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Abstract
The semi-supervised support vector machine (S3VM) for classification is introduced for dealing with quantities of unla-

beled data in the real world. Labeled data are utilized to train the algorithm and then were adapted to classify the unlabeled

data. However, this algorithm has several drawbacks, such as the non-smooth term of semi-supervised objective function

negatively affects the classification precision. Moreover, it is required to endure heavy burden in solving two quadratic

programming problems with inversion matrix operation. To cope with this problem, this article puts forward a novel class

of Bézier smooth semi-supervised support vector machines (BS4VMs), based on the approximation property of Bézier

function to the non-smooth term. Because of this approximation, a fast quasi-Newton method for solving BS4VMs can be

used to decrease the calculating time scale. This new kind of algorithm enhances the generalization and robustness of

S3VM for nonlinear case as well. Further, to show how the BS4VMs can be practically implemented, experiments on

synthetic, UCI dataset, USPS dataset, and large-scale NDC database are offered. The theoretical analysis and experiments

comparisons clearly confirm the superiority of BS4VMs in both classification accuracy and calculating time.

Keywords Machine learning � Semi-supervised classification � Support vector machine � Smooth technique �
Bézier function

1 Introduction

In the information age, mass production of information has

caused serious information overloaded. Facing this

dilemma, support vector machine (SVM), one kind of fast

information classification algorithm, becomes one effective

solution. As one kind of full-supervised statistical machine

learning, support vector machine (SVM) has get widely

application for its good performance in information clas-

sification. However, in order to achieve satisfactory clas-

sification standard, it is necessary to train the SVM with

quantities of labeled datasets. In fact, this condition cannot

be fully achieved as the acquisition of the labeled data is

usually difficult or the payment is much expensive. In

contrast, unlabeled data are abundant and easy to collect.

Furthermore, relatively few labeled datasets lead to a fre-

quent drawback, that is the over fitting to the training data

with a consequent loss of generality. Thus, to deal with this

problem, the semi-supervised support vector machine

(S3VM) learning method is proposed [1–3].

The semi-supervised support vector machine is the

method utilizing both the labeled and unlabeled data for

learning. The main goal of the S3VM is to employ the large

collection of unlabeled data together with a limited labeled

data to improve the classification accuracy. Because of its

elegant properties with unique global optimal solution and

avoiding the disaster of dimensionality, lots of scholars

have marched for this area and applied the S3VM to many

fields, such as text classification [4], the multi-class human
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action recognition [5, 6], biomedical science [7, 8], graph

reduction [9], image and video classification [10], and

applications in industry and business [11, 12].

However, the main drawback of S3VM is that the

objective function is usually non-smooth. It needs to

endure heavy burden in solving two quadratic program-

ming problems with inversion matrix operation. Also, fast

algorithm cannot be used, increasing the computing com-

plexity. Some researchers have proposed several advanced

methods to smooth the objection function. In 2005, the

replacement of the non-smooth term maxf0; 1� xj jg with

expð�3x2Þ is given and the low density separation LDS-

S3VM [3] was proposed by Chapelle and Zien. But the

approximation accuracy is not so high. In 2009, Liu et al.

showed the polynomial function [13]PðxÞ ¼ 1�x2

2
þ 1

8
ð1�

x2Þ2 þ 1
16
ð1� x2Þ3 þ 5

128
ð1� x2Þ4 þ 7

256
ð1� x2Þ5;

x 2 ½� 1
k ;

1
k�. However, the 10-order polynomial function is

too complex and has too many calculations. Later, Yang et.

al offered one new smoothing strategy of approximate

function qeðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ e
p

� xj j [14] based on robust dif-

ference of convex functions in 2013. This new smooth

method applied the DC optimization algorithms for solving

the S4VMs, and didn’t add new variables and constraints to

the corresponding S3VMs. It is a promising direction to

facilitate the research of S4VMs. Zhang et al. introduced

their cubic spline function [15] sðx; kÞ ¼ k2 xj j3
3

� kx2 � 1
3k þ

1; ð xj j � 1
kÞ; and quintic spline function [16] sðx; kÞ ¼

� k4 xj j5
5

þ 1
2

k3x4 � kx2 � 3
10k þ 1; ð xj j � 1

kÞ in 2015. How-

ever, the above smooth techniques are not so satisfied.

Motivated by the works of [3, 13–16], a new research

question is gradually arisen, whether there is any other

smooth technology, improving accuracy and decreasing

calculation scale. In this paper, a new class of Bézier

smooth functions is applied. Employing the smooth Bézier

function BnðxÞ to approximate the non-smooth term

maxf0; 1� tj jg, a novel class of Bézier smooth semi-su-

pervised support vector machines (BS4VMs) is derived.

The new programming possesses the following attractive

advantages: firstly, the fast gradient algorithm can be used

to solve the BS4VMs as the objective function becomes

smooth and differentiable. Much calculation time can be

saved. Secondly, a new class of smooth functions is pro-

posed. The optimal smooth function can be selected for

different scale datasets. Lastly and more importantly,

convergence analysis and experimental comparisons verify

that BS4VMs are superior to the given models in classifi-

cation capability and efficiency.

In order to make the expression more clear, the defini-

tion of each variable involved in equations is listed in

Table 1. For example, all vectors are column vectors, and

rf ðtÞ represents the gradient of the function.

The rest of this paper is organized as follows. The

preliminary background knowledge of S3VM will be

introduced in Sect. 2. Section 3 shows how the BS4VMs

can be derived. A fast quasi-Newton algorithm for solving

the programming will be followed in Sect. 4. Then the

nonlinear BS4VMs and the convergence analysis of the

model are listed in Sects. 5 and 6. The comparisons of the

proposed algorithm with other advanced methods based on

four kinds of datasets will be analyzed in Sect. 7. The

discussion and conclusion will be followed in the last

section.

2 Preliminary of semi-supervised support
vector machine

The purpose of S3VM for binary classification is to maxi-

mize the margin by using the labeled and unlabeled data.

Considering one programming, the training data contain

the l labeled points fðxi; yiÞgl
i¼1; yi ¼ �1 and the u unla-

beled dataset fxiglþu
i¼lþ1, where xi¼ ðxi

1; xi
2; :::; xi

mÞ 2 Rm:

For the linearly separable data, one optimal separating

hyperplane with the largest distance for the S3VM classifier

should be explored.

