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Abstract
In primates’ cerebral cortex, depth rotation sensitive (DRS) neurons have the property of preferential selectivity for depth

rotation motion, whereas such a property is rarely adopted to create computational models for depth rotation motion

detection. To fill this gap, a novel feedforward visual neural network is developed to execute depth rotation object

detection, based on the recent neurophysiologic achievements on the mammalian vision system. The proposed neural

network consists of two parts, i.e., presynaptic and postsynaptic neural networks. The former comprises multiple lateral

inhibition neural sub-networks for the capture of visual motion information, and the latter extracts the cues of translational

and depth motion and later, synthesizes such clues to perceive the process of depth rotation of an object. Experimentally,

the neural network is sufficiently examined by different types of depth rotation under multiple conditions and settings.

Numerical experiments show that not only it can effectively detect the spatio-temporal energy change of depth rotation of a

moving object, but also its output excitation curve is a quasi-sinusoidal one, which is compatible with the hypothesis

suggested by Johansson and Jansson in projective geometry. This research is a critical step toward the construction of

artificial vision system for depth rotation object recognition.

Keywords Depth rotation sensitive neuron � Quasi-sinusoidal waveform � Lateral inhibition � Depth rotation �
Visual motion perception

1 Introduction

Visual motion perception is a challenging topic in com-

puter vision. Visual scene is a wealth of information which

depicts the motion of an object in external environments,

by which motion cues can be extracted by visual infor-

mation processing in order to design intelligent vision

systems [1, 2]. However, it is still difficult for traditional

computer vision techniques to capture the motion features

of a moving object from dynamic visual scenes. Fortu-

nately, the nature gives us many bio-visual processing

inspirations, for example animals can effectively extract

and perceive external motion cues by their vision systems.

This helps us solve the problem of visual motion

perception.

Research on neurophysiology revealed that specific

types of visual neurons could respond preferentially to

specific motion patterns synthesized by three basic ele-

ments, i.e., translation, expansion/contraction and rotation/

depth rotation motion [3, 4]. Therein, Maunsell and Van

Essen [5] reported that translational selective neurons in

the dorsal part of medial superior temporal (MSTd) of the

anesthetized macaque were sensitive to translational

movement; Rind and Simmons [6] discovered depth

motion selective neurons in the lobula complex of the

locust that could positively respond to expansion vision

stimuli; Saito et al. [7–9] discovered that rotational selec-

tive neurons and depth rotation sensitive (DRS) ones in the

posterior parietal association cortex (area PG) of monkeys
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and in the medial superior temporal area (MST) of the

macaque could selectively react to depth rotation on the

horizontal plane and the fronto-parallel rotation motion for

an object. The visual properties of such neurons can play

an important role in engineering motion pattern detection,

e.g., the motion pattern detection of a rolling wheel.

Up to now, some computational models have been

developed to detect motion patterns. However, little has

been done to create computational models for depth rota-

tion motion detection. Although neurophysiologists have

discovered DRS neurons in the cerebral cortex of the pri-

mate, the underlying mechanism, which a biological vision

system perceives depth rotation, still remains open,

let alone systematic investigation on how to design com-

putational models for depth rotation motion detection.

Therefore, it is a still open topic for researchers to discuss

bio-inspired computational models used in detecting depth

rotation motion in the field of engineering from the angle of

computer vision. Therein, can the functional properties of

the discovered DRS neurons be simulated to develop bio-

inspired neurocomputational models? If yes, can such

models be used to construct artificial vision systems for

depth rotation object recognition and such fault detection

problems as gear and propeller rotation? Therefore, the

current proposal is to discuss the problem of depth rotation

perception from the angle of artificial visual neural net-

work, after which a novel computational model is designed

to detect the spatio-temporal energy change of depth

rotation of an object.

It is highlighted that the main contribution of the present

work involves three points: (1) a bio-inspired feedforward

depth rotation perception neural network (DRPNN) is

originally developed to detect the pattern of depth rotation

of an moving object, and thus can be applied to depth

rotation object detection; (2) DRPNN can uncover some

properties of depth rotation neurons, e.g., the spatio-tem-

poral energy change property caused by depth rotation in

neurophysiology; and (3) the performance characteristics

of DRPNN are sufficiently examined by means of depth

rotation video sequences from different scenarios.

It is worth pointing out that DRPNN differs from any

existing neural networks, and in particular our previous

neural network – rotational motion perception neural net-

work (RMPNN) [10]. The main difference between

DRPNN and RMPNN contains three points: (1) RMPNN

suits to the detection of rotational motion on the fronto-

parallel plane, whereas DRPNN is used to perceive the

spatio-temporal energy change of depth rotation of an

object; (2) such two neural networks originate from dif-

ferent biological inspirations, in other words, RMPNN is

designed based on the framework of the locust visual

system, whereas DRPNN is developed in terms of the

morphological and neurophysiological characteristics of

the mammalian visual system; and (3) RMPNN can only

detect the change of translational direction of a moving

object, but DRPNN involves the spatio-temporal changes

of both translation and depth motion.

The rest of this paper is organized as follows. The

related work on visual motion perception is reviewed in

Sect. 2. Section 3 describes the proposed neural network in

detail. DRPNN’s computational complexity is given in

Sect. 4. Section 5 displays the whole experimental analy-

sis. Finally, Sect. 6 concludes the current work and outlines

future studies.

2 Survey of related work

Depth rotation perception aims to detect specific motion

patterns, in which not only objects rotate on the plane, but

also the rotational axis is perpendicular to the observer’s

sight axis [7, 11, 12]. Up to now, many artificial visual

neural networks have been proposed for different tasks in

visual perception, such as target detection and tracking

[13, 14], collision detection [15, 16], human identification

[17, 18], visual question answering [19], intelligent

surveillance [20, 21]. However, there has been no appro-

priate computational model for depth rotation perception in

the literature. Fortunately, many achievements, reported by

electro- and neuro-physiologists can give us valuable

inspirations in developing bio-inspired computational

models for depth rotation detection. The related work will

be summarized below.

2.1 Psychophysical depth rotation perception
analysis

Compared by linear movement, depth rotation movement is

more difficult to be detected [22–24]. A number of psy-

chophysical studies have been carried out to analyze dif-

ferent types of depth rotation perception. Although

Shulman [25] claimed that the effect of attention was

related to the visual process of depth rotation perception, it

is not clear what factors influence the effect of visual

perception. Braunstein [22] suggested that some cues affect

the psychophysical perception of depth rotation. There-

after, he designed a mental morphological model to per-

ceive the depth rotation pattern of a rectangle. In

Braunstein’s model, the angle change of a rectangle

between horizontal and vertical contours is taken as an

indicator used in detecting depth rotation. However, his

model is only assumed to be used for a rotating trapezoid or

rectangle. In the study of visual factors which triggered

mental depth rotation perception, Braunstein and Petersik

[26, 27] reported that the factors could be separately pro-

cessed. After that, Andersen and Braunstein [24, 28]
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validated that mental depth rotation perception comes from

the combination of directional and depth visual cues.

