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Abstract
Providing of energy is one of the most important issues for each country. Also, environmental issues due to fossil fuel

depletion are other serious concern of them. In this regard, moving toward energy sustainability is a constructive solution

for each country. This paper studies the short-term planning of generating units in renewable energy-based distribution

networks equipped with plug-in electric vehicles (PEVs). PEVs can cause problems for distributed energy sources in the

electrical grid, as well as power units inside the grid. So, to overcome this problem, an efficient stochastic programming

technique is designed to allow the control entity to control the charging behavior of PEVs for managing power units. In this

paper, to obtain the least total cost, a new method is suggested to decrease the reliability expenses. In other words, the

vehicle-2-grid (V2G) is applied to decrease the operating. On the other hand, a novel stochastic flow using the unscented

transform is suggested to improve the model of the severe uncertainty due to the wind power, photovoltaic (PV) and

charging/discharging power of PEVs. In this research work, a novel and efficient optimization algorithm called ‘h-modified

krill herd (h-MKH)’’ is used as an applicable technique to optimize the microgrid (MG) operation. This algorithm is useful

and has many advantages like the runaway from the local optima with fast converging in comparison with other methods.

Also, the satisfactory efficiency of the suggested randomized manner is validated on an MG connected to the main grid.
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1 Introduction

1.1 Motivation and aims

Due to the policies established by the governments all

around the world toward the sustainable energy, some new

concepts have been more and more used and developed in

the area of energy, such as microgrid (MG), RESs, PEVs,

distributed generation (DG), and electrical storage systems.

In this regard, DG units are interpreted as small-size gen-

erating units, generally close to customers, among which

renewable energy based ones are capturing more attention.

Providing of energy is one of the most important issues for

each country. Also, environmental issues due to fossil fuel

depletion are other serious concern of them. In this regard,

moving toward energy sustainability is a constructive

solution for each country [1]. It should be noted that a high

penetration of such technologies into power systems would

lead to serious problems in the secure and reliable energy

supply [1]. Several technologies are taken into considera-

tion distributed energy resources (DERs), among them fuel

cells (FCs), WTs, PV systems, diesel generators, micro-

turbines (MTs), combined heat and power (CHP) units, and

electrical storage systems such as batteries are the most

famous technologies [2]. It is noteworthy that MGs would

enable the network to take advantage of DGs, storage

systems, and electric vehicles through providing the

required infrastructure [3]. An MG is a LV distribution

network, including both DERs and active consumers which

can operate both in grid-connected or islanded mode [4].

Another element that is gaining more attention is EVs,

both EVs and PHEVs, as they emit less environmental

pollution [5]. By using such vehicles, the oil reserves

would be less consumed, and higher efficiencies can be

achieved together with enhanced energy security. PEVs

and PHEVs have the G2V and the V2G capabilities,

enabling them to act as mobile energy storage systems and

provide the system with different services, such as peak

shaving. They would also provide other ancillary services

such as frequency regulation, spinning reserve, and voltage

stability, besides the reactive power provision. These

capabilities have turned these vehicles into an appropriate

alternative to integrate intermittent RESs into power sys-

tems [6].

Different national and international organizations are

giving subsidies to motivate people to buy EVs. On the

contrary, it should be noted that a large penetration of such

vehicles and connecting them to the grid can adversely

impact the power system. The uncertainty would increase

in the presence of RESs and the connection of EVs to the

grid in large numbers would worsen the situation by

probably increasing the peak load demand [7].

1.2 Literature review

There are numerous research works thus far published

regarding the MGs energy management equipped with

EVs. In this respect, parking lots with charging facilities in

the context of MGs as active distribution networks would

facilitate this process and bring a good solution to this

problem [8]. A novel load management system has been

presented in ref. [9], taking into account EV aggregators

and numerous consumers in which the appliances load

management and the energy trade of EVs have been

applied. Once the system faces a shortfall in the energy

supply, the system would automatically deploy the avail-

able energy in the battery energy storage systems to

transact power with adjunct MGs or the main grid. Refer-

ence [10] studied FC-EVs in MGs. The joint energy and

reserve hourly based day-ahead planning of virtual power

plants (VPPs) has been investigated in ref. [11], where the

role and effect of the produced CO2 emission have been

discussed by assigning a penalty factor to the objective

function.

By adding EVs, the total load demand of the system

would vary, while it can provide the MGs with a unique

opportunity to track the RESs’ intermittent power genera-

tion. It should be considered that in the absence of

expensive fast charge facilities, the EV’s battery charging

would take too long which can cause long lines in parking

lots. In this regard, a linear framework has been presented

in ref. [12] for charging stations where a distributed control

technique has been used to plan the load demand of the

EVs. In addition, the optimal scheduling of EVs charging/

discharging can solve the problem of congestion in

charging stations and some major problems encountered by

the system operator. Such mentioned problems have been

addressed in ref. [13] by developing an efficient MILP

framework for energy management in charging stations

while applying the demand response programs (DRPs).