Let y,ðyl; ylþuÞ be a column vector, where

yl¼ ðy1;y2; :::; ylÞT is the known label, and

ylþu¼ ðylþ1;ylþ2; :::; ylþuÞT is the unknown label. The

Table 1 List of symbols

y The label of dataset

l The number of labeled data

u The number of unlabeled data

xi The input matrix of data

w The weight vector

b The bias term

n The vector of slack variables

C The penalty parameters for labeled data

C� The penalty parameters for unlabeled data

Lð�Þ The hinge loss function

Jð�Þ The quadratic unconstrained programming

Bnð�Þ The n-order of Bézier function

pi The Bézier interpolation point

/ð�Þ The Gaussian kernel function

v2F The Fredman statistic

CD The critical difference

r The gradient of the function

o The partial derivative of the function
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vector yn ¼ ½ylþ1; :::; ylþn� based on the largest margin is

the pursuing goal. For the linear condition, the S3VM can

be described as

JðwÞ¼min
1

2
wk k2þC

X

l

i¼1

ni þ C�
X

lþu

j¼lþ1

ni

s:t: yiðwTxi þ bÞ	 1� ni; i ¼ 1; :::; l

wTxj þ b
�

�

�

�	 1� ni; j ¼ l þ 1; :::; l þ u;

n ¼ fn1; n2; :::; nng	 0

ð1Þ

where C and C�; the penalty parameters for both labeled

and unlabeled data, are greater than zero. The program-

ming (1) can be changed into the unconstrained form of

JðwÞ¼ min
w;b2Rnþl

1

2
wk k2þC

X

l

i¼1

L2ðyiðwTxi þ bÞÞþC�
X

lþu

i¼lþ1

Lð wTxi þ b
�

�

�

�Þ

ð2Þ

in which LðtÞ is the hinge loss function and

LðtÞ ¼ maxð0; 1� tÞ[3].

3 Bézier smooth semi-supervised support
vector for classification

3.1 Background knowledge about the Bézier
function

Bézier curves were invented in 1968 by the French engi-

neer Pierre Bézier for the initial purpose of designing

automobile bodies [18]. For one series of interpolation

points P0;P1; � � �Pn�1;Pn that need to be fitted, the inter-

mediate points P1; � � �Pn�1 are used to specify the endpoint

tangent vectors. Hence the Bézier curve passes through P0

and Pn and approximates the other controlpoints, just like

Fig. 1. To accomplish this goal, some kinds of weighting

functions representing the influence of the control points at

a given point of the Bézier curve are required. Arbitrary

function satisfying the requirements is allowed, but in most

cases the Bernstein polynomial is employed. A Bézier

curve of degree n can be expressed as BðtÞ ¼
Pn

i¼0 Cn
i ðtÞPi; where Pi is the control point or anchor point.

Cn
i ðtÞ means the Bernstein polynomial given by

Cn
i ðtÞ¼

n

i

 !

ð1� tÞn�iti, in which i 2 f0; 1; :::; ng.

Many advantages for Bézier Curves have been noticed:

(1) They always passed through anchor points P0 and

Pn.

(2) They are always tangent to the lines of path P0 !
P1 and Pn�1 ! Pn.

(3) They always lie within the convex hull consisting of

the control points [19]. Owing to these good

performances, the Bézier curves have been widely

applied in computer graphic, such as technical

illustration programs, CAD programs, trajectory

guidance, and so forth [20–23].

For approximating the hinge loss function, the quadratic

parameter Bézier function can be expressed as

B2xðtÞ ¼ ð2t � 1Þ=k
B2yðtÞ ¼ ð�2t2 þ 2tÞ=k

�

in which

p0 ¼ ð� 1
k ; 0Þ; p1 ¼ ð0; 1kÞ; p2 ¼ ð1k ; 0Þ. Eliminating the

parameter t, y ¼ B2ðxÞ ¼ � 1
2k ðk2x2 � 1Þ will be given.

Similarly, the cubic parameter Bézier function

B3xðtÞ ¼ ð2t3 � 2t2 þ 2t � 1Þ=k

B3yðtÞ ¼ ð�3t2 þ 3tÞ=k

(

will be acquired by

interpolating four points p0; p1; p2; p3, in which p0 ¼
ð� 1

k ; 0Þ; p1 ¼ p2 ¼ ð0; 1kÞ; p3 ¼ ð1k ; 0Þ: From the general

formula BðtÞ ¼
Pn

i¼0 Cn
i ðtÞPi: the n-order Bézier function

y ¼ BnðxÞ will be acquired.

Theorem 1 Bézier curve Bn�1ðtÞ is n � 1-order smooth at

the points x ¼ � 1
k.

Proof The proof is based on mathematical induction.

(i) 8x 2 X;B2ðxÞ ¼ � 1
2
ðk2x2 � 1Þ satisfies the follow-

ing equalities at the points x ¼ � 1
k

B2ð�
1

k
Þ ¼ 0; B2ð

1

k
Þ ¼ 0;

B0
2ð�

1

k
Þ ¼ 1; B0

2ð
1

k
Þ ¼ �1:

8

>

<

>

:

ð3Þ

So, B2ðx; kÞ is one-order smooth.

(ii) B3ðxÞ satisfies the following equalities at the points

x ¼ � 1
k,

B3ð�
1

k
Þ ¼ 0; B3ð

1

k
Þ ¼ 0;

B0
3ð�

1

k
Þ ¼ 1; B0

3ð
1

k
Þ ¼ �1;

B00
3ð�

1

k
Þ ¼ 0; B00

3ð
1

k
Þ ¼ 0:

8

>

>

>

>

>

<

>

>

>

>

>

:

ð4Þ

Hence, B3ðxÞ is twice-order smooth.

Fig. 1 Schematic diagram of the Bézier interpolation function
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(iii) Let BP0P1:::Pn�1
denote the Bézier curve determined

by points P0;P1; :::;Pn�1. Based on

BðtÞ ¼ BP0���Pn�1
ðtÞ ¼ ð1� tÞBP0���Pn�2

ðtÞ þ tBP1���Pn�1
ðtÞ;

ð5Þ

according to the mathematical induction, Bn�1ðxÞ is n �
1 order smooth can be proved.