2.2 Geometrical model on depth rotation

By employing projective geometry approaches, Johansson

et al. [29] developed a geometrical model to simulate the

change of the length and direction of a straight line in depth

rotation. In their simulation experiment, a depth rotating

straight line is projected onto a two-dimensional plane.

They suggested that the change of the projected length of

the straight line be sinusoidal when it was in depth rotation.

However, they only simulated an idealized depth rotation

in their experiment, regardless of the influence of motion

parallax on the projection of the object in the three-di-

mensional space. On the basis of their studies, some works

are still open. For example, (1) with the aspect of motion

parallax, what should be the spatio-temporal energy

changes in the retina caused by the depth rotation of an

object? (2) Can the perceived motion energies form a

sinusoidal curve? (3) Do the energy changes, induced by

depth rotation on different planes present minor differ-

ences? About these questions, we try to find their answers

in this work.

2.3 Functional response of depth rotation
perception

There has been a point of view that the binocular parallax

is the main factor to activate DRS neurons for perceiving

depth rotation [30, 31]. However, Saito et al. [7] discovered

that all of the DRS neurons in the MST area of the monkey

responded strongly to monocular stimulation. They also

claimed that the response differences of DRS neurons

under monocular and binocular vision conditions were not

very distinct [9, 11, 12], while emphasizing that the motion

of a single spot in depth rotation could effectively make the

DRS neurons become active. These indicate that the

binocular parallax is not the key factor to excite the DRS

neurons, while the directional change of motion is more

important than the moving object’s shape. On the basis of

this observation, they presented a viewpoint that the con-

tinuous change of motion direction was the only difference

to distinguish rotation from linear movement. This means

that specific computational models for depth rotation per-

ception can be constructed to perceive the change of

motion status of a moving object, and meanwhile two types

of motion cues, i.e., depth motion and directional transla-

tion [32], need to be extracted in the early stage of visual

information processing.

2.4 Computational models on directional
selectivity

It has been discovered that lobula giant movement detector

(LGMD) neurons in the lobula complex have the same

preferential response characteristic when an object

approaches the eye of a locust [33]. Rind et al. [6, 34]

presented the key features of LGMD for depth motion

perception, i.e., the lateral inhibition and edge expansion of

an approaching object. They proposed a neural model, i.e.,

LGMD-based neural network for perceiving the

approaching object in the 3-D space. A substantial number

of experimental results suggested that the reported LGMD

models work well in the perception of an object’s

approaching movement [35–37]. On the other hand, it has

been reported that directional selective neurons widely

exist in different animal species [38, 39]. Some neuro-

physiological achievements revealed that asymmetric lat-

eral inhibition underlined these neurons’ directional

selectivity. Specifically, in animals’ retina, starburst ama-

crine cells are connected asymmetrically to directional

selective neurons, and deliver inhibition in the null direc-

tions but not in the preferred direction [40, 41]. Based on

such perception mechanisms, Yue and Rind [36] proposed

a directional selective neural network (DSNN) to perceive

the translational direction of a moving object on the front-

parallel plane. A large number of experimental results have

confirmed that DSNN is robust in the perception of an

object’s translational motion direction [42, 43].

3 Depth rotation perception neural network

Visual motion perception depends on hierarchical infor-

mation processing. Neurophysiologists have revealed that

the mammalian’s vision system has a layered structure and

includes five types of information processing cells,

respectively, presented in the five neuropil layers, i.e.,

photoreceptor (P), horizontal (H), bipolar (B), starburst

amacrine (S), and ganglion (G) cells [44, 45]. Each of the

five layers processes its input visual signals and extracts

motion cues sequentially. The process of motion perception

in the mammalian visual neural system can be divided into

two stages [46, 47]: (1) in the first stage, motion sensitive

neurons capture and transmit local motion cues to the

subsequent functional neurons, and (2) in the second stage,

the functional neurons with large receptive fields synthe-

size the received cues in order to respond to specific

complex motion patterns. Inspired by such two stages of

biological visual information processing, the current neural

network (DRPNN) consists of a presynaptic network and a

postsynaptic one. The former comprises eight lateral

Neural Computing and Applications (2021) 33:10351–10370 10353

123



inhibition neural sub-networks used for capturing visual

motion information; the latter extracts the motion cues of

different motion patterns, e.g., depth rotation and transla-

tional motion, and then synthesizes them to perceive the

spatio-temporal energy change of depth rotation of an

object.

DRPNN takes each image frame as its input signal

through a monocular video camera, and then outputs the

total of membrane potentials produced by its internal

structures. Based on the interior characteristics of the

mammalian vision system [2, 44, 45], the framework of

DRPNN is developed, schematically illustrated by Fig. 1.

It comprises of two parts: presynaptic and postsynaptic

networks, for which the design details are given below.

3.1 Presynaptic network

In the presynaptic network of DRPNN, a depth perception

(DP) neuron is used to capture the approaching/receding

cues of depth motion of an object, while eight directional

selective neurons are utilized to extract various transla-

tional direction cues of the object. On the basis of the

preferred translational motion directions, the eight direc-

tional selective neurons, which correspond to respective

directional selective neural networks (DSNNs), can be

classified into two types. The first type, which consists of

horizontal and vertical directional selective neurons,

includes left (L), right (R), up (U), and down (D) selective

neurons; the second type, which is formed of diagonally

directional selective neurons, involves in left-up (LU), left-

down (LD), right-up (RU), and right-down (RD) selective

neurons. Each of the eight neurons corresponds to a special

DSNN which perceives specific translational direction cues

of the object. Therefore, the presynaptic network includes

eight DSNNs acquired by improving the reported compu-

tational models [36, 37]. Such eight neural networks share

the four layers of P, H, B and S, but have different designs

for their G layers, i.e., their direction inhibition layers. We

take the left directional selective neural network(L-DSNN)

for example to illustrate their internal frameworks and

functional mechanisms.

As shown in the top part of Fig. 1, L-DSNN, which

preferentially responds to a left moving object in the field

of view, includes five neural information-processing layers

and one functional neuron, i.e., P, H, B, S and G layers, and

the mentioned left selective neuron (L). The functions of

each neural layer and neuron L are described below.

