
ORIGINAL ARTICLE

A dynamic discarding technique to increase speed and preserve
accuracy for YOLOv3

Ignacio Martinez-Alpiste1 • Gelayol Golcarenarenji1 • Qi Wang1 • Jose Maria Alcaraz-Calero1

Received: 12 July 2020 / Accepted: 21 January 2021 / Published online: 5 March 2021
� The Author(s) 2021

Abstract
This paper proposes an acceleration technique to minimise the unnecessary operations on a state-of-the-art machine

learning model and thus to improve the processing speed while maintaining the accuracy. After the study of the main

bottlenecks that negatively affect the performance of convolutional neural networks, this paper designs and implements a

discarding technique for YOLOv3-based algorithms to increase the speed and maintain accuracy. After applying the

discarding technique, YOLOv3 can achieve a 22% of improvement in terms of speed. Moreover, the results of this new

discarding technique were tested on Tiny-YOLOv3 with three output layers on an autonomous vehicle for pedestrian

detection and it achieved an improvement of 48.7% in speed. The dynamic discarding technique just needs one training

process to create the model and thus execute the approach, which preserves accuracy. The improved detector based on the

discarding technique is able to readily alert the operator of the autonomous vehicle to take the emergency brake of the

vehicle in order to avoid collision and consequently save lives.

Keywords Machine learning � YOLOv3 � Acceleration � Autonomous vehicles

1 Introduction

Object recognition is one of the most challenging problems

in the field of computer vision which has been evolved to a

very large extent in the last two decades. Both accuracy

and speed are essential requirements to successfully detect

objects and tackle the difficulties of deployment in real-

time systems.

Object detection techniques can be generally classified

into two main categories using handcraft features and

neural networks. Histogram of Oriented Gradients (HOG)

[9] and Viola-Jones(VJ) [50] are effective traditional

machine learning techniques widely used in object detec-

tion and employed by classification techniques such as

SVM [7] and AdaBoost [45] (Adaptive Boosting). To

increase the performance of these object detectors, image

processing techniques are utilised. Subsequently, two-stage

(region proposal technique) and single-step detectors (non-

region proposal techniques) were evolved. In the former,

the region of interest is extracted and then the classification

is conducted. Popular two-stage techniques include Fast

R-CNN [12], Faster R-CNN [44] and R-FCN [8]. The

computation is heavy in these methods though. The latter

class performs the feature extraction and classification in a

single step. Therefore, these methods are computationally

better for real-time applications .‘‘You Only Look Once’’

(YOLO) series [41–43], ‘‘You Look Only Twice’’ [49] and

‘‘Single Shot Detector (SSD)’’ [29] are examples of single-

step detectors. Meanwhile, these methods are fast, it could

also lead to lower accuracy. YOLOv3 is more accurate and

faster than other object detectors algorithm and thus will be

the basis for this paper.

This method, however, is still restricted for real-time on-

board detection due to its intensive computation and slow

speed; hence, a simplified version of YOLOv3 called Tiny-

YOLOv3 has been defined. Tiny-YOLOv3 is very fast but

with low accuracy specially when it comes to small object

detection. Hence, an extra output layer is added to improve

the accuracy of the standard Tiny-YOLOv3 [2] for small

objects. To accelerate this algorithm while maintaining the

obtained accuracy, different methods can be adopted.

Generally, there are three categories of accelerating the

& Ignacio Martinez-Alpiste

ignacio.alpiste@uws.ac.uk

1 University of the West of Scotland, Paisley, UK

123

Neural Computing and Applications (2021) 33:9961–9973
https://doi.org/10.1007/s00521-021-05764-7(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-4142-514X
http://orcid.org/0000-0003-2259-5060
http://orcid.org/0000-0002-7764-9858
http://orcid.org/0000-0002-2654-7595
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-05764-7&domain=pdf
https://doi.org/10.1007/s00521-021-05764-7

Convolutional Neural Networks (CNNs), namely structure

level, algorithm level and implementation level.

In terms of structure level, network pruning and

knowledge distillation are performed to decrease the

redundancy in weights. Switching to 16-bit fixed-point

presentation can also increase the frame rates when dealing

with redundancy in representation. These methods, how-

ever, slightly reduce the accuracy [5]. At the implemen-

tation level, hardware technologies such as Graphics

Processing Unit (GPU), field-programmable gate array

(FPGA), and application-specific integrated circuit (ASIC)

are generally employed to accelerate the CNN algorithms

against common CPUs. However, technologies such as

FPGA are expensive and difficult to program. At algorithm

level, efficient models are designed to accelerate the CNN

algorithms [57], which is the focus of this paper. Hence, in

this paper, we propose an acceleration technique at algo-

rithm level by discarding output layers on standard

YOLOv3 and Tiny-YOLOv3 with an extra output layer

embedded on a NVIDIA Jetson Xavier platform.

The proposed technique in object detection algorithms

to maintain speed/accuracy trade-off is expected to achieve

real-time detection for critical applications. The proposed

acceleration technique at algorithm level will dynamically

discard output layers on demand for standard YOLOv3 and

Tiny-YOLOv3 embedded on an NVIDIA Jetson Xavier

platform. One of such critical use cases is object detection

in autonomous vehicles. For instance, object detection is a

critical capability for autonomous cars to be aware of the

objects in their vicinity and be able to detect, recognise and

track objects, especially pedestrians from distance without

delay to avoid any accidents. However, pedestrian detec-

tion is very challenging on autonomous vehicles (AVs).

There have been at least five major accidents caused by

AVs hitting objects and one was found to be involved in a

pedestrian death. This was due to necessary information

not available on time to the pedestrian detector [33].

Therefore, there is a strong need to minimise unnecessary

operations to improve the processing speed and fulfil low-

latency criterion while maintaining high accuracy of

pedestrian detectors deployed in AVs applications.

Besides, these applications are executed in low-consump-

tion GPUs plugged inside the vehicles, therefore, light and

portable detection networks are decisive.

For this reason, our approach, as a promising robust

technique, has been tested as the brain of the self-driving

cars to improve the pedestrian detection speed while

ensuring high accuracy suitable for self-driving scenarios

where a speed/accuracy trade-off is imperative. To this

end, our main contributions are summarised as follows:

1. Study of the main bottlenecks that negatively affect the

CNN execution.

2. Design of a novel acceleration technique to further

improve the speed while maintaining the accuracy and

mitigating the bottlenecks of CNN execution.

3. Study of the compatibility of different machine learn-

ing platforms with the proposed acceleration technique.

4. Implementation of the proposed acceleration technique

at algorithm level on the suitable machine learning

platform.

5. Deployment of the system in a small-form AI platform

such as NVIDIA Jetson Xavier.