Reference [14] discussed a European project known as

V-Charge program which included advanced driver support

in urban zones like maneuvering, parking lots and charging

EVs. Particularly, the scheduling techniques to assign

vehicles to parking lots have been implemented both using

static and dynamic frameworks. The problem of car sharing

has been solved in ref. [15] using a discrete event simu-

lation method and unified modeling language (UML).

Several event-driven techniques have been so far pre-

sented for the integrated scheduling of MGs and parking

lots. In this respect, an event-driven optimization method

was used in [16] to discuss the feasibility of discharging of

EVs’ batteries to alleviate the peak demand over peak

times. Reference [17] considered parking lots for the EVs

using the model predictive control (MPC) similar to ref.
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[18], where it is targeted at seeking a trade-off between the

energy withdrawal cost minimization and error in tracking

a reference charging pattern. By investigating a similar

problem, the authors in [19] tried to plan energy resources

with respect to self-consumption maximization require-

ments and energy usage cost minimization in complicated

realizations. Reference [20] used a dual coordination

strategy to control a series of devices operating both in the

market and real-time. The coordinated charging scheduling

problem of EVs has been solved in ref. [21] by developing

a hierarchical event-driven multiagent model. By having

taken into account several parking lots, ref. [22] presented

a distributed dynamic framework for assigning a consid-

erable number of EVs. The problem of EV scheduling has

been proposed in [23] where several parking lots are

allocated to the network, supplied by either RESs or the

distribution system.

1.3 Contributions

This paper investigates the short-term planning of an MG

using the h-modified krill herd (h-MKH) method, where

the efficiency of the presented algorithm compared to other

methods has been verified through a comparison [24, 25].

In this paper, renewable-based networks provide a new

intelligent stochastic framework for optimizing the charg-

ing as well as the discharging scheduling. In this frame-

work, the V2G technology is used to supply a two-way

power transaction between the local distribution system

and PEVs. Also, this suggested network investigates vari-

ous types of power sources like MT, WT, PV, and FC. On

the other hand, one of the other important issues is the

determination of the favorable dispatch for energy units

since designing the charging and discharging of EVs for

optimizing the overall cost of operation are performed by

the MG central control (MGCC). Also, based on an

unscented transform, a novel stochastic framework is

designed to model the problem uncertainty. In fact, the

unscented transform accounted as a nonlinear superposition

attitude has demonstrated great efficiency in evaluations.

This method is able to predict the error model at the load

with one-hour resolution and the cost due to the local

broadcasting system, hourly PV production, and WT power

output. Also, the PEV’s behavior includes the destination

time in each trip, the number of EVs in each fleet and the

departure time.

In this research work, a novel framework based on an

algorithm called ‘‘krill herd’’ is designed for effectively

solving the problem. In fact, this algorithm provides a

novel optimization algorithm that is capable of mimicking

the behavior of krill animals to seek food [26, 27]. In this

paper, a novel version of this algorithm named h-MKH

algorithm is presented to enhance the searching capability

as well as the convergence rate of the KH algorithm. This

smart algorithm solves the problem by replacing the polar

coordinates with the Cartesian coordinates. On the other

hand, this algorithm uses a two-step correction manner to

promote the multifariousness of the population of the krill.

In addition, the h-MKH algorithm presented in this paper is

smarter than the original KH algorithm. Besides, this paper

investigates the efficiency of the presented technique by

implementing the framework on the ordinary renewable

energy based MG.

The other sections of the paper have been categorized as

follows: cost functions and the related constraints are

introduced in Sect. 2. Section 3 presents the point estima-

tion method (PEM). Section 4 represents optimization

algorithms. The simulation results are given in Sect. 5, and

finally, Sect. 6 represents conclusions.

2 Modeling of system structure

During the past two decades, the penetration level of PEVs

and PHEVs has been considerably increased and it will

reach 50% by the year 2050, mainly due to the develop-

ment in the digital industry. Such a penetration level,

together with the substantial installation of RESs and other

types of DGs, has led to severe complexity in the com-

munication systems of electrical networks and also in the

control and operation strategies. One critical factor in

enabling the best performance of MGs is the communica-

tion systems and their development [28]. As Fig. 1 depicts,

the network configurations, comprising the communication

system, different DERs and also the transactions between

different elements, have been taken into consideration in

this paper. It is noteworthy that EVs have captured atten-

tion due to their effectiveness in mitigating the environ-

mental concerns caused by the existing transportation

systems with mostly fossil fuel vehicles. Introducing MGs

to power systems have resulted in making the most of EV’s

capabilities when connected to the grid to absorb/inject

power from/to the system [29]. Such capabilities are known

as G2V and V2G capabilities, proving the electrical grid

with numerous advantages, such as peak shaving, fre-

quency regulation, reduced operating cost, and enhanced

power quality. Using these capabilities causes bidirectional

power flow in the system between the grid and PEVs,

which have bigger batteries compared to hybrid EVs [30].