1) P layer

The P layer as the first layer of L-DSNN is to capture the

visual motion signals of an object in the field of view. By

an analogy to the morphologic characterization of the

mammalian’s retina [44, 45, 48], it consists of nc 9 nr
photoreceptor cells arranged in a matrix form. Each cell

receives the luminance intensity or gray value at the

counterpart in an input image frame with size nc 9 nr. Let

x and y denote the row and column coordinates in the input

image, respectively. Lf-1 and Lf are the luminance values at

frames f and f - 1, respectively. Pf(x, y) represents the

captured luminance change which corresponds to pixel (x,

y) at frame f, given [35] by

Pf ðx; yÞ ¼ absðLf ðx; yÞ � Lf�1ðx; yÞÞ: ð1Þ

By the neurophysiologic achievements of the mam-

malian vision system [49, 50], the output of cell (x, y),

P̂f ðx; yÞ, is determined by

P̂f ðx; yÞ ¼
Pf ðx; yÞ; if Pf ðx; yÞ� Trp;
0; otherwise;

�
ð2Þ

with signal threshold Trp.

Remark 1 To clarify the functionality of the P layer, a

video sequence is utilized to show a left moving ball on a

carpeted office room (see Fig. 2a). We take two successive

image frames with numbers 48–49 for example to illustrate

the processed result. After receiving frame 49, the P layer

firstly computes the changes of luminance intensities in

terms of frame 48 and Eq. (1), by which the changes form a

difference image given in Fig. 2b. We notice that the
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Fig. 1 Schematic illustration on DRPNN
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motion edge of the moving ball can be extracted, but some

noises are included. Subsequently, the image is trans-

formed into Fig. 2c after being further processed by means

of Eq. (2) and a given threshold value of Trp.

2) H and B layers

The H and B layers as the second and the third layers of L-

DSNN, respectively, are designed based on the mam-

malian’s neurophysiologic findings, namely that the hori-

zontal cells can collect visual signals from the

photoreceptor cells and provide feedforward signals to the

bipolar cells for the improvement of the spatial resolution

of visual information [48, 51, 52]. Each of such two layers

includes nc 9 nr cells displayed in a matrix form. Those

cells in the H layer directly receive the excitatory intensi-

ties from their retinotopic counterparts in the P layer, and

then transmit them to the B layer. Therein, the output of

each cell (x, y) is defined by

Hf ðx; yÞ ¼ P̂f ðx; yÞ: ð3Þ

In the B layer, each cell not only collects the outputs of

the cells around its retinotopic counterpart in the H layer,

but also fuses such outputs with the output from its

retinotopic counterpart in the P layer. More precisely, as

related to the visual information integration metaphor in

the mammalian’s retina [51, 52], the surrounded excitation

of each cell from the H layer to the B layer can only get a

smaller passing coefficient of whb, and conversely the

direct excitation of each cell from the P layer to the B layer

gains a larger passing coefficient of wpb in the process of

information integration. Therefore, the strength of the

mixed excitation Bf(x, y) of each cell in the B layer is given

through

Bf ðx; yÞ ¼
Xmw

i¼�mw

Xmw

j¼�mw

Hf ðxþ i; yþ jÞwcði; jÞÞwhb þ P̂f ðx; yÞwpb;

ð4Þ

with surround radius mw, where wc denotes a convolution

mask given by

wc ¼
0:125 0:25 0:125

0:25 0 0:25

0:125 0:25 0:125

2
4

3
5; ð5Þ

based on the neurophysiological achievements [52, 53] and

empirical experience [20, 36, 54].

Remark 2 As related to Fig. 2c, the B layer generates nc-

9 nr visual excitations to form an image given in Fig. 3,

relying upon the H layer and Eq. (4). Figure indicates that

the object’s motion edge becomes clearer and some clutters

in Fig. 2c can be filtered out.

3) S and G layers

Neurophysiological studies have revealed that starburst

amacrine cells as inhibitory inter-neurons play an impor-

tant role in forming the visual perception of directional

selectivity. More precisely, such cells gather signals from

the bipolar cells and passes their directional inhibition

signals to the ganglion cells in the null directions but not in

the preferred direction by means of their major synapses

[2, 44]. Analogously, the fourth and fifth layers of L-DSNN

are the S and G layers, respectively, each of which is

arranged in a nc 9 nr matrix form. Each cell in the S layer

receives the membrane potential of its retinotopic coun-

terpart in the B layer, and generates its left inhibition

through

46           47           48       49
(a)

Motion edge

Noises

(b) (c)

Fig. 2 Illustrative example on

the P layer

Fig. 3 Illustrative image frame acquired by the B layer
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IL
f ðx; yÞ ¼

Xninh

i¼�ninh

Xninh

j¼�ninh

Bf�1ðxþ i; yþ jÞ

�
Xninh

i¼1

Bf�1ðxþ i; yÞwnðiÞ; ð6Þ

where the superscript L denotes the L neuron; ninh is the

inhibition radius; wn(i) is the local inhibition weight which

controls the opposite side neighboring inhibition strength

given by

wnðiÞ ¼ ð2ninh þ 1Þ2wI ; ð7Þ

with membrane potential constant wI. Then, each cell in the

S layer outputs its inhibition intensity [35] through

ÎL
f ðx; yÞ ¼

IL
f ðx; yÞ; if IL

f ðx; yÞ[ 0;
0; else:

�
ð8Þ

Additionally, as related to the mammalian’s neuro-

physiological achievement which the intensities of excita-

tion and inhibition from bipolar and starburst amacrine

cells need to pass to ganglion cells [2, 44], each cell in the

G layer collects two types of visual signals of the above B

and S layers. One is the output excitation from the

retinotopic counterpart in the B layer, and the other is the

gathered inhibition spread by the retinotopic counterpart’s

neighboring cells in the S layer. The collected visual sig-

nals are integrated by

GL
f ðx; yÞ ¼ Bf ðx; yÞ � ÎL

f ðx; yÞwI ; ð9Þ

where GL
f ðx; yÞ is the integrated excitation of cell (x, y) in

the G layer; wI is the global inhibition weight which con-

trols the whole inhibition strength. Subsequently, only

those cells whose membrane potentials exceed a threshold

value of Tg will output their activities. Therefore, if the

membrane potential of a cell in the G layer is smaller than

Tg, its output is set as 0, and remains unchanged otherwise.

The output of each cell in the G layer is computed by

ĜL
f ðx; yÞ ¼

GL
f ðx; yÞ; if GL

f ðx; yÞ� Tg;
0; else:

�
ð10Þ

Remark 3 The S and G layers in L-DSNN are utilized to

extract the directional visual cues of a moving object.