6. Testing of different input resolutions to find the best

trade-off between inference time and accuracy in

standard Tiny-YOLOv3 with extra output layer using

the proposed discarding technique for pedestrian

detection in AV applications.

The rest of the paper is arranged as follows. Section II

presents the related work. Section III explains the design of

the proposed acceleration technique. This is followed by

the experimental set up and empirical results in Section IV.

Section V concludes the article.

2 Related Work

This section focuses on a description of the machine

learning algorithm used in this publication. In addition, an

extensive research work has been done to increase the

knowledge of previously published works based on the

improvement of CNN execution and pedestrian detection

for autonomous vehicles.

2.1 YOLOv3

As stated previously, standard YOLOv3 is the enhanced

version of the original YOLO algorithm in both accuracy

and speed. It implements Darknet-53 architecture as its

backbone and three various scales for detection also named

as ‘‘output layers’’ or ‘‘heads’’. It is superior to methods

such as SSD, YOLO, YOLOv2 and Faster RCNN when

trained on standardised datasets such as Common Objects

in Context (COCO) in terms of performance. Standard

Tiny-YOLOv3 is a simplified version of YOLOv3 with less

number of convolution layers with higher speed but lower

accuracy.

To increase the ability of object detection in standard

Tiny-YOLOv3, it was modified by adding an extra output

layer to increase the probability of small object detection

[2, 14]. An ‘‘output layer’’ in object detection is a layer

which provides information such as the coordinates of the

object, the object class, and the probability of the detected

object (confidence). Standard YOLOv3 and Tiny-YOLOv3

9962 Neural Computing and Applications (2021) 33:9961–9973

123

with an extra output layer provide three output layers, each

one destined to detect at different scales or ranges of pixels.

The first output layer detects big objects, the second is

responsible for detection of medium objects and the third is

able to detect small objects.

As autonomous vehicles applications require light-

weight algorithms to be executed in low-computation and

low-powered GPUs, we selected Tiny-YOLOv3 with three

output layers because it balances the portability with high

accuracy and, after the application of our technique, high

speed. Other publications such as [31, 56, 58] also base

their work in Tiny-YOLOv3 due to its trade-off.

2.2 Analysis of previous works

This subsection provides an overview of various works in

the literature related to techniques used for CNN acceler-

ation or improvements and pedestrian detection in auton-

omous vehicles.

2.2.1 Convolutional neural networks improvements

Convolutional neural networks are high-demanding algo-

rithms in terms of computational resources, power-con-

sumption and data. Table 1 collects several state-of-the-art

scientific papers based on CNN improvements in terms of

speed or accuracy. As a case in point, in some studies such

as [38, 46], the accuracy was improved to a large extent in

AV use cases; however, the detection was not in real-time.

In [23, 26, 51], the PGA accelerator was used to improve

the speed which is a costly solution. Besides, in [26], the

improvement in execution speed (by 11.5%) was compared

against the execution on CPU which is usually the slowest

hardware to execute CNNs. In another study, Murakami

et al. [51] compared their approach against other software

implementations (CPU) while their experiments were run

hardware acceleration. In addition, the AlexNet [22] was

trained with MNIST [24] dataset to compare the accuracy

of their approach with other CNNs. In another study,

Yanyan Feng et al. [11] highlighted an improvement in the

accuracy by 8.9% on GONET dataset [16]; nevertheless,

the speed was not specified. In another approach, Zongyue

Wang et al. [52] trained their pruning approach with

CIFAR [21] dataset and improved the fps by 1.6s when

running on the cloud. Xue et al. [53] also presented a

simulated results claiming a total improvement of 43% in

accuracy. Zhang et al. [55] proposed a new platform called

Caffeine for FPGA hardware, and the execution speed was

improved 9 29 in performance. [25] and [6] focus their

research on vehicle detection which has a key impact in

Table 1 Comparison table of previous work based on common acceleration approaches and pedestrian detection

Ref Objective Algorithm Environment Platform Accuracy FPS Acceleration

[38] Traffic sign F-RCNN?ZF?VGG NG NG ?58–78% No RT Classifier

[46] Vehicle logo Custom CNN GPU Matlab 99.1% No RT Hyper-parameter

[23] MNIST Custom CNN FPGA Vivado 98.66% 4938 cc Hardware

[26] NG AlexNet FPGA NG NG 911.5 Hardware

[51] MNIST NASH-CNN FPGA Vivado ‘‘Highest’’ 915.35 Hardware

[11] GONET AlexNet GPU Caffe ?4–8.9% NG Algorithm

[52] CIFAR Custom CNN GPU PyTorch Less error 91.6 Prune and Cloud

[53] NG AlexNet NG NG Total improve 43% Pipeline

[55] NG VGG16?AlexNet FPGA Vivado NG x29 Platform

[25] Vehicles Tiny-YOLOv3-SPP GPU Darknet ?7.2% 63 Algorithm

[6] Vehicles Tiny-YOLO-based Nvidia Xavier NG ?4.6% 69.74 Algorithm

[40] Dumpsters Google inception NG Tensorflow 88% NG Algorithm

[10] Pedestrians RPN ? R-FCN NVIDIA Caffee ?35% NG Algorithm

[54] Pedestrian Improved YOLOv2 Nvidia Caffe 43.33% 20 Algorithm

[34] Pedestrian SSD PC Caffe 54.4% 24 FPGA

[20] Pedestrian Customised CNN NG NG 95% NG Image classification

[48] Pedestrian Customised CNN NG NG 73.8% 10? Algorithm

[15] Pedestrian HOG?SVM ITX board NG 91.56% 50 Zynq SoC

[27] Pedestrian YOLO NG NG 87.4% NG Hardware

[19] Pedestrian YOLO2 PYNQ NG 79.6% 15.15 ZYNQ-SoC

[4] Pedestrian Tiny’YOLOv3 Jetson XT2 Tensor flow NG 31.1 Algorithm

TP Pedestrian YOLOv3 Nvidia Xavier PyTorch YOLOv3 148.7% Algorithm

TP This Paper, RT Real-Time, cc clock cycles, NG Not Given

Neural Computing and Applications (2021) 33:9961–9973 9963

123

autonomous driving field. Both, based their development in

YOLOv3-based algorithm achieving improvements in the

accuracy of at least 7% more. Finally, [35] improves the

detection of ships in deep waters by the application of

different augmentation techniques for the dataset.

2.2.2 Pedestrian detection

Pedestrian detection has gained attention over the last

decade. However, the pedestrian detector is not efficient

enough for self-driving applications due to real-time

requirements while preserving the accuracy. Therefore,

there is a need to accelerate CNNs for self-driving sce-

narios. This section provides a review of techniques used

for CNN acceleration related to pedestrian detection in

autonomous vehicles.

