MORL [18, 32].

Fig. 14 A sample probabilistic

planning MOMDP, reproduced

from Bryce et al. [3]. Executing

action a from bt leads to two

branches with probability 0.2

and 0.8. At each of these

branches, a choice between two

sub-plans with different payoffs

exists. The aim for the planner

is to identify the correct sub-

plan to execute at each branch,

so as to minimise cost while

ensuring successful execution

above a fixed probability
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By propagating back the coverage set of values available

at each successor state, these algorithms would correctly

identify all potentially optimal policies available at the

starting state, and the optimal policy could then be selected

at that point—in the context of Space Traders, this would

allow for the desired DI policy to be selected. However,

two issues still need to be addressed. One is ensuring that

the agent has a means of determining which action should

be performed in each encountered state to align with the

initial choice of policy. Existing algorithms do not neces-

sarily provide such a means in the context of stochastic

transitions. Second, the existing multi-policy MORL

algorithms do not have an obvious extension to complex

state-spaces where tabular methods are infeasible. Con-

ventional function-approximation methods cannot be

applied, as the cardinality of the vectors to be stored can

vary between states. Vamplew et al. [29] provides pre-

liminary work addressing this problem, but further work is

still required to make this approach practical. The condi-

tioned network proposed by Abels et al. [1] may also

provide the basis for a solution. This network takes as input

both the current state and also a set of values for the

scalarisation function parameters w. By varying the value

of w during training, this single network can learn to

encode multiple policies. So far, conditioned networks

have only been implemented for linear scalarisation, but

the method is potentially extensible to nonlinear

scalarisation.

5.3.3 Model-based methods

As well as describing the difficulties faced by probabilistic

planning, Bryce et al. [3] also propose a search algorithm

known as Multiobjective Looping AO* (MOLAO*) to

solve such tasks. As a planning method, this assumes an

MOMDP with known state transition probabilities and a

finite and tractable number of discrete states. It may be

possible to extend this approach by integrating it within

model-based RL algorithms that can learn to estimate the

transition probabilities and to generalise across states. We

are not aware of any prior work that has attempted to do so.

There has been a small amount of work in model-based

MORL, but the approach of Wiering et al. [38] is restricted

to deterministic environments, while the algorithm of

Yamaguchi et al. [39] is designed for linear scalarisation

and maximisation of average per-step rewards. Therefore,

both approaches would require modification or extension in

order to provide a suitable basis for implementing a rein-

forcement learning equivalent of MOLAO*.

5.3.4 Policy-search methods

An alternative to value-based approaches is to use policy-

search approaches to RL. As these directly maximise the

policy as a whole as defined by a set of policy parameters,

they do not have the local decision-making issue faced by

model-free value-based methods. Multiple researchers

have proposed and evaluated policy-search methods for

multiobjective problems [11, 13, 19, 22]. However, these

methods most naturally produce stochastic policies and so,

like the mixture or non-stationary approaches discussed in

Sect. 5.3.1, may require modification to be suitable for use

in the context of reduced-variance SER.

6 Conclusion

Multiobjective extensions of value-based model-free

methods such as Q-learning have been widely used in the

multiobjective reinforcement learning literature. This paper

has shown that the nature of the desired policy, and the

ability of these algorithms to achieve that policy, depend

on two critical factors. The first factor is the presence or

absence of stochasticity within the environment, and
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whether this applies to rewards or state transitions. The

second factor is whether the agent is intended to maximise

the Expected Scalarised Return (ESR), the Scalarised

Expected Return (SER), or (as identified here for the first

time in the MORL literature), the SER with constraints on

the variance between episodes.

For deterministic environments, the optimal determin-

istic policy will be the same for both ESR and SER agents,

while an SER agent that has no other constraints may

favour a non-stationary or stochastic policy. However, if

the environment exhibits stochasticity in either its rewards

or its state transitions, then the deterministic policy that is

optimal for SER may differ from that which is optimal for

ESR. As an initial exploration of variance-constrained SER

optimisation, we have presented a modified form of mul-

tiobjective Q-learning, conditioned on accumulated

expected rewards, which can discover the deterministic

policy that produces the best SER outcomes in environ-

ments with stochastic rewards. Variance-constrained SER

MORL is closely related to prior work on risk-aware RL

([6, 9, 21, 35]) and is a promising area for future work.

A key finding of this work is to establish that where state

transitions are stochastic, value-based model-free MORL

algorithms may be unable to discover the SER-optimal

deterministic policy and may converge to a policy that is

not even Pareto-optimal. While this issue with MOMDPs

with stochastic state transitions has previously been

described in the context of probabilistic planning [3], this

is the first work to identify the implications for MORL. The

combination of SER optimisation, stochastic state transi-

tions and the need for a deterministic policy are likely to

arise in a range of applications (particularly in risk-aware

agents), and so awareness of the limitations of some

MORL methods to work under these characteristics is

important in order to avoid the use of inappropriate

methods.

In addition the experimental results reported in this

paper highlighted the heightened susceptibility of agents

based on TLO action-selection to noisy estimates of action

values, which are inevitable within stochastic environ-

ments. Future work should examine whether more contin-

uous nonlinear functions such as Chebyshev distance [34]

may prove to be more robust to these noisy estimates.
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reinforcement learning for the expected utility of the return. In:

Adaptive learning agents (ALA) workshop at AAMAS, vol 18

18. Ruiz-Montiel M, Mandow L, Pérez-de-la Cruz JL (2017) A
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based multi-objective reinforcement learning. In: International

conference on evolutionary multi-criterion optimization.

Springer, pp 352–366

34. Van Moffaert K, Drugan MM, Nowé A (2013b) Scalarized multi-
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