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Abstract
This paper studies the tracking control of the SbW system with unknown nonlinear friction torque and the unmeasured

angular velocity. An observer-based adaptive interval type-2 fuzzy logic system controller is proposed to eliminate the

adverse influence of the friction torque on the SbW system. Firstly, the angular velocity of the front wheels is estimated via

the observer, such that the system sensitivity to measurement noise, the hardware cost, and the structural complexity are

reduced. Then, an interval type-2 fuzzy logic system (IT2 FLS) is used to model the friction torque, in which the model and

parameters are not effectively identified. IT2 FLS has a more exceptional ability to deal with uncertainties than the

traditional type-1 fuzzy logic system (T1 FLS), so the friction modeling based on IT2 FLS has more satisfactory effect in

practical application. Finally, an adaptive interval type-2 fuzzy logic system controller is proposed to achieve excellent

tracking performance. The tracking error can be guaranteed to converge asymptotically to zero by the Lyapunov stability

theory. The numerical simulations and hardware-in-loop (HIL) experiments verify the effectiveness and superiority of the

proposed friction modeling method and control strategy.
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1 Introduction

As one of the most advanced automobile technologies, the

autonomous vehicle technique has attracted significant

attention from the industrial communities over the past two

decades. The Steer-by-wire (SbW) technique is an essential

component in the development of self-driving. As a new

generation of the steering system, the SbW system pos-

sesses the following distinct characteristics compared with

the traditional steering system: (1) the mechanical con-

nection between the steering wheel and the front wheels is

removed; (2) a steering motor is used to generate torque for

the front wheels. The excellent steering performance can

guarantee the front wheels of the SbW system accurately

track the desired trajectory. As a common and complicated

nonlinear physical process, friction phenomena seriously

affects the steering performance of the SbW system since it

causes tracking error, limit cycle, and abnormal vibration

[1]. Therefore, to achieve high steering performance, the

influence of nonlinear friction torque on the SbW system

should deserve considerable attention [2, 3]. For the

steering control research of the SbW system, the technical
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difficulties mainly include friction modeling and steering

angular velocity measurement of the front wheels. Friction

modeling methods include mechanism modeling method

and intelligent modeling method.

The unavoidable friction phenomena between the tire

and the road occurring in the SbW system generally cause

the steering performance to deteriorate due to non-negli-

gible tracking errors, limit cycles, abnormal vibration, and

undesired stick-slip motion. Control strategies that attempt

to compensate for the effects of friction inherently require a

suitable friction model to predict and to compensate for the

friction. Therefore, friction modeling researches have

attracted wide attention from researchers. Generally, the

design procedure of the friction compensation control

strategy can be divided into two categories: model-based

method and mode-free method. The model-based method is

to use the friction model for an approximate cancellation of

disturbances mainly defined by friction. The compensation

performance is highly dependent on the accuracy of the

friction model. To accurately describe the dynamic

behavior of friction, various friction models have been

proposed by numerous researchers. The simple classical,

static friction models are described by static mappings

between velocity and friction forces, such as Coulomb

friction, viscous friction, Stribeck friction. However, the

above models explain neither hysteretic behavior when

studying friction for nonstationary velocities nor variations

in the break-away force with the experimental condition

nor small displacements at the contact interface during

stiction. Therefore, several dynamic friction models have

been proposed over the past decades; like the Dahl model

[4], the LuGre model [5], the Leuven model [6], and the

generalized Maxwell-slip model [7].

Based on the above friction models, many friction

compensation schemes are designed [8–15]. In [8], a cas-

cade control strategy was designed based on the static

friction model and the GMS model for a high-speed milling

machine. In [9], the model switching feedback compensa-

tion control considering the rolling friction characteristics

was presented for table drive systems. In [10], a friction

compensation method based on the LuGre friction model

was proposed to reduce the friction influence in the DC

motor. An adaptive backstepping controller based on a

continuously differentiable LuGre model was proposed for

hydraulic actuators [11]. In [12], a friction compensation

method was designed for the mechanical servo system

based on the LuGre friction model, in which the parameters

were identified by the evolutionary algorithm. Although

these controllers in the approaches mentioned above seem

to be attractive, the exact mathematical model of the fric-

tion is necessarily required. The modeling of friction torque

in the SbW system is still a challenge as the strong non-

linearity of the friction and the complicated road

conditions. Although many kinds of friction models are

available, there is no unified framework. It is difficult to

determine which type of friction model is more suitable for

a specific task in practice. The simplified friction models

can be easily implemented for control compensation, but it

is hard to guarantee the tracking accuracy of the control

systems. While more sophisticated friction models can

result in better control performances, they are more chal-

lenging to implement due to the optimization of model

parameters.

To solve the difficult problem of the above mechanism

modeling methods, the mode-free technique based on

intelligent modeling technologies such as fuzzy logic sys-

tem has attracted considerable interest in friction com-

pensation control. Fuzzy logic system (FLS) can uniformly

approximate nonlinear continuous functions to arbitrary

accuracy and has been found to be particularly useful to

model unknown functions in nonlinear systems [16–20].

Reference [21] proposed a proportional derivative con-

troller with a friction compensation term constituted by a

FLS to ensure the control performance of the 1-DOF robot

system. In [22], a FLS was used to approximate the model

of permanent magnet synchronous machines with nonlinear

friction, and then an adaptive control strategy was intro-

duced to obtain high control accuracy. In [23], the authors

employed a FLS to approximate the friction in the net-

worked teleoperation system, then a finite-time synchro-

nization control method was designed. In [24], a FLS was

used to model the uncertain friction force in multi-axis

servo systems. It is worth mentioning that the FLS adopted

in the above investigations is the type-1 fuzzy logic system

(T1 FLS). The fuzzy sets in T1 FLS are type-1 fuzzy sets

(T1 FSs), which have accurate membership functions. The

accurate membership functions have limitations in dealing

with the unknown friction with strong uncertainty [25, 26].

To address this problem, an adaptive controller based on

interval type-2 fuzzy logic system (IT2 FLS) is proposed in

this study.

Type-2 fuzzy logic system (T2 FLS), which is a FLS

that uses at least one Type-2 fuzzy set (T2 FS), has become

a hot research issue. T2 FS is an extension of the concept of

the traditional type-1 fuzzy set (T1 FS). A unique feature of

T2 FS is a footprint of uncertainty (FOU) that is used to

characterize additional uncertainties beyond what T1 FS

can capture [26, 27]. The membership function of T2 FS is

three dimensional and includes a FOU with the new third

dimension of T2 FS. A FOU provides additional degrees of

freedom that make it possible to provide the capability to

model high levels of uncertainties. With these advantages,

T2 FLSs have been increasingly applied in engineering

fields, such as aircraft maintenance planning, DC–DC

converter, hypersonic vehicle, unmanned aerial vehicles,

cable-driven parallel system, financial data classification,
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wheeled mobile robots , diagnosis of depression, and

transport system [25, 28–38]. Type-2 fuzzy logic systems

(T2 FLSs) include generalized type-2 fuzzy logic systems

(GT2 FLSs) and interval type-2 fuzzy logic system (IT2

FLSs). Considering the simplicity of calculation, this paper

adopts an IT2 FLS to model the friction torque.

The steering angular velocity of the front wheels is a

necessary factor in the design of the SbW system con-

troller. However, due to the complex mechanical structure

and working conditions of the SbW system, the measuring

the steering angular velocity is still a difficult problem.

Generally, the angular velocity of the front wheels in the

SbW system can be obtained in two ways: the angular

velocity sensor and numerical methods. First, the angular

velocity sensor (gyroscope sensor) can directly measure the

angular velocity signal. However, gyroscopes have many

disadvantages, such as high price, low signal accuracy due

to interference from road conditions, prone to saturation

during high rate rotations, and the high failure rate [39].

Besides, the angular velocity sensor increases the instal-

lation cost of the system and the complexity of electronic

circuits. Considering the hardware cost, the instability of

the sensor measurement accuracy, and the sophisticated

electronic circuits, the installation of the angular velocity

sensor is not the optimal scheme to obtain the steering

angular velocity of front wheels. Second, numerical

methods, including differentiator and observer, are usually

used to obtain the angular velocity of the front wheels. The

differentiators/observers designed in [40–43] for mechan-

ical systems require the system to have a bounded-input-

bounded-state property, and the angular velocity satisfies

the Lipschitz condition. To solve this problem, we

designed an observer to estimate the angular velocity of the

front wheels in this paper.