3.2 Bézier smooth semi-supervised support
vector for classification

From (2), the last term C�Plþu
i¼lþ1 Lð wTxi þ bj jÞ is non-

smooth and difficult to solve [4], making the formula (2)

become a difficult-solving mixed-integer quadratic pro-

gramming. Replacing this term with smooth function y ¼
BnðxÞ; a new class of Bézier smooth semi-supervised

support vector machines (BS4VMs) is derived, described in

formula (6)

min
w;b

uðw; bÞ ¼ min
1

2
w2 þ C

X

l

i¼1

L2ðyiðwTxi þ bÞÞ

þC�
X

lþu

i¼lþ1

BnðwTxi þ bÞ:
ð6Þ

In this paper, without loss of generality, 4-order Bézier

interpolation function y ¼ B4ðxÞ is taken into considera-

tion. The higher the order of Bézier function, the better the

approximation. The approximation comparison of different

smooth models can be seen in Fig. 2.

From Fig. 2, one can find that (1) the 4-order Bézier

function performs best among 3-order Bézier function,

exponent function, 10-order polynomial, the cubic spline

function, and quintic spline function in approximating the

hinge loss function. (2) 3-order Bézier function performs

almost the same with 10-order polynomial, while the cal-

culation complexity is much less than the latter.

4 The nonlinear kernel for BS4VM

For the nonlinear case, the kernel function kðxi; x jÞ ¼
/ðxiÞT/ðx jÞ can be applied to map the original data into the

high dimension Hilbert space. After this transforming, the

linear program will be arrived. Let / : Rm ! Rd d [mð Þ be
the mapping function of the formula (1). The nonlinear

kernel-based S3VM can be shown as

JðwÞ¼min
1

2
wk k2þC

X

l

i¼1

ni þ C�
X

lþu

j¼lþ1

ni

s:t: yiðwT/ðxiÞ þ bÞ	 1� ni; i ¼ 1; :::; l

wT/ðxjÞ þ b
�

�

�

�	 1� ni; j ¼ l þ 1; :::; l þ u:

n ¼ fn1; n2; :::; nng	 0

ð7Þ

In this paper, the Gaussian kernel kðxi; x jÞ ¼
expð� xi � x jk k22=2r2Þ is adopted and the kernel function

K ¼ kðxi; x jÞ is positive semi-definite matrix [17]. For

formula (2), the variable w will be replaced by

w ¼
Pm

i¼1 uiyixi, in which u 2 Rm. The nonlinear S3VM is

achieved.

min
u;b

uðu; bÞ ¼ min
1

2
u2 þ C

X

l

i¼1

L2ðyiðkðxi; xjÞuj þ bÞÞ

þ C�
X

lþu

i¼lþ1

Lð kðxi; xjÞuj þ b
�

�

�

�Þ:

ð8Þ

Applying the n-order Bézier smooth function, the non-

linear BS4VM model with kernel function is offered.

min
u;b

uðu; bÞ ¼ min
1

2
u2 þ C

X

l

i¼1

L2ðyiðkðxi; xjÞuj þ bÞÞ

þ C�
X

lþu

i¼lþ1

Bnðkðxi; xjÞuj þ bÞ:

ð9Þ

The objective function (9) is n � 1-order differentiable

for any arbitrary kernel.
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Fig. 2 Approximation comparison among the proposed models and

the Bézier model with k ¼ 1:
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5 One fast quasi-Newton method for solving
BS4VM

In this section, the sub-LBFGS algorithm will be employed

to solve semi-supervised problem (1) [2, 24, 25]. Differ-

entiate (2) with the method of subgradient, the following

will be given:

oJðwÞ ¼ w þ C
X

l

i¼1

biyixiþC�
X

lþn

i¼lþ1

biyixi; ð10Þ

where

bi :¼

1 if i 2 E;E :¼ fi : 1� yiw
Txi [ 0g;

w wherew 2 ð0; 1Þ; if i 2 M;M :¼ fi : 1� yiw
Txi ¼ 0g;

0 if i 2 W ;W :¼ fi : 1� yiw
Txi\0g;

8

>

>

<

>

>

:

E;M and W denote the sets of points which are in error,

on the margin and well-classified, respectively. For a given

direction p, it is required to find a subgradient g. Based on

formula (10), Eq. (11) will be given:

sup
g2oJðwtÞ

gTp ¼ sup
bi;i2Mt

ðw þ C
X

i2Mt

biyixiþC�
X

i2Mt

biyixiÞTp

¼wTp þ C
X

i2Mt

sup
bi2½0;1�

biyix
T
i p þ C�

X

i2Mt

sup
bi2½0;1�

biyix
T
i p:

ð11Þ

Now the S3VM algorithm with sub-LBFGS optimization

solving procedure can be offered (Algorithm 1).

In step 3 of Algorithm 1, a classifier is obtained by

firstly running BS4VM on the labeled examples alone.

Steps 5–17 show the loop iteration process when solving

the objective programming. Step 9 identifies pairs of

unlabeled examples with temporary positive and negative

labels such that switching these labels would decrease the

value of the objective function.

6 Convergence analysis of the Bézier
function and BS4VM

This section will show the approximation precision of

Bézier function to hinge loss function and the convergence

of BS4VM. In addition, the convergence condition holds in

the nonlinear BS4VM.

6.1 Approximation accuracy analysis of Bézier
function

Theorem 2 Let x 2 R;k [ 0;LðxÞ stand for the hinge loss

function, and B4ðx; kÞ be the Bézier function with five

interpolation points. There will be such results

0�B4ðx; kÞ� Lð xj j; kÞ ð12Þ

0� L2ð xj j; kÞ � B2
4ðx; kÞ� 15

64k2

Proof (i) It is obvious that Lð xj j; kÞ � B4ðx; kÞ¼0 holds

with xj j[ 1
k : For x 2 ½� 1

k ; 0Þ; Lð xj j; kÞ and B4ðx; kÞ are

monotonically increasing, and Lð xj j; kÞ � B4ðx; kÞ	
Lð �1

k

�

�

�

�; kÞ � B4ð�1
k ; kÞ¼0 is easy to obtain. For x 2 0; 1k

� �

;

Lð xj j; kÞ and B4ðx; kÞ are monotonically decreasing, and

there will be Lð xj j; kÞ � B4ðx; kÞ	 Lð 1
k

�

�

�

�; kÞ � B4ð1k ; kÞ¼0.

