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Abstract
In this paper, we proposed a novel regularization and variable selection algorithm called Liu–Lasso extreme learning

machine (LL-ELM) in order to deal with the ELM’s drawbacks like instability, poor generalizability and underfitting or

overfitting due to the selection of inappropriate hidden layer nodes. Liu estimator, which is a statistically biased estimator,

is considered in the learning phase of the proposed algorithm with Lasso regression approach. The proposed algorithm is

compared with the conventional ELM and its variants including ELM forms based on Liu estimator (Liu-ELM), L1-norm

(Lasso-ELM), L2-norm (Ridge-ELM) and elastic net (Enet-ELM). Convenient selection methods for the determination of

tuning parameters for each algorithm have been used in comparisons. The results show that there always exists a d value

such that LL-ELM overperforms either Lasso-ELM or Enet-ELM in terms of learning and generalization performance.

This improvement in LL-Lasso over Lasso-ELM and Enet-ELM in the sense of testing root mean square error varies up to

27% depending on the proposed d selection methods. Consequently, LL-ELM can be considered as a competitive algorithm

for both regressional and classification tasks because of easy integrability property.

Keywords Extreme learning machine � Regularized extreme learning machine � Liu estimator � Ridge regression �
Lasso � Elastic net

1 Introduction

Since extreme learning machine (ELM) has been proposed

by Huang et al. [18, 19], there has been great attention by

researchers in many disciplines and real-world applications

such as medical/biomedical [1, 48, 56], computer vision

[9, 34], image/video processing [2, 4, 44], text classifica-

tion [36, 59], system modeling and prediction

[6, 33, 51, 52, 58], control and robotics [39], chemical

process [7, 50], fault detection and diagnosis [10], time-

series analysis [3] and remote sensing [17, 45]. For some

comprehensive review studies on ELM theory and appli-

cations, the readers are referred to Huang et al. [22], Huang

et al. [24] and Deng et al. [11]. The underlying reasons for

attention are its superior properties like extremely fast

learning speed, simplicity and convincing performance in

different learning problems including supervising [22],

unsupervising [20] and semisupervising tasks [20].

Although ELM produces successful results in many real-

world applications, it has several drawbacks caused by its

learning nature. As a result of structural risk minimization

approach [47], ELM may provide poor results in terms of

stability, generalization performance and sparsity per-

spectives. In some situations, even the ELM presents effi-

cient convergence in theory, its results may be overfitted or

underfitted compared to what it should be in reality.

Besides, the performance of the ELM significantly depends

on the number of the hidden layer nodes. The selection of

optimal node number is a complicated issue because of the

possibility of overfitting or underfitting [30].

In order to deal with the ELM drawbacks, alternative

variants of the ELM have been proposed to improve
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performance. Some of them have been mentioned in this

study. A majority of these studies are based on regular-

ization methods including the norms like L2 (i.e., Tikho-

nov, ridge) and L1 (i.e., Lasso).

When collinearity exists among the columns of the out-

put matrix of hidden layer, multicollinearity exists. In case

of multicollinearity, ELM results cannot be obtained or they

will be unstable. The ridge estimator was proposed by Hoerl

and Kennard [18] to deal with multicollinearity problem in

linear models. The first appearance of ridge estimator in the

context of ELM has been presented by Deng et al. [12] and

later proposed by Li and Niu [25] in a regular form. Li and

Niu [25] proposed an enhanced ELM algorithm based on

the ridge regression (RR-ELM) and showed that RR-ELM

may provide more stable and generalizable results than the

conventional ELM. Cao et al. [5] proposed a suit-

able method for both classification and regressional studies

called as stacked sparse denoising autoencoder—ridge

regression (SSDAE-RR) to obtained more stable and gen-

eralizable network model. Shao et al. [43] developed a new

regularized ELM based on leave-one-out cross-validation

(LOO-CV) to determine the optimal model and get better

learning performance. Chen et al. [8] proposed a two-stage

method based on uninformative variable elimination and

ridge regression to carry on a ridge-based ELM with the

most informative feature. Yu et al. [57] developed a novel

dual adaptive regularized online sequential extreme learn-

ing machine (DA-ROS-ELM) to deal with ill-posing and

over-fitting on problems related to network intrusion. Wang

and Li [49] presented one of the first studies on ELM for

survival data and proposed a new method called as ELM-

CoxBAR (a kernel ELM Cox model regularized by an L-0-

based broken adaptive ridge) to reduce the computational

cost for high-dimensional survival data. Yıldırım and

Özkale [54] have found that the performance of ELM

algorithms based on the ridge and almost unbiased ridge

estimators [35] depends on the selection method of the

parameter and they proposed different criteria including

Akaike information criterion (AIC), Bayesian information

criterion (BIC) and cross-validation (CV) for the selection

of the tuning parameter in the context of ELM. Luo et al.

[29] presented a weighted extreme learning machine with

distribution optimization using ridge regression to classify

user behavior prediction. Yan et al. [53] proposed a new

algorithm called as artificial bee colony algorithm-based

kernel ridge regression to provide more efficient results on

insurance fraud identification. Raza et al. [38] presented

k-sparse ELM to select the most informative features to

obtain more compact model. In this study, it is shown that

the selection method of parameter is effective on the per-

formance of ridge-based algorithms. ELM algorithms based

on ridge regression improve ELM performance in a certain

extent.

Although ELM algorithms in regression studies based

on L2-norm have been widely adapted by researchers, there

are alternatives to the ridge estimator. Liu estimator [27] is

one of the alternatives which is effective for dealing with

multicollinearity problem. The advantage of Liu estimator

over the ridge estimator is to have a linear form of the

tuning parameter unlike the nonlinear form in the ridge

estimator. This property gives the possibility to determine

the tuning parameter easier and faster than ridge. There-

fore, the superiority of Liu estimator can be beneficial to

dealing with the instability and poor generalization per-

formance of ELM. Hence, Yıldırım and Özkale [55] pro-

posed an enhanced ELM algorithm based on Liu (Liu-

ELM) with different selection methods for tuning param-

eter and showed that the proposed algorithm generally

provides more stable and generalizable results than ELM

and RR-ELM.

RR-ELM has been widely used in different fields due to

its superiorities like stability, predictive performance and

functionality on high-dimensionality settings over ELM.

However, it does not present a sparse (i.e., compact) model

which is quite important to deal with high-dimensional data

sets including irrelevant or noisy features. In other words,

RR-ELM does not carry out a variable selection process

and affects on the compactness of the model. This yields

less interpretable model compared to its competitors. Lasso

regression proposed by Tibshirani [46] could be a remedy

for these drawbacks of RR-ELM.

To make further, particularly in the presence of irrele-

vant features, L1-norm has been considered in learning

process of ELM. Miche et al. [31] proposed a pruning

algorithm called optimally pruned extreme learning

machine (OP-ELM) to obtained more robust results than

ELM. Later on, in order to benefit from the advantages of

L1 and L2 regularizations, several studies have been carried

out. Firstly, Miche et al. [32] proposed a double-regular-

ized ELM called Tikhonov-regularized OP-ELM (TROP-

ELM) and obtained better results than OP-ELM [31] and

the basic ELM. Afterward, Martinez et al. [30] proposed a

regularized ELM to select the optimal number of hidden

layer nodes and they adapted the elastic net method in

ELM training phase and the results have been given

comparatively. Luo et al. [28] proposed a unified form of

ELM algorithm based on L1 and L2 forms to be used in

regression and classification tasks. Shan et al. [42] pro-

posed a new method called as interval LASSO-based ELM

to determine the appropriate nodes of network and avoid

from the overfitting problem. Li et al. [26] presented a new

regularized algorithm based on L2;1-norm for deal with

noises and outliers to obtain more robust and compact

networks. Preti et al. [37] developed novel online sequen-

tial extreme learning machine based on L2;1-norm to
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improve the processing time and memory usage for process

real-time sequential data. Fan et al. [15] proposed two

different algorithms based on L1=2-norm having both group

and smoothing group regularization to present more com-

pact networks with effective learning capability.