Figure 4a, b presents the outputted inhibitions and excita-

tions of cells in the S and G layers, i.e., those excitations at

frame 49, respectively. The directional inhibitions from the

S layer are allocated to the cells in the G layer in the null

directions but not in its preferred direction.

4) Neuron L

The output membrane potentials of all cells in the G layer

are gathered to the L neuron. The strength of the converged

excitation is computed [35] by

SUML
f ¼

Xnc
x¼1

Xnr
y¼1

absðĜL
f ðx; yÞÞ: ð11Þ

Then, the acquired excitation is given by

EL
f ¼ 2 � 1 þ e�

SUML
f

nrnc

� ��1

�1; ð12Þ

where EL
f is the output excitation of the neuron L, and it

changes within 0 and 1, due to SUML
f � 0.

5) Other directional selective neural networks

Besides the above L-DSNN, DRPNN includes seven sub-

networks related to the corresponding neurons, e.g., R-

DSNN, LU-DSNN, etc. These DSNNs have the same

designs as those in the L-DSNN except their directional

inhibition designs in their G layers. Here, we only take LU-

DSNN for example to illustrate their inhibition gathering

designs. The gathered inhibition strength of each cell (x, y)

in the G layer is defined by

ILU
f ðx; yÞ ¼

Xninh

i¼�ninh

Xninh

j¼�ninh

Bf�1ðxþ i; yþ jÞ

�
Xninh

j¼1; i¼j

Bf�1ðxþ i; yþ jÞwnði; jÞ: ð13Þ

6) Depth perception neuron—DP neuron

The DP neuron corresponds to the depth perception neural

network used for capturing the approaching/receding cues

of a moving object in depth motion. The DP neuron and the

eight directional selective neurons share the same neural

layers (i.e., P, H and B layers) of the presynaptic network

in processing visual signals, as shown in Fig. 1 (top). It

gathers the output excitations of all cells in the B layer, and

gathers their excitations by [35]

SUMDP
f ¼

Xnc
x¼1

Xnr
y¼1

absðBf ðx; yÞÞ: ð14Þ

After that, the DP neuron’s output is decided by

EDP
f ¼ 2 � 1 þ e�

SUMDP
f

nrnc

� ��1

�1; ð15Þ

where EDP
f is the output excitation of the DP neuron at

frame f.

Fig. 4 The outputted frames: a the S layer; b the G layer
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Remark 4 In order to demonstrate the functionality of the

DP neuron in capturing depth motion cues, a video

sequence is chosen to illustrate how a ball approaches the

video camera. Four of all the video frames, presented by

Fig. 5a are picked up to represent such an approaching

motion pattern. After the video frames are orderly pro-

cessed by Eqs. (1)–(5), (14) and (15), the DP neuron

generates an output curve given in Fig. 5b. We note that

the output excitation of the DP neuron will become large

when the ball approaches the camera increasingly. This

indicates that the DP neuron can correctly perceive the

depth motion cues caused by the approaching ball, and thus

possesses the perception feature of depth motion [34, 55].

3.2 Postsynaptic network

The postsynaptic network receives the extracted visual

motion cues from the above presynaptic network for fur-

ther processing. As shown in Fig. 1 (bottom), it consists of

a neuropil layer and a functional neuron, i.e., the direction

column and DRS neuron.

1) Direction column

Inspired by a neurophysiological finding that the mam-

malian cerebral cortex includes visual neurons with

respective motion preference axes and exists in the form of

direction column [56, 57], the above-mentioned eight

directional selective neurons form a direction column.

According to the ranked order of the neurons, the excita-

tions of the neurons are represented by the following

expression,

Wf ¼ ðELU
f ;EL

f ;E
LD
f ;ED

f ;E
RD
f ;ER

f ;E
RU
f ;EU

f Þ: ð16Þ

A spiking mechanism is utilized to determine the values

of elements in wf. More precisely, an internal spike rf(i)
occurs inside this neuron i with i [ {LU,L,…,RU,R}, that is

jf ðiÞ ¼
1; if Wf ðiÞ� Te ^Wf ðiÞ[ 0;
0; else;

�
ð17Þ

where Te ¼ maxfWf ðiÞ; 1� i� 8g: If ns successive spikes

occur, the output excitation of the neuron i is computed by

Ŵf ðiÞ ¼
ð�1ÞðQuotientði;kdÞþ1Þ � EDP

f ; if
Pf
m¼f is

jmðiÞ� ns;

0; else;

8<
:

ð18Þ

with quotient function Quotient(.,.) and constant divisor kd,
where f is denotes the first frame of the time period when

continuous spikes are occurring inside the directional

selective neuron i; the threshold ns is defined by

ns ¼ max
Xf

m¼f is

jmðiÞ; 0� i� 8

8<
:

9=
;: ð19Þ

As the processing mechanism was described above, all

elements in the output excitation vector Ŵf are zero if the

object keeps static, and conversely at least one element will

be larger than zero.

Remark 4 With the unique network structure of the

direction column, the current motion direction of a moving

object can always be detected by the eight neurons. Fig-

ure 6 exhibits the excitation curves of the neurons in terms

of the video sequence in Remark 1. We notice that the LU,

L and LD neurons become excitatory, since their excitation

curves beyond those of the other neurons. This is in

accordance with the fact that the object moves on the left

direction.

2) Depth rotation sensitive neuron—DRS neuron

The outputs of the above eight neurons in the direction

column are converged to the DRS neuron, by which the

strength of the membrane potential of it at frame f is

computed by

EDRS
f ¼

X8

i¼1

Ŵf ðiÞ; ð20Þ

After that, one such neuron produces its membrane

potential taken as the output of DRPNN.
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Fig. 5 Illustrative example on

depth motion perception

Neural Computing and Applications (2021) 33:10351–10370 10357

123



4 Computational complexity

Let N be the total of pixels of each inputted image frame

with N = nc 9 nr. Within an iterative cycle, DRPNN exe-

cutes 3N operations in the P layer, while the H and B layers

involve in 21 arithmetic operations. The S layer only

enforces N assignment operations. The G layer needs M1

times to extract motion cues in the eight translational

directions with M1 ¼ ð32n2
inh þ 40ninh þ 72ÞN. Addition-

ally, the eight directional selective neurons are required to

run 16(N ? 3) arithmetic operations, while the DP neuron

executes 2N ? 7 operations. Furthermore, in the direction

column there needs to operate M2 operations with

M2 ¼ 8ðf � f is Þ þ 68. Finally, the DRS neuron enforces 7

addition/ subtraction operations. Summarily, the total of

DRPNN’s executions for a loop is decided by

Sum ¼ ð32n2
inh þ 40ninh þ 94ÞN þ 8ðf � f is Þ þ 151: ð21Þ

Since f - fs takes small values, DRPNN’s computa-

tional complexity in the worst case is given by

O ¼ Oð32n2
inh þ 40ninh þ 94ÞNÞ: ð22Þ

Equation (22) shows that the image resolution N and the

inhibition radius ninh influence DRPNN’s computational

efficiency. Therefore, it will be beneficial to reduce the

input video frame size and take a rational inhibition radius

value in the G layer.