Table 1 (below [40]) presents and compares the pub-

lished results of using different acceleration techniques for

pedestrian and dumpsters detection. As a case in point,

Moussawi et al [34], used FPGA to accelerate deep

learning for pedestrian detection on self-driving cars. In

this study, firstly, they improved the SSD-based pedestrian

detector by modifying the hyper-parameters in the algo-

rithm and secondly, they used a new FPGA design to

accelerate the model on the Altera Arria 10 platform. Using

Field Programmable Gate Arrays (FPGAs) are more

power-efficient compared to GPUs but more expensive and

not easy to be used. In another study, Kim et al. [20]

proposed a pedestrian detector to improve the detection

speed through reducing the classification computation by

the presence or absence of a pedestrian and the estimation

position in the pre-processing stage. Although they

achieved a very high accuracy performance(95%), the

execution speed was not specified. A combination of

Squeeznet-like backbone with paralleled dilated convolu-

tions was proposed by Treml et al. [48] to accelerate the

segmentation for AVs. The segmentation accuracy was

higher than other networks and fast enough for embedded

devices. However, it did not fulfil speed requirements when

embedded on computing devices such as NVIDIA Jetson

Xavier. Hemmati et al. [15], accelerated the combination of

HOG and SVM on ITX board using Zynq SoC which is by

using an extra hardware. In [19, 27], an improved hardware

design was also used to accelerate the pedestrian detector.

Instead of detecting pedestrians, [40] detects dumpsters

which is a very typical obstacle in autonomous driving.

With their improvement they achieve higher accuracy

although not better speed because is not specified. [10, 40]

has similar flaws when presenting the results in their

manuscript, they show an increment of the accuracy

although not of the speed. This may lead to the assumption

that they increased accuracy by decreasing speed, which is

acceptable for AV use cases. On the opposite approach,

[4, 54] provides an increment of speed, although the

accuracy is not given which also leads to the assumption

that they tip the balance in favour of the speed by sacri-

ficing the accuracy.

In summary, most of the above studies has used dif-

ferent hardware design to accelerate the object detector

which are expensive and not straightforward to be used. In

addition, the studies with algorithm modification are not

fast enough for our use-case. For the first time, the paper

provides a cost effective algorithm modification to min-

imise unnecessary operations to accelerate the algorithm

while maintaining the standard YOLOv3 accuracy per-

fectly suitable for AV environments.

3 Design

This section defines the proposed design to reduce the

complexity of Convolutional Neural Networks without

losing accuracy. First, the CNN bottlenecks tackled by our

design are delineated. Two algorithms adopted in this

design are standard YOLOv3 which is the state-of-the-art

in object detection algorithms and standard Tiny-YOLOv3

with an extra output layer to increase the accuracy of small

object detection [2, 14]. Our approach was tested on a self-

driving scenario using Tiny-YOLOv3 (3l) thanks to its

suitability for constrained environments.

3.1 Bottlenecks in convolutional neural
networks

CNNs are made of neurons that are able to learn weights

and biases. Each layer receives an input matrix and applies

filters to extract features. Currently, CNN works with

images that are represented in three dimensions (Width �
Height � Depth (RGB)). Generally, CNN will transform

3D images to an output of 2D feature map of the filter. As

this process is computationally expensive, it is defined as

one of the bottlenecks which directly affects the speed

YOLOv3
0 Output

YOLOv3
1 Output

YOLOv3
2 Output

Width
416

Height
416

Depth
3 (RGB)

Convolutional Layers

Convolutional Layers

Convolutional Layers

Prediction Feature Map

BBox

BBox

BBox

BBox

BBox

BBox

BBox

BBox

p1 p2 w h p c1 cn. . .

Box Coordinates
Probability

Class Score

Bounding Box

BBox

BBox

BBox

BBox

BBox

BBox

Grid (w,h)
13 x 13

Grid (w,h)
26 x 26

Grid (w,h)
52 x 52

Fig. 1 Presentation of most consuming tasks for a convolutional

neural network: number of convolutional layers and number of

predictions (GridSize x GridSize x 3)

9964 Neural Computing and Applications (2021) 33:9961–9973

123

factor. The other consuming task is the number of pre-

dictions that the algorithm is able to perform.

Depending on the number of output layers of a CNN-

based algorithm, there will be different number of bound-

ing box predictions. Figure 1 shows an image with an

standard YOLOv3 input size (416x416px). Over the exe-

cution of the network, the image will be down-scaled based

the stride factor. To make possible different scale detec-

tion, the stride will vary for each output layer; the greater

the stride, the coarser the output detection grid. Obtaining

more grid cells means to have more bounding boxes to

predict (usually 3 per grid cell). Thus, performing detection

for small objects signifies greater consumption of the

resources and thereby lower execution speed. Table 2

shows the stride applied to each output layer and the

resultant grid size (also in Fig. 1). Although the total

number of predictions are represented in Table 2, the

number is theoretical, for instance, many of those 507

predictions able to perform YOLO at the first output layer

will detect the same object, therefore, techniques such as

Non-Maximum-Suppression are used to select the best

prediction. As stated, the number of possible predictions

affects the inference time, however, the number of objects

detected does not supposes an overload to the algorithm

speed. Already being theoretically described in two main

bottlenecks of CNNs, Fig. 2 confirms our assumption

mathematically. FLOPS (Billion of Floating Point Opera-

tions per Second) [1] is a metric commonly used to define

the computational complexity of an algorithm; the more

BFLOPS, the more computation for the algorithm.

Parameters fsize and filter are directly related to power

consumption of convolution operations. Regarding pre-

dictions, out h, and out w represent the output grid size

(13, 26, 52) depending on the output layer. BFLOPS will

be one of the key metrics obtained in Sect. 4) when exe-

cuting the proposed approach.

Our approach will tackle both bottlenecks mentioned

previously to process an image by any type of YOLOv3

algorithm without sacrificing the accuracy while reducing

the inference time.

3.2 Network design

Figure 3 illustrated the architecture of YOLOv3 with three

output layers. The convolutional layers are shown with red

boxes. The operations of the network are shown with

arrows. The connections of the convolutional layers are

shown in green arrows. The red box indicates the con-

catenation of YOLO headers in the architecture. Each

output layer corresponds to a different scale to detect

objects of big (0), medium (1) and small (2) sizes. Due to

large number of convolutional layers, the backbone was

summarised.

To increase the speed of YOLOv3 algorithm, our design

discards the output layers. By applying this approach, the

unneeded computation is eliminated. To detect large-scale

objects, 59 convolutional layers are used in a feed forward

fashion. No up-sampling will occur at this stage and the

feature map will be 13 9 13 for an input size of 416. For

the medium-scale objects, the discarding will take place at

the 79th convolutional layer (circle (A)) shown in yellow.