The advantage of Lasso method is that it shrinks some of

the weights exactly to zero. Thus, a much sparser model is

obtained. Both RR-ELM and lasso-ELM shrink the weights

matrix with proportional to the tuning parameters, but

Lasso also carries out variable selection by setting some

weights to zero. Due to these properties, Lasso and its

variants have been attracted in many disciplines. Due to the

impossibility of closed-form solution, several algorithms

[14, 16, 40] have been proposed to obtain solution in

Lasso-type problems. Although Lasso is well in high-di-

mensional data, there are some drawbacks of Lasso

regression which are pointed out by Zou and Hastie [60]. In

order to overcome the drawbacks of Lasso, Zou and Hastie

[60] proposed elastic net as a regularization and variable

selection method. In elastic net, the superiorities of both

ridge and Lasso methods have been used in a unified

model. Thus, an effective variable selection process can be

carried out by considering the grouping effect (the rela-

tionships between variables).

Liu-ELM was proposed as an alternative to RR-ELM,

and it has the disadvantage of that it does not do variable

selection. However, when we combine Liu-ELM with L1-

norm, it does variable selection because of the feature of

L1-norm penalization. Thus, it may be more efficient and

convenient than Liu-ELM and Lasso-based ELM algo-

rithms. With the sparsity property of L1-norm, the results

may be more convincing for dealing with ELM’s draw-

backs. Taken together, the drawbacks mentioned above can

be briefly summarized as follows:

The performance results may present poor generalization

and stability performance.

Some of algorithms such as Liu-ELM and RR-ELM do

not carry a variable (i.e., node in the context of ELM)

selection process. Therefore, they do not have the

sparsity property.

Ridge-type algorithms are based on a parameter selection

which do not have a generally accepted way and could

be adversely effective on the speed of algorithm.

In this study, we present a new algorithm which is a cas-

cade of two regularization types including Liu estimator

and L1-norm to improve the ELM and its variants based on

L1- and L2-norms in terms of stability and generalization

performance. We called this novel algorithm as Liu–Lasso

extreme learning machine (LL-ELM) algorithm. The main

contributions of the proposed algorithm can be listed as

follows:

The new method produces a solution to the multi-

collinearity problem like Liu-ELM and RR-ELM as well

as its superiority compared to Liu-ELM and RR-ELM is

that it does variable selection.

The new method does variable selection like Lasso;

however, instead of shrinking the components toward the

origin as Lasso does, it shrinks toward d times ELM

results where d is a parameter between 0 and 1.

The new method, like Enet-ELM, does variable selection

and depends on two tuning parameters, but the selection

of the new tuning parameter is mathematically easier

than that of Enet-ELM.

In the rest of the paper, a brief review of algorithms is

presented in Sect. 2. The details of the proposed algorithm

are given in Sect. 3. In Sect. 4, the details of parameter and

model selection are provided. An experimental study is

carried out to investigate the performances of all algo-

rithms on the real data sets in Sect. 5. The discussions and

conclusions are summarized in Sect. 6.

2 A brief review of algorithms

2.1 Extreme learning machine (ELM)

This section shortly presents ELM algorithm proposed by

Huang et al. [30, 31]. The main property of ELM is to give

a chance to select the number of hidden layer neurons and

biases arbitrary (i.e., randomly). As a result of random

selection, the estimation problem of the neural network is

reduced to find a solution of a linear system which can be

easily obtained analytically. Therefore, ELM provides

faster and simpler learning and estimation processes than

other learning algorithms like backpropagation. Consider a

group of samples xi; tið Þ; where xi ¼ xi1; xi2; :::; xinð ÞT2 Rn

and ti ¼ ti1; ti2; :::; timð ÞT2 Rm to be estimated in a problem.

For a given activation function gð Þ and a number of hidden

layer neurons Kð Þ, the mathematical model of estimation

based on a single-layer feedforward neural network

(SLFN) can be written as follows:

tTj ¼
XK

i¼1

bT
i g wi:xj þ bi
� �

; j ¼ 1; 2; . . .;N; ð1Þ

where xT
j ¼ xj1; xj2;:::;xjn

� �
is the input values corresponding

to the original data points, tTj ¼ tj1; tj2;:::;tjm
� �

is the outputs

of neural network, wi ¼ wi1;wi2; . . .;wim½ �T and bi are the

learning parameters between the ith hidden node and the

input nodes. bi ¼ bi1; bi2; :::; bim½ �T is the weight vector

linking the ith hidden node and the output nodes. wi:xj
corresponds to the inner product between wi and xj
[30, 31]. Generally, n is equal to the number of explanatory
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variables and m is equal to the number of response vari-

ables which is commonly taken as one in most practical

applications. ELM algorithm as a SLFN claims that it can

converge with zero error to the actual values of N samples.

In other words, there are always a group of optimal

parameters (i.e., weight and bias values) to provide
PK

i¼1

yj � tj
�� �� ¼ 0. Equation (1) can be written more compactly

as

Hb ¼ T; ð2Þ

where

H ¼

g w1:x1 þ b1ð Þ ::: g wK :x1 þ bKð Þ
..
.

::: ..
.

g w1:xN þ b1ð Þ ::: g wK :xN þ bKð Þ

2

664

3

775

N�K

is the output matrix of hidden layer in the neural network,

b ¼
bT

1

..

.

bT
K

2

664

3

775

K�m

corresponds to the weights and

T ¼

tT1

..

.

tTN

2
664

3
775

N�m

is the output values of neural network.

By selecting the learning parameters randomly, the

weight matrix bð Þ can be obtained via a classical least

squares approach. Therefore, the estimation of b in ELM,

say b̂ELM, is equivalent to obtain the solution of the fol-

lowing objective function:

b̂ELM ¼ arg min
b

Hb� Tk k2
2; ð3Þ

where :k k2
2 denotes the L2-norm.

In order to find the solution of Eq. (3), the classical

inverse can be used if H matrix has full-column rank. In

this case, b is estimated as b̂ELM ¼ HTH
� ��1

HTT.

2.2 The variants of ELM based on L1- and L2-
Norms

In the presence of multicollinearity, H will not be full-

column rank. The RR-ELM proposed by Li and Niu [25] as

a solution of this problem has the closed-form solution

b̂RR�ELM¼ HT HþkI
� ��1

HTT;

where I is the identity matrix and k[ 0 refers to the tuning

parameter for RR-ELM

The L1 minimization of system (2) that Miche et al.

[30, 31] presented is the solution of

b̂Lasso�ELM¼ arg min
b

Hb� Tk k2
2þk bk k1

n o
;

where :k k1 denotes the L1-norm and k is the tuning

parameter.

The elastic net is the solution of [30, 32]:

b̂Enet�ELM¼ arg min
b

Hb� Tk k2
2þk bk k2

2þk bk k1

n o
;

where k and k are the tuning parameters representing the

size of L1- and L2-norms, respectively.