So 0�B4ðx; kÞ� Lð xj j; kÞ is achieved.
(ii) L2ð xj j; kÞ � B2

4ðx; kÞ¼0 holds with xj j[ 1
k : For x 2

½� 1
k ; 0Þ; from (i), one can find Lð xj j; kÞ and B4ðx; kÞ are

monotonically increasing; therefore,

0� Lð xj j; kÞ�B4ðx; kÞ� Lð0; kÞ�B4ð0; kÞ¼ 1
8k is estab-

lished. As is known, Lð xj j; kÞþB4ðx; kÞ�
Lð0; kÞ þ B4ð0; kÞ¼ 15

8k ;L
2ð xj j; kÞ � B2

4ðx; kÞ� 1
8k � 158k ¼ 15

64k2

will be derived. In short, 0� L2ð xj j; kÞ � B2
4ðx; kÞ� 15

64k2 is

proved.

6.2 Convergence analysis of the BS4VM

Theorem 3 Let A 2 Rm
n; b 2 Rm
1; and define two real

functions gðxÞ and f ðx; kÞ as follows:

gðxÞ ¼ 1

2
xk k22þ

1

2
Lð Ax þ bj jÞk k22þ

1

2
Lð Ax þ bj jÞk k;

f ðx; kÞ ¼ 1

2
xk k22þ

1

2
B4ðAx þ b; kÞk k22þ

1

2
B4ðAx þ b; kÞk k:

ð13Þ

The following results can be achieved:

(1) 8k [ 0, there will be x�k � x�
�

�

�

�� 15
128k2

(2) lim
k!/

x�k � x�
�

�

�

� ¼ 0

Proof (i) Applying the first-order optimization condition

and convex property of gðxÞ and f ðx; kÞ, formula (14) is

attained,

gðx�kÞ � gðx�Þ	rgðx�Þðx�k � x�Þ þ 1

2
x�k � x�
�

�

�

�

2

2

¼ 1

2
x�k � x�
�

�

�

�

2

2
;

f ðx�; kÞ � f ðx�k ; kÞ	rf ðx�Þðx� � x�kÞ þ
1

2
x�k � x�
�

�

�

�

2

2

¼ 1

2
x�k � x�
�

�

�

�

2

2
: ð14Þ

Based on the formula (13) and the property of

B4ðx; kÞ� hðxÞ, formula (14) is acquired,
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x�k � x�
�

�

�

�� gðx�kÞ � gðx�Þ þ f ðx�; kÞ � f ðx�k ; kÞ
¼ ðf ðx�; kÞ � gðx�ÞÞ � ðf ðx�k ; kÞ � gðx�kÞÞ

� gðx�Þ � f ðx�; kÞ

¼ 1

2
LðAx þ bÞk k22�

1

2
B4ðAx þ b; kÞk k22:

ð15Þ

According to Theorem 2, for x 2 ½� 1
k ;

1
k�, L2ð xj j; kÞ�

B2
4ð xj j; kÞ� L2ð0; kÞ � B2

4ð0; kÞ¼ 15
64k2

. So x�k � x�
�

�

�

�¼
1
2
½L2ð xj j; kÞ � B2

4ðx; kÞ� � 15
128k2

holds.

(ii) As x�k � x�
�

�

�

�� 15
128k2

, it is easy to draw the

conclusion of lim
k!1

x�k � x�
�

�

�

� ¼ 0. Theorem 3 is proved.

7 The experiments and comparisons

This section will evaluate the performance, effectiveness

and complexity of the proposed BS4VMs. It will be sur-

veyed from two dimensions. The longitudinal dimension

means the comparison BS4VMs with other three smooth

models, LDS4VM (S3VM with low density separation) [3],

CS4VM (S3VM with cubic spline function) [15], and the

QS4VM (S3VM with quintic spline function) [16]. The

horizontal dimension stands for the comparison of BS4-

VMs within different orders. This part lists three kinds of

BS4VMs, BS4VM-I (S3VM with 2-order Bézier function),

BS4VM-II (S3VM with 3-order Bézier function), and

BS4VM-III (S3VM with 4-order Bézier function). Experi-

ments are carried on four kinds of datasets, the artificial

datasets, UCI dataset,1 USPS dataset, and large-scale NDC

dataset. These four kinds of datasets are of significant

difference. Subsection 7.1 shows the experiment on small-

size artificial dataset named ‘‘checkboard.’’ It is produced

generated by two dimensions of uniformly distributing the

regions to points. The ‘‘checkboard’’ belongs to one kind of

data with nonlinear separable. In subsection 7.2, UCI

datasets are the real-world datasets. They are generated

from some statistical departments, electronic sensors, and

reports. Some datasets are multi-classes and irregular data.

Preprocessing is required. They have different data size. In

subsection 7.3, handwritten symbol consists of 16*16

grayscale pixels of handwritten digits from ‘0’ to ‘9’. These

data are from the USPS Company and belong to the digital

pattern recognition of real world. The last kind of dataset is

NDC, namely, normally distributed clusters, generated by

the NDC algorithm. The algorithm generates a series of

random centers for multivariate normal distributions.

Randomly generate a fraction for this center and a sepa-

rating plane. Based on the plane, some classes for centers

will be chosen. Then the points are randomly generated

from the distributions. The size can be changed according

to the experimenter. For the test of large-scale dataset, the

NDC is a good choice.

Because of the too high complexity of the 10-order

polynomial function in [13], the calculation time exceeds

the acceptable range. Thus, this section ignores algorithm

[13] in comparison. As the parameters C and C� are not

sensitive to the accuracy of classification, C ¼ C� is set

varying from 10–2 to 102. All classifiers are implemented

on PC of Windows 10 with 64 bit operation system, Intel I7

processor (1.6 GHZ) and 16 GB RAM. The codes of

models are written in MATLAB R2009a.