5 Experimental study

In the study of the DRS neurons in macaque’s cerebral

cortex, it was found that these visual neurons can perceive

the depth rotation in the field of view [7, 9, 11, 12].

Therefore, we use several sets of video sequences to ana-

lyze the performance of DRPNN. More specifically, in

order to check whether DRPNN can effectively and

robustly perceive the spatio-temporal energy change of

depth rotation and also whether its output curve is a sinu-

soidal curve or not, several real scenarios, which reflect the

specific depth rotation of a moving object, are firstly set to

sample video sequences; secondly, DRPNN is sufficiently

verified, which involves depth rotation on the horizontal

and non-horizontal planes; finally, it is compared by three

recent motion perception neural networks. The architecture

of the experiment flowchart is given in Fig. 7.

5.1 Experimental environment

All experiments are executed on a Microsoft Windows 10

computer with CPU/2.66G and RAM/4G by means of

VC?? platform. Thirty-four video sequences are taken to

examine the performance of DRPNN. Each video sequence

is recorded at a frame rate of 30fps, and later separated into

8-bit grayscale images with size 140 9 80 per frame.

The parameter settings of DRPNN are given in Table 1.

nc and nr are set as 140 and 80, respectively, since cells in

the P layer correspond to the pixels in the input image. The

potential constant wI is set as 255, based on the maximum

value of the pixel in the 8-bit grayscale image. The pro-

portion weights whb and wpb are defined as 0.33 and 0.67,

respectively, which bases on the visual information inte-

gration metaphor in the mammalian’s retina [51, 52]. mw,

wI, ninh, and Tg take 1, 1.7, 4 and 12, respectively, which

depends on the previous experiments [10, 20, 36, 37, 54].

5.2 Depth rotation perception on the horizontal
plane

In the study of DRS neurons in MSTd, it was found that

such neurons can well respond to depth rotation on the

horizontal plane [7, 9, 11, 12]. Therefore, from the angle of

computer simulation we test whether DRPNN can simulate

one such property by means of a set of video sequences

which represent the horizontal depth rotation of a rigid

object. More precisely, when the object is in depth rotation,

there are two types of projection shapes in the retina, i.e.,

non-deformation and deformation. Hereby, two regular ball

and rectangle are used to generate four video sequences

used for detecting whether DRPNN can well respond to

objects’ depth rotation. The schematics of four typical

depth rotation patterns on the horizontal plane are shown in

Fig. 8.

In terms of a monocular video camera, we firstly record

two video sequences produced by a regular black ball

(40 mm in diameter) that rotates around a fixed rotation

center on the horizontal plane. Similarly, we also record

two video sequences generated by a regular black rectangle

(80 mm in length and 35 mm in width) that rotates around

one of its fixed edges on the horizontal plane. In each video

sequence, the object is placed in the central region of the

field of view and rotates at a constant angular velocity (see

Fig. 9). Depending on the four groups of video sequences,

0 10 20 30 40 50 60 70 80
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

frames

ex
ci
ta
tio

n
LU
L
LD
D
RD
R
RU
U

left moving

Fig. 6 Excitation curves acquired by the neurons
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we verify whether DRPNN can effectively perceive the

motion change of an object in depth rotation and whether

its output excitation presents a sinusoidal curve or not.

In Fig. 9a, a black ball is at the leftmost position of the

rotation trajectory and keeps stationary from frame 1 to

frame 31, and later it rotates counterclockwise one circle at

an angular velocity (6.5 rad/s) on the horizontal plane from

frame 32 to frame 60; finally, it remains stationary from

frame 61 to frame 88. In Fig. 9b, the black ball is at the

rightmost position of the rotation trajectory and then holds

stationary from frame 1 to frame 33; subsequently, it

rotates clockwise one circle at an angular velocity (6.5 rad/

s) on the horizontal plane from frame 34 to frame 61;

finally, it holds stationary from frame 62 to the end. Sim-

ilarly, in Fig. 9c, d, the depth rotation pattern of a rectangle

is similar to that of the ball shown in Fig. 9a or b except

that the angular velocity is 8.56 rad/s. The statistical

results, acquired by DRPNN are displayed in Table 2, and

meanwhile Fig. 10 presents DRPNN’s output curves as

related to Fig. 9.

By Fig. 10 and Table 2, when an object is in depth

rotation, DRPNN can be touched to respond to the spatio-

temporal energy changes occurring in the field of view and

outputs its excitation. However, its output curve is some-

what different from a standard sinusoidal one in this test. In

other words, (1) the left and right sub-parts of it are

asymmetry; (2) the absolute values of the up and down

peaks of the curve are not equal; and (3) there are some

perturbations presented in the peaks. The main reason is

because depth rotation easily causes motion parallax.

Herein, four conclusions can be drawn: (1) DRPNN can

effectively perceive the depth rotation of a moving object

on the horizontal plane, regardless of the object’s shape;

(2) the spatio-temporal energy change, caused by depth

rotation can be effectively captured by DRPNN; and (3) the

membrane potential curve, outputted by DRPNN presents a

quasi-sinusoidal curve which is compatible with the

hypothesis suggested by Johansson et al. [29] in projective

geometry.

5.3 Depth rotation perception on the non-
horizontal plane

This section detects whether DRPNN can perceive the

change of spatio-temporal energy if depth rotation takes

place on the non-horizontal plane [9, 11, 12]. Herein, a

monocular video camera records six video sequences

which arise from the depth rotation of a ball on the dif-

ferent non-horizontal planes. Three typical non-horizontal

planes, i.e., the left diagonal, the sagittal, and the right

diagonal planes, are employed to produce video sequences.

The schematics of depth rotation on the three typical non-

horizontal planes are shown in Fig. 11 above.

As related to Fig. 11, Fig. 12 presents six video

sequences that depict different kinds of depth rotation

patterns of a ball. In Fig. 12, the depth rotation patterns of

the ball are similar to that of the above depth rotation on

the horizontal plane test. The experimental results can be

known by Fig. 13.

Figure 13 indicates that in the case of non-horizontal

depth rotation, DRPNN can also perceive the spatio-tem-

poral energy change of depth rotation of the object. Par-

ticularly, the output curves of DRPNN are also quasi-

sinusoidal, and thus DRPNN can simulate the property of

which the DRP neurons can perceive the depth rotation of

an object on a non-horizontal plane [9, 11, 12].