If the parameters of elastic net k andkð Þ are tuned

carefully, both more predictive and sparse results can be

obtained than Lasso or ridge regression. One of the

parameters which should be tuned in elastic net is the ridge

tuning parameter kð Þ. However, there is no consensus on

the appropriate selection of k parameter. There has been an

extensive study for determination of optimal kð Þ parameter.

As a remedy of this problem, an alternative method called

Liu estimator was proposed by Liu [27]. Similar to ridge

regression, Liu can deal with multicollinearity problem by

using a different parameter on the learning process. The

difference between Liu and ridge is the form of tuning

parameter. Although ridge includes a nonlinear form of

k biasing parameter, Liu offers a linear form of its d pa-

rameter. The linear form makes Liu better and easier than

ridge in terms of calculations and speed. Therefore, Liu

estimator can be considered as an alternative to ridge in

elastic net model. In this study, we propose a new regu-

larization and variable selection method which is based on

Liu and Lasso methods. In the following section, we pre-

sent some details of Liu and the form of the proposed

method called Liu–Lasso ELM (LL-ELM).

3 The proposed algorithm: LL-ELM

Liu and ridge deal with multicollinearity by shrinking

coefficient with a tuning parameter and provide more

stable and generalizable results than classical ELM model.

Although both estimators are effective on accounting the

variables with high correlations, Liu estimator is faster and

easier than ridge in terms of selecting tuning parameters

because of having linear form of tuning parameter. The

objective function of Liu estimator can be defined as [55]

b̂Liu�ELM¼ arg min
b

Hb� Tk k2
2þ db̂ELM � b
�� ��2

2

n o
; 0\d\1;

ð4Þ

where d refers to the Liu tuning parameter. The solution of

Eq. (4) is obtained in a closed form as follows:
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b̂Liu�ELM¼ HT HþI
� ��1

HTHþdb̂ELM

� �
; 0\d\1:

Similar to elastic net method, the solution of Eq. (4) can be

obtained via an augmented data set, which is defined as

follows:

~H ¼
H

I

	 

and ~T ¼

T

db̂ELM

	 

: ð5Þ

Then, the Liu estimator in Eq. (4) can be redefined in

augmented form as

b̂Liu�ELM¼ arg min
b

~Hb� ~T
�� ��2

2

n o
:

When multicollinearity exists, the ELM estimates often

have low bias but large variance, which results in predic-

tion difficulty. Besides, when there exist a large number of

nodes, interpolation problem occurs with the ELM esti-

mates. Shrinkage estimation methods and variable selec-

tion methods are the standard techniques for improving the

ELM in these cases. RR-ELM and Liu-ELM are such

shrinkage estimation methods. Although RR-ELM and

Liu-ELM give more stable results, they do not set any

weight to zero and do not give an easily inter-

pretable model. Lasso-ELM was proposed as a competitor

to RR-ELM which shrinks some weights and sets others to

zero. Similar to RR-ELM, Liu-ELM shrinks the weights,

resulting in good prediction accuracy, but does not select

weights; in other words, it does not set some weights to

zero. To obtain more interpretable estimates, we here aim

to combine the idea of Lasso-ELM and Liu-ELM and

propose a new algorithm called Liu–Lasso ELM (LL-

ELM). By inspiring the objective functions of Enet-ELM

and Liu-ELM, the objective function of our proposed

method is as

b̂LL�ELM¼ arg min
b

Hb� Tk k2
2þ db̂ELM � b
�� ��2

2
þk bk k1

n o
:

ð6Þ

The objective function given by Eq. (6) is proposed in such

a way that the new method has length closer to the true

parameter vector than ELM and carries the properties of

Enet-ELM. Furthermore, it has the sparsity property of

Lasso in virtue of Eq.(6). The objective function given by

Eq. (6) can also be defined with augmented form as:

b̂LL�ELM¼ arg min
b

~Hb� ~T
�� ��2

2
þk bk k1

n o
: ð7Þ

where ~H and ~T are defined in Eq (5) and k is any fixed non-

negative parameter.

By defining the proposed method (LL-ELM) in Eq. (7),

the problem is reduced to a Lasso problem, so that similar

to the approach of elastic net, LARS-EN algorithm [60]

can be used to estimate the b . In our study, we adopted the

approach of Sjöstrand et al. [31] and LARS-EN algorithm

with piecewise linear regularization path proposed by

Rosset and Zhu [40]. For fixed d, LL-ELM problem is

equivalent to a Lasso problem on the augmented data set.

So LARS which is originally proposed by Efron et al. [11]

and its variants can be directly used to compute the weights

of LL-ELM.

In order to present the sparsity property of LL-ELM, a

simple experiment has been carried out on the body fat data

set which is also used in the experiment section. The

solution paths of the coefficients (i.e., weights) of LL-ELM

are given in Fig. 1 where s corresponds to the fraction of

L1-norm of coefficients sð Þ which is defined as

b̂ELM

�� ��=max b̂ELM

� �
and has a range in [0, 1]. The d

tuning parameter and the number of hidden layer nodes

have been arbitrarily selected as 0.5 and 20, respectively.

The node number is deliberately chosen to be small for a

better visuality. It is expected that the solution paths are

piecewise linear because of the property of the LARS-EN

algorithm which is explained by Zou and Hastie [60].

Figure 1 shows the points at which the variables enter into

the model. Therefore, according to Fig. 1, it can be said

that the proposed algorithm can be considered a beneficial

tool to obtain sparse models. The following algorithm can

be used for experiments:

Algorithm 1

LL-ELM.

Input: Training set xi; tið Þf g, the maximum number of the hidden

neurons Kf g, an activation function g :ð Þf g, the number of trials Lf g:
Output: The b weight matrix.

1 Generate the initial parameters wi and bi, 1� i�K, randomly.

2 Calculate the hidden layer output matrix Hf g via Eq. (3)

and obtain the ELM solution.

3 Find the optimal Liu parameters d̂
� �

via Eq. (8) or

Eq. (9), respectively.

4 Solve the equation bLL�ELM¼ arg min
b

~Hb� ~T
�� ��2

2
þk bk k1

n o

by using LARS-EN algorithm as b ¼LARS-EN ~H; ~T ; d̂
� �

5 for 1� t� size bð Þ do

6 Calculate BIC tð Þ using each possible model using Eq. (10).

7 end

8 Find the t� corresponding to the minimum BIC value among all

possible models of b vector.

9 Select the optimum weights vector as bBest ¼ b t�ð Þ.
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4 Parameter and model selection

As seen from Eq. (7) that LL-ELM depends on two tuning

parameters d and k and the objective function given by

Eq. (7) is same with that of Lasso-ELM when d is fixed.

Therefore, the method for the selection of k can be same

with that of Lasso-ELM when d is fixed. Since first two

terms in Eq. (7) are same with that of Eq. (6) which cor-

responds to the objective function of Liu-ELM, the LL-

ELM could follow with Liu-ELM for the initialization of

tuning parameter d.