Experiments are set up according to the following rules:

the ratio of the labeled points m varies from 5 to 65%, and

the rest is the unlabeled points, similar to the unlabeled

data ratio evolving from 20 to 80% in [26]. The labeled

ratio is set according to the missing label scenarios in real

world. 5% labeled ratio means the majority of data labels

are missing. This is a picky condition to detect a good

classifier. On the other hand, if the labeled ratio is more

than 70%, too many labels means the gap between semi-

supervised SVM and full-supervised SVM is quite small.

Therefore, the labeled ratio is set from 5 to 65% with the

interval of 20%. The labeled data are used for training the

LDS4VM, CS4VM, QS4VM, BS4VM, and then predicting

the unlabeled points. Before simulation, all databases are

normalized and the two classes of label are divided into

classes of - 1 and ? 1. Each experiment is carried on with

tenfold cross-validation.

7.1 Experiment based on artificial dataset

The first experiment is designed to demonstrate the effec-

tiveness of BS4VM through the artificial nonlinear ‘‘tried

and true’’ checkboard dataset [27]. The checkboard dataset

is generated by two dimensions of uniformly distributing

the regions to points and labeling two classes ‘‘White’’ and

‘‘Black.’’ Each dimension has 100 points, and thus the

checkboard dataset has 10,000 samples to train and test the

algorithms, just as Fig. 3 shows. The comparison result can

be seen in Table 2.

Table 2 demonstrates that (1) with the increase in the

labeled ratio, the classification accuracy climbs on the

whole. (2) The higher the order of the spline polynomial,

the better the classification accuracy. (3) The checkboard

dataset is not suitable for too few labeled samples, as the

experiment result is not so satisfactory with labeled ratio

equal to 5%. Lastly, the comparison in Table 2 shows the

BS4VM performs the best classification accuracy.

1 The UCI dataset can be available at https://archive.ics.uci.edu/ml/

datasets.php and https://cs.nyu.edu/*roweis/data.html.
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7.2 Results on UCI datasets

In this subsection, eight real-world UCI datasets2 are

chosen to test the four classification algorithms. This col-

lection of databases was created in 1987 and has been

widely used by the machine learning community for the

empirical analysis. It provides various datasets from many

areas in reality life, such as disease diagnosis, manufac-

turing, business, and so on. The calculating results are

given in Table 3.

Table 3 illustrates the detailed comparisons of the pro-

posed model with other three models in eight different

datasets. From Table 3, one can find that with the increase

in the labeled ratio, all the algrorithms show better classi-

fication accuracy. For Clean dataset with labeled ratio

varying from 25 to 65%, the experimental result by BS4-

VM (accuracy 68.35%, 71.28%, 75.45%) outperforms

other three algorithms, LDS4VM (66.95%, 65.94%,

72.90%), CS4VM (66.11%, 66.13%, 70.66%), and QS4VM

(66.53%, 67.94%, 71.41%). This conclusion holds for

datasets Lympho, Bupa, Tumor, WDBC, and Adult as well

in most scenarios. For datasets Balance, German, the

advantages of classification accuracy go up and down, and

BS4VM performs a litter better than other three methods.

For the purpose of describing the dynamic process of

test accuracy for each dataset with various labeled ratios,

Fig. 4 is given. It presents the overall trend of these algo-

rithms. It claims all the lines have the trend of climbing

with the labeled ratio increasing. Taking Data (4) for

example, the red line stands for the proposed BS4VM

method, the blue and black lines mean QS4VM, CS4VM,

and the purple line denotes LDS4VM. For the labeled ratio

5%, the accuracy of CS4VM is better than BS4VM. But

with the ascension of ratio, the red line is always above the

other three lines, claiming the BS4VM performs the best

with high labeled ratio.

To further analyze the statistical accuracy more clearly,

the average ranks of all the classifiers are computed and

listed in Table 4 and Fig. 5. Table 4 indicates the average

ranks of eight datasets. This rank order is calculated by

average value of each algorithm with different labeled

ratios. The smaller the number of rank, the higher the

simulation accuracy. From the last row of Table 4, one can

notice that BS4VM ranks in the first place for eight data-

sets, whereas the others stand on second, third and fourth

places.

In order to verify the advantage of proposed algorithm

BS4VM, the Friedman statistical method is employed.

Fredman statistic is distributed based on v2F with k � 1

degree of freedom, where k means the counts of algorithms

and N stands for the counts of datasets.

For the above experiment on UCI datasets, under the

null hypothesis that all the algorithms are equivalent,

Fredman statistic can be calculated as [28]

v2F ¼ 12N

kðk þ 1Þ ½
X

4

i¼1

R2
i �

kðk þ 1Þ2

4
�

¼ 12
 8

4
 5
½3.21882 þ 2.70312 þ 2.82812 þ 1.252

� 4
 52

4
�¼ 10.6954

FF ¼ ðN � 1Þv2F
Nðk � 1Þ � v2F

¼ 7
 10:6954

8
 3� 10:6954
¼5:6264

For four algorithms and eight datasets, FF is distributed

with ðk � 1Þ ¼ 3 and ðk � 1ÞðN � 1Þ ¼ 21 degrees of

freedom. The critical or threshold value of Fð3; 21Þ for

significance level a ¼ 0:05 is 3.072. Obviously,

FF ¼ 5:6264[Fð3; 21Þ ¼ 3:072, thus the null hypothesis

will be rejected, and these four algorithms having signifi-

cant differences can be surely verified.

After the null hypothesis is rejected, the Nemenyi test

can be proceed when all classifiers are compared to each

other [28]. The performance of two classifiers is of sig-

nificant difference if the corresponding average ranks differ

by at least the critical difference CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffi

kðkþ1Þ
6N

q

. For the

UCI experiment, CD ¼ 2:291
ffiffiffiffiffiffi

4
5
6
8

q

¼ 1:4788 at a ¼ 0:1:

As the average rank difference between LDS4VM and

BS4VM (3.2188–1.25 = 1.9688) is bigger than critical

difference 1.4788, the performance of BS4VM is signifi-

cantly better than that of LDS4VM. Similarly, the perfor-

mance of BS4VM is quite superior than that of QS4VM

(2.8281 - 1.25 = 1.5781[ 1.4788). Due to

2.7031 - 1.25 = 1.4531\ 1.4788, this Nemenyi test can-

not detect the significant difference between CS4VM and

BS4VM.