In other words, 80th and 81th convolutional layers will not

be considered for detection. This saves computations for

the algorithm. Besides, the algorithm will also go through

the path with green circle (B) and will be up-sampled (up-

sample 1 in Fig. 3) and concatenated with the 61st con-

volutional layer shown with orange circle (D). Then, the

second detection will occur for medium objects. 65 con-

volutional layers will be evaluated in total for the second

output and the feature map will be 26 9 26. In terms of the

third output layer for small object detection, the discarding

will take place at the 91st convolutional layer in the second

branch shown in a blue circle (F). In other words, the

discarding will take place at the pink circle (C). The

algorithm will go through the second up-sampling in the

architecture and will be concatenated with the 36th con-

volutional layer (circle blue (E)) in the backbone and the

feature map will be 52 9 52. Using the discarding tech-

nique, 71 convolutional layers with two up-sampling

operations are considered against 75 convolutional layers

of standard YOLOv3 which slow down the network. In

addition, by using this technique, the number of predictions

is reduced as some output layers are not considered.

f = filters = (#classes+ 5)× 3

fsize : Conv.layerfiltersize

c : channels

outh : gridheight

outw : gridwidth

BFLOPS = (2× f × fsize2 × c× outh × outw)/109

Fig. 2 Billion of floating point operations per second (BFLOPS)

formula

Table 2 Number of predictions regarding each output layer

Size Layer Input size Stride Grid Predictions

Big 0 416 9 416 32 13 9 13 507

Medium 1 416 9 416 16 26 9 26 2028

Small 2 416 9 416 8 52 9 52 8112

All All 416 9 416 All All 10,647

Predictions = GridSize 9 GridSize 9 3

Neural Computing and Applications (2021) 33:9961–9973 9965

123

A summary of final number of convolutional layers for

each output layer based on our approach is shown in

Table 3. As it can be observed, not only the results of

discarding technique were illustrated based on output lay-

ers 0, 1 and 2, but also the results of the discarding tech-

nique werewhile others will evaluated when using a

combination of 0,1, 0,2 and 1,2 output layers. Finally,

standard execution of YOLOv3 (not using the discarding

technique) is defined as ‘‘all’’. In addition, the number of

up-sampling and the number of predictions was also

highlighted in each case. The Standard COCO dataset with

80 classes [28] was considered to calculate the number of

predictions [17]. This value will change proportionally

with the number of classes used for training.

In order to clarify our approach, Table 4 explains the

discarding technique in a simple way by assuming the

discarding circles in Fig. 3 as ON/OFF switches (Boolean

symbols). If the switch is ON, the convolutional layers will

forward the data over that branch. Nevertheless, if the

switch is OFF, YOLOv3 will forward the data to other

possible paths. For instance, if the the circle A is ON, the

big human detection will take place. If circle B, C and D

are on, the medium human detection will take place and

will go through the second branch of the architecture. For

small human detection, it will go through the path with

circle B, D, E and F. Similarly, the same will happen for

dual-scale detection. Without taking the acceleration

technique into consideration, all the circles from A to F

will be included in the detection.

The proposed approach is based on discarding the paths

that YOLOv3 uses to fully execute the CNN-based algo-

rithm. By applying this discarding technique, there is no

need to train various models for different scales or output

layers. Furthermore, there is no requirements for loading

different configurations of CNN-based algorithms in

memory and thereby different weights. All these afore-

mentioned advantages are feasible based on the user-de-

mand. If the final user wants to change the output layer,

some switches will be ON, while others will remain OFF.

Fig. 3 Design of YOLOv3 with 3 detection layers applying discarding technique. Each colour references where the discarding is done (see

Table 4)

Table 3 YOLOv3 configuration after discarding technique

Output Conv. layer Upsample Grid size Output size

0 59 0 13 202,800

1 65 1 26 811,200

2 71 2 52 3,244,800

0,1 67 1 13,26 1,014,000

0,2 73 2 13,52 3,447,600

1,2 73 2 26,52 4,056,000

All 75 2 13,26,52 4,258,800

Output size = GridSize 9 GridSize 9 3 (#classes ? 5)

Table 4 Discarding technique acceleration

9966 Neural Computing and Applications (2021) 33:9961–9973

123

3.3 Network design for tiny-YOLOv3(3l)

Figure 4 illustrates the discarding technique applied to

Tiny-YOLOv3 with 3 output layers (3l). In the backbone of

standard Tiny-YOLOv3, the original image was down-

sampled 6 times with a stride of 2 using max-pooling

operations. The number of filters for 3 9 3 convolution in

the backbone is 16, 32, 64, 128, 256, 512, and 1024. As

previously stated, our technique is applicable to different

types of YOLOv3. Thus, if only the first output of Tiny-

YOLOv3 wants to perform detection, just the switch A

should be ON. Nevertheless, to detect at second scale, B, C,

D must be ON, and the others off. Finally, to detect small

objects (3rd output), the algorithm should leave OFF the A

and C switches.

Even though the number of convolutional layers is less

in Tiny-YOLOv3(3l) than YOLOv3 and the discarding

technique would have less effect on the execution speed, it

makes a difference when used in constrained environments

such as a smartphone or NVIDIA Jetson. Table 5 shows the

number of convolutional layers activated when the corre-

sponding output layer(s) is executed. While the number of

convolutional layers are reduced, the number of predictions

remains constant. However, even with the same number of

predictions, less convolutional layers are processed which

results in less computational cost. The results of applying

the discarding technique on Tiny-YOLOv3 (3l) is sum-

marised in Table 4.

This study focuses on the standard configuration, nev-

ertheless, other researches have increased or decreased

YOLO output layers according to their necessities. This is

not an issue for the proposed technique, in fact, our opti-

misation is applicable to any YOLO-based configuration.

For instance, the paper demonstrates that the technique is

applicable to YOLOv3 and Tiny-YOLOv3 which were

selected because their three output layers correspond to

object detection at short, medium and large distances.

4 Results

This section is divided into three subsections. First, the

experimental setup and the execution environment is

explained. Second, the results of applying the dynamic

discarding technique on standard YOLOv3 are shown.

Finally, the dynamic discarding technique was applied on

Tiny-YOLOv3 (3l) in a real environment as a use case for

Autonomous Vehicles (AVs) to show the advantages of

deploying our approach.

4.1 Experimental setup

As stated previously, both YOLOv3 and Tiny-YOLOv3

(3l) are the baselines to evaluate the discarding technique.