To solve the problems of difficult measurement of the

angular velocity and control accuracy of the SbW system,

this paper proposes an observer-based adaptive interval

type-2 fuzzy logic system controller for the steering control

of the SbW system. The proposed control strategy does not

require an accurate model of the friction torque and the

angular velocity sensor. The main works and contributions

of this article are:

1. An adaptive interval type-2 fuzzy logic system con-

troller is proposed for the SbW system with the

unknown nonlinear friction torque. Compared with the

existing model-based friction compensation control

methods [8–15], the proposed control strategy does not

require an accurate model of the friction torque.

Because the friction torque has strong nonlinearity

and is easily affected by complex road conditions and

many unpredictable factors (lubrication, humidity,

contact surface temperature, etc.), it is difficult to

obtain an accurate friction model. This paper proposed

a mode-free controller based on interval type-2 fuzzy

logic system for the SbW system with unknown

friction torque. The adaptive updating laws constructed

by estimated error and tracking error can adjust the

consequent parameters of IT2 FLS. Finally, the track-

ing error can be guaranteed to converge asymptotically

to zero by the Lyapunov stability theory.

2. Compared with the existing friction modeling methods

based on T1 FLS [21–24], the proposed friction

modeling method based on IT2 FLS has a more

satisfactory effect. The fuzzy sets in T1 FLS are type-1

fuzzy sets, which have accurate membership functions.

The accurate membership functions have limitations in

dealing with the unknown friction with strong uncer-

tainty. The advantage of the proposed model scheme is

that the T2 FS of rule antecedents themselves has the

adaptability and novelty. The membership functions of

a T2 FS are three dimensional, and it is possible to

provide the capability to model high levels of uncer-

tainties. In addition, the consequents parameters of

fuzzy rules are derived by the Lyapunov theorem such

that adaptive updating laws can effectively adjust the

consequent parameters of IT2 FLS. Therefore, this

paper uses interval type-2 fuzzy logic system to model

the friction torque.

3. Compared with the existing studies for the SbW system

[2, 3, 41, 44], the proposed observer-based adaptive

interval type-2 fuzzy logic system controller has the

following two advantages: � Different from the

existing studies for the SbW system [2, 3, 44], the

proposed control strategy does not require an accurate

friction torque of the SbW system. ` Different from

the existing studies for the SbW system [41], the

introduced observer technique no longer requires the

assumptions that the bounded-input-bounded-state

property of the system and the angular velocity satisfies

the Lipschitz condition.

4. The numerical simulations and hardware-in-loop (H-

IL) experiments verify the effectiveness and superior-

ity of the designed friction compensation control.

The rest of the paper is organized as follows: In Sect. 2, the

SbW system and problem formulation are briefly descri-

bed. In Sect. 3, a detailed introduction of type-2 fuzzy logic

system and friction modeling is given. In Sect. 4, the

suggested controller and observer are proposed. Sections 5

and 6 provide the simulation results and experimental

results of the proposed controller. Finally, the conclusions

are drawn in Sect. 7.

Notations: Throughout this paper, Rn represents the n-

dimensional Euclidean space. Rm�n is the set of m� n

matrices. For a matrix A 2 Rn�m, the transpose of A is
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defined as AT 2 Rm�n. j � j refers to the absolute value, k � k
denotes the standard Euclidean vector norm, and signð�Þ is
the standard signum function.

2 Dynamics model and problem formulation

The structure of the SbW system is shown in Fig. 1. Dif-

ferent from the traditional steering system, the mechanical

link connecting the steering wheel and the front wheels is

replaced by a steering motor in the SbW system. The

steering motor can drive the front wheels to track the ref-

erence signal accurately. The SbW system is mainly

composed of the steering motor, driver, reducer, gear box,

etc.

2.1 Dynamics model of SbW system

According to the research [45], the dynamic equation of the

steering motor assembly module is:

Jsm€dsm þ Bsm
_dsm þ s12 ¼ ssm ð1Þ

The dynamic equation of the front wheels steering model

can be modeled as:

Jf €df þ sfric þ se ¼ sf ð2Þ

where sfric is the friction torque of the front wheels, which

is discussed in the next subsection. The self-aligning torque

se is:

se ¼ g tanhðdf Þ ð3Þ

where g is a positive coefficient that reflects the road

conditions. Moreover, the transmission ratio between the

steering motor assembly and the front wheels is

€dsm
€df

¼
_dsm
_df

¼ dsm
df

¼ sf
s12

¼ k ð4Þ

which together with Eqs. (1)–(2) gets

Je€df þ Be
_df þ sfric þ se ¼ kssm ð5Þ

where Je ¼ Jf þ k2Jsm, Be ¼ k2Bsm.

2.2 Friction model

To obtain high steering accuracy, the influence of the

friction torque on the SbW system should be fully con-

sidered by establishing an accurate friction model. The

LuGre model is modeled based on the average deformation

of the bristles. The microscopic contact surface can be seen

as a large number of elastic bristles with random behavior,

and the stiffness of the material on the lower surface is

bigger than that on the upper surface (see Fig. 2). The

LuGre model with a mathematical expression of first-order

differential equation can describe the friction phenomena

such as Coulomb friction, viscous friction, Stribeck fric-

tion, varying static friction, friction lag, and presliding

displacement. The formulation of the LuGre model is

sfric ¼ r0zþ r1 _zþ r2 _df

_z ¼ _df � j _df j
z

gð _df Þ

r0gð _df Þ ¼ Fc þ ðFs � FcÞe�j
_df
vs
j2

8
>>>>><

>>>>>:

ð6Þ

where z is the average deflection of the bristles, Fc is the

normalized Coulomb friction torque, Fs is the normalized

static friction torque, vs is called the Stribeck velocity, r0,
r1, and r2 are the hysteresis friction torque parameters that

can be physically explained as the stiffness of bristles,

damping coefficient, and viscous coefficient, gð _df Þ is used
to describe the Stribeck effect.

2.3 Control objective

It is noteworthy that the LuGre friction model can provide

an accurate description of the friction phenomenon,

although it increases the nonlinearity of the system.

Because of the strong nonlinearity of the friction, the

complex road conditions, and many unpredictable factors,

the unknown parameters of the friction model are difficult

to be identified for the practical applications. It is of

Fig. 1 Dynamics diagram of SbW system Fig. 2 LuGre friction model
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practical significance to use intelligent control method to

address the control problem of the SbW system with

unknown friction model. The main purpose of this paper is

to propose an adaptive interval type-2 fuzzy logic system

control for the SbW system, such that the front wheels’

steering angle can accurately track its reference signal.

3 Type-2 fuzzy logic system and friction
modeling

A detailed introduction of type-2 fuzzy logic system is

presented in this section, which includes the basic theory of

type-2 fuzzy set and the calculation process of type-2 fuzzy

logic system. Then, the friction modeling method based on

type-2 fuzzy logic system is designed for the SbW system.

3.1 Type-2 fuzzy set

The membership function of T1 FS is a certain value,

which is limited in dealing with the uncertainty. T2 FS

fuzzifies the membership function of T1 FS again to

improve the fuzziness of fuzzy set. The membership

function of T2 FS is three dimensional (see Fig. 3), thus T2

FS has stronger ability to deal with uncertainty and has

been widely used in various fields [46–49].

Definition 1 A T2 FS, denoted ~A, is characterized by a

type-2 membership function l ~Aðx; uÞ, i.e.,
~A ¼ fððx; uÞ; l ~Aðx; uÞÞjx 2 X; u 2 Jx � ½0; 1�g ð7Þ

where x 2 X is the primary variable, X � R is the domain

of x, u 2 Jx � ½0; 1� is the secondary variable, Jx is called

the primary membership of x, l ~Aðx; uÞ is a T1 FS known as

the secondary membership. ~A can also be expressed as

~A ¼
Z

x2X

Z

u2Jx
l ~Aðx; uÞ=ðx; uÞ Jx � ½0; 1� ð8Þ

where
R R

denotes union over all admissible x and u.