Figure 5 visually presents the accuracy ranks of exper-

iment results with different labeled ratios. One can find that

0 20 40 60 80 100
0

20

40

60

80

100

Fig. 3 Figure of the checkerboard dataset

2 http://archive.ics.uci.edu/ml/index.php.
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the advantage of BS4VM varies. But from a statistical point

of view, the BS4VM performs best, just as Table 4 shows.

The proposed algorithm shows satisfactory performance

from Fig. 5b–d for most cases. This reminds us that, for

different machine learning algorithms, the statistical results

of quantities of datasets are more precision and credible,

rather not one specific calculation.

Table 2 Test accuracy on

checkboard dataset with

different labeled ratio (the bold

part is the best result)

Dataset Labeled ratio(%) LDS4VM CS4VM QS4VM BS4VM

Corr.(%) Corr.(%) Corr.(%) Corr.(%)

Check_board m ¼ 5 50.72 48.69 55.67 57.16

m ¼ 25 56.29 53.86 57.43 59.47

m ¼ 45 86.18 86.00 86.73 87.45

m ¼ 65 86.00 86.57 86.57 87.71

Table 3 Tenfold cross-

validation results of the average

correction with different ratios

of labeled points on eight public

datasets for the four algorithms

(the bold part is the best result)

Dataset Labeled ratio(%) LDS4VM CS4VM QS4VM BS4VM

Corr.(%) Corr.(%) Corr.(%) Corr.(%)

Lympho

(148*18)

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

78.19

81.31

84.45

91.83

82.62

79.95

88.72

90.38

81.91

82.66

86.59

90.87

85.82

87.39

89.02

92.31

Bupa

(330*13)

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

94.74

94.67

95.15

96.19

95.79

95.67

95.61

97.62

95.35

94.56

95.30

97.38

96.14

96.00

96.36

99.05

Tumor

(339*17)

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

59.56

62.45

65.24

65.55

57.43

62.25

66.31

67.44

59.23

64.31

66.04

66.81

59.48

65.10

69.92

75.63

Clean

(476*166)

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

58.11

66.95

65.94

72.90

61.75

66.11

66.13

70.66

56.79

66.53

67.94

71.41

62.91

68.35

71.28

75.45

Balance

(625*4)

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

79.46

91.90

89.53

91.21

88.68

94.46

92.81

95.32

91.50

92.86

91.50

94.41

90.57

93.60

94.99

96.69

German

(1000*24)

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

68.95

66.80

66.91

70.00

68.95

68.27

66.91

72.00

69.05

68.00

65.27

70.00

68.95

66.93

67.09

72.57

WDBC

(569*30)

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

88.68

93.33

94.00

92.88

88.54

92.92

94.49

92.38

83.50

93.03

94.33

92.50

90.39

93.91

94.57

94.00

Adult

(1000*14)

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

73.79

79.12

79.68

79.43

77.89

79.57

80.68

79.43

75.95

79.73

78.73

79.43

78.42

79.93

79.64

80.29
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Fig. 4 The accuracy comparison

of the LDS4VM, CS4VM,

QS4VM, BS4VM on eight

publicly available datasets, with

5%, 25%, 45%, and 65% as

labeled data: (1) Lympho, (2)

Bupa, (3) Tumor, (4) Clean, (5)

Balance, (6) German, (7)

WDBC, (8) Adult
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7.3 Results on handwritten symbol recognition

In this section, USPS handwritten datasets3 will be inves-

tigated to show the impact of the number of labeled data on

the classification accuracy. The handwritten database

consists of grayscale images of handwritten digits from ‘0’

to ‘9’, as shown in Fig. 6.

The comparison of four pairwise digits ‘0’ versus ’8’,

‘2’ versus ‘4’, ‘1’ versus ‘7’, and ‘3’ versus ’6’ is given,

respectively. The calculation results of accuracy and

dynamic process can be seen in Table 5 and Fig. 7. From

Table 5 and Fig. 7, the classification accuracies of two

pairs ‘00 versus ’80 and ‘10 versus ‘70 arrive at more than

80%, even almost 99%, while the classification accuracies

of pairs ‘2’ versus ‘4’ and ‘3’ versus ’6’ are less than 80%,

even smaller than 52%. Thus, the generalization ability of

S3VM varies. The suitable dataset should be considered if

one plans to carry out the identification process.

Table 6 and Fig. 8 express the accuracy ranks of each

dataset with various labeled percentages. Table 6 proves

that the BS4VM ranks in the first place; meanwhile, the

other three algorithms perform similarly. Figure 8 shows

the accuracy rank of each calculation. Taking Fig. 8d for

example, when the labeled data are more than 50%, the

proposed learning algorithm gets well trained and shows

satisfactory precision.

The Friedman statistical method can also be applied on

USPS dataset to compare these algorithms from a quanti-

tative perspective. For the four algorithms and four

datasets,

v2F ¼ 12N

kðk þ 1Þ ½
X

4

i¼1

R2
i �

kðk þ 1Þ2

4
�

¼ 12
 4

4
 5
½2.656252 þ 2.81252 þ 2.752 þ 1.781252

� 4
 52

4
�¼ 10.1203

3 The USPS datasets are available at http://www.cs.nyu.edu/*roweis/

data.html.