As a reference, these algorithms were trained on the stan-

dard COCO dataset. To execute CNN models, multiple

devices are available in the market. As a case in point,

Google TPUs [13] are used as a co-processor to train CNN

models on low-power devices. Moreover, the Qualcomm

Snapdragon Mobile Platform is a high-end system on chip

(SoC) which can be used for machine learning purposes on

smartphones and tablets [39]. NVIDIA Jetson Xavier [36]

is an off-the-shelf low-power consumption embedded

system with 512-core Volta GPU with Tensor Cores which

runs on Linux and more than 21 (Tera Operations Per

Second) TOPS of computation performance and 32GB of

memory RAM. It also supports different modes such as 10

W, 15 W and 30 W (MAXN) to vary the power con-

sumption. Its power capability as well as its portability has

tilted the balance of deploying our system on it.

Five state-of-the-art Machine Learning frameworks

were examined to select a suitable execution environment

for the evaluation of the proposed discarding technique.

TensorFlow Lite [47], TensorRT [37], OpenCV [3],

PyTorch [18], Snapdragon [39] were deployed and studied

taking into account the compatibility with the NVIDIA

GPU and with our acceleration technique. The latter is

tested based on the method used to execute the YOLO

Table 5 Tiny-YOLOv3 configuration after discarding technique

Output L. Conv. layer Upsample Grid size Output size

0 10 0 13 202,800

1 11 1 26 811,200

2 13 2 52 3,244,800

0,1 13 1 13,26 1,014,000

0,2 15 2 13,52 3,447,600

1,2 14 2 26,52 4,056,000

All 16 2 13,26,52 4,258,800

Output size = GridSize x GridSize x 3 x (#classes ? 5)

Fig. 4 Design of Tiny-YOLOv3 with 3 detection layers applying

dynamic discarding technique

Neural Computing and Applications (2021) 33:9961–9973 9967

123

model on the platform. If the platform just loads and

execute the model files (network configuration ? weights

file), the discarding technique will not have an effect as the

network configuration cannot be modified in real-time.

However, if the platform allows the implementation of the

YOLO network and just loads the training weights, it

would take advantage of the dynamic discarding approach.

Table 6 compares these ML frameworks, while the com-

patibilities are displayed in green, the incompatibilities are

marked in red. The result reveals that our technique cannot

be run on Jetson GPU when using TensorRT and OpenCV

frameworks. This drawback hinders the advantage of using

a GPU. When it comes to TensorRT framework, the

implementation of our discarding technique was not pos-

sible due to platform constraints. Snapdragon SDK is

another studied framework where the deployment of the

discarding technique was not feasible. Although it was not

the focus of our study, it is the state-of-the-art in compu-

tation for smartphones. Thus, PyTorch was used to deploy

the discarding acceleration technique. The project used to

implement the discarding technique can be found at [18].

The camera used is a ‘‘Logitech Carl Zeiss’’ able to

record at HD 1080p at 30 frames per second. It also has a

90�Field of View (FOV). Finally, all the system was

deployed on a ‘‘Toyota Prius Plug-in Excel 2018’’.

4.2 Pruned-YOLOv3: analysis and results

This subsection focuses on the experiments carried out

after implementing and applying our acceleration tech-

nique on YOLOv3 in PyTorch. As YOLOv3 is a compu-

tationally intensive algorithm, all these results are obtained

setting the NVIDIA Jetson Xavier on 30W (MAXN mode).

As previously stated, our technique does not compromise

the accuracy of the model because it merely removes the

unneeded operations of the neural network. Hence, the total

accuracy of the model is 55.3 mAP for COCO dataset as

stated by the author [17].

Figure 5 shows the cumulative average of the time

(inference time) taken to process 1000 frames (416x416px)

executing YOLOv3. The time was calculated from the

input of the CNN to its output. Seven different experiments

were carried out to evaluate the discarding technique: for

each output layer, for combination of two output layers and

the execution of the standard YOLOv3 without applying

the discarding technique. Table 7 shows the results of each

output layer and a combination of them. It demonstrates the

results based on each output layer depending on the num-

ber of convolutional layers executed for each option. It also

illustrates the obtained Billion of Floating Point Operations

per Second (BFLOPS) of each experiment. The result

showed at least 5.5% improvement in speed when exe-

cuting two output layers. Spotlighting the execution of one

output layer, the discarding technique can achieve an

improvement of 22% in speed when compared to the

standard execution where no discarding technique was

utilised.

4.3 Implementation of the approach to a real
use case

The previous subsection examines the results obtained after

applying our approach to standard YOLOv3. Nevertheless,

this algorithm is not suitable for constrained and/or

portable environments; As a result, as introduced in Design

(Sect. 3), we will benefit from using Tiny-YOLOv3 with 3

output layers. This subsection will apply our approach in a

use case for AVs. Nevertheless, this work is not just focused

on the AVs field, our approach could also be applied to

collision avoidance in ship traffic on rivers, motor vehicles in

warehouses, paragliders or drones [31, 32]. The discarding

technique is able to choose between different output layers in

order to detect pedestrians in real-time, and subsequently

take proper action to avoid collision. Although this publi-

cation focuses on pedestrians, the system is applicable to any

type of objects. Our car was equipped with three basics

components: a camera set at the front, a proximity sensor and

anNVIDIA JetsonXavier. The processworks as follow: first,

the proximity sensor captures the information regarding the

distance to the object. Then, the algorithm will choose the

Table 6 Study of different Machine Learning Framework for imple-

mentation of the dynamic discarding technique on YOLOv3

Platform Exec.Environment Discarding Deployment

TF Lite Jetson CPU NO Medium

TensorRT Jetson GPU NO Medium

OpenCV Jetson CPU YES Low

PyTorch Jetson GPU YES Medium

Snapdragon Qualcomm GPU NO Medium

Italic values—Not compatible; Bold values—Compatible

Fig. 5 Speed for each output layer of YOLOv3 or any combinations

of output layers against YOLOv3 standard execution. Experiments

run in NVIDIA Jetson Xavier at 30 watts

9968 Neural Computing and Applications (2021) 33:9961–9973

123

correspondent output layer based on the obtained distance to

detect whether the obstacle is a pedestrian. These three dif-

ferent layers correspond to three various scales, the first layer

(layer 0) for detecting person being close to the mounted

camera onAV, the second layer (layer 1) for person detection

at medium scale and the third layer (layer 2) for small person

recognition. Figure 6 shows this use case based on human

distance from the vehicle and the required time for detection.

To achieve the aim of the study, Tiny-YOLOv3(3l) was

trained on COCO dataset with mostly ground-level images.

For training, the algorithm was trained setting number of

iterations to 160,000. The initial learning rate was set to

0.001. We utilised Stochastic Gradient Descent with Warm

Restarts (SGDR) [30] solver with momentum coefficient of

0.9 as learning policy. Finally, we also used a weight decay

of 0.0005 to avoid over-fitting. The result of the discarding

algorithm was tested with different input sizes including

416, 608, 832 and 1056. For small object detection which

also means far distances, the greater the input size the

higher the accuracy and lower the execution speed.