The 2-D support of l ~Aðx; uÞ is called the FOU of ~A, i.e.,

FOUð ~AÞ ¼
[

x2X
Jx ¼ fðx; uÞ 2 X � ½0; 1�jl ~Aðx; uÞ[ 0g:

ð9Þ

The upper membership function (UMF) and lower mem-

bership function (LMF) of ~A are two type-1 fuzzy sets that

bound the FOU, which are denoted as l ~Aðx; uÞ and l ~A
ðx; uÞ,

respectively, where

UMFð ~AÞ ¼ l ~Aðx; uÞ ¼ supfuju 2 ½0; 1�; l ~Aðx; uÞ[ 0g

LMFð ~AÞ ¼ l ~A
ðx; uÞ ¼ inffuju 2 ½0; 1�; l ~Aðx; uÞ[ 0g

8
<

:

ð10Þ

Definition 2 When all l ~Aðx; uÞ ¼ 1, then ~A is an IT2 FS,

i.e.,

~A ¼
Z

x2X

Z

u2Jx
1=ðx; uÞ Jx � ½0; 1� ð11Þ

IT2 FS not only provides the capability to model high

levels of uncertainties but also has low computational load,

such that it is widely used in engineering practice.

3.2 Type-2 fuzzy logic system

T2 FLSs are usually divided into IT2 FLSs and GT2 FLSs

in the literature works. IT2 FLSs, which are the fuzzy logic

systems that use at least one IT2 FS, greatly simplified the

computational complexity compared with GT2 FLSs, so

IT2 FLSs are widely used in engineering practice. IT2

FLSs are applied in this paper for the friction modeling of

the SbW system. Due to the simplicity of the calculation,

this article focuses on zero-order interval type-2 Takagi-

Sugeno-Kang fuzzy logic system (IT2-TSK-FLS), where

antecedents are interval type-2 fuzzy sets (IT2 FSs) and

consequents are crisp numbers, the j-th rule is the following

form:

RðjÞ : IF x1 is ~A
j

1; � � � ; xn is ~A
j

n;

THEN y is Y j j ¼ 1; 2; . . .;M:
ð12Þ

where ~A
j

1(i ¼ 1; . . .; n) are IT2 FSs, b j are crisp numbers,

M is the number of the rules. The detailed calculation

process (see Fig. 4) of each module is as follows:

(1) We employ singleton fuzzifier to simplify compu-

tation. The result of the input and antecedent operations in
Fig. 3 Various elements of type-2 fuzzy set ~A
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a rule constitute the firing set. For an input vector

x ¼ ðx1; . . .; xnÞ, the firing set of each rule is computed as

follows:

~A
j
:

F jðxÞ ¼ ½f jðxÞ; f jðxÞ�
f jðxÞ ¼ l ~A

j

1

ðx1ÞH � � �Hl ~A
j

n

ðxnÞ

f
jðxÞ ¼ l ~A

j

1

ðx1ÞH � � �Hl ~A
j

n
ðxnÞ

8
>>><

>>>:

ð13Þ

where j ¼ 1; 2; . . .;M, H denotes a t-norm, either the

minimum or product (we use the product t-norm).

(2) Compute the following interval weighted average:

YTSKðxÞ ¼1=½ylðxÞ; yrðxÞ�

¼
Z

f 12½f 1;f 1�
� � �

Z

fM2½fM;fM�
1=

PM
j¼1 f

jb j

PM
j¼1 f

j

ð14Þ

The interval values ylðxÞ and yrðxÞ can be calculated by the

KM algorithm

ylðxÞ ¼
PL

i¼1 bif i þ
PM

i¼Lþ1 bif i
PL

i¼1 f i þ
PM

i¼Lþ1 f i

yrðxÞ ¼
PR

i¼1 bif i þ
PM

i¼Rþ1 bif i
PM

i¼1 f i þ
PM

i¼Lþ1 f i

8
>>>>><

>>>>>:

ð15Þ

where L and R are switch points, which are determined by

the Karnik–Mendel (KM) algorithms.

(3) The interval ½ylðxÞ; yrðxÞ� is defuzzified to provide

the output y

y ¼ 1

2
ðylðxÞ þ yrðxÞÞ ¼

1

2
HTðnlðxÞ þ nrðxÞÞ ð16Þ

where H ¼ ½H1; . . .;HM�T ¼ ½b1; . . .; bM�T is parameter

vector, nlðxÞ and nrðxÞ are left regressive vector and right

regressive vector, respectively.

nlðxÞ ¼
f 1
Dl

; � � � ; f L
Dl

;
f
Lþ1

Dl
; . . .;

f
M

Dl

� �T

nrðxÞ ¼
f
1

Dr
; . . .;

f
L

Dr
;
f Rþ1

Dr
; . . .;

f M
Dr

� �T

8
>>>><

>>>>:

ð17Þ

where Dl ¼
PL

i¼1 f i þ
PM

i¼Lþ1 f i and

Dr ¼
PR

i¼1 f i þ
PM

i¼Rþ1 f i.

For the ability of zero-order IT2-TSK-FLS to approach a

real continuous function on a compact set, we have the

following lemma.

Lemma 1 [25] For any continuous function f ðxÞ defined

on a compact set Xx. Then, there exists a zero-order IT2-

TSK-FLS as (16) for any d� 0 such that

sup
x2Xx

jf ðxÞ � 1

2
HTðnlðxÞ þ nrðxÞÞj\d ð18Þ

Remark 1 Zero-order IT2-TSK-FLS is selected for friction

modeling, in which the consequent parameters of fuzzy

rules are updated by adaptive laws derived by the Lya-

punov stability theory. The consequent components of

fuzzy rules are crisp numbers instead of intervals. Both

sides of the intervals represent the left and right end points

of the centroid of T2 FSs. Therefore, it is avoided that the

left centroid is larger than the right centroid in the adaptive

process.

Fig. 4 Calculation process of IT2-TSK-FLS
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Remark 2 FLS and neural network have a common goal:

to imitate the operation mechanism of the human brain.

These two models are motivated from different origins

(neural networks from physiology and fuzzy logic systems

from cognitive science). As a common neural network

structure, radial basis function network (RBFN) is pro-

posed by Moody and Darken [50] based on the biological

receptive fields. Fuzzy logic systems are composed of

fuzzy concepts and fuzzy logic. It captures the fuzziness of

human brain thinking and imitates human comprehensive

inference to deal with fuzzy information processing prob-

lems that are difficult to solve by conventional mathe-

matical methods. Fuzzy logic system and RBFN share

common characteristics not only in their operations on

data, but also in data-driven nonlinear system modeling as

the universal approximator [51–54]. Type-2 fuzzy set is an

extension of the concept of the traditional type-1 fuzzy set,

and its membership function is three dimensional. Because

of the characteristics of type-2 fuzzy set, Interval type-2

fuzzy logic system has a stronger ability to deal with

uncertainty than the traditional fuzzy logic system.

3.3 Friction modeling

For brevity, the dynamics model of the SbW system (5) can

be rewritten as

_d ¼ Adþ BðsMfric þ gssmÞ

y ¼ CTd

(

ð19Þ

where state vector d ¼ ½df ; _df �T 2 R2, g ¼ k=Je,

A ¼ ½0; 1; 0; 0�T, B ¼ ½0; 1�T, C ¼ ½1; 0�T, the lumped fric-

tion torque sMfric ¼ � 1
Je
ðsfric þ se þ Be

_df Þ.
Through the previous analysis, sMfric is related to the

steering angle df and the angular velocity _df . Because the

desired steering angle dd and the desired angular velocity
_dd are known, sMfric can be regarded as a function of the

steering angle error e and the steering angle velocity error

_e. Therefore, the real continuous function sMfric in Eq. (19)

is approximated by zero-order IT2-TSK-FLS in the fol-

lowing form:

sMfric ¼
1

2
H	TðnlðeÞ þ nrðeÞÞ þ xMfric ð20Þ

where e ¼ ½e; _e�T 2 R2, e ¼ df � dd, xMfric is the minimal

approximation errors, H	 is the optimal parameter, which

are defined as:

H	 ¼ arg min
H2XH

½sup e 2 Xe k ŝMfricðejHÞ � sMfric k� ð21Þ

where XH ¼ fHj k H k 
Mg , Xe ¼ fHej k He k 
Meg,
ŝMfricðejHÞ ¼ 1

2
HTðnlðeÞ þ nrðeÞÞ, M and Me are positive

scalar value.

4 Observer-based adaptive fuzzy control

There are three parts in this section. Firstly, the front

wheels’ angular velocity is obtained by an observer instead

of the angular velocity sensor. Secondly, an observer-based

adaptive interval type-2 fuzzy logic system controller is

designed to ensure the steering performance of the SbW

system with the nonlinear friction torque . The designed

controller need not the prior knowledge about the nonlinear

friction torque. Finally, the Lyapunov stability theory is

used to analyze the stability of the control system.