It is clear that the selection of Liu tuning parameter is

effective on the performance of Liu-ELM and LL-ELM. In

the context of ELM, Yıldırım and Özkale [55] proposed the

following methods:

d̂1 ¼ 1 � r̂2
XK

i¼1

1

ki ki þ 1ð Þ

 !
=
XK

i¼1

â2
i

ki þ 1ð Þ2

 !" #
ð8Þ

and

d̂2 ¼ 1 � r̂2
X~N

i¼1

1

ki þ 1ð Þ

 !
=
X~N

i¼1

kiâ
2
i

ki þ 1ð Þ2

 !" #
; ð9Þ

where k1; k2; :::; kK correspond to the eigenvalues of the

HTH matrix. âi is the ith element of ba ¼ PTb̂ELM and PKxK

is the orthogonal matrix whose columns are the eigenvec-

tors of HTH. r̂2 is the estimate of the variance of residuals

which are the residents between actual and model output

values. Yıldırım and Özkale [55] presented d̂1 as the

minimizer of the scalar mean square error of b̂Liu�ELM and

d̂2 as the minimizer of the Cp statistic under b̂Liu�ELM

which was defined as

Cp ¼
SSRes;d

r̂2
þ 2tr Mdð Þ � ðn � 2Þ;

where Md ¼ H HTHþ I
� ��1

HTHþ dI
� �

HTH
� ��1

HT is

the quasi-projection matrix and SSRes;d is the residual sum

of squares using b̂Liu�ELM.

In Liu-ELM, d̂1 and d̂2 values given in Eq. (8) and

Eq. (9) are obtained using training data and used for

measuring testing performance. For the proposed algorithm

(LL-ELM), same d̂1 and d̂2 values with Liu-ELM can be

used for the initial parameters. For each fixed d̂1 and d̂2, the

k parameter is needed to be tuned carefully. There are

various ways like AIC, BIC and CV to determine it. All of

these methods have been widely used in the literature.

Among these methods, BIC tends to produce more parsi-

monious models (i.e., more compact). This property of BIC

may guarantee an optimal model instead of underfitted or

overfitted one. The optimal k value is determined via BIC,

which is defined as follows:

BICt¼ T�Hbtk k2
2þ log Nð Þr̂2Lt; ð10Þ

where bt is the tth model obtained with each possible

combination of d; kð Þ, N is the size of training set, r̂2 is

mean of squares of residuals and Lt is the number of pos-

itive elements in bt vector. The d; kð Þ combination pro-

viding minimum BIC value is selected for each d value,

and an overall examination among all dð Þ values is carried

out. The best d; kð Þ pair is selected for final model and used

for obtaining testing results.

5 Experimental study: real data sets

In this section, a performance comparison has been carried

out on several benchmark data sets to investigate the

effectiveness of the algorithms. All data sets have been

obtained from UCI repository [13] and standardized to

have zero mean and unit variance. For LL-ELM, the effect

of standardization is to avoid from the adverse effect of

magnitude of each variable and to get more reasonable

constraints which is also effective on the performance of

the model. Standardization has a common usage for
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Fig. 1 The coefficient estimates of LL-ELM based on the range of s

Table 1 The properties of data sets used in this study

Data set Attributes Split size

Training Testing

Body fat 14 179 73

Energy 8 540 228

Fish 6 637 271

Bank domains 8 5736 2456

Abalone 8 2925 1252
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Table 2 The results of optimal tuning parameters for each algorithm

Data set Algorithm Data d SD k s Node

Body fat ELM [24] Hold-out - - - - 100

Fivefold CV - - - - 100

Ridge-ELM [25] Hold-out - - 10�12 - 100

Fivefold CV - - 10�10 - 100

Liu-ELM [55] d1ð Þ Hold-out 0.63 0.07 - � 100

Fivefold CV 0.45 0.13 - - 100

Liu-ELM [55] d2ð Þ Hold-out 0.89 0.02 - - 100

Fivefold CV 0.83 0.04 - - 100

Lasso-ELM [30, 31] Hold-out - - - 0.71 81.25

Fivefold CV - - - 0.64 75.40

Enet-ELM [30, 32] Hold-out - - 10�2 0.91 93.30

Fivefold CV - - 10�2 0.88 90.41

LL-ELM d1ð Þ Hold-out 0.63 0.07 - 0.98 97.75

Fivefold CV 0.45 0.13 - 0.87 86.28

LL-ELM d2ð Þ Hold-out 0.89 0.02 - 0.98 98.70

Fivefold CV 0.83 0.04 - 0.98 97.76

Energy ELM [24] Hold-out - - - - 100

Fivefold CV - - - - 100

Ridge-ELM [25] Hold-out - - 10�12 - 100

Fivefold CV - - 10�10 - 100

Liu-ELM [55] d1ð Þ Hold-out 0.84 0.065 - - 100

Fivefold CV 0.82 0.064 - - 100

Liu-ELM [55] d2ð Þ Hold-out 0.99 0.007 - - 100

Fivefold CV 0.99 0.006 - - 100

Lasso-ELM [30, 31] Hold-out - - - 0.08 43.45

Fivefold CV - - - 0.073 51.85

Enet-ELM [30, 32] Hold-out - - 10�1 0.80 71.10

Fivefold CV - - 10�1 0.755 46.95

LL-ELM d1ð Þ Hold-out 0.84 0.065 - 0.998 99.60

Fivefold CV 0.82 0.064 - 0.998 99.68

LL-ELM d2ð Þ Hold-out 0.99 0.007 - 0.998 99.45

Fivefold CV 0.99 0.006 - 0.998 99.75

Fish ELM [24] Hold-out - - - - 100

Fivefold CV - - - - 100

Ridge-ELM [25] Hold-out - - 10�13 - 100

Fivefold CV - - 10�10 - 100

Liu-ELM [55] d1ð Þ Hold-out 0.27 0.26 - � 100

Fivefold CV 0.22 0.27 - - 100

Liu-ELM [55] d2ð Þ Hold-out 0.93 0.02 - - 100

Fivefold CV 0.90 0.03 - - 100

Lasso-ELM [30, 31] Hold-out - - - 0.03 16.30

Fivefold CV - - - 0.03 16.47

Enet-ELM [30, 32] Hold-out - - 0.1 0.13 16.60

Fivefold CV - - 0.12 16.96

LL-ELM d1ð Þ Hold-out 0.27 0.26 - 0.61 62.60

Fivefold CV 0.22 0.27 - 0.52 55.38

LL-ELM d2ð Þ Hold-out 0.93 0.02 - 0.99 98.45

Fivefold CV 0.90 0.03 - 0.98 98.29
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training Lasso-based models. That is why, it is deliberately

preferred not to use the data sets including mostly cate-

gorical variables for testing LL-ELM algorithm and is

aimed to compare the algorithms under same conditions

which they are firstly proposed. Also, it is assumed that the

dependent variable spans sufficient enough through the

attribute space. The properties of data set are given in

Table 1.

Both hold-out and k-fold cross-validation approaches

have been separately conducted to validate the efficiency of

the algorithms. For hold-out approach, each data set is split

into training and testing data sets with the ratios 70 and

30%, respectively. On the other side, fivefold CV is applied

for k-fold CV approach. Twenty trials have been conducted

to eliminate the randomness effect of initial parameters

assignments. The initial number of the hidden layer nodes

is fixed as 100, and sigmoid activation function is used for

all data sets and experiments.

The experiments have been carried out via R software.

In order to train LL-ELM, ELM variants based on Lasso

and elastic net algorithms, LARS-EN algorithm with

piecewise linear regularization path proposed by Rosset

and Zhu [40] has been used. All coding processes of each

algorithm have been carried out from scratch in the R

platform.