DRPNN

Horizontal 
plane test

Non-
horizontal 
plane test

Intrinsic 
attribute 

test

Comparative 
analysis

Sample 
video 

sequences

Sinusoidal wave
Input visual 

stimuli
Output 

excitation 

Depth rotation in 
different real scenarios

Fig. 7 Schematic illustration on

the architecture of the

experimental study

Table 1 Parameter settings of DRPNN

Name Value Name Value

Signal threshold Trp 50 Potential constant wI 255

Surround radius mw 1 Inhibition weight wI 1.7

Proportion weight whb 0.33 Signal threshold Tg 12

Proportion weight wpb 0.67 Resolution nc 9 nr 140 9 80

Inhibition radius ninh 4 Constant divisor kd 4
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5.4 DRPNN’s intrinsic property

5.4.1 Case I: Position invariance test

Four video sequences in Fig. 14 are sampled based on the

scenarios of horizontal depth rotation for a ball. Each of

them is gotten on a specific non-central region of the field

of view (i.e., top-left, bottom-left, top-right, and bottom-

right); the ball with angular velocity 6.49 rad/s makes

depth rotation, while its depth rotation pattern is similar to

that of the ball shown in Fig. 9a. As related to the video

sequences in Fig. 14, DRPNN is executed on each video

sequence. Its output curves are displayed in Fig. 15.

The curves show that DRPNN can correctly perceive the

motion change of depth rotation while outputting quasi-

sinusoidal curves, even if the current depth rotation occurs

Y

object

Z

X

the sight axis of 
video camera

•

rotation axis
Y

object

Z

X

the sight axis of 
video camera

•

rotation axis

(a) (b)

Y
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Z

X

the sight axis of 
video camera

•

rotation axis
Y

object

Z

X

the sight axis of 
video camera

•

rotation axis

(c)         (d)

Fig. 8 Schematic examples of

four typical depth rotation

patterns on the horizontal plane.

The object rotates on the

horizontal plane (i.e., the X–

Z plane). The sight axis of the

video camera coincides with the

Z axis and is perpendicular to

the rotation axis of the object

(i.e., the Y axis). The red

direction line indicates the

rotation direction of the object:

a the ball is in counterclockwise

(ccw) depth rotation, b the ball

is in clockwise (cw) depth

rotation, c the rectangle is in

ccw depth rotation, and d the

rectangle is in cw depth rotation

31          35         39         43 33         37         41          45
(a)                                             (b)

31    34 37 40 35 39 42 45
(c)                                      (d)

Fig. 9 As related to Fig. 8, the example frames of depth rotation on

the horizontal plane are given here. Each video sequence is illustrated

only by picking up four frames; the frame number is indicated under

each image. a ccw depth rotating ball, b cw depth rotating ball, c ccw

depth rotating rectangle, and d cw depth rotating rectangle
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Table 2 Depth rotation perception region and experimental results gotten by DRPNN in the horizontal plane test

Video The total

number of

frames

Object

type

Rotating

plane of the

object

Rotation

direction

Practical depth

rotation region

(frames)

Angular

velocity

(rad/s)

DRPNN’s

perception

region (frames)

Perception

success rate

(%)

Perception

false rate

(%)

a 88 Ball Horizontal ccw 32–60 6.5 32–60 100 0

b 91 Ball Horizontal cw 34–61 6.5 34–61 100 0

c 79 Rectangle Horizontal ccw 31–52 8.56 31–52 100 0

d 83 Rectangle Horizontal cw 36–57 8.56 36–57 100 0
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Fig. 10 Output curves of DRPNN. The four subfigures are acquired by the above corresponding video sequences in Fig. 9
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Fig. 11 Schematic illustrations of depth rotation on the three typical non-horizontal planes. a ccw depth rotation on the left diagonal plane; b ccw

depth rotation on the sagittal plane; c ccw depth rotation on the right diagonal plane
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3 37 44         51          58
(a) (b)

35 42         49          56   33         40         47          54
(c) (d)

3

4 41 48 55

4 41 48 55 35 42 49 56
(e)                                          (f)

Fig. 12 Example frames based on the different rotating planes. Each

video sequence is illustrated only by picking up four frames; the

frame number is indicated under each image. a ccw depth rotation on

the left diagonal plane; b cw depth rotation on the left diagonal plane;

c ccw depth rotation on the sagittal plane; d cw depth rotation on the

sagittal plane; e ccw depth rotation on the right diagonal plane; f cw

depth rotation on the right diagonal plane

(a) (b) (c)

(d) (e) (f)

Fig. 13 Output curves of DRPNN. Each subgraph uniquely corresponds to the experimental result of the same identifier video sequence in

Fig. 12

3 323 37 41 45 36 40          44

37 41 45 49 32 36 40          44

(a) (b)

(c) (d)

Fig. 14 Sample frames with different scenarios. Each video sequence is represented with only four frames; the frame number is indicated under

each image. a top-left region, b bottom-left region, c top-right region, and d bottom-right region
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within different non-central regions of the field of view.

This is consistent with the property of DRP neurons,

namely they can make excitation wherever depth rotation

takes place [7, 11].

5.4.2 Case II: Sensitivity on rotation speed

We here examine how the output curve of DRPNN is

influenced by different rotation speeds. Here, six video

sequences, generated from the horizontal depth rotation of

a ball with different angular velocities are taken (see

Fig. 16). The depth rotation patterns in Fig. 16, orderly

with rotation angular velocities 1.81, 2.27, 3.55, 9.92,

20.93 and 47.1 rad/s, are similar to that in Fig. 9a.

Figure 17 displays the output excitation curves of

DRPNN, which hints that DRPNN can perceive the depth

rotation of the moving object. We also observe that, when

the rotation angular velocity of the rotating object is

smaller than or equal to 9.92 rad/s (see Fig. 17a–d), the

output curve of DRPNN is a quasi-sinusoidal curve.

However, when the rotation speed is equal to or larger than

20.93 rad/s, the output curve of DRPNN is not similar to a

quasi-sinusoidal curve. This shows that an appropriate

rotation speed can help DRPNN correctly perceive the

pattern of depth rotation.
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Fig. 15 Output curves of DRPNN. Each subgraph is acquired by DRPNN through the corresponding video sequence in Fig. 14
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Fig. 16 Example frames with different rotation angular velocities. Each video sequence is illustrated only by picking up four frames; the frame

number is indicated under each image
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5.4.3 Case III: Sensitivity on the starting point

In the case II, the starting point of the rotating object is at

the leftmost or rightmost position of the rotation trajectory,

and thus DRPNN can produce a quasi-sinusoidal excitation

curve when the object is in depth rotation. In order to

confirm that depth rotation may happen through other

starting points in its rotation trajectory, we use a set of

video sequences, arisen from the horizontal depth rotation

of a ball with different starting points to challenge DRPNN.