Therefore, this study concentrates on the hourly planning

of PEVs and investigates an intelligent charging and dis-

charging design for PEVs. PEVs should have enough

energy before driving on the road. Thus, the EV systems

should be fully charged before the trip starts in the morn-

ing. Moreover, since EV batteries as energy storage play

the most significant role in the V2G technology, in the near

Neural Computing and Applications (2021) 33:10005–10020 10007

123



future, the traffic-based smart scheme will be a proper

solution to EVs’ charging and discharging planning.

2.1 Objective function

The problem formulation is to minimize the cost of the

network as follows [4, 5, 9–14]:

Min Cost ¼
XT

t¼1

ð
XNDG

k¼1

Ct
DG;kP

t
DG;k þ Ct

GridP
t
Grid þ Ct

ENS

�
XNCus

i¼1

LatiU
t
i þ ð

XNm

n¼1

Ut
m
Ct

m
Pt

m
þ Costt� ÞÞ

ð1Þ

where Eq. (1) demonstrates the cost of power produced by

DGs, the cost due to power bought from the upstream system,

the ENS cost, and the cost of PEVs, containing the charging

and discharging costs and the battery degradation cost due to

the V2G and G2V capabilities (Costdeg). In the expression

(1), the negative and positive signs of the variable Pt
v specify

the direction of the power flow, so that the negative sign

shows the power flow from the vehicle to the grid. Besides,

the positive sign shows the power flow from the grid to the

vehicle. It is noted that V2G technology has been employed

in this paper to utilize the EV’s capabilities to improve the

service quality in the system. In this respect, EVs would be

able to charge or discharge when they are parked and con-

nected to the grid. Such vehicles are taken into consideration

mobile storage systems, having the capability to play the

generator or load role in electric power networks. Thus, they

can contribute to enhancing and facilitating the resource

scheduling problem. Generally, the Wohler curve is used to

estimate this cost which is represented as (2) [30]:

NcðDODÞ ¼ a� DODb ð2Þ

where Nc is the number of battery’s discharge cycles. In

this regard, a and b, which are parameters are determined

based on the battery type.

2.2 Constraints

The optimization problem is subjected to the following

constraints [4, 5]:

Pt
DGi;min �Pt

DGi �Pt
DGi;max ð3Þ

where Eq. (3) shows the limitation of power generation by

DG unit.

Pt
i ¼

X

j

Vt
i

�� �� Vt
j

���
��� Yij
�� �� cosðhij þ dti � dtjÞ

Qt
i ¼

X

j

Vt
i

�� �� Vt
j

���
��� Yij
�� �� sinðhij þ dti � dtjÞ

8
>>><

>>>:

9
>>>=

>>>;
ð4Þ

where Eq. (4) indicates the relationships of the power flow,

including both active and reactive power. Vt
i is the voltage

angle of bus i at time slot t. dti represents the voltage angle
of bus i at time slot t. Yij and hij are the magnitude and

phase of admittance across node i and node j, respectively.

Vmin
i �Vt

i �Vmax
i ð5Þ

where Eq. (5) states the voltage magnitude constraint at the

system buses. Vmin
i and Vmax

i represent the voltage mag-

nitude of minimum and maximum, respectively.

Pt
sub

�� ���Pmax
sub ð6Þ

Equation (6) states the upper limit constraint of power

flow transacted with the main grid.

Fig. 1 The idea of V2G in the

operation of PEVs
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Stij � Smax
ij ð7Þ

Equation (7) relates to the maximum power flow con-

straint because of the thermal limit of the line.

Ut
c;m þ Ut

d;m þ Ut
i;m ¼ Ut

m ð8Þ

Also, Eq. (8) specifies the charging/discharging/idle

modes of fleet v with a one-hour time resolution. Moreover,

the limitation on the charging power is assigned to the

model as (9).

Ut
c;mP

min
c;m �Pt

c;m �Ut
c;mP

max
c;m ð9Þ

where the upper and lower bounds of the charging rate of

the battery are specified by Pmax
c;v and Pmin

c;v , respectively.