Table 4 Accuracy average ranks of LDS4VM,CS4VM, QS4VM,

BS4VM with linear kernel

Dataset LDS4VM CS4VM QS4VM BS4VM

Lympho 3.25 3.25 2.5 1

Bupa 3.75 2 3.25 1

Tumor 3 3 2.75 1.25

Clean 2.75 3.25 3 1

Balance 4 2 2.5 1.5

German 3.25 2.625 2.625 1.5

WDBC 2.5 3.25 3.25 1

Adult 3.25 2.25 2.75 1.75

Average rank 3.2188 2.7031 2.8281 1.25

Lympho Bupa Tumor Clean Balance German WDBC Adult
0

2

4

6

(a) Datasets m=5%

kna
R

egarev
A

noitcerro
C

LDS4VM CS4VM QS4VM BS4VM
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(b) Datasets m=25%
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(c) Datasets m=45%
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Fig. 5 Correction average ranks of LDS4VM, CS4VM, QS4VM,

BS4VM in each dataset with different labeled ratios

Fig. 6 Ten number symbols of the USPS database
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FF ¼ ðN � 1Þv2F
Nðk � 1Þ � v2F

¼ 3
 10:1203

4
 3� 10:1203
¼ 16.1521 FF is distributed with ðk � 1Þ ¼ 3 and ðk � 1ÞðN � 1Þ ¼

9 degrees of freedom. The threshold value of Fð3; 9Þ for

significance level a ¼ 0:05 is 3.863. Obviously,

FF ¼ 16:1521[Fð3; 9Þ ¼ 3:863, thus the null hypothesis

Table 5 Tenfold cross-

validation results of the average

correction and the number of

labeled points on USPS

database for four algorithms

(the bold part is the best result)

Dataset Label ratio(%) LDS4VM CS4VM QS4VM BS4VM

Corr.(%) Corr.(%) Corr.(%) Corr.(%)

‘0’ versus’8’ m ¼ 5 86.45 87.85 85.96 80.78

m ¼ 25 88.32 88.46 89.55 88.80

m ¼ 45 89.74 89.37 89.27 87.69

m ¼ 65 92.69 93.42 93.27 94.15

‘2’ versus ‘4’ m ¼ 5 55.10 58.25 56.09 61.78

m ¼ 25 69.54 67.22 67.05 69.54

m ¼ 45 69.71 67.00 68.69 70.72

m ¼ 65 75.18 75.18 75.89 77.30

‘1’ versus ‘7’ m ¼ 5 97.88 97.88 97.88 97.88

m ¼ 25 97.91 97.84 97.69 98.21

m ¼ 45 98.27 98.07 98.37 98.37

m ¼ 65 98.57 98.09 98.25 98.73

‘3’ versus’6’ m ¼ 5 51.04 53.58 53.13 54.03

m ¼ 25 61.36 58.05 59.75 56.44

m ¼ 45 53.74 53.99 54.64 58.25

m ¼ 65 62.50 63.51 63.31 64.52
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Fig. 7 The average test

accuracy of LDS4VM, CS4VM,

QS4VM, BS4VM on USPS

dataset with various labeled

ratios
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will be rejected, and the hypothesis that four algorithms are

of significant difference is proved. This means the gener-

alization and robustness of BS4VM are promising.

7.4 Results on large-scale NDC dataset
for nonlinear Gaussian kernel

In the last subsection, further to verify which algorithm

performs best on both accuracy and calculating time among

BS4VMs, experiments based on the NDC dataset4 for

nonlinear Gaussian kernel are carried out. The NDC dataset

is designed with large-scale attributes or with large samples

to test the robustness of the new algorithms. The NDC

dataset is a temporal higher-order network dataset, which

means a sequence of time-stamped simplices where each

simplex is a set of nodes. As in the real world, large-scale

datasets are more commonly classified, the test accuracy

and calculation time should be considered as well.

Table 7 and Fig. 9 show the performances of three kinds

of BS4VMs, namely BS4VM-I, BS4VM-II, and BS4VM-III

with different orders of Bézier function. One can notice

that (1) the BS4VMs classify the NDC datasets very well,

and most of the results are more than 96%. (2) With the

climbs of labeled ratio and attributions of NDC1 *
NDC5, the computing time increases quickly. However,

with the rise of samples of NDC6 * NDC10, the calcu-

lating time doesn’t go up dramatically. (3) Because these

three algorithms are belong to the same kind of smooth

technique, the accuracy differences are quite small. But the

accuracy of BS4VM-III stands the first place for most

cases. Meanwhile, the computing time of BS4VM-I and

BS4VM-II line up top two on account of the higher com-

plexity of BS4VM-III.

In order to clarify the comparison results, Table 8 lists

the average ranks of BS4VM-I, BS4VM-II and BS4VM-III

with Gaussian kernel on accuracy and calculation time for

NDC. From the statistics, the accuracy average rank of

BS4VM-III is 1.8875, smaller than other two number,

indicating this method is more superior. The consuming

time ranks of BS4VM-I and BS4VM-II are equal, revealing

the computing complexity are the same even though BS4-

VM-II has higher order of Bézier function.

For the purpose of verifying whether the performances

of the three algorithms have significant difference, the

Friedman statistical method is utilized. For this experiment

with three methods and ten datasets, statistical results v2F
and FF will be

v2F ¼ 12N

kðk þ 1Þ ½
X

5

i¼1

R2
i �

kðk þ 1Þ2

4
�

¼ 12
 10

3
 4
½2.1752 þ 1.952 þ 1.88752 � 3
 42

4
�¼ 0.958

FF ¼ ðN � 1Þv2F
Nðk � 1Þ � v2F

¼ 9
 0:958

10
 3� 0:958
¼0:4528

The critical value of Fð2; 18Þ for significance level a ¼
0:05 is 3.55. Visibly, FF ¼ 0:4528\Fð2; 18Þ ¼ 3:555, and

thus these three algorithms have no significant differences

from the quantification method is verified. It is suggested

Table 6 Average ranks of five algorithms with linear kernel on USPS

accuracy values

Dataset LDS4VM CS4VM QS4VM BS4VM

0 versus 8 2.75 2 2.5 2.75

2 versus 4 2.75 3.125 3 1.125

1 versus 7 2.375 3.375 2.75 1.5

3 versus 6 2.75 2.75 2.75 1.75

Average rank 2.65625 2.8125 2.75 1.78125

0 vs 8 2 vs 4 1 vs 7 3 vs 6
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6
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Fig. 8 Correction average ranks of LDS4VM, CS4VM, QS4VM,

BS4VM in each dataset with different labeled ratios

4 http://www.cs.cornell.edu/*arb/data/NDC-classes/.
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that if high accuracy is considered, higher order of BS4-

VMs should have the priority. However, if calculating time

weighs a lot, the lower order of BS4VMs should be chosen.