4.1 Observer design

In the practical application, the installation of the angular

velocity sensor will improve the structural complexity and

hardware cost and reduce the system reliability. In this

paper, the following observer that estimates the state error

e is designed as [55]

_̂e ¼ Aê� BKT
c êþ K0C

T~e

ê1 ¼ CTê

(

ð22Þ

where ê denotes the estimate of e, ê ¼ ½ê; _̂e�T 2 R2, ~e ¼
e� ê is the observation error, Kc is chosen such that the

matrix A� BKc is Hurwitz. Thus, there exist symmetric

positive definite matrices P1 and Q1 such that

ðA� BKT
c Þ

TP1 þ P1ðA� BKT
c Þ ¼ �Q1 ð23Þ

Estimate error ê replaces e as input variables of IT2 FLS

(20), then we can have the approximate value of sMfric as:

ŝMfricðêjHÞ ¼ 1

2
HTðnlðêÞ þ nrðêÞÞ ð24Þ

4.2 Robust controller design

Based on the above IT2 FLS (24) and the designed error

observer (22), the controller is designed for the SbW sys-

tem as follows:

ssm ¼ sc þ sr ð25Þ

sc ¼
1

g
ð€dd � KT

c ê� ŝDfricðêjHÞÞ ð26Þ

Substituting Eq. (25) into Eq. (19), we can obtain the

dynamic equation
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_d ¼ Adþ BðsMfric þ gsc þ gsrÞ

y ¼ CTd

(

ð27Þ

Then, the tracking error dynamic equation be derived as:

_e ¼ Aeþ B½ðsMfric � ŝMfricðêjHÞÞ þ gsr � KT
c ê�

e1 ¼ CTe

(

ð28Þ

Subtracting Eq. (22) from Eq. (28) yields

_~e ¼ ðA� K0C
TÞ~eþ B½ðsMfric � ŝMfricðêjHÞÞ þ gsr�

~y ¼ CT~e

(

ð29Þ

Equation (29) can be written as

~y ¼ HðsÞ½ðsMfric � ŝMfricðêjHÞÞ þ gsr� ð30Þ

where the transfer function HðsÞ ¼ CTðsI � ðA� K0C
TÞÞ

�1B of Eqs. (29) and (30) is known stable. Since only ~y
is measurable, in order to use the strict positive real (SPR)-

Lyapunov synthesis approach, Eq. (30) can be rewritten as

~y ¼HðsÞLðsÞL�1ðsÞ½ðsMfric � ŝMfricðêjHÞÞ þ gsr� ð31Þ

where LðsÞ ¼ sm þ b1s
m�1 þ � � � þ bm is appropriately

selected so that H(s)L(s) is SPR transfer function [56].

Eq.(31) can be expressed as follows:

_~e ¼ ðA� K0C
TÞ~eþ BcL

�1ðsÞ½ðsMfric � ŝMfricðêjHÞÞ

þ gsr�

~y ¼ CT~e

8
>><

>>:

ð32Þ

Since H(s)L(s) is a proper SPR transfer function, according

to the Kalman–Yakubovich lemma [58], it can be seen that

there are positive definite matrices P2 and Q2 such that:

ðA� K0C
TÞTP2 þ P2ðA� K0C

TÞ ¼ �Q2

P2Bc ¼ C

(

ð33Þ

Equation (32) can be rewritten as

_~e ¼ ðA� K0C
TÞ~eþ Bc

1

2
~HTðnlðêÞ þ nrðêÞÞ þ x

� �� �

þ BcL
�1ðsÞgsr

~y ¼ CT~e

8
>>>><

>>>>:

ð34Þ

where ~H ¼ H	 �H, x ¼ � 1
2
~HTðnlðêÞ þ nrðêÞÞþ L�1ðsÞ½1

2

~HTðnlðêÞ þ nrðêÞÞ þ
1

2
H	TððnlðeÞ þ nrðeÞÞ

� ðnlðêÞ þ nrðêÞÞÞ þ xMfric�

, x is a lumped modeling error, and there is an unknown

upper bound -, j x j 
-.

4.3 Stability analysis

Theorem 1 For the SBW system described in Eq. (19), the

observer is designed as Eq. (22), the adaptive fuzzy con-

troller is formulated as Eq. (25), the robust term sr which
includes Nussbaum-type function is designed as

sr ¼
~y-̂2

-̂ j ~y j þr2
þ KT

o P1ê

� �

NðfÞ ð35Þ

_f ¼ ~y2-̂2

-̂ j ~y j þr2
þ ~yKT

o P1ê ð36Þ

where NðfÞ ¼ expðf2Þ cosððp=2ÞfÞ, -̂ is the estimate of -,
r is a varying parameter designed later. The update laws

are selected to adjust the unknown parameters H, - and r:

_H ¼

1

2
c1 ~y½nlðêÞ þ nrðêÞ�; if jjHjj\M or ð jjHjj ¼ M

and ½nlðêÞ þ nrðêÞ�TH~y
 0Þ
P½��; if jjHjj ¼ M

and ½pmbnlðêÞ þ nrðêÞ�TH~y[ 0

8
>>>>><

>>>>>:

ð37Þ
_̂- ¼ c2 j ~y j ð38Þ

_r ¼ �c3r ð39Þ

where c1, c2, and c3 are given constants, P½�� projection
operator can be expressed as

P½�� ¼ 1

2
c1 ~y½nlðêÞ þ nrðêÞ� �

1

2
c1

~y½nlðêÞ þ nrðêÞ�TH
kHk2

H

ð40Þ

Then, the tracking error e can converge asymptotically to

zero. Fig. 5 describes the control process of the SbW

system.

Nussbaum-type function is used in Eq. (35). The rele-

vant definition and lemma are as follows:

Definition 2 The function NðfÞ is called Nussbaum gain

function if the following properties are held:

lim
s!1

sup
1

s

Z s

0

NðfÞdf ¼ þ1 ð41Þ

lim
s!1

inf
1

s

Z s

0

NðfÞdf ¼ �1 ð42Þ

Nussbaum functions commonly used in the literature are

f2 cosðfÞ, f2 sinðfÞ, and expðf2Þ cosððp=2ÞfÞ. In this paper,

expðf2Þ cosððp=2ÞfÞ is used as a Nussbaum function.
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Lemma 2 [56, 57] Let V(t)and fðtÞ to be a smooth function
on interval ½0; tf Þ, with V [ 0, 8t 2 ½0; tf Þ, and NðfÞ is an
even smooth Nussbaum-type function. If the following

inequality is satisfied:

VðtÞ
 c0 þ
Z t

0

ðgðtÞNðfðtÞÞ þ 1Þ _fðtÞdt; 8t 2 ½0; tf Þ

ð43Þ

where c0 represents some suitable constant, and gðtÞ is a
nonzero time-varying function, then V(t), fðtÞ and
R t
0
ðgðtÞNðfðtÞÞ þ 1Þ _fðtÞdt must be bounded on t 2 ½0; tf Þ.

Proof we consider Lyapunov function:

V ¼ 1

2
êTP1êþ

1

2
~eTP2~eþ

1

2c1
~HT ~Hþ 1

2c2
~-2 þ 1

2c3
r2

ð44Þ

Differentiating (44) with respect to time yields

_V ¼ 1

2
_̂eTP1êþ

1

2
êTP1

_̂eþ 1

2
_~eTP2~eþ

1

2
~eTP2

_~e

þ 1

c1
~HT _~Hþ 1

c2
~- _~-þ 1

2c3
r2

ð45Þ

From Eq. (22) and Eq. (34), we have

_V ¼ 1

2
½êðA� BKT

c Þ
TP1êþ ~eTCKT

o P1êþ êP1ðA�

BKT
c Þêþ êP1K0C

T ~e� þ 1

2
½~eTðA� K0C

TÞTP2~e

þ 1

2
ðnlðêÞ þ nrðêÞÞT ~HBT

c P2~eþ L�1ðsÞgsrBT
c P2~e

þ xBT
c P2~eþ ~eTP2ðA� K0C

TÞ~eþ 1

2
~eTP2Bc

~HT

ðnlðêÞ þ nrðêÞÞ þ ~eTP2BcL
�1ðsÞgsr þ ~eTP2Bcx�

þ 1

c1

_~H
T ~Hþ 1

c2
~- _~-þ 1

c3
r _r

ð46Þ

The above equation can be further derived as

_V ¼� 1

2
êTððA� BKT

c Þ
TP1 þ P1ðA� BKT

c ÞÞê

� 1

2
~eTððA� K0C

TÞTP2 þ P2ðA� K0C
TÞÞ~e

þ 1

2
ðnlðêÞ þ nrðêÞÞTBT

c P2~eþ
1

c1

_~H
T

� �

~H

þ ~eTCKT
o P1êþ ~eTP2BcL

�1ðsÞgsr þ ~eTP2Bcxþ 1

c2
~- _~-þ 1

c3
r _r

ð47Þ

After further calculation, we can get

_V ¼ � 1

2
êTQ1ê�

1

2
~eTQ2~eþ

1

c2
~- _~-þ 1

c3
r _rþ SX ð48Þ

where

SX ¼ ~yL�1ðsÞgsr þ ~yTKT
o P1êþ ~yx

¼ ~yL�1ðsÞgsr þ ~ygsr � ~ygsr þ ~yTKT
o P1êþ ~yx


 ~yg1ðtÞsr þ ~yTKT
o P1êþ j ~y j -


� j ~y j ~-þ j ~y j -̂þ ~yg1ðtÞsr þ ~yTKT
o P1ê


� j ~y j ~-þ ð1þ g1ðtÞNðfÞÞ _fþ j ~y j -̂

� ~y2-̂2

j ~y j -̂þ r2


� j ~y j ~-þ ð1þ g1ðtÞNðfÞÞ _fþ r2

ð49Þ

h

where - ¼ -̂� ~-, g1ðtÞ ¼ gþ ½g2 þ g�signð~ysrÞ,
jL�1ðsÞgj 
 g2. Substituting Eq. (49) into Eq. (48), we can

get:

_VðtÞ
 � 1

2
êTQ1ê�

1

2
~eTQ2~eþ ð1þ g1ðtÞNðfÞÞ _f

þ ~-
1

c2
_~-� j ~y jÞ þ rð 1

c3
_rþ r

� � ð50Þ

Substituting Eqs. (38)–(39) into above equation, we can

get:

Fig. 5 Principle control diagram

Neural Computing and Applications (2021) 33:10429–10448 10437

123



_VðtÞ
 � 1

2
êTQ1ê�

1

2
~eTQ2~eþ ð1þ g1ðtÞNðfÞÞ _f ð51Þ

Considering ea ¼ ½ê; ~e�T, Q ¼ diag½Q1;Q2�, then we have

_V 
 � 1

2
ea

TQea þ ð1þ g1ðtÞNðfÞÞ _f


ð1þ g1ðtÞNðfÞÞ _f
ð52Þ

Integrating the above equation yields

VðtÞ � Vð0Þ

Z t

0

ð1þ g1ðtÞNðfÞÞ _fðtÞdt ð53Þ

According to Lemma 2, it can be concluded from the above

equation that V(t), V(0), and
R t

0
½1þ g1ðtÞ�NðfÞ _fdt are

bounded on ½0; tf �. The above conclusion also holds when

tf ! þ1 [56]. We can know that ê, ~e, ~H, ~- and r are

bounded, so it is further concluded that the control input

ssm is bounded. According to Eq. (52), it can be obtained

that:

1

2

Z t

0

ea
TQeadt
Vð0Þ � VðtÞ

þ
Z t

0

ð1þ g1ðtÞNðfÞÞ _fðtÞdt
ð54Þ

This implies that ê 2 L2; ~e 2 L2. According to Eq. (22) and

Eq. (34), we can know that _̂e 2 L1, _~e 2 L1. Because ê 2
L2

T
L1 and _̂e 2 L1, ~e 2 L2

T
L1 and _~e 2 L1, by using

the Barbalat lemma [58, 59], we can get that limt!1ê ¼ 0

and limt!1~e ¼ 0. Therefore, limt!1e ¼ 0. The pseu-

docode of proposed AIT2FLSC algorithm is shown in

Fig. 6.

Remark 3 In engineering practice, the parameter drift

problems are usually occurred due to the use of the adap-

tive laws (36), (38)–(39). In order to avoid the parameter

drift problems, the following deadzone technique is

employed [60]:

_f ¼
~y2-̂2

-̂ j ~y j þr2
þ ~yKT

o P1ê; if jej � e

0; if jej\e

8
><

>:
ð55Þ

_̂- ¼
c2 j ~y j; if jej � e

0; if jej\e

(

ð56Þ

_r ¼

�c3r; if jej � e

0;

quadif jej\e

8
>><

>>:

ð57Þ

where e is the dead zone size.

5 Simulation results

In this section, to validate the effectiveness of the proposed

adaptive interval type-2 fuzzy logic system controller

(AIT2FLSC) for the SbW system with nonlinear friction

torque, numerical simulations are carried out in two dif-

ferent friction environments. In addition, we use the

adaptive type-1 fuzzy logic system controller (AT1F LSC)

to verify the advantages of proposed controller from dif-

ferent aspects.

Step 1: Set SBW system parameters

The self-aligning torque se can be regarded as

se ¼ 950 tanhðdf Þ. The nominal parameters of the SbW

system in Eq. (19) are chosen as follows: Jf ¼ 3:8 kg�m2,

k ¼ 18, Bsm ¼ 0:05 Nms/rad, Jsm ¼ 0:0045 kg�m2,

r0 ¼ 39000, r1 ¼ 780, r2 ¼ 30, vs ¼ 0:03.

To verify the effectiveness and adaptability of the pro-

posed control method, the parameters and structures of the

friction model in simulations are assumed to change

gradually as shown in Table 1. The Lugre friction model is

used in Environment 1. The structure of the friction model

does not change during the simulation, but the parameters

change. The Coulomb friction model, the Stribeck friction

model and the Lugre friction model are used in Environ-

ment 2. The model structures and parameters change

simultaneously.

Step 2: Establish IT2 FLS system

The input variables of IT2 FLS are selected as ê and _̂e. Set

the fuzzy rules of IT2 FLS as follows:

RðjÞ : IF ê is ~A
j

1;
_̂e is ~A

j

2;

THEN sMfric is b
j j ¼ 1; 2; . . .; 5:

ð58Þ

where ~A
j

1 ¼ ~A
j

2 are IT2 FSs of the input variables. Then, the

membership functions are chosen as follows:

l ~A
1

i

ðêÞ ¼ 1=ð1þ expðð72� ðêþ 0:02ÞÞÞÞ,
l ~A

1

i

ðêÞ ¼ 1=ð1þ expðð70� ðêþ 0:05ÞÞÞÞ;

l ~A
2

i

ðêÞ ¼ expð�ð500� ðêþ 0:02Þ2ÞÞ;

l ~A
2

i

ðêÞ ¼ expð�ð1100� ðêþ 0:02Þ2ÞÞ;

l ~A
3

i

ðêÞ ¼ expð�ð500� ê2ÞÞ; l ~A
3

i

ðêÞ ¼ expð�ð1100� ê2ÞÞ;

l ~A
4

i

ðêÞ ¼ expð�ð500� ðê� 0:02Þ2ÞÞ;

l ~A
4

i

ðêÞ ¼ expð�ð1100� ðê� 0:02Þ2ÞÞ;

l ~A
5

i

ðêÞ ¼ 1=ð1þ expðð�72� ðê� 0:02ÞÞÞÞ; l ~A
5

i

ðêÞ

¼ 1=ð1þ expðð�70� ðê� 0:05ÞÞÞÞ:
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AIT2FLSC algorithm

Selections of initial parameters:
Select the initial parameters of the SbW systems δδδ(0)=0; the initial parameters of the observer êee(0) = 0;
the initial values of adaptive parameters ΘΘΘ(0) = [−420, −280, 0, 280, 420], ζ(0) = 0 and σ(0) = 0.001.
Selections of observer parameters:
1 Select Kc and K0 such that the matrices A − BKc and A − K0C

T are Hurwitz, respectively.
2 Select symmetric positive definite matrices P1 and Q1 such that (A − BKT

c )TP1 + P1(A − BKT
c ) = −Q1.