3 Unscented transform (UT)

One of the most important members of the group of

approximation approaches is the unscented transform

method. This method uses some of focus points to substi-

tute the probability distribution of the uncertainties. Fur-

thermore, the mentioned method has many features, such

as the capability to handle the uncertainty of correlation,

low computational load, precise modeling, and simple

scheme. This method is used to characterize the uncertainty

of nonlinear correlated alterations. The unscented trans-

form method is the most complicated; so, in this regard, it

needs that the load flow equations be better understood.

Also, these equations as a formula of nonlinear mathe-

matical are assumed as y = f(X); where y shows the vector

of outputs and the nonlinear function is expressed by f.

Moreover, X shows the vector of inputs, including m

unknown parameters with an average value m as well as

covariance Pxx(m 9 m matrix). In Pxx the symmetric ele-

ments show the average values of the uncertain inputs,

while non-symmetric ones between the two uncertain

parameters are correlations. In fact, with the total number

of unknown parameters equal to m, the presented technique

can solve the difficulty with 2 m ? 1 times for modeling

the uncertainty [4, 31].

v0 ¼ l ð10Þ

vk ¼ lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

1�W0

r� �

k

; k ¼ 1; 2; ::::::m ð11Þ

vk ¼ l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

1�W0

r� �

k

; k ¼ 1; 2; ::::::m ð12Þ

where the term (
ffiffiffiffiffiffiffiffiffi

n
1�W0

p
) k shows the row Kth or column

matrix. On the other hand, W0 is the primary weighting of

the average value m.

4 Optimization algorithms

4.1 Genetic algorithm (GA)

GA is a recognized algorithm in which the roulette wheel

mechanism is used, starting with a primary population

including some chromosomes, that each shows a solution

of the studied problem, assessed by a fitness function [32].

This optimization algorithm has been applied to some

modern problems.

4.2 Particle swarm optimization (PSO)

PSO was introduced in 1995 [32], and it is categorized into

evolutionary optimization algorithms which utilizes the

pattern used in the movement of the swarm to find the food

in an area. This algorithm uses a given number of iterations

to search for the best value of the fitness function in a

predetermined search space. In this problem, every solution

parameter is taken into account a particle in the swarm

conscious of its own behavior as well as the behavior of the

common group. Besides, it is worth mentioning that every

particle follows two position values indicated by pbest and

the gbest known as the best solutions, obtained thus far

respectively by itself and the group. The weighted random

integer presented in the following is used to accelerate the

algorithm to the two abovementioned points, while after

each iteration, the velocity, as well as the position of par-

ticles, is amended.

4.3 Ant colony search (ACS) algorithm

Using the research carried out in 1992, it was revealed that

ants use a particular pheromone to put a sign in the path for

others, while as more ants pass by the path, the pheromone

increases. In this respect, the paths not used or used less

would not have a strong smell of pheromone. Thus, the

paths with more deposited pheromone would lead to more

food. It was observed that the ants are interested in finding

and choosing the shortest path to the food. The ACS

algorithm would implement the strategies mentioned above

to determine the best solution for a specific objective

function. The iterative application of transition rules pre-

sented in [32] is used by the ants to start their exploration

from an initial state to a final state.

4.4 Firefly algorithm (FA)

This algorithm is developed by simulating the flashing

patterns and behavior of fireflies introduced in 1995 [32].

The three principles of the FA are that fireflies are as fol-

lows: first, they engage with others disregarding the sex.
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Afterward, the fireflies which are less bright would be

absorbed by brighter fireflies, and in the case of unavail-

ability of any other brighter one, they randomly move.

Finally, the brightness of a firefly should be jointed to the

objective function of the problem.

4.5 h-MKH algorithm

This method was first presented in 2012 and categorized

into evolutionary algorithms [27]. Indeed, this algorithm is

capable of mimicking the treatment of krill animals to seek

food. This evolutionary algorithm has various special

potential mechanisms, taken from the GA and PSO and it

has many merits such as straightforward implementation,

low affiliation on the regulating parameters, quick con-

vergence, and it is effective to solve continuous and dis-

crete optimization problems. Also, this algorithm has an

automatic subdivision for solving several models of opti-

mization problems. By utilizing these abilities, this algo-

rithm is capable of handling any type of optimization

problems with non-convexities. Since the initialization of

the algorithm is by a random krill population; thus, the best

krill is saved after evaluating the fitness function worthi-

ness for all krill, and afterward, this algorithm will try to

ameliorate the krill population. The detailed procedure is

presented below [27, 33]:

Xkþ1
i ¼ Xk

r;iqV
k
r;iq

XNm

j¼1

ðuj � ljÞ ð13Þ

In this formula, Vk
r;i is the velocity of the ith krill which

is under the effect of three motions as below:

The first motion is the induction motion Vk
ind;i, the sec-

ond motion is foraging Vk
frg;i, and the third motion is the

random diffusion Vk
diff;i. The following formula shows these

stages:

Vk
r;i ¼ Vk

ind;i þ Vk
frg;i þ Vk

diff;i ð14Þ

Vt
i is a motion discussed comprehensively later. However,

to prevent any repetition, at first the theta prescription of

KH algorithm (h-MKH) is explained. As explained in the

Introduction, a novel version of the KH algorithm can be

designed instead of the Cartesian space for the optimal

search in the polar space. Actually, this idea is capable of

transforming the conceivable search area for every variable

to a finite span of = [-(p/2), ? (p/2)]. Hence, with faster

convergence, the search procedure could be carried out

easily. Also, to formulate the h-MKH, each krill Xi is

substituted by its phase vector hi. Also, the speed Vi is

substituted by hi which is its phase vector. Hence, moves of

induction Vk
ind;i, foraging Vk

frg;i and accidental diffusion

Vk
diff;i can be changed as Eq. (16). Thus, like Eqs. (13) and

(14), it can be rewritten as follows [33]:

hkþ1
i ¼ hki þ Dhkr;iq

XNm

j¼1

ðuj � ljÞ ð15Þ

Dhkr;i ¼ Dhkind;i þ Dhkfrg;i þ Dhkdiff;i ð16Þ

Now, the three motions of induction, foraging as well as

accidental diffusion will be described:

Induction motion The way the krill is influenced by its

neighboring krill and it is specified using the induction

motion as follows:

Dhkind:i ¼ aind;iDh
max
ind;i þ xDhk�1

ind;i ð17Þ

aind;i ¼
XNs

j¼1

fi � fj
fw � fb

� hi � hj
hi � hj
�� ��þ n

" #

þ 2 randð0Þ þ �½ �f bi h
b
i ð18Þ

where the value of the fitness function, which is normalized

and multiplied by the induction direction of the neighbor-

ing krill is determined using the first term of (18).

Accordingly, the negative and positive signs determine the

attractiveness or defensive state of the neighboring krill.

The following expression specifies if the krill hj is in the

neighboring of krill hi.

RVicinity ¼
1

5Np

XNq

j¼1

hi � hj
�� �� ð19Þ

where Np is the number of population members. Figure 2

depicts an example of the induced distance over every krill

[33].

Foraging motion The pattern of the movement of the

krill to search for food is modeled using the foraging

motion by taking into account the present and previous

positions of the food as (20).

Dhkfrg;i ¼ 0:02 2ð1� i

Iter
Þfi

PNs

i¼1
hi
fiPNs

i¼1
1
fi

þ f bi h
b
i

" #
þ xfrgDh

k�1
frg;i

ð20Þ

Based on this equation, first, the center of the food and

second the food attraction are determined.

Random diffusion A random procedure would be gone

through using the maximum diffusion speed and a direc-

tional random vector.

Dhkdiff;i ¼ m� xdiff ð21Þ

Therefore, the phase vector should be converted to its

Cartesian mold Xi in each time that the objective function

needs to be calculated according to the following equation

[27, 33]:
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Xk
i ¼

Xmax � Xmin

2
sin hki þ

Xmax þ Xmin

2
ð22Þ

This formula is used to calculate the equivalent Carte-

sian vector for hi as a necessary tool.

4.5.1 Modification method

A two-stage modification process is introduced in this

section, aimed at enhancing the search capability of the

original KH method, by raising the diversity of the popu-

lation of krill at every iteration. In this respect, the Levy

flight method is used in the first-stage modification to do a

local search around every krill [33, 34].

hkþi ¼ hki þ u� L e
0

vyðrÞ ð23Þ

L e
0

vyðCÞ	 s ¼ k�r; ð1\C\3Þ ð24Þ

The second stage of the modification process relates to

shifting the mean of the population so as to approach the

best krill in every iteration. Consequently, the mean value

is specified as Mnk and in the subsequently, the location of

each krill is updated as (25):

hkþ1
i ¼ hki þ round ð1þ randÞ ðhb �MnkÞ ð25Þ

where the above motion increases the convergence rate of

the suggested algorithm. Figure 3 shows the comprehen-

sive of the suggested h-MKH algorithm [27, 33].

4.5.2 Implementation of h-MKH algorithm

The presented h-MKH algorithm is implemented in this

paper using the steps below to tackle the day-ahead

resource scheduling problem of an MG connected to the

utility grid.

– Step1 Initializing the procedure by the data of the MG,

DGs, algorithm and PEVs.

– Step2 Unconstraining the original constrained problem

by applying penalty factors, so that every constraint is

satisfied.