Table 8 shows the results of execution speed on different

output layers or their combinations. These results are

obtained in MAXN mode. The specified BFLOPS calcu-

lates the computation needed to execute the algorithm

regarding the input size and output layers. In addition, the

speed improvement was shown when applying our

approach in comparison to that of standard Tiny-YOLOv3

when no discarding technique was applied. The result

reveals that the FPS was improved with the discarding

technique for all the individual detection outputs.

Figure 7 illustrates the speed of Tiny-YOLOv3 versus

different input sizes at 30 watts (MAXN) mode of NVIDIA

Xavier. As apparent from the results, the speed decreases

as the input size increases. Due to the trade-off between

speed and accuracy, 832 pixels were chosen as input size

for further optimisation and testing of our use case. As it

can be observed for input resolution of 832 pixels, the

speed for each individual output layer exceeds real-time

(30 FPS).

As previously stated, NVIDIA Jetson Xavier supports

several modes based on the input power. Different

Table 7 YOLOv3 results for different output layers after applying

dynamic discarding technique

Layer Conv.layer FPS BFLOPS Improvement (%)

0 59 18.79 54.436 22

1 65 17.78 58.379 17.6

2 71 16.76 62.410 12.5

0,1 67 16.28 60.062 9.9

0,2 73 15.51 64.093 5.5

1,2 73 15.67 64.181 6.5

All 75 14.66 65.864 0 Base reference

Table 8 Tiny-YOLOv3 results for different output layers after

applying discarding technique on NVIDIA Jetson Xavier in MAXN

mode

Input Layer FPS BFLOPS Improvement (%)

416 0 111.6 4.275 48.7

1 100 5.128 42.8

2 88.4 6.855 35.2

0,1 73.2 5.571 27.8

0,2 67.7 7.298 15.4

1,2 69.3 6.944 17.4

All 57.3 7.386 0 Base reference

608 0 42 9.132 33.9

1 41.3 10.954 32.8

2 40.6 14.643 31.6

0,1 34.7 11.899 19.9

0,2 35.8 15.589 22.6

1,2 35.6 14.832 22

All 27.7 15.778 0 Base reference

832 0 42.2 17.101 37.6

1 39.3 20.511 33

2 34.6 27.421 23.9

0,1 32.2 22.283 18.2

0,2 28.3 29.192 7

1,2 30 27.774 12.2

All 26.3 29.546 0 Base reference

1056 0 29.8 27.548 40.6

1 27.3 33.043 35.1

2 22.2 44.174 20.3

0,1 22.8 35.896 22.3

0,2 19.1 47.028 7.1

1,2 19.9 44.743 11.1

All 17.7 47.596 0 Base reference

Fig. 6 Discarding technique use case for pedestrian recognition in

AVs

Neural Computing and Applications (2021) 33:9961–9973 9969

123

consumption requirements mean different results on speed

when running any machine learning algorithms. Figure 8

shows the results of our approach at different modes: 10, 20

and 30 watts. Besides, the results of executing standard

Tiny-YOLOv3-3l with all output layers was compared to

the results of each output layers being executed individu-

ally. As apparent, our solution outperforms the standard

execution in terms of speed. In addition, at 20 watts mode,

we would still achieve real-time performance if our camera

was recording at 24 fps for output layer 0 and 1. Never-

theless, if we increase the frames per second we will

increase also the chances to detect. Two straightforward

approaches could be taken to increase even more the speed.

First, to reduce the input size of the network, for instance,

with an input size of 416� 416 our discarding technique

surpasses 60 fps threshold. Second, invest in high-spec

GPU without power limitations.

The last but not least is to figure out the distance cor-

responds to each output layer. To measure the distance that

each output layer is able to detect, we varied the distance

between the camera and the person step-wise by 0.5 m.

Being aware of the fact that the pedestrian detection not

only depends on the person but also many other factors

such as training dataset, weather conditions, the position of

the person, clothing, obstacles, we were still able to esti-

mate the required distance to test our use case. Table 9

displays the minimum and maximum distance in meters

and the pixel size that the current configuration led to.

Based on the obtained results, the minimum size of a

human to be detected in the first layer (layer 0) is 67 9 176

at a maximum distance of 5.5 m. The maximum pixel size

of human that can be detected at this layer is 703 9 460

when the distance is 0.5 m. The minimum size of a human

in the second layer (layer 1) is 12 9 53 at the distance of

31.5 m. For layer 2, the minimum pixel size of human that

can be detected is 9 9 28 when the distance is 57.5 m. Due

to the overlapped distance ranges between different output

layers, it is worth considering the execution of two output

layers simultaneously.

To evaluate the effectiveness of our approach in pre-

serving the accuracy, a testing dataset was manually col-

lected and labelled from videos recorded in a completely

new environment, composed by images never seen before

by the algorithm. The testing dataset was divided into three

subdatasets based on different distances: short-range

(0.5–5.5 m), mid-range (4.5–31.5 m) and long-range

(29–57.5 m).

Table 10 compares the standard YOLOv3 (0, 1, 2)

executing the three output layers concurrently against the

execution of our approach discarding output layers. Each

output layers will be tested over the correspondent distance

dataset. For short-range distances, the accuracy remains

constant when executing all three output layers or just the

first output layer when using the discarding technique. For

medium-range distances, the accuracy is also preserved no

matter which output layers are executed. Finally, for long

distances, the aforementioned factor of overlapping dis-

tances should be taken into account. Although the execu-

tion of just the output layer 2 lowers the accuracy,

executing the combination of both output layers 1 and 2,

Table 9 Human detection for each YOLOv3 output layer

Layer Input Size FPS Distance (m) Pixel Size

Min Max Max Min

0 832 42.2 0.5 5.5 703 9 460 67 9 176

1 832 39.3 4.5 31.5 77 9 212 12 9 53

2 832 34.6 29 57.5 16 9 63 9 9 28

416 608 832 1,056
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

Input Size [pixels]

Sp
ee
d
[f
ps

]

L0
L1
L2

Standard YOLO
Real-Time

Fig. 7 Speed for Tiny-YOLOv3 model for each output layer

depending on the image input size against the standard execution of

YOLOv3. Experiments run in NVIDIA Jetson Xavier at MAXN mode

10 20 30
0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

Execution Mode (Watts)

Sp
ee
d
[f
ps

]

L0
L1
L2

Standard YOLO
Real-Time

Fig. 8 Speed for Tiny-YOLOv3 model for each output layer at 832

pixels of input size based on the execution mode

9970 Neural Computing and Applications (2021) 33:9961–9973

123

mitigates the overlapping issue and thereby preserves the

accuracy.