3 Select appropriate L(s) so that H(s)L(s) is SPR transfer function.
4 Select the asymmetric positive definite matrices P2 and Q2 such that:

(A − K0C
T)TP2 + P2(A − K0C

T) = −Q2, P2Bc = C.
Establish interval type-2 fuzzy logic system:
Choose the number of fuzzy rules M and membership functions μ

Ãj
1
(ê), μÃj

1
(ê), μ

Ãj
2
( ˙̂e) and μÃj

2
( ˙̂e).

Selections of controller parameters:
Choose the values γ1 > 0,γ2 > 0,γ3 > 0, ε > 0 in (37)-(39), (55)-(57).
Calculation process:

Step 1: Solve the following observer to obtain the estimated value êee.
˙̂eee = Aêee − BKT

c êee + K0C
Tẽee

ê1 = CTêee

Step 2: For the fuzzy rules (58) of IT2 FLS, the firing set of each rule is computed as follows:

Ãj :

⎧⎪⎪⎨
⎪⎪⎩

F j(êee) = [f j(êee), f
j
(êee)]

f j(êee) = μ
Ãj

1
(ê)

Ãj
2
( ˙̂e)

f
j
(êee) = μÃj

1
(ê) μÃj

2
( ˙̂e)

Step 3: Compute the following interval weighted average:

YTSK(ê̂êe) = 1/[yl(ê̂êe), yr(ê̂êe)] =
f1∈[f1,f

1] · · · fM∈[fM,f
M] 1/

M

j=1
fjbj

M

j=1
fj

The interval values yl(ê̂êe) and yr(ê̂êe) can be calculated by the KM algorithm⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yl(ê̂êe) =

L

i=1
bifi+

M

i=L+1
bifi

L

i=1
fi+

M

i=L+1
f
i

,

yr(ê̂êe) =

R

i=1
bifi

+
M

i=R+1
bifi

R

i=1
f
i
+

M

i=R+1
fi

.

where L and R are switch points, which are determined by the KM algorithm.
Step 4: Compute the fuzzy basis functions ξξξl(êee) and ξξξr(êee):⎧⎪⎨

⎪⎩
ξξξl(êee) = f1

Dl
, · · · , fL

Dl
,

f
L+1
Dl

, · · · ,
f
M

Dl

T

ξξξr(êee) =
f
1

Dr
, · · · ,

f
L

Dr
,

fR+1
Dr

, · · · , fM

Dr

T

where Dl =
L

i=1
f i +

M

i=L+1
f

i
and Dr =

R

i=1
f

i
+

M

i=R+1
f i.

Step 5: Compute the update laws:
ζ̇ = ỹ2 ˆ 2

ˆ |ỹ|+σ2 + ỹKT
o P1êee

Θ̇ΘΘ =

⎧⎪⎪⎨
⎪⎪⎩

1
2γ1ỹ[ξξξl(êee) + ξξξr(êee)], if ||ΘΘΘ|| < M or ( ||ΘΘΘ|| = M

and [ξξξl(êee) + ξξξr(êee)]TΘΘΘỹ ≤ 0)
P [·], if ||ΘΘΘ|| = M

and [ξξξl(êee) + ξξξr(êee)]TΘΘΘỹ > 0
˙̂ = γ2 | ỹ |
σ̇ = −γ3σ

Step 6: Compute the controller:⎧⎪⎨
⎪⎩

τsm = τc + τr

τc = 1
g (δ̈d − KT

c êee − τ̂Δfric(êee|ΘΘΘ))

τr = ỹ ˆ 2

ˆ |ỹ|+σ2 + KT
o P1êee N(ζ)

Step 7: Apply controller to the SbW systems, then the SbW systems generates new state variables δδδf

and return Step 1.

Fig. 6 The pseudocode of proposed AIT2FLSC algorithm
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Step 3: Choose Controller Parameters

Select parameters Kc ¼ ½100; 3200�T and

Ko ¼ ½80; 10; 000�T. The initial values are set to dð0Þ = 0,

êð0Þ ¼ 0, Hð0Þ ¼ ½�420;�280; 0; 280; 420�, fð0Þ ¼ 0,

rð0Þ ¼ 0:001, c1 ¼ 2:2� 106,c2 ¼ 0:1,c3 ¼ 0:0001,

e ¼ 0:005. Set LðsÞ ¼ sþ 3, then we can obtain

HðsÞLðsÞ ¼ ðsþ 3Þ=ðs2 þ 80sþ 100; 00Þ, which is a

proper SPR transfer function. Select symmetric positive

definite matrices Q1 and Q2: Q1 ¼
0:01 � 0:002

�0:002 1

� �

; Q2 ¼
154 � 0:02

�0:02 0:0006

� �

.

After solving Eqs. (23) and (33), the positive definite

matrix P1 and P2 are P1 ¼
0:1776 0:00005
0:00005 0:00016

� �

;P2 ¼

1:009 � 0:0003
�0:0003 0:0001

� �

.

Step 4: Results and analysis

The desired steering angle is considered as the common

sinusoidal signal dd ¼ 0:3 sinð0:4tÞ. For contrast, the

adaptive type-1 fuzzy logic system controller (AT1F-LSC)

with the same parameters as the proposed adaptive interval

type-2 fuzzy logic system controller (AIT2-FLSC) is

established. Its membership functions are the upper bound

of the corresponding membership function in the

AIT2FLSC. Figure 7 describes the running states of the

SbW system in Environment 1. Figure 7a–b displays

comparative diagrams of the tracking performance of the

SbW system controlled by the proposed AIT2FLSC and the

AT1FLSC. It can be seen that the control accuracy of

AIT2FLSC is higher than that of AT1FLSC. Figure 7c

shows the curves of the estimated angle d̂f and the actual

angle df . It verifies the validity of the observer. Figure 7d

shows the control torque of the motor assembly module,

which reflects the working stability of the proposed

controller.

Figure 8 shows the steering angle tracking curve,

tracking error, estimated steering angle, and control torque

of the SbW system in Environment 2 with AIT2FLSC and

AT1FLSC. The controllers have the same parameters as the

controllers in Environment 1. It is further verified that even

if the structure of the friction model changes, the proposed

method can guarantee the tracking performance of the SbW

system.

To better describe the control performance under dif-

ferent control schemes, four quantitative tracking perfor-

mance indexes are used to evaluate the performance of the

proposed friction modeling method and control strategy,

i.e., variance, maximum absolute error (MAE), standard

deviation (SD), and RMSE. These metrics are measured as

follows: Variance ¼ 1
p

Pp
i¼1ðeðiÞ � eÞ2, MA-

E ¼ maxfjeðiÞj; i ¼ 1; � � � ; pg, SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p

Pp
i¼1ðeðiÞ � eÞ2

q
,

and RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p

Pp
i¼1ðeðiÞÞ

2
q

, where p is the number of

experimental data elements, �e is the mean value of the

tracking error. Tables 2 and 3 reflect the superiority of the

AIT2FLSC over the AT1FLSC more clearly in the above

two friction environments. It can be seen from Tables 2 and

3 that the MAE, RMSE, variance, and SD under the

AIT2FLSC are smaller than AT1FLSC. The AIT2FLSC

can still maintain high control accuracy even if the friction

model and parameters change.

To further verify the adaptability of the proposed algo-

rithm, we add some comparisons with the nested adaptive

super-twisting sliding mode (NASTSM) controller [2]. For

simplicity, the control input of the NAST-SM controller is

straightly given

uNASTSM ¼ J0
k

sfri
J0

þ uc

� �

ð59Þ

uc ¼ �ljSNASTSMj
1
2signðSNASTSMÞ þ tðtÞ ð60Þ

_tðtÞ ¼ �hðtÞsignðSNASTSMÞ ð61Þ

where l[ 0 is to be designed, the sliding variable SNASTSM
is defined as SNASTSM ¼ _eþ k1 � e, the nested adaption laws
are shown as follows:

Table 1 Friction model parameters and structures

Environment Friction model sfricðt=sÞ

t 2 ½0; 30�s t 2 ð30; 60�s t 2 ð60; 90�s t 2 ð90; 120�s t 2 ð120; 150�s t 2 ð150; 180�s

Environment 1 Lugre Lugre Lugre Lugre Lugre Lugre

Fc = 25 Nm Fc = 30 Nm Fc = 35 Nm Fc = 40 Nm Fc = 45 Nm Fc = 38 Nm

Fs = 30 Nm Fs = 35 Nm Fs = 40 Nm Fs = 45 Nm Fs = 50 Nm Fs = 43 Nm

Environment 2 Coulomb Stribeck Lugre Lugre Stribeck Lugre

Fc = 35 Nm Fc = 37 Nm Fc = 30 Nm Fc = 25 Nm Fc = 35 Nm Fc = 40 Nm

Fs = 42 Nm Fs = 35 Nm Fs = 30 Nm Fs = 40 Nm Fs = 45 Nm
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_hðtÞ ¼ �½q0 þ qðtÞ�signðgðtÞÞ ð62Þ

_qðtÞ ¼
xjgðtÞj if jgðtÞj[ g0

0 otherwise

(

ð63Þ

gðtÞ ¼ hðtÞ � 1

1
j �ueqðtÞj � o ð64Þ

uðtÞ ¼ hðtÞsignðSNASTSMÞ ð65Þ

_�ueqðtÞ ¼
1

�
½uðtÞ � �ueqðtÞ� ð66Þ

where l ¼ 20, k ¼ 2100, q0 ¼ 15, x ¼ 10, g0 ¼ 5,

1 ¼ 0:9, o ¼ 1, and � ¼ 1.