Table 2 (continued)

Data set Algorithm Data d SD k s Node

Bank Domains ELM [24]] Hold-out - - - - 100

Fivefold CV - - - - 100

Ridge-ELM [25] Hold-out - - 10�13 - 100

Fivefold CV - - 10�13 - 100

Liu-ELM [55] d1ð Þ Hold-out 0.10 0.29 - � 100

Fivefold CV 0.16 0.16 - - 100

Liu-ELM [55] d2ð Þ Hold-out 0.26 0.16 - - 100

Fivefold CV 0.27 0.14 - - 100

Lasso-ELM [30, 31] Hold-out - - - 0.94 94.30

Fivefold CV - - - 0.92 94.10

Enet-ELM [30, 32] Hold-out - - 10�3 0.99 99.05

Fivefold CV - - 10�3 0.91 92.90

LL-ELM d1ð Þ Hold-out 0.10 0.29 - 0.94 93.65

Fivefold CV 0.16 0.16 - 0.99 99.10

LL-ELM d2ð Þ Hold-out 0.26 0.16 - 0.90 89.80

Fivefold CV 0.27 0.14 - 0.98 98.6

Abalone ELM [24] Hold-out - - - - 100

Fivefold CV - - - - 100

Ridge-ELM [25] Hold-out - - 10�12 - 100

Fivefold CV - - 10�11 - 100

Liu-ELM [55] d1ð Þ Hold-out 0.15 0.19 - � 100

Fivefold CV 0.19 0.13 - - 100

Liu-ELM [55] d2ð Þ Hold-out 0.83 0.04 - - 100

Fivefold CV 0.80 0.04 - - 100

Lasso-ELM [30, 31] Hold-out - - - 0.11 37.20

Fivefold CV - - - 0.099 35.40

Enet-ELM [30, 32] Hold-out - - 10�1 0.38 44.00

Fivefold CV - - 10�1 0.223 36.20

LL-ELM d1ð Þ Hold-out 0.15 0.19 - 0.34 35.80

Fivefold CV 0.19 0.13 - 0.576 60.66

LL-ELM d2ð Þ Hold-out 0.83 0.04 - 0.98 98.10

Fivefold CV 0.80 0.04 - 0.98 98.76
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Table 3 Comparison of all algorithms in terms of training and testing RMSE

Data set Algorithm Data Training SD Testing RRð%Þ RRð%Þ SD RRð%Þ RRð%Þ
d1 d2 d1 d2

Body fat ELM [24] Hold-out 0.05924 0.00810 0.26786 8.68 2.87 0.02831 19.82 4.69

Fivefold CV 0.09121 0.00688 0.24579 14.89 6.54 0.04622 38.36 10.71

Ridge-ELM [25] Hold-out 0.05920 0.00810 0.26785 8.68 2.87 0.02828 19.82 4.69

Fivefold CV 0.09121 0.09121 0.24579 14.89 6.54 0.04622 38.36 10.71

Liu-ELM [55] d1ð Þ Hold-out 0.06821 0.00962 0.24545 0.35 �6:00 0.02318 2.05 �16:43

Fivefold CV 0.10661 0.01085 0.20758 �0:78 �10:67 0.03027 5.88 �36:34

Liu-ELM [55] d2ð Þ Hold-out 0.06018 0.00828 0.26040 6.07 0.09 0.02670 14.97 �1:08

Fivefold CV 0.09277 0.00722 0.23061 9.28 0.39 0.04181 31.86 1.29

Lasso-ELM [30, 31] Hold-out 0.07899 0.01808 0.25684 4.76 �1:30 0.02666 14.86 �1:22

Fivefold CV 0.13182 0.02931 0.23722 11.81 3.16 0.03717 23.35 �11:03

Enet-ELM [30, 32] Hold-out 0.06059 0.01480 0.25794 5.17 �0:87 0.02799 18.90 3.59

Fivefold CV 0.10313 0.01670 0.22909 8.68 �0:28 0.04016 29.06 �2:76

LL-ELM d1ð Þ Hold-out 0.06564 0.00944 0.24460 - �6:37 0.02270 - �18:88

Fivefold CV 0.11719 0.02256 0.20920 - �9:81 0.02849 - �44:86

LL-ELM d2ð Þ Hold-out 0.05092 0.00742 0.26018 5.99 - 0.02699 15.88 -

Fivefold CV 0.09404 0.00767 0.22972 8.93 - 0.04127 30.97 -

Energy ELM [24] Hold-out 0.16976 0.00991 0.21523 2.82 �3:58 0.01617 6.19 �162:36

Fivefold CV 0.17226 0.00855 0.21029 1.07 �0:56 0.01303 9.67 �27:78

Ridge-ELM [25] Hold-out 0.16976 0.00988 0.21522 2.81 �3:59 0.01613 6.18 �162:39

Fivefold CV 0.17226 0.00855 0.21029 1.07 �0:56 0.01303 9.67 �27:78

Liu-ELM [55] d1ð Þ Hold-out 0.17248 0.01095 0.20932 0.07 �6:51 0.01498 �1:24 �183:14

Fivefold CV 0.17493 0.00948 0.20796 �0:03 �1:68 0.01185 0.68 �40:51

Liu-ELM [55] d2ð Þ Hold-out 0.16977 0.00992 0.21466 2.56 �3:86 0.01598 5.06 �165:51

Fivefold CV 0.17227 0.00856 0.20993 0.91 �0:73 0.01291 8.83 �28:97

Lasso-ELM [30, 31] Hold-out 0.24887 0.02330 0.27770 24.68 19.72 0.01627 6.79 �160:69

Fivefold CV 0.26956 0.02421 0.28482 26.96 25.76 0.02270 48.15 26.65

Enet-ELM [30, 32] Hold-out 0.21968 0.00861 0.26511 21.10 15.91 0.00957 �58:54 �343:40

Fivefold CV 0.24727 0.01159 0.26817 22.43 21.15 0.01306 9.88 �27:49

LL-ELM d1ð Þ Hold-out 0.15944 0.01042 0.20917 - �6:58 0.01517 - �179:67

Fivefold CV 0.17519 0.00948 0.20803 - �1:65 0.01177 - �41:46

LL-ELM d2ð Þ Hold-out 0.16673 0.03764 0.22294 6.18 - 0.04242 64.24 -

Fivefold CV 0.17377 0.01297 0.21146 1.62 - 0.01665 29.31 -

Fish ELM [24] Hold-out 0.49160 0.00698 0.77594 13.35 2.27 0.06101 55.91 5.61

Fivefold CV 0.51388 0.00693 0.68299 7.27 1.72 0.04328 54.48 8.09

Ridge-ELM [25] Hold-out 0.49158 0.00690 0.77591 13.35 2.26 0.06100 55.90 5.60

Fivefold CV 0.51388 0.00693 0.68299 7.27 1.72 0.04328 54.48 8.09

Liu-ELM [55] d1ð Þ Hold-out 0.52827 0.02571 0.66426 �1:22 �14:17 0.02918 7.83 �97:32

Fivefold CV 0.54898 0.02421 0.62138 �1:92 �8:03 0.01786 �10:30 �122:73

Liu-ELM [55] d2ð Þ Hold-out 0.49194 0.00707 0.75992 11.53 0.21 0.05782 53.47 0.40

Fivefold CV 0.51443 0.00710 0.67003 5.48 �0:18 0.03914 49.67 �1:64

Lasso-ELM [30, 31] Hold-out 0.55793 0.01405 0.67020 �0:32 �13:15 0.00983 �173:56 �485:61

Fivefold CV 0.61914 0.02035 0.64065 1.14 �4:78 0.01593 �23:67 �149:72

Enet-ELM [30, 32] Hold-out 0.55376 0.01901 0.67272 0.06 �12:73 0.01126 �138:98 �411:59

Fivefold CV 0.61383 0.02080 0.63838 0.79 �5:15 0.01179 �67:09 �237:40

LL-ELM d1ð Þ Hold-out 0.52782 0.05457 0.67233 - �12:79 0.02690 - �114:07

Fivefold CV 0.58100 0.04826 0.63334 - �5:99 0.01970 - �101:93

LL-ELM d2ð Þ Hold-out 0.45960 0.00785 0.75835 11.34 - 0.05758 53.29 -

Fivefold CV 0.51779 0.01681 0.67126 5.65 - 0.03978 50.48 -
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In Lasso-ELM, instead of tuning k, it is suggested to use

the fraction of L1-norm of coefficients sð Þ which is defined

as b̂ELM

�� ��=max b̂ELM

� �
. Here, max b̂ELM

� �
actually cor-

responds to the ELM solution which is the L1-norm of low-

bias model solution. From the point of optimization per-

spective, there is a k value corresponding to each s value

and the solutions obtained via any form of this optimization

problem are exactly the same each other. In other words,

the b̂ solution corresponding to any k value in Lagrangian

form solves the problem which has the bound of s ¼ b̂k
�� ��.