These accuracy results demonstrate that our technique

preserves the accuracy of the standard model by dynami-

cally changing the output layers. If the pedestrian is in an

‘‘overlapped’’ or inconsistent distance, the decision to take

is executing the two nearest output layers at the same time.

4.4 Qualitative results

Figure 9 shows three pedestrian images. These images

were taken from a camera mounted on the car. Each image

contains a pedestrian at a different distance and thereby

enabling our system to detect using different output layers.

Fig. 9a shows a pedestrian at 1.5 m of distance to the car

and was detected at output layer 0 based on the results of

Table 9. As apparent in Fig. 9b, the pedestrian was detected

at output layer 1 due to 22 m of distance to the car. Finally,

Fig. 9c shows an accurate detection of a pedestrian at 50.5

m of distance due to the output layer 2 performing the

detection.

5 Conclusions

In this paper, we proposed a new acceleration technique to

perform efficient deep object detection through output

discarding of convolutional layers. To this end, we

enforced the discarding to have fewer trainable parameters

in comparison with original YOLOv3 and Tiny-YOLOv3,

as a promising solution to speed up the neural network

while preserving the accuracy. Empirical results show that

in the case of YOLOv3, the speed was improved by at least

5.5% when executing two output layers. By executing one

output layer, the proposed dynamic discarding technique

can achieve a very significant improvement of 22% in

speed when compared to the standard execution where no

discarding technique is performed. When using Tiny-

YOLOv3 with three output layers on a small-form Jetson

Xavier PC, the proposed technique can achieve a remark-

able maximum improvement of 48.7% in speed. Future

work will focus on the improvement of human detection at

different conditions to estimate a better range of pixels to

recognise them.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

Table 10 Accuracy at different distances per execution layer

Layers Short distance (%) Mid distance (%) Long distance (%)

0,1,2 79.9 99.01 98.01

0 79.45 – –

1 – 98.92 –

2 – – 82.08

0,1 79.9 99.01 –

1,2 – 98.7 97.01

[0,1,2] is the standard execution of YOLO.

Fig. 9 Tiny-YOLOv3-3l detection using dynamic discarding tech-

nique based on three output layers at different altitudes and

environments

Neural Computing and Applications (2021) 33:9961–9973 9971

123

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Alexey AB (2020) Billion floating point operations per second,

BFLOPS formula. https://github.com/AlexeyAB/darknet/blob/

5b6be00d4b1f fd671c20c4c72d2239c924eaa3d4/src/convolu

tional_layer.c#L406

2. Alexey AB (2020) Darknet. https://github.com/AlexeyAB

3. Bradski G (2000) The OpenCV Library. Dr. Dobb’s J: Softw

Tools for the Professional Programmer 25(11):120–123

4. Chen WH, Kuo HY, Lin YC, Tsai CH (2021) A lightweight

pedestrian detection model for edge computing systems. In:

Y. Dong, E. Herrera-Viedma, K. Matsui, S. Omatsu,

A. González Briones, S. Rodrı́guez González (eds.) Distributed

computing and artificial intelligence, 17th international confer-

ence. Springer International Publishing, Cham, pp 102–112

5. Cheng Y, Wang D, Zhou P, Zhang T (2017) A survey of model

compression and acceleration for deep neural networks. Preprint

arXiv:1710.09282

6. Choi J, Chun D, Lee H, Kim H (2020) Uncertainty-based object

detector for autonomous driving embedded platforms. In: 2020

2nd IEEE international conference on artificial intelligence cir-

cuits and systems (AICAS), pp 16–20. https://doi.org/10.1109/

AICAS48895.2020.9073907

7. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

8. Dai J, Li Y, He K, Sun J (2016) R-FCN: object detection via

region-based fully convolutional networks. http://arxiv.org/abs/

1605.06409

9. Dalal N, Triggs B (2005) Histograms of oriented gradients for

human detection. In: 2005 IEEE computer society conference on

computer vision and pattern recognition (CVPR’05). IEEE,

vol. 1, pp 886–893

10. Ding L, Wang Y, Laganière R, Huang D, Fu S (2020) Convo-

lutional neural networks for multispectral pedestrian detection.

Signal Process Image Commun 82:115764

11. Feng Y, Zeng S, Yang Y, Zhou Y, Pan B (2018) Study on the

optimization of CNN based on image identification. In: 2018 17th

international symposium on Distributed Computing and Appli-

cations for Business Engineering and Science (DCABES). IEEE,

pp 123–126

12. Girshick R (2015) Fast R-CNN. Proceedings of the IEEE inter-

national conference on computer vision 2015 inter,

pp 1440–1448. https://doi.org/10.1109/ICCV.2015.169

13. (2020) Google: Cloud Tensor Processing Units (TPUs). https://

cloud.google.com/tpu/docs/tpus

14. He W, Huang Z, Wei Z, Li C, Guo B (2019) TF-yolo: an

improved incremental network for real-time object detection.

Appl Sci 9(16):3225

15. Hemmati M, Biglari-Abhari M, Niar S (2019) Adaptive vehicle

detection for real-time autonomous driving system. In: 2019

Design, Automation and Test in Europe Conference and Exhi-

bition (DATE). IEEE, pp 1034–1039

16. Hirose N, Sadeghian A, Vázquez M, Goebel P, Savarese S (2018)

Gonet: a semi-supervised deep learning approach for

traversability estimation. In: 2018 IEEE/RSJ international con-

ference on Intelligent Robots and Systems (IROS). IEEE,

pp 3044–3051

17. Joseph R (2020) YOLO real time object detection. https://pjred

die.com/darknet/yolo

18. Kathuria A (2020) PyTorch YOLOv3 implementation. https://

github.com/ayooshkathuria/pytorch-yolo-v3

19. Kim H, Choi K (2019) The implementation of a power efficient

bcnn-based object detection acceleration on a xilinx FPGA-SOC.

In: Proceedings—2019 IEEE international congress on cyber-

matics: 12th IEEE international conference on internet of things,

15th ieee international conference on green computing and

communications, 12th IEEE international conference on cyber,

physical and social computing and 5th IEEE international con-

ference on smart data, iThings/GreenCom/CPSCom/SmartData

2019, pp 240–243. https://doi.org/10.1109/iThings/GreenCom/

CPSCom/SmartData.2019.00060

20. Kim J, Jung WY, Jung H, Han DS (2018) Methodology for

improving detection speed of pedestrians in autonomous vehicle

by image class classification. In: 2018 IEEE international con-

ference on consumer electronics, ICCE 2018-Jan, pp 1–2. https://

doi.org/10.1109/ICCE.2018.8326252

21. Krizhevsky A, Hinton G et al (2009) Learning multiple layers of

features from tiny images. University of Toronto

22. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classi-

fication with deep convolutional neural networks. Commun ACM

60(6):84–90. https://doi.org/10.1145/3065386

23. Kyriakos A, Kitsakis V, Louropoulos A, Papatheofanous EA,

Patronas I, Reisis D (2019) High performance accelerator for cnn

applications. In: 2019 29th international symposium on Power

and Timing Modeling, Optimization and Simulation (PATMOS).