– Step3 Producing the initial krill population. In this

respect, every krill is taken into account a vector

specifying the state and power output of the unit. The

initial phase and the corresponding incremental angle,

shown by hi and Dhi are calculated as follows:

hi;j ¼ w5ðhj;max � hj;minÞ þ hj;min; j¼1;2;:::;Nm

Dhi;j ¼ 0:1� hi;j; i ¼ 1; 2; :::;Nq
ð26Þ

As it has been mentioned previously, the phasor

component of the control vector X is denoted by h.
– Step4 Transforming from the phase angle space to the

Cartesian space.

Fig. 2 Distance over every krill

Fig. 3 The h-MKH method
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– Step5 Assessing the expected value of the cost while

taking consideration that m random variables would

cause solving the problem for 2 m times using the

2 m ? 1 PEM method. Accordingly, the mean and

standard deviation of the cost function would be

determined.

– Step6 Keeping the best krill, specified as the one

associated with the minimum cost.

– Step7 Continuing the procedure by using the modifica-

tion step for each krill individually. Consequently, the

population of krill would be updated.

– Step8 Reupdating the population of krill utilizing the

presented modification technique.

– Step9 Updating the location of every krill and saving

them.

– Step10 Checking the stop criterion to see if it is met. If

not, the algorithm proceeds to step 7.

5 Simulation results

This section discusses the efficiency of the suggested

stochastic programming technique in a small-scale distri-

bution system with 32 nodes. The investigated test system

is linked to the upstream network via a transformer. In

addition, for the possibility of the power exchange, the

local distribution system uses a transformer linked to the

main grid. The studied system voltage magnitude is

12.66 kV. Figure 4 illustrates the configuration of the

studied system. Indeed, Fig. 4 shows the test system,

including two MTs, two WTs, one FC, one PV solar unit as

well as two fleets of PEVs. It is also worth noting that WTs

are located at bus 10 and bus 14, the PV unit is located at

bus 19, the FC is located at bus 25, and MTs are located at

bus 29 and bus 32. Furthermore, two PEV fleets can use

bus 3 and bus 15 to access the area outside the studied

system. In this study, the assumption is that the three-phase

balanced network is a local distribution system; thus, the

analysis is performed only for the single-phase system. As

has been mentioned above, the studied distribution network

is coupled to the main grid through a transformer to have a

bidirectional power flow. The load demand of the network

is shown in Fig. 5.

In addition, Table 1 presents the detailed data of DG

units [5, 6]. The market price forecast is shown in Fig. 6.

The hourly forecasted power output of the WT and the PV

is shown in Fig. 7 [5, 6].

In this research, WT 2 is 1.2 times bigger than WT 1. In

this regard, two fleets of PEVs with various trip paths have

been investigated for modeling the remarkable influence of

PEVs in the studied test system. It is noteworthy that the

required energy is similar to that of coming back to the

beginning point for driving in one direction. The first travel

from home to work begins in the morning to outside the

distribution network. Therefore, the second trip of the fleet

starts from the office at night and from the outside of the

network to the network. But for the second fleet, a contrary

travel sample is studied. Actually, the first trip of the sec-

ond fleet starts from outside the system to the system and in

the morning. It means that this fleet in its second travel in

the evening will exit the system. Also, owing to the rela-

tively small size of the grid, the travel is considered outside

the network. Therefore, all trips can be checked using a

similar procedure. Table 2 shows the departure time and

the arrival time data of the two fleets [4].

Furthermore, the data related to the number of PEVs, the

lower and upper bounds of the capacity and also the

Fig. 4 The test MG
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Fig. 5 General load demand

Table 1 The data of DGs [5, 6]

Type PV WT1 FC WT2 MT2 MT1

Max power (kW) – – 1000 – 1500 1500

ST/ SD (€ct) – – 1.65 – 0.96 0.96

Bid (€ct/kwh) 2.584 1.07 0.29 1.07 0.45 0.45

Min power (kw) – – 80 – 100 100
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amount of charge and discharge of the fleet are shown in

Appendix A [4]. Indeed, various energy requirements are

defined for PEV fleets. In this system, it is assumed that the

yearly driving interval by the PEV fleet is about 12

thousand miles with an average distance of 32.88 miles

over each 24 h period. Moreover, the energy demand of

each PEV is about 9 kWh each day with a mean of

3.65 miles/kWh. Therefore, the required energy of each

fleet at each interval of the scheduling period is, respec-

tively, 7.65 and 9.00 kWh. The lithium-ion (Li-ion) battery

is utilized in this paper due to its popularity and efficiency.

Additionally, in this study, the parameters a and b of the

Wohler curve for Li-ion battery are considered 1331 and

-1.825, respectively. This problem is solved for a 24-h

period, and accordingly, the MGCC would be able to

decide to transact energy at each time with the main grid.