The advantage of s over k is to have values within 0; 1½ �.
Similar to the process in LL-ELM, BIC is used to

determine optimal s value by using fixed d̂1 and d̂2

parameters as initial parameters. On the other hand, the

ridge tuning parameter k is selected from the sequence of

10�15; 10�14; :::; 101
� �

. In RR-ELM, the k value minimiz-

ing the training error is used to obtain training and testing

results. In order to get the ELM results based on elastic net,

for each fixed k value, the optimal s value minimizing BIC

is calculated and the k; sð Þ values giving the global mini-

mum among all possible combinations are used for the final

model’s performance.

In addition to the performance results of each algorithm,

the optimal parameters for both hold-out and fivefold CV

Table 3 (continued)

Data set Algorithm Data Training SD Testing RRð%Þ RRð%Þ SD RRð%Þ RRð%Þ
d1 d2 d1 d2

Bank domains Elm [24] Hold-out 0.21702 0.00401 0.21852 �0:26 �0:67 0.00511 3.82 �3:01

Fivefold CV 0.21776 0.00203 0.22200 0.03 �0:06 0.00218 2.75 16.97

Ridge-ELM [25] Hold-out 0.21702 0.00400 0.21849 �0:26 �0:67 0.00510 3.82 �3:01

Fivefold CV 0.21776 0.00203 0.22200 0.03 �0:06 0.00218 2.75 16.97

Liu-ELM [55] d1ð Þ Hold-out 0.21738 0.00413 0.21843 �0:29 �0:71 0.00493 0.25 �6:83

Fivefold CV 0.21795 0.00183 0.22195 0.00 �0:09 0.00210 �0:95 13.81

Liu-ELM [55] d2ð Þ Hold-out 0.21725 0.00406 0.21838 �0:32 �0:73 0.00495 0.71 �6:34

Fivefold CV 0.21794 0.00187 0.22193 0.00 �0:09 0.00210 �0:95 13.81

Lasso-ELM [30, 31] Hold-out 0.21624 0.00460 0.21948 0.19 �0:23 0.00551 10.75 4.42

Fivefold CV 0.21915 0.00196 0.22325 0.59 0.50 0.00227 6.61 20.26

Enet-ELM [30, 32] Hold-out 0.21576 0.00421 0.21895 �0:06 �0:47 0.00524 6.17 �0:50

Fivefold CV 0.21857 0.00174 0.22259 0.29 0.20 0.00239 11.30 24.27

LL-ELM d1ð Þ Hold-out 0.21835 0.00509 0.21907 - �0:41 0.00492 - �7:10

Fivefold CV 0.21800 0.00183 0.22194 - �0:09 0.00212 - 14.62

LL-ELM d2ð Þ Hold-out 0.21829 0.00475 0.21998 0.41 - 0.00526 6.63 -

Fivefold CV 0.21809 0.00167 0.22214 0.09 - 0.00181 �17:13 -

Abalone ELM [24] Hold-out 0.63230 0.00221 0.64882 �1:75 0.64 0.00455 �187:38 11.57

Fivefold CV 0.62897 0.00105 0.67080 1.00 0.99 0.01482 41.16 26.99

Ridge-ELM [25] Hold-out 0.63230 0.00220 0.64880 �1:75 0.64 0.00454 �187:39 11.57

Fivefold CV 0.62897 0.00105 0.67080 1.00 0.99 0.01482 41.16 26.99

Liu-ELM [55] d1ð Þ Hold-out 0.64343 0.00561 0.63915 �3:29 �0:86 0.00243 �438:88 �65:82

Fivefold CV 0.63761 0.00281 0.65599 �1:23 �1:24 0.00306 �184:97 �253:59

Liu-ELM [55] d2ð Þ Hold-out 0.63277 0.00228 0.64449 �2:44 �0:02 0.00380 �243:58 �5:72

Fivefold CV 0.62950 0.00110 0.66413 0.01 0.00 0.01100 20.73 1.64

Lasso-ELM [30, 31] Hold-out 0.65770 0.01374 0.65823 �0:30 2.06 0.01016 �28:71 60.40

Fivefold CV 0.66662 0.00911 0.67677 1.87 1.87 0.00732 �19:13 �47:81

Enet-ELM [30, 32] Hold-out 0.65028 0.01082 0.65149 �1:33 1.06 0.00845 �52:80 52.98

Fivefold CV 0.65922 0.00567 0.67115 1.05 1.05 0.00594 �46:80 �82:15

LL-ELM d1ð Þ Hold-out 0.66915 0.02135 0.66020 - 2.36 0.01307 - 69.23

Fivefold CV 0.65155 0.01193 0.66409 - �0:01 0.00872 - �24:08

LL-ELM d2ð Þ Hold-out 0.62302 0.00281 0.64465 �2:41 - 0.00402 �224:98 -

Fivefold CV 0.62985 0.00107 0.66413 0.01 - 0.01082 19.41 -
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Table 4 Norm comparison of Liu-ELM and LL-ELM algorithms