In these video sequences, the ball rotates counterclockwise

on the horizontal plane (i.e., the X–Z plane) with different

and specific starting points. The schematic illustration of

the test scenarios is given in Fig. 18.

As illustrated by Fig. 18, the first starting point (P1) is at

the leftmost position of the rotation trajectory of the ball.

Then, the horizontal deviation angle between the next

starting point (P2) and P1 increases 45�. Similarly, the

angle between the kth starting point (Pk) and P1 is k 9 45�
with 1\ k B 8. Hence, the eight test video sequences

acquired in Fig. 19 are used to formulate the process of

depth rotation of the ball in terms of the eight starting

points. In the video sequence of Fig. 19a with a total of 112

frames, the ball is located at the first starting point P1 and

keeps stationary from frame 1 to frame 30, after which it

rotates counterclockwise one circle on the horizontal plane

at an angular velocity 3.55 rad/s from frame 31 to frame

83, and finally it remains stationary from frame 84 to the

end. In the video sequences displayed in Fig. 19b–h, the

motion patterns of the ball are similar to that presented in

Fig. 19a.

As related to the video sequences shown in Fig. 19,

Fig. 20 displays the output curves of DRPNN. By Fig. 20a,

DRPNN can perceive the motion change of depth rotation

of the ball, and its output curve is a quasi-sinusoidal curve.

However, with the change of the starting point of depth

rotation, the phase shifts of its output waveform will take

place (see Fig. 20b–h). These test results indicate that the

starting point of depth rotation can influence the phase of

the output waveform perceived by DRPNN. The output

curve, however, is still quasi-sinusoidal.

5.4.4 Case IV: Sight axis deviation test

In the above test, the sight axis of the video camera

overlaps the rotating plane of the object, in which the

camera is perpendicular to the rotation axis. Herein, we

examine how the sight axis deviation influences the output

waveform of DRPNN. More precisely, we test how

DRPNN responds to the depth rotation of an object in the

case where the sight axis of the video camera deviates from

the rotating plane of the object. Here, take horizontal ccw
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Fig. 17 Output curves of DRPNN. Each subgraph is acquired by DRPNN through the corresponding video sequence in Fig. 16
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Fig. 18 Schematic illustration based on different starting points
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rotation for example to illustrate the schematic of the sight

axis deviation by Fig. 21.

At the begin of sampling a video sequence, the camera’s

sight axis coincides with the Z axis. Then, the sagittal

deviation angle between the axis and the Z axis increases

15� step by step till that the axis approaches the Y axis.

When the axis deviation reaches over 75�, we turn it into

85� for the final video sequence. The acquired video

30         37         44         51             30 37          44         51
(a)  (b)

30 37         44         51             30 37          44         51
(c) (d)

30          37         44 51             30 37          44         51
(e)            (f)

30          37         44         51             30 37          44         51
(g)                               (h)

Fig. 19 Example frames of depth rotation with different starting

points. Each video sequence is illustrated only by picking up four

frames; the frame number is indicated under each image. It should be

noted that in each video sequence, the first illustrative image (i.e.,

frame 30) represents the starting point of depth rotation of the ball
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Fig. 20 Output curves of DRPNN. Each subgraph is acquired by DRPNN through the corresponding video sequence in Fig. 19
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sequences are given in Fig. 22 below. In these video

sequences, the motion patterns of the object are similar to

that of the ball shown in Fig. 9a except that its rotation

angular velocity is 3.55 rad/s.

As associated to Fig. 22, the output curves of DRPNN

are plotted by Fig. 23. By these curves, we find that

DRPNN can perceive the rotational motion of the object.

When the sight axis deviation angle is small up to 30�, the

output curves of DRPNN are quasi-sinusoidal (Fig. 23a, b).

However, when the sight axis deviation angle increases

gradually, the output curve of DRPNN gradually changes

into a square waveform curve (Fig. 23c–e). When the sight

axis is almost parallel to the rotation axis of the ball, the

output curve is close to a square wave (Fig. 23f). This is

because that, when the sight axis deviates from the Z axis,

the projection of a rotating object changes from a swing

line to an ellipse, and the perceived depth rotation cues are

gradually reduced. In the extreme case where the sight axis

is perpendicular to the rotating plane of the rotating object,

the projection of the object will form a circle, which leads

to that the depth rotation pattern of the object fully dis-

appears in the field of view. All the test results indicate that

the spatio-temporal change of depth rotation is quasi-si-

nusoidal if the sight axis of the camera is only with small

perturbation.

5.5 Comparative analysis

As far as we know, there is no appropriate computational

model for depth rotation perception in the literature up to

date. Here, we can only take the three recent motion per-

ception neural networks to participate in comparative

analysis, i.e., Beardsley’s neural network [58], LGMD

model [55] and RMPNN [10]. To compare DRPNN with

the three mentioned neural networks, four depth rotation

patterns in Fig. 9 are employed, i.e., ccw, cw, ccw, and cw

depth rotation. More details can be found in Sect. 5.2. We

here emphasize that in Fig. 9a, b, the ball makes ccw and

cw depth motion from frame 32 to 60 and frame 34 to 61,

respectively; in Fig. 9c, d, so does the rectangle from frame

31 to 52 and from frame 36 to 57, respectively.

A. Beardsley’s neural network

Beardsley’s model is a conventional three-layer back-

propagation neural network. The input stimuli are the

motion patterns represented by idealized optic flow, while

the output layer includes sixteen MSTd units which prefer

different types of motion patterns. Its input optic flow,

caused by the depth rotation in each video sequence is

acquired by the Lucas-Kanade method. Afterward, the

Y

Z

X

the sight axis of 
video camera

•

rotation axis

θ

the sight axis deviation 
degrees of video camera: θ

Fig. 21 Schematic illustration of the sight axis deviation

34         40          46       52             32 38          44         50
(a)                   (b)

37 43 49 55 36 42 48 54
(c)   (d)

37         43          49         55    34         40          46         52
(e) (f)

Fig. 22 Example frames for the sight axis deviation under ccw rotation on the horizontal plane. Each video sequence is illustrated only by

picking up four frames; the frame number is indicated under each image
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output curves of the MSTd units are displayed in Fig. 24a–

d in terms of Fig. 9. By comparing Fig. 10 with Fig. 24a–

d, Beardsley’s neural network cannot respond to depth

rotation in the real scene test, as the training samples of the

network are required to be idealized [58] and the gained

weight matrices only suit to those idealized optic flow
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Fig. 23 Output curves of DRPNN. Each subgraph is acquired by DRPNN through the corresponding video sequence in Fig. 22
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Fig. 24 Output curves of the three compared neural networks: a–d Beardsley’s neural network, e–h LGMD model, and i–l RMPNN
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samples in virtual environments. Therefore, Beardsley’s

model fails to perceive depth rotation in real scenes.