Since RESs need adequate support, the distribution net-

work must purchase the whole generated power by the WT

and PV units. Three different scenarios are defined in order

to compare the generating units and their performance to

decrease the network cost.
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Fig. 7 Forecasted power output

of the PV and the WT

Table 2 Travel of PEVs

Fleet # Departure Arrival

Time Bus Time Bus

First trip

1 06:00 3 07:00 Out

2 07:00 Out 08:00 15

Second trip

1 17:00 Out 18:00 3

2 18:00 15 19:00 Out

Table 3 Decisive comparison of

costs in scenario 1
Type GA ACS PSO FA KH h-MKH

WS(€ct) 50,403.40 50,245.63 50,290.82 50,227.79 50,212.36 50,180.48

Std(€ct) 15.4458 8.5336 9.3534 7.4364 5.9874 4.2383

Mean(€ct) 50,365.61 50,253.19 50,274.34 50,235.78 50,206.64 50,176.37

BS(€ct) 50,347.11 50,245.54 50,261.33 50,225.32 50,205.82 50,170.09
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The best solution of DGs in scenario 1
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In the first scenario, the scheduling is carried out, dis-

regarding PEVs, and all generating units are compelled to

be ON over all time intervals. In the second case, although

the dispatchable power units like the FC and MTs are able

to choose to turn OFF, still PEVs are neglected. Also, in the

third scenario, units can change their status, taking into

consideration the economic priorities, while PEVs are

present in the network. Table 3 includes a comprehensive

comparison made between the performance of the opti-

mization methods in terms of their best solution (BS),

worst solution (WS), average results (Mean), and standard

deviation (Std). The obtained simulation results related to

the first scenario are shown in Fig. 8a, b. Figure 8a, b

depict the results, derived from simulating the problem. In

this respect, the number of trails is 20 to fairly make the

comparison. Table 3 represents the results, derived by

utilizing the proposed h-MKH algorithm where this algo-

rithm shows a superior performance at a lower cost, com-

pared to other methods. Moreover, Fig. 8a, b include the

hourly dispatch of distributed energy resources for scenario

1. With respect to the considerably higher operating cost of

the MT, the FC has been employed more, as demonstrated

in Fig. 8c, which can be easily seen over off-peak hours

and initial time intervals. Figure 8d indicates the power

produced by each asset to meet the load demand. The share

of each DG in serving the load demand has been depicted

in Fig. 8d. As can be observed, MT1 and MT2, FC, have

been used the most due to their lower operating costs. Their

contributions are 16.1%, 22%, and 8%, respectively. On

the other hand, renewable generation units, i.e., WT1,

WT2, and the PV system would be used less, which is

because of their higher operating costs. In this respect, their

shares in serving the load demand are 9.1%, 11.2%, and

11.3%, respectively.

Table 4 shows the results obtained in scenario 2. In this

respect, the power units are permitted to change their status

during the day. Moreover, Table 4 shows that for all 20

existing trails, the proposed h-MKH is able to reach the

desired solution with higher stability. With respect to the

greater flexibility provided by the dispatchable generating

units, the total network cost in this scenario is lower than

the first scenario. Figure 9a, b show the hourly power

generation of DG units where it is preferred to turn off the

MT at off-peak hours. FC’s power output and electricity

market price in scenario 2 are shown in Fig. 9c. The con-

tribution of each DG unit in supplying the load demand has

been shown in Fig. 9d, where MT 1, MT 2, and FC have

the largest contributions.

The impacts of PEVs have been assessed in this case,

where two fleets of PEVs are taken into account. In this

respect, it is assumed that PEVs start their first trip, while

the state of the charge (SOC) is 100%. The system operator
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Table 4 Comparison of

different algorithms in scenario

2

Type GA ACS PSO FA KH h-MKH

WS(€ct) 49,918.55 49,894.36 49,961.47 49,889.45 49,881.74 49,873.65

Std(€ct) 16.3427 11.3652 12.1052 9.62523 8.36149 6.6515

Mean(€ct) 49,912.06 49,895.32 49,953.22 49,881.36 49,875.14 49,861.47

BS(€ct) 49,894.27 49,880.35 49,931.53 49,864.98 49,861.37 49,852.67
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(a) Best solution of DGs in scenario 2.