Data set Algorithm Data Norm SD

Body fat ELM [24] Hold-out 3.9955 0.4202

Fivefold CV 4.6458 0.4148

Ridge-ELM [25] Hold-out 3.9954 0.4202

Fivefold CV 4.6458 0.4148

Liu-ELM [55] d1ð Þ Hold-out 2.9124 0.3426

Fivefold CV 2.7591 0.5416

Liu-ELM [55] d2ð Þ Hold-out 3.6674 0.3904

Fivefold CV 4.0380 0.4478

Lasso-ELM [30, 31] Hold-out 3.1337 0.6508

Fivefold CV 3.3164 0.8600

Enet-ELM [30, 32] Hold-out 3.2759 0.4468

Fivefold CV 3.7298 0.6212

LL-ELM d1ð Þ Hold-out 2.8741 0.3457

Fivefold CV 2.5880 0.6461

LL-ELM d2ð Þ Hold-out 3.6368 0.4137

Fivefold CV 3.9905 0.4567

Energy ELM [24] Hold-out 48.6403 10.3119

Fivefold CV 44.0252 11.1549

Ridge-ELM [25] Hold-out 48.6116 10.2888

Fivefold CV 44.0252 11.1549

Liu-ELM [55] d1ð Þ Hold-out 41.4017 11.8085

Fivefold CV 37.0551 11.8767

Liu-ELM [55] d2ð Þ Hold-out 48.1587 10.4254

Fivefold CV 43.5191 11.2823

Lasso-ELM [30, 31] Hold-out 4.0826 2.2249

Fivefold CV 3.7841 1.8710

Enet-ELM [30, 32] Hold-out 4.1892 1.4575

Fivefold CV 4.9504 1.3993

LL-ELM d1ð Þ Hold-out 41.3467 11.8364

Fivefold CV 37.0280 11.8784

LL-ELM d2ð Þ Hold-out 48.1413 10.4214

Fivefold CV 43.4872 11.2717

Fish ELM [24] Hold-out 47.7400 9.5774

Fivefold CV 40.6623 7.1378

Ridge-ELM [25] Hold-out 47.7307 9.5728

Fivefold CV 40.6623 7.1378

Liu-ELM [55] d1ð Þ Hold-out 17.3667 13.5730

Fivefold CV 14.0094 9.1434

Liu-ELM [55] d2ð Þ Hold-out 44.6700 9.9829

Fivefold CV 37.1280 7.6645

Lasso-ELM [30, 31] Hold-out 2.5862 1.2739

Fivefold CV 2.5090 1.4640

Enet-ELM [30, 32] Hold-out 2.7503 1.4320

Fivefold CV 2.5880 1.3110

LL-ELM d1ð Þ Hold-out 15.3633 14.9289

Fivefold CV 11.3677 10.6316

LL-ELM d2ð Þ Hold-out 44.3644 10.1091

Fivefold CV 36.7401 7.9080
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approaches are presented in Table 2. In Table 2, the third

and fourth columns correspond to the average d values and

their standard deviations which are calculated based on all

trials. The k and s columns refer to the best parameters

corresponding to the optimal k; sð Þ or d; sð Þ combination

giving the overall minimum value of BIC. In the last col-

umn, the mean node number throughout all trials is

reported.

When the sparsity results are examined, Lasso-ELM and

Enet-ELM generally give more parsimonious models than

LL-ELM. For bank domains and abalone data, LL-ELM

based on d̂2 provides more sparse models. Table 3 shows

the training and testing results of all algorithms based on

data sets given in Table 1. The training and testing per-

formance with their standard deviations is calculated by

taking the averages of 20 trials. Based on the results for

hold-out approaches in Table 3, the following interpreta-

tions can be said:

LL-ELM for at least one Liu tuning parameter overper-

forms to all algorithms in terms of training performance

except bank domains data set.

According to the testing RMSE values, the proposed

algorithm with d̂1 parameter is more generalizable than

other algorithms for body fat and energy data sets.

Similarly, LL-ELM is seen as stable in terms of standard

deviation of testing performance. It provides best results

Table 4 (continued)

Data set Algorithm Data Norm SD

Bank domains ELM [24] Hold-out 3.025553 0.2816

Fivefold CV 3.081977 0.0517

Ridge-ELM [25] Hold-out 3.025552 0.2816

Fivefold CV 3.081977 0.0517

Liu-ELM [55] d1ð Þ Hold-out 2.60761 0.2594

Fivefold CV 2.779690 0.2781

Liu-ELM [55] d2ð Þ Hold-out 2.67404 0.2454

Fivefold CV 2.775343 0.2324

Lasso-ELM [30, 31] Hold-out 2.886881 0.3804

Fivefold CV 2.894868 0.1547

Enet-ELM [30, 32] Hold-out 3.002505 0.301

Fivefold CV 2.898261 0.1497

LL-ELM d1ð Þ Hold-out 2.521507 0.347

Fivefold CV 2.768495 0.2751

LL-ELM d2ð Þ Hold-out 2.513822 0.406

Fivefold CV 2.750076 0.2579

Abalone Elm [24] Hold-out 36.4415 4.9751

Fivefold CV 34.0607 3.9836

Ridge-ELM [25] Hold-out 36.4395 4.9744

Fivefold CV 34.0607 3.9836

Liu-ELM [55] d1ð Þ Hold-out 10.1211 6.0219

Fivefold CV 10.6560 3.7127

Liu-ELM [55] d2ð Þ Hold-out 30.6996 5.6065

Fivefold CV 28.0417 4.5573

Lasso-ELM [30, 31] Hold-out 6.1214 2.1496

Fivefold CV 5.3479 1.2502

Enet-ELM [30, 32] Hold-out 6.7838 2.2010

Fivefold CV 5.8900 1.0210

LL-ELM d1ð Þ Hold-out 6.3967 6.8261

Fivefold CV 8.3154 4.0896

LL-ELM d2ð Þ Hold-out 30.4090 5.8022

Fivefold CV 27.6888 4.7145
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for body fat and bank domains data sets. Liu-ELM is

better than LL-ELM in terms of testing performance for

fish, bank domains and abalone data sets. Additionally,

Liu-ELM and LL-ELM are compared based on 100 trials

with the random assignments of Liu tuning parameters

within range 0; 1½ �, and the results are given in Fig. 1. In

Fig. 1, it is seen that there is at least one Liu tuning

parameter where LL-ELM overperforms Liu-ELM for

all data sets except Bank Domains.

On the other side, fivefold CV approaches contribute some

additional insights about the performances of the proposed

algorithms. These insights can be listed as follows:

– Considering LL-ELM and Liu-ELM in all data sets,

there is one d value which gives better fivefold CV

results in terms of either RMSE or SD than hold-out

results.

– In all data sets, fivefold CV results for LL-ELM

according to d1 give higher reduction rate in testing

RMSE values than Lasso-ELM and Enet-ELM when

compared to hold-out results. Additionally, this is also

true for the SD criterion with one exception of Lasso-

ELM results for Bank Domains data set.

– In all data sets, according to SD criterion, LL-ELM for

d2 gives better reduction rate values than ELM and RR-

ELM in fivefold CV criterion than hold-out criterion.

In order to present an insight into the regularization

level of each algorithm, the norm values of coefficients

obtained via Liu-ELM and LL-ELM are calculated for

these data sets and are given in Table 4. Although Liu-

ELM has lower testing RMSE value, the mean norm value

for Liu-ELM is higher than that for LL-ELM for all data

sets for both hold-out and fivefold CV approaches. This

means that the proposed algorithm shrinks more severe

than Liu-ELM.

6 Discussion and conclusions

In this paper, we proposed a novel regularization and

variable selection algorithm to improve the conventional

extreme learning machine and its variants. The proposed

algorithm combines the benefits of Liu and Lasso regres-

sion methods to deal with the drawbacks of ELM like the

instability, poor generalizability and under or overfitting

problems. The experimental studies based on both hold-out

and k-fold cross-validation approaches show that LL-ELM

generally improves the training and testing performance of

ELM and overperforms the well-known competitors. It is

seen that LL-ELM has a notable shrinkage property com-

pared with other algorithms, particularly Liu-ELM.

Although LL-ELM does not carry out a hard variable

selection (i.e., node selection) process like Lasso or elastic

net, the level of shrinkage with an amount of sparsity is

better to give good generalization performance. The norm

of estimated coefficients is lower than other algorithms.

This means that LL-ELM may guarantee lower norm

estimated which can provide more stable and accurate

results in terms of generalization performance. It should be

noted that the level of LL-ELM’s sparsity property can be

improved by considering alternative ways of parameter

selection methods. Besides, the proposed algorithm is a

tool for both regressional and classification tasks in data-

oriented studies.

The limitation LL-ELM is that it cannot be applied to

high-dimensional data. Therefore, our next study will focus

on solving this limitation.

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of

interest.