The following two friction environments (Table 4) are

set up in the simulation to show the adaptivity of the

controller designed in this paper. Figure 9 describes the

comparative diagrams of the tracking performance con-

trolled by the NASTSM controller and the proposed

AIT2FLSC in Case 1. From Fig. 9b, we can find that the

tracking performance of both controllers is similar between

0 and 100 s. The NASTSM controller and AIT2FLSC can

achieve similar control results, which indicates that the

NASTSM controller parameters have been optimized.

However, once the friction parameters change in between

100 and 200 s, the superiority of AIT2FLSC can be clearly

demonstrated. Figure 10 shows the comparison effect in
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friction case 2. It further illustrates that even if the friction

structure and parameters change simultaneously, the

designed controller can still maintain a superior control

effect. The design of the NASTSM controller depends on

the accurate friction torque, while the proposed AIT2FLSC

is based on the friction modeling method of adaptive

interval type-2 fuzzy logic system. Therefore, when the

friction structure and parameters change during the control

process, the designed adaptive controller can quickly adjust

so that the influence of control accuracy caused by the

friction uncertainty can be reduced. Based on the above

simulation comparisons, it can be seen that the proposed

friction compensation control strategy achieves better

control performance.

Table 2 Standard performance

indexes of Environment 1
Time t 2 ½0; 30�s t 2 ð30; 60�s t 2 ð60; 90�s t 2 ð90; 120�s t 2 ð120; 150�s t 2 ð150; 180�s

MAE

AT1FLSC 4.81E�3 4.79E�3 4.81E�3 4.86E�3 4.91E�3 4.80E�3

AIT2FLSC 4.30E�3 4.28E�3 4.30E�3 4.34E�3 4.39E�3 4.28E�3

RSME

AT1FLSC 3.12E�3 3.10E�3 3.05E�3 3.03E�3 3.13E�3 3.16E�3

AIT2FLSC 2.79E�3 2.76E�3 2.72E�3 2.70E�3 2.79E�3 2.81E�3

Variance

AT1FLSC 9.72E�6 9.58E�6 9.26E�6 9.16E�6 9.78E�6 9.98E�6

AIT2FLSC 7.75E�6 7.63E�6 7.37E�6 7.29E�6 7.77E�6 7.93E�6

SD

AT1FLSC 3.12E�3 3.10E�3 3.04E�3 3.03E�3 3.13E�3 3.16E�3

AIT2FLSC 2.78E�3 2.76E�3 2.71E�3 2.70E�3 2.79E�3 2.82E�3

Table 3 Standard performance

indexes of Environment 2
Time t 2 ½0; 30�s t 2 ð30; 60�s t 2 ð60; 90�s t 2 ð90; 120�s t 2 ð120; 150�s t 2 ð150; 180�s

MAE

AT1FLSC 4.88E�3 4.89E�3 4.73E�3 4.70E�3 4.77E�3 4.82E�3

AIT2FLSC 4.36E�3 4.37E�3 4.23E�3 4.20E�3 4.26E�3 4.30E�3

RSME

AT1FLSC 3.13E�3 3.11E�3 3.02E�3 2.98E�3 3.06E�3 3.17E�3

AIT2FLSC 2.80E�3 2.77E�3 2.70E�3 2.66E�3 2.73E�3 2.82E�3

Variance

AT1FLSC 9.78E�6 9.66E�6 9.12E�6 8.84E�6 9.37E�6 1.0E�5

AIT2FLSC 7.80E�6 7.70E�6 7.26E�6 7.03E�6 7.45E�6 7.97E�6

SD

AT1FLSC 3.13E�3 3.11E�3 3.02E�3 2.97E�3 3.06E�3 3.17E�3

AIT2FLSC 2.79E�3 2.77E�3 2.69E�3 2.65E�3 2.73E�3 2.82E�3

Table 4 Friction environment for comparison between AIT2FLSC

and NASTSM controller

Friction model sfricðt=sÞ

t 2 ½0; 100� s t 2 ð100; 200� s

Case 1 Coulomb Coulomb

Fc = 10 Nm Fc = 200 Nm

Case 2 Coulomb Lugre

Fc = 10 Nm Fc = 200 Nm

Fs = 205 Nm
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6 Experimental results

To further demonstrate the practical control performance of

the proposed controller for the SbW system, hardware-in-

loop (HIL) experiment verifications are implemented.

Step 1: Build experimental platform

The HIL experimental platform of the SbW system is

shown in Fig. 11. In this experimental platform, the

dSPACE-DS1202 device is used as the control unit of the

SbW system, and a servo motor driver (XinJE DS2-20P7)

is used for driving a steering motor (XinJE MS80ST-

M02430B-20P7) equipped with a reducer. Firstly, the

steering angle df of the front wheels is measured by a linear

sensor (KTF-100) fixed on the steering arm. Then, the

steering angle df is transmitted to DS1202 equipped with a

dual-core 2 GHz PowerPC micro-controller with 16-bit D/

A converters. Finally, the output voltage signal computed

by DS1202 is converted into the control input of the

steering motor by the driver. dSPACE upper computer

system can monitor the related variables of the SbW sys-

tem by interface soft (ControlDesk). Noise and interference

will cause the measurement error of the sensor, so the angle

signal is processed by the Kalman filter (x0 ¼ 0; P0 ¼
15;A ¼ 1;B ¼ 0;C ¼ 1;D ¼ 0;Q ¼ 0:04; R ¼ 15).

Step 2: Establish IT2 FLS system

Set the fuzzy rules as shown in Eq. (58), then the fol-

lowing membership functions of ~A
j

1 and
~A
j

2 are selected as

follows: l ~A
1

i

ðêÞ ¼ 1=ð1þ expðð3� ðê� 0:4ÞÞÞÞ; l ~A
1

i

ðêÞ ¼

1=ð1þ expðð3� ðê� 0:2ÞÞÞÞ; l ~A
2

i

ðêÞ ¼ expð�ð0:2� ðêþ

0:01Þ2ÞÞ; l ~A
2

i

ðêÞ ¼ expð�ð0:3� ðêþ 0:01Þ2ÞÞ; l ~A
3

i

ðêÞ ¼

expð�ð0:2� ê2ÞÞ; l ~A
3

i

ðêÞ ¼ expð�ð0:3� ê2ÞÞ; l ~A
4

i

ðêÞ ¼

expð�ð0:2� ðê� 0:01Þ2ÞÞ; l ~A
4

i

ðêÞ ¼ expð�ð0:3� ðê�

0:01Þ2ÞÞ; l ~A
5

i

ðêÞ ¼ 1=ð1þ expðð�3� ðêþ
0:4ÞÞÞÞ; l ~A

5

i

ðêÞ ¼ 1=ð1þ expðð�3� ðêþ 0:2ÞÞÞÞ:
Step 3: Choose controller parameters

Select parameters Kc ¼ ½40; 130�T and Ko ¼ ½8; 1000�T.
The initial values are set to dð0Þ = 0, êð0Þ ¼ 0,

Hð0Þ ¼ ½�500;�250; 0; 250; 500�, fð0Þ ¼ 0, c1 ¼ 25; 000,

c2 ¼ 0:0001, c3 ¼ 0:0001, e ¼ 0:1, rð0Þ ¼ 0:0001. Set

LðsÞ ¼ sþ 3, then we can obtain

HðsÞLðsÞ ¼ ðsþ 3Þ=ðs2 þ 8sþ 1000Þ, which is a proper

SPR transfer function. Select symmetric positive definite

matrices Q1 and Q2:

Q1 ¼
0:01 � 0:005

�0:005 0:25

� �

; Q2 ¼
10:144 � 0:033
�0:033 0:006

� �

:

After solving Eqs. (23) and (33), the positive definite

matrix P1 and P2 are

P1 ¼
0:0597 0:0001
0:0001 0:001

� �

; P2 ¼
1:009 � 0:003
�0:003 0:001

� �

:
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0 50 100 150 200
−0.5

0

0.5

1

1.5

2

S
te

er
in

g 
an

gl
e(

ra
d)

Time(s)

Reference angle
NASTSM
AIT2FLSC

128 128.1 128.2
0.235

0.245

A

(a) Tracking performance

0 50 100 150 200

−5

0

5

10

15
x 10−3

Tr
ac

ki
ng

 e
rr

or
(r

ad
)

Time(s)

NASTSM
AIT2FLSC

B

(b) Tracking error

Fig. 10 Comparison results of AIT2FLSC and NASTSM controller in Case 2

Neural Computing and Applications (2021) 33:10429–10448 10443

123



Step 4: Results and analysis

To further verify the effectiveness of the designed

controller, we carried out experimental verification under

two target paths of sine curve and step signal.

Case I: Sine curve

The effectiveness and superiority of the proposed con-

trol strategy are verified in Fig. 12. Figure 12a, b display

the performance comparison under the proposed

AIT2FLSC and AT1FLSC. We can see the control accu-

racy of AIT2FLSC is higher than that of AT1FLSC. The

trajectories of the front wheels’ steering angle and the

steering angle estimation are shown in Fig. 12c. It can be

seen that the designed observer can accurately estimate the

front wheels’ steering angle. Figure 12d shows the control

torque of the motor assembly module, which reflects the

working stability of AIT2FLSC.

The obtained numeric values of the performance metrics

are displayed in Table 5. As it is revealed, the control

performance obtained from the designed AIT2-FLSC is

superior than the one obtained from AT1FLSC. The MAE,

RMSE, variance, SD under the AIT2FLSC are 0.0652 rad,

0.0111 rad, 0.0014 rad, and 0.0368 rad, respectively, which

is less than AT1FLSC (0.0718 rad, 0.0142 rad, 0.0017 rad,

and 0.0407 rad ).

Case II: Step signal

The target steering angle is shown in Fig. 13, which is

switched between 0.3 and- 0.3 rad at t ¼ 53, 124, 233, 304 s.

Figure 14 andTable 6 illustrate the adaptability of the proposed

AIT2FLSC when compared with the AT1FLSC. At 53 s, the

steeringangle regulation timeof theAIT2FLSCis4.21 s,which

is 5.41 s for the AT1FLSC. The overshoot of the AIT2FLSC is

(a) Physical diagram of experimental platform (b) Schematic diagram of experimental platform

Fig. 11 The HIL experimental platform
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0.1826 rad, which is less than that of the AT1FLSC (0.2532

rad). Furthermore, at 124 s, the AIT2FLSC still has the shortest

settling time, it is about 5.03 s. For theAT1FLSC, the regulation

time is 5.93 s. Moreover, the overshoot for the AIT2FLSC is

0.1975 rad, which is smaller than the AT1FLSC (0.2128 rad).

Thus, it’s verified that the proposed AIT2FLSC still shows a

better steering angle dynamic response compared with the

AT1FLSC. More comparative results can be found in Table 6.

Figure 14c shows the trajectories of the front wheels’ steering

angle and the steering angle estimation. It can be seen that the

designed observer can accurately estimate the front wheels’

steering angle. Figure14d shows the control torqueof themotor

assembly module, which reflects the working stability of

AIT2FLSC.

7 Conclusions

An observer-based adaptive interval type-2 fuzzy logic system

controller is proposed for the adverse influence of the friction

torque on the SbW system. It has been proven theoretically that

Table 5 Standard performance indexes of experimental results

Indexes MAE RSME Variance SD

AIT2FLSC 6.52 E�2 1.11 E�2 1.4 E�3 3.68 E�2

AT1FLSC 7.18E�2 1.42E�2 1.7E�3 4.07E�2
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Fig. 14 Tracking performance of step signal

Table 6 Standard performance

indexes of step signal
Switching time Control method Overshoot (rad) Settling time (s)

53 s 0�- 0.3 rad AT1FLSC 0.1952 5.41

AIT2FLSC 0.1826 4.21

124 s -0.3� 0 rad AT1FLSC 0.2128 5.93

AIT2FLSC 0.1975 5.03

233 s 0� 0.3 rad AT1FLSC 0.1724 5

AIT2FLSC 0.1437 2.91

304 s 0.3� 0 rad AT1FLSC 0.185 4.7

AIT2FLSC 0.1586 3
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the proposed controller can make the front wheels’ steering

angle accurately track the target signal. Simulations and

experimental results have demonstrated the effectiveness and

adaptability of the proposed modeling and control method.

The threemain points of conclusions in the presentedwork

can be summarized as follows: (1) an observer is designed to

estimate the angular velocity which can reduce the system

sensitivity to measurement noise, the complexity of the

structure, and save hardware cost; (2) an AIT2FLSC, which

does not require the accurate model of the friction torque, is

designed to ensure high steering accuracy of the SbW system;

(3) the adaptive IT2 FLS has been used to model the friction

torque, in which the exact model is difficult to obtain.

Based on this study, the following researches are worthy

of further study:

1. There exists a number of type-2 fuzzy membership

functions in the literature, such as Gaussian, sigmoid,

triangular, trapezoidal, ellipsoidal, and pi-shaped. In this

paper, Gaussian membership functions and sigmoid

membership functions are chosen in the design of IT2

FLS. In the future research, we will explore the modeling

characteristics of IT2 FLS with different membership

functions.

2. In the next step, we will build a vehicle collision

avoidance system that includes both path planning and

steering control technologies. When the vehicle is

driving on a path with obstacles, a collision-free path

will be generated by path planning strategy. Then, the

vehicle tracks the planned path by controlling the

steering front wheels accurately.

Abbreviations dsm: Steering motor assembly rotational angle; df :
Front wheels’ steering angle; Bsm: Viscous friction coefficient of

steering motor assembly; Be: Viscous friction coefficient of

equivalent system; Jsm: Rotational inertia of steering motor

assembly; Jf : Rotational inertia of front wheels; Je: Rotational

inertia of equivalent system; ssm: Control torque of steering motor

assembly; s12: Load torque of steering motor assembly; sf : Driving
torque of front wheels; se: Self-aligning torque of front wheels; sfric:
Friction torque of front wheels; k: Steering motor assembly

angle/front wheels angle; Fc: Coulomb friction torque of front

wheels; Fs: Static friction torque of front wheels; vs:
Stribeck velocity of front wheels; r0: Stiffness coefficient of bristles;
r1: Damping coefficient of bristles; r2: Viscous friction coefficient of

front wheels; gð _df Þ: Stribeck effect of front wheels

List of symbols SbW: Steer-by-wire; T1 FS: Type-1 fuzzy set; T2

FS: Type-2 fuzzy set; IT2 FS: Interval type-2 fuzzy set; IT2 FSs:

Interval type-2 fuzzy sets; KM: Karnik-Mendel; SPR: Strict positive

real; FOU: Footprint of uncertainty; UMF: Upper membership

function; LMF: Lower membership function; MAE: Maximum

absolute error; RMSE: Root mean square error; SD: Standard

deviation; GMS: Generalized Maxwell-slip; RBFN: Radial basis

function network; FLS: Fuzzy logic system; HIL: hardware-in-

loop; T1 FLS: Type-1 fuzzy logic system; T1 FLSs: Type-1 fuzzy

logic systems; T2 FLSs: Type-2 fuzzy logic systems; IT2 FLS:

Interval type-2 fuzzy logic system; IT2 FLSs: Interval type-2

fuzzy logic systems; GT2 FLSs: Generalized type-2 fuzzy logic

systems; IT2-TSK-FLS: Interval type-2 Takagi-Sugeno-Kang fuzzy

logic system; AT1FLSC: Adaptive Type-1 fuzzy logic system

controller; AIT2FLSC: Adaptive Interval type-2 fuzzy logic system

controller NASTSM Nested Adaptive Super-twisting

Sliding Mode
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