B. LGMD model

LGMD mainly consists of four neural layers and one

neuron, in which input stimuli are the frames extracted

from video sequences. Based on the above four video

sequences in Fig. 9, LGMD generates four output excita-

tion curves as in Fig. 24e–h. Such curves can conclude that

LGMD cannot correctly detect the spatio-temporal energy

change of depth rotation. We here take the video sequence

in Fig. 9c for example to analyze the performance of

LGMD against depth rotation. The excitation curve in

Fig. 24c indicates that, when the ball rotates clockwise on

the horizontal plane, LGMD has no response with a long

time, but it can become excitatory and discharge membrane

potentials, as any depth rotation contains approaching

motion component [24, 28, 32]. Therefore, depth rotation

can also make LGMD keep excitatory when an object

approaches toward the video camera. In Fig. 9c, when the

rectangle passes through the two segments, i.e., P2 to P3,

and P8 to P1 (Fig. 18), it will trigger LGMD to generate

collision alarming, which illustrates that LGMD is effec-

tive for collision detection.

3 RMPNN

RMPNN includes two types of sub-networks. One is

ccwRMPNN which responds to the ccw rotational motion,

and the other is cwRMPNN which reacts to the cw rota-

tional motion. Its output is rotation sensitive neuron’s

preference to rotational motion on the fronto-parallel plane.

The output curves are shown in Fig. 24i–l, relying upon the

visual frame stimuli extracted from video sequences in

Fig. 9. The curves indicate that both ccwRMPNN and

cwRMPNN have no response to any depth rotation, as

RMPNN identifies its preferred motion patterns through

detecting the continuous change in the translational motion

direction on the fronto-parallel plane [10]. Particularly, the

left/right translational and approaching/receding motion

cues, generated by the depth rotation on the horizontal

plane cannot make RMPNN become excitatory. Therefore,

RMPNN could not respond to depth rotation in the field of

view.

Summarily, compared by DRPNN, the above three types

of motion perception neural networks exhibit their intrinsic

characteristics and also expose their defects in solving the

problem of depth rotation detection. Based on the above

comparative experiments, we can draw some conclusions:

(1) as a specially designed novel computational model,

DRPNN is suitable for detecting the spatio-temporal

energy change of depth rotation in real scenes; (2) Beard-

sley’s neural network is designed to recognize motion

patterns represented by idealized optic flow, while it is hard

when detecting the unknown patterns of depth rotation in

non-ideal scenes; (3) as a specific collision detection neural

network, LGMD can detect the approaching motion

included in depth rotation, whereas it fails to perceive the

spatio-temporal energy change of depth rotation; and (4)

even though RMPNN as a specific neural network for

rotational motion can recognize rotational motion patterns,

it cannot detect the depth rotation of an object.

5.6 Discussion

In the above sections, the presented DRPNN has been

sufficiently examined by several types of depth rotation

video sequences under various conditions. All of these

experiments have verified the reliable ability of DRPNN in

detecting depth rotation motion. The experimental results

indicated that the properties of DRPNN coincide with most

of the main functional properties of DRS neurons

[7, 9, 11, 12], e.g., depth rotation detection, motion direc-

tion selection, position invariance, sensitivity on rotation

speed and starting point. Also, DRPNN is compared with

the three state-of-the-art motion perception models, by

which the comparative results have demonstrated that

DRPNN is effective for depth rotation object detection.

Although DRPNN can simply simulate some properties

of visual information processing in biological vision sys-

tems, it cannot avoid two common defects in the field of

artificial visual neural network: (1) when an object is in

depth rotation at an extremely slow or fast rotation angular

velocity, the extraction of motion cues is difficult, and

hence DRPNN cannot correctly capture the motion char-

acteristics of the moving object, and (2) DRPNN can only

recognize the depth rotation of a moving object on some

certain planes including horizontal, left diagonal, sagittal,

and right diagonal planes, which means that it might not

work well to those on other rotating planes.

On the other hand, the hypothesis in projective geome-

try, proposed by Johansson et al.[29] holds the viewpoint

that, when a line segment is in depth rotation, the change of

its projected length is similar to a sinusoidal curve, which

has been confirmed by our experiments. Thus, DRPNN is

an alternative model for depth rotation object detection.

6 Conclusion

Although many computational models have been devel-

oped for motion pattern detection, it is still rare to study

how to detect the depth rotation pattern of an object. Thus,

this work aims to develop a novel depth rotation perception

neural network (DRPNN) in order to deal with the hard

problem of depth rotation perception in computer vision.

Since one such work reconciles with the related studies on

visual information processing in biological vision systems,
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it can bring some lights toward the building of artificial

vision systems which integrate visual neurophysiologic

findings with computer vision technologies for such motion

detection tasks as visual motion perception, visual motion

pattern recognition, intelligent video surveillance, autono-

mous robot and so on.

Inspired by the internal structure of the mammalian’s

retina and the functional properties of depth rotation sen-

sitive neurons in neurophysiology, DRPNN is suggested to

not only simulate the framework of hierarchical visual

information processing, but also detect the spatio-temporal

energy change of depth rotation of an object in the field of

view. Comprehensive experiments are used to examine

DRPNN’s performance characteristics. The experimental

results can draw three points: (1) DRPNN can recognize

the depth rotation motion pattern of an object, (2) DRPNN

is robust to the object’s rotating plane and motion position

in the field of view, and (3) DRPNN is sensitive to the

object’s rotation angular velocity and starting point in

rotation trajectory as well as the camera’s sight axis devi-

ation. All these intrinsic properties of DRPNN can simply

explain some functional properties of depth rotation sen-

sitive neurons in the posterior parietal association cortex of

primates. As the first bio-inspired computational model for

depth rotation perception, this research is a significant step

toward both intensively understanding visual information

processing mechanisms in biological vision systems and

probing into bio-inspired computational models for depth

rotation object detection. In the future, DRPNN can be

extended by integrating other bio-inspired visual neural

networks for complex visual detection tasks. It can be used

to construct an artificial vision system for engineering

applications, e.g., gear/propeller rotation fault monitoring.
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