References

1. Barea R, Boquete L, Ortega S, López E, Rodrı́guez-Ascariz J-M

(2012) EOG-based eye movements codification for human com-

puter interaction. Expert Syst Appl 39:2677–2683. https://doi.org/

10.1016/j.eswa.2011.08.123

2. Bazi Y, Alajlan N, Melgani F, AlHichri H, Malek S, Yager R-R

(2014) Differential evolution extreme learning machine for the

classification of hyperspectral images. IEEE Geosci Remote Sens

Lett 11:1066–1070. https://doi.org/10.1109/LGRS.2013.2286078

3. Butcher JB, Verstraeten D, Schrauwen B, Day C-R, Haycock

P-W (2013) Reservoir computing and extreme learning machines

for non-linear time-series data analysis. Neural Netw 38:76–89.

https://doi.org/10.1016/j.neunet.2012.11.011

4. Cao F, Liu B, Sun P-D (2013) Image classification based on

effective extreme learning machine. Neurocomputing 102:90–97.

https://doi.org/10.1016/j.neucom.2012.02.042

5. Cao L, Huang W, Sun F (2016) Building feature space of extreme

learning machine with sparse denoising stacked-autoencoder.

Neurocomputing 174:60–71. https://doi.org/10.1016/j.neucom.

2015.02.096

6. Chen FL, Ou TY (2011) Sales forecasting system based on Gray

extreme learning machine with Taguchi method in retail industry.

Expert Syst Appl 38:1336–1345. https://doi.org/10.1016/j.eswa.

2010.07.014

7. Chen W-R, Bin J, Lu H-M, Zhang Z-M, Liang Y-Z (2016)

Calibration transfer via an extreme learning machine auto-en-

coder. Analyst 141:1973–1980. https://doi.org/10.1039/

C5AN02243F

8. Chen Y-Y, Wang Z-B, Wang Z-B (2017) Novel variable selec-

tion method based on uninformative variable elimination and

ridge extreme learning machine: CO gas concentration retrieval

trial. Guang pu xue yu guang pu fen xi = Guang pu 37(1)

299–305. https://doi.org/10.3964/j.issn.1000-0593(2017)01-

0299-07

10482 Neural Computing and Applications (2021) 33:10469–10484

123

https://doi.org/10.1016/j.eswa.2011.08.123
https://doi.org/10.1016/j.eswa.2011.08.123
https://doi.org/10.1109/LGRS.2013.2286078
https://doi.org/10.1016/j.neunet.2012.11.011
https://doi.org/10.1016/j.neucom.2012.02.042
https://doi.org/10.1016/j.neucom.2015.02.096
https://doi.org/10.1016/j.neucom.2015.02.096
https://doi.org/10.1016/j.eswa.2010.07.014
https://doi.org/10.1016/j.eswa.2010.07.014
https://doi.org/10.1039/C5AN02243F
https://doi.org/10.1039/C5AN02243F
https://doi.org/10.3964/j.issn.1000-0593(2017)01-0299-07
https://doi.org/10.3964/j.issn.1000-0593(2017)01-0299-07


9. Choi K, Toh K-A, Byun H (2012) Incremental face recognition

for large-scale social network services. Pattern Recognition

45:2868–2883. https://doi.org/10.1016/j.patcog.2012.02.002

10. Creech G, Jiang F (2012) The application of extreme learning

machines to the network intrusion detection problem. Kos,

Greece, pp 1506–1511

11. Deng C, Huang G, Xu J, Tang J (2015) Extreme learning

machines: new trends and applications. Sci China Inf Sci

58:1–16. https://doi.org/10.1007/s11432-014-5269-3

12. Deng W, Zheng Q, Chen L (2009) Regularized Extreme Learning

Machine. 2009 IEEE Symposium on Computational Intelligence

and Data Mining. IEEE, Nashville, TN, USA, pp 389–395

13. Dua D, Graff C (2020) UCI Machine Learning Repository. Irvine,

CA: University of California, School, of Information and Com-

puter Science.http://archive.ics.uci.edu/ml

14. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle

regression. Anna Stat 32:407–451. https://doi.org/10.1214/

009053604000000067

15. Fan Q, Niu L, Kang Q (2020) Regression and Multiclass Clas-

sification Using Sparse Extreme Learning Machine via Smooth-

ing Group L1/2 Regularizer. In: 2020 IEEE Access, pp 191482-

191494. https://doi.org/10.1109/ACCESS.2020.3031647

16. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths

for generalized linear models via coordinate descent. J Stat Soft.

https://doi.org/10.18637/jss.v033.i01

17. Haut JM, Liu Y, Paoletti ME, Xu X, Plaza J, Plaza A (2018)

Evaluation of Different Regularization Methods for the Extreme

Learning Machine Applied to Hyperspectral Images. IGARSS

2018–2018 IEEE International Geoscience and Remote Sensing

Symposium. IEEE, Valencia, pp 3603–3606

18. Hoerl AE, Kennard RW (1970) Ridge regression: applications to

nonorthogonal problems. Technometrics 12:69–82. https://doi.

org/10.1080/00401706.1970.10488635

19. Huang G, Huang G-B, Song S, You K (2015) Trends in extreme

learning machines: a review. Neural Netw 61:32–48. https://doi.

org/10.1016/j.neunet.2014.10.001

20. Huang G, Song S, Gupta JND, Wu C (2014) Semi-supervised and

unsupervised extreme learning machines. IEEE Trans Cybern

44:2405–2417. https://doi.org/10.1109/TCYB.2014.2307349

21. Huang G-B, Wang DH, Lan Y (2011) Extreme learning machi-

nes: a survey. Int J Mach Learn Cyber 2:107–122. https://doi.org/

10.1007/s13042-011-0019-y

22. Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning

machine for regression and multiclass classification. IEEE Trans

Syst, Man, Cybern B 42:513–529. https://doi.org/10.1109/

TSMCB.2011.2168604

23. Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning

machine: a new learning scheme of feedforward neural networks.

In: 2004 IEEE International Joint Conference on Neural Net-

works (IEEE Cat. No.04CH37541). IEEE, Budapest, Hungary,

pp 985–990

24. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning

machine: theory and applications. Neurocomputing 70:489–501.

https://doi.org/10.1016/j.neucom.2005.12.126

25. Li G, Niu P (2013) An enhanced extreme learning machine based

on ridge regression for regression. Neural Comput Appl

22:803–810. https://doi.org/10.1007/s00521-011-0771-7

26. Li R, Wang X, Lei L, Song Y (2019) L21-Norm Based Loss

Function and Regularization Extreme Learning Machine. In:

2019 IEEE International Joint Conference on Neural Networks.

IEEE Access, pp 6575-6586

27. Liu K (1993) A new class of blased estimate in linear regression.

Commun Stat - Theor Methods 22:393–402. https://doi.org/10.

1080/03610929308831027

28. Luo X, Chang X, Ban X (2016) Regression and classification

using extreme learning machine based on L1-norm and L2-norm.

Neurocomputing 174:179–186. https://doi.org/10.1016/j.neucom.

2015.03.112

29. Luo X, Jiang C, Wang W, Xu Y, Wang J-H, Zhao W (2019) User

behavior prediction in social networks using weighted extreme

learning machine with distribution optimization. Future Gener

Comput Syst 93:1023–1035. https://doi.org/10.1016/j.future.

2018.04.085

30. Martı́nez-Martı́nez J-M, Escandell-Montero P, Soria-Olivas E,

Martı́n-Guerrero J-D, Magdalena-Benedito R, Gómez-Sanchis J
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