For the goal of visual expression, the diversities of

classification correction and calculation time of each

dataset with the variety of labeled ratio, the histogram

Figs. 10 and 11 are given.

From Fig. 10c and d, the classification precision of

BS4VM-III lies in the forefront, when the threshold of

labeled proportion is above 45%. However, this superior

Table 7 The test correction and

calculation time comparisons

for Gaussian kernel (the bold

part is the best result)

Dataset Label ratio(%) BS4VM-I BS4VM-II BS4VM-III

Corr.(%) Time(s) Corr. %) Time(s) Corr.(%) Time(s)

NDC1

5,000*500

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

96.21

98.27

98.76

98.11

0.26

0.83

1.67

2.50

96.36

98.32

98.80

98.11

0.26

0.78

1.64

2.31

96.38

98.32

98.80

98.11

0.23

0.83

1.61

2.39

NDC2

5,000*1,000

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

96.69

98.24

98.84

98.80

0.90

2.49

4.28

5.42

96.65

98.27

98.84

98.86

1.05

2.48

3.54

5.21

96.67

98.24

98.84

98.80

1.14

2.74

4.11

5.61

NDC3

5,000*3,000

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

78.17

94.05

96.80

96.51

13.57

24.40

36.96

45.40

78.15

94.08

96.84

96.63

11.84

21.82

31.75

42.12

78.19

94.00

96.84

96.57

12.28

22.34

33.55

45.74

NDC4

5,000*4,000

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

85.98

96.11

96.95

97.77

31.02

50.25

67.66

92.35

86.00

96.08

97.05

97.83

27.22

44.41

61.22

79.95

85.96

96.05

97.05

97.83

25.80

42.23

61.38

81.55

NDC5

5,000*5,000

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

81.16

93.84

97.02

97.54

50.36

87.22

116.47

154.77

81.14

93.79

97.05

97.43

44.14

77.62

102.58

130.92

81.18

93.81

97.09

97.60

45.82

74.46

100.43

129.85

NDC6

10,000*100

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

98.44

99.01

99.07

99.06

0.03

0.13

0.26

0.36

98.49

99.01

99.09

99.06

0.04

0.18

0.31

0.44

98.48

99.01

99.09

99.03

0.04

0.20

0.37

0.51

NDC7

30,000*100

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

99.01

99.28

99.34

99.49

0.08

0.43

0.79

0.95

99.01

99.27

99.34

99.49

0.14

0.51

1.09

1.15

99.00

99.28

99.35

99.50

0.12

0.61

1.08

1.27

NDC8

40,000*100

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

99.37

99.55

99.59

99.54

0.06

0.35

0.72

1.06

99.35

99.53

99.59

99.55

0.10

0.42

0.74

1.49

99.36

99.53

99.57

99.54

0.09

0.72

1.17

1.41

NDC9

50,000*100

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

99.36

99.51

99.57

99.59

0.11

0.80

1.35

1.80

99.32

99.52

99.57

99.59

0.14

0.83

1.64

2.13

99.29

99.52

99.58

99.61

0.14

1.13

1.33

2.04

NDC10

100,000*100

m ¼ 5

m ¼ 25

m ¼ 45

m ¼ 65

99.38

99.54

99.53

99.57

0.21

1.09

2.08

3.12

99.34

99.54

99.53

99.58

0.27

1.20

2.39

3.28

99.33

99.55

99.53

99.59

0.28

1.33

2.53

3.50
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Fig. 9 The average test

accuracy and calculation time of

BS4VM-I, BS4VM-II, and

BS4VM-III on ten NDC dataset

with various labeled ratio
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Fig. 9 continued
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performance is at the cost of complex calculation, just as

Fig. 11c and d shows. From the ranks of calculation time,

BS4VM-I shows the perfect performance in Fig. 11a, b and

d, as the lower order of Bézier function, the less compu-

tational complexity.

8 Conclusion

Considering the non-smooth term of semi-supervised sup-

port vector machines blocking the improvement in classi-

fication accuracy, a new class of Bézier functions is

ultilized to approximate the hinge loss function, and a

novel kind of Bézier smooth semi-supervised support

vector machines (BS4VMs) is constructed. The conver-

gence proves the proposed model can draw close to the

non-smooth objective function theoretically. As n-order

Bézier function is n � 1-order smooth and differentiable,

the fast algorithm can be used to solve the programming. In

contrast to the LDS4VM, CS4VM, and QS4VM, experi-

ments on artificial data, UCI data, USPS handwritten

database, and NDC datasets clearly show that the BS4VMs

have the best performance and efficiency among expo-

nential function, cubic spline function, and quintic spline

Table 8 Average ranks of BS4VM-I, BS4VM-II and BS4VM-III with

Gaussian kernel on NDC correction and time values

Dataset BS4VM-I BS4VM-II BS4VM-III

Corr. Time Corr. Time Corr. Time

NDC1 2.75 2.75 1.75 1.625 1.5 1.625

NDC2 2 2.25 1.75 1.75 2.25 2

NDC3 2.5 2.75 1.625 1 1.875 2.25

NDC4 2.25 3 1.5 1.5 2.25 1.5

NDC5 2 3 2.75 1.75 1.25 1.25

NDC6 2.375 1 1.5 2.125 2.125 2.875

NDC7 2 1.125 2.375 2.25 1.75 2.25

NDC8 1.5 1.25 2 2.75 2.5 2

NDC9 2.25 1.25 2.125 2.625 1.625 2.125

NDC10 2.125 1 2.125 2 1.75 3

Average Rank 2.175 1.9375 1.95 1.9375 1.8875 2.0875
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Fig. 10 Correction average ranks of BS4VM-I, BS4VM-II and

BS4VM-III in each dataset with different labeled ratios
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Fig. 11 Time average ranks of BS4VM-I, BS4VM-II and BS4VM-III

in each dataset with different labeled ratios
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function. Moreover, the proposed algorithms show good

performance for large-scale datasets. Due to the advantage

of different order of BS4VMs varying, when applying

BS4VMs, performance or efficiency priority should be paid

attention. For further research, the feature selection and

fuzzy membership should be good ways to improve the

accuracy for different kinds of datasets. Bézier function for

semi-supervised SVM on regression and its generalization

performances will be explored as well.
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