(b) Best solution of DGs in scenario 2.
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is supposed to consider the charging/discharging power of

the vehicles once they are about to arrive/depart the net-

work. Table 5, as well as Fig. 10a, b represent the results

obtained from simulating the third case. Although a con-

siderable number of PEVs can impose a huge load on the

system, the effective management of their charging/dis-

charging power can provide the system with a reduced

operating cost. It is worth mentioning that all these

advantages are provided thanks to the G2V and V2G

capabilities, making PEVs mobile storage systems that can

be effectively utilized by the MGCC when these vehicles

are parked. Figure 10b shows the obtained schedule of the

EVs besides the wind turbines and PVs. This figure shows

that these vehicles are charged over off-peak hours so that

they can provide the system with enough storage capacity

over peak hours. The hourly data of market price and FC’s

power output have been illustrated in Fig. 10c. This paper

studies three scenarios and it has been revealed that the last

scenario, i.e., scenario 3 with the operating cost, equal to

49,711.75 (€ct) is associated with the least operating cost

and the first scenario, i.e., scenario 1, is associated the

highest operating cost by 50,170.09 (€ct). It is noted that

costly DG units, like MT are used in the first scenario,

while the third scenario utilizes PEVs as mobile storage to

bring profit to the system when parked. Indeed, the DGs are

able to turn off or on. Furthermore, the critical role of PEVs

in the day-ahead scheduling can be observed from

Tables 3, 4 and 5 PEVs would help transmit energy

throughout the system disregarding the system’s con-

straints. This capability would also enable renewable

energies integration.

6 Conclusion

The paper studied the day-ahead scheduling problem in the

MGs equipped with renewable energy units and a consid-

erable presence of electric vehicles. The proposed opti-

mization framework was aimed at minimizing the total cost

of the system, including the energy not served costs. The

random load flow is based on the unscented transform to

model the uncertainty. As the obtained simulation results

showed, the suggested smart scheduling framework was

able to effectively use generating units and plug-in electric

vehicles. Moreover, it can reduce the total cost. By utiliz-

ing the capabilities of the PEVs, it is possible to alleviate

the total cost by energy transition from one section of the

system to another part disregarding the thermal constraints

(d) Percentage of participation of DGs

0

5

10

15

20

25

30

pe
rc

en
ta

ge
 (%

) 

Micro turbine1 Micro turbine2 Wind turbine1 Wind turbine2 Fuel cell Photovoltaic
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Table 5 Comparison of

different algorithms in scenario

3

Type GA ACS PSO FA KH h-MKH

WS(€ct) 49,861.47 49,790.36 49,819.44 49,768.38 49,737.91 49,724.47

Std(€ct) 204,752 13.6342 15.2275 9.2237 7.6584 6.8589

Mean(€ct) 49,843.57 49,801.22 49,814.68 49,770.73 49,745.64 49,717.65

BS(€ct) 49,824.36 49,765.34 49,792.88 49,744.89 49,727.36 49,711.75
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of the feeder for the load flow. This capability, besides the

power transaction with the main grid, would help find the

desired solution. Hence, although the effects of uncertainty

can increment the total system costs, exploiting such

capabilities can lead to the desired solution.

(a) Hourly DGs’ power generation in scenario 3.

(b) DGs’ power generation in scenario 3.
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Fig. 10 a Hourly DGs’ power

generation in scenario 3 b DGs’

power generation in scenario 3

c fuel cell generation and

electricity market price in
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Appendix

Data of the two fleets of PEVs.

Fleet # Capacity (kWh)

Min Max

1 263 1973

2 219 1644

Fleet # Charging/discharging rate (kW)

Min Max

1 7.3 496

2 7.3 292

Abbreviations PEVs: Plug-in electric vehicles; V2G: Vehicle-2-

grid; PV: Photovoltaic; h-MKH: h-modified krill herd; MG:

Microgrid; RES: Renewable energy sources; DG: Distributed

generation; DERs: Distributed energy resources; FCs: Fuel cells; MT:

Microturbines; LV: Low-voltage; EVs: Electric vehicles; VPPs:

Virtual power plants; MILP: Mixed-integer linear programming;

DRPs: Demand response programs; UML: Unified modeling

language; MPC: Model predictive control; MGCC: MG central

control; ST: Start-up; SD: Shut-down; ENS: Energy not supplied;

CDG,k: The price of energy, supplied by DG units at each hour;

CGrid: The price, relating to transacting energy with the utility grid at

each hour; CENS: The cost that should be tolerated as a result of load

curtailment at node i ($/kW); NDG: The total number of DGs, existing

in the network; NCus: Total number of customers with satisfied load

demand; La(i): The average load demand at node i; CostDG: The cost
of energy generation by DG units.; Pt

ðDG;kÞ: Power generation of DG

unit k at time interval t; Pt
v: The power charged/discharged by the

PEV fleet v at each time interval t; DoDi & DoDf: The initial
value of DOD and final value of DOD during a discharge cycle

respectively; VK
r;i: The velocity of the ith; Vk

ind i: Induction motion; hi:

Phase vector; Mnk: Mean value of the krill population; Np: The size

of population
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