IEEE, pp 135–140

24. LeCun Y, Cortes C (2010) MNIST handwritten digit database.

http://yann.lecun.com/exdb/mnist/

25. Li Q, Garg S, Nie J, Li X, Liu RW, Cao Z, Hossain MS (2020) A

highly efficient vehicle taillight detection approach based on deep

learning. IEEE transactions on intelligent transportation systems,

pp 1–11. https://doi.org/10.1109/TITS.2020.3027421

26. Li S, Wen W, Wang Y, Han S, Chen Y, Li H (2017) An FPGA

design framework for CNN sparsification and acceleration. In:

2017 IEEE 25th annual international symposium on Field-Pro-

grammable Custom Computing Machines (FCCM). IEEE, p 28

27. Lin SC, Zhang Y, Hsu CH, Skach M, Haque ME, Tang L, Mars J

(2018) The architectural implications of autonomous driving:

constraints and acceleration. ACM SIGPLAN Not

53(2):751–766. https://doi.org/10.1145/3173162.3173191

28. Lin TY et al (2014) Microsoft COCO: common objects in con-

text. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Com-

puter vision – ECCV 2014. ECCV 2014. Lecture Notes in

Computer Science, vol 8693. Springer, Cham. https://doi.org/10.

1007/978-3-319-10602-1_48

29. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg

AC (2016) SSD: Single shot multibox detector. In: Lecture notes

in computer science (including subseries Lecture Notes in arti-

ficial intelligence and lecture notes in bioinformatics) 9905

LNCS, pp 21–37. https://doi.org/10.1007/978-3-319-46448-0_2

30. Loshchilov I, Hutter F (2019) SGDR: stochastic gradient descent

with warm restarts. In: 5th international conference on learning

representations, ICLR 2017—conference track proceedings,

pp 1–16

31. Martinez-Alpiste I, Golcarenarenji G, Wang Q, Alcaraz Calero

JM (2020) Altitude-adaptive and cost-effective object recognition

in an integrated smartphone and uav system. In: 2020 European

9972 Neural Computing and Applications (2021) 33:9961–9973

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/AlexeyAB/darknet/blob/5b6be00d4b1f%20fd671c20c4c72d2239c924eaa3d4/src/convolutional_layer.c#L406
https://github.com/AlexeyAB/darknet/blob/5b6be00d4b1f%20fd671c20c4c72d2239c924eaa3d4/src/convolutional_layer.c#L406
https://github.com/AlexeyAB/darknet/blob/5b6be00d4b1f%20fd671c20c4c72d2239c924eaa3d4/src/convolutional_layer.c#L406
https://github.com/AlexeyAB
http://arxiv.org/abs/1710.09282
https://doi.org/10.1109/AICAS48895.2020.9073907
https://doi.org/10.1109/AICAS48895.2020.9073907
http://arxiv.org/abs/1605.06409
http://arxiv.org/abs/1605.06409
https://doi.org/10.1109/ICCV.2015.169
https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
https://pjreddie.com/darknet/yolo
https://pjreddie.com/darknet/yolo
https://github.com/ayooshkathuria/pytorch-yolo-v3
https://github.com/ayooshkathuria/pytorch-yolo-v3
https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00060
https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00060
https://doi.org/10.1109/ICCE.2018.8326252
https://doi.org/10.1109/ICCE.2018.8326252
https://doi.org/10.1145/3065386
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/TITS.2020.3027421
https://doi.org/10.1145/3173162.3173191
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2

Conference on Networks and Communications (EuCNC),

pp 316–320

32. Martinez-Alpiste I, Casaseca-de-la Higuera P, Alcaraz-Calero

JM, Grecos C, Wang Q (2019) Smartphone-based object recog-

nition with embedded machine learning intelligence for unman-

ned aerial vehicles. J Field Robot. https://doi.org/10.1002/rob.

21921

33. Miethig B, Liu A, Habibi S, Mohrenschildt MV (2019) Lever-

aging thermal imaging for autonomous driving. In: ITEC 2019—

2019 IEEE transportation electrification conference and expo.

https://doi.org/10.1109/ITEC.2019.8790493

34. Moussawi A, Haddad K, Chahine A (2018) An FPGA-accelerated

design for deep learning pedestrian detection in self-driving

vehicles. http://arxiv.org/abs/1809.05879

35. Nie X, Yang M, Liu RW (2019) Deep neural network-based

robust ship detection under different weather conditions. In: 2019

IEEE Intelligent Transportation Systems Conference (ITSC),

pp 47–52. https://doi.org/10.1109/ITSC.2019.8917475

36. (2020) NVIDIA: NVIDIA Jetson Xavier. https://developer.nvi

dia.com/embedded/jetson-agx-xavier-developer-kit

37. (2020) NVIDIA: NVIDIA TensorRT. https://developer.nvidia.

com/tensorrt

38. Qiao K, Gu H, Liu J, Liu P (2017) Optimization of traffic sign

detection and classification based on faster r-cnn. In: 2017

International Conference on Computer Technology, Electronics

and Communication (ICCTEC), pp 608–611. IEEE

39. (2020) Qualcomm: snapdragon neural processing engine SDK.

https://developer.qualcomm.com/docs/snpe/overview.html

40. Ramı́rez Dı́az I, Cuesta-Infante A, Pantrigo J, Montemayor AS,

Moreno J, Alonso V, Anguita G, Palombarani L (2020) Convo-

lutional neural networks for computer vision-based detection and

recognition of dumpsters. Neural Comput Appl. https://doi.org/

10.1007/s00521-018-3390-8

41. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only

look once: unified, real-time object detection. In: Proceedings of

the IEEE computer society conference on computer vision and

pattern recognition 2016-Dec, pp 779–788. https://doi.org/10.

1109/CVPR.2016.91

42. Redmon J, Farhadi A (2017) YOLO9000: Better, faster, stronger.

In: Proceedings—30th IEEE conference on computer vision and

pattern recognition, CVPR 2017 (2017-Jan), 6517–6525. https://

doi.org/10.1109/CVPR.2017.690

43. Redmon J, Farhadi A (2018) YOLOv3: an incremental

improvement. http://arxiv.org/abs/1804.02767

44. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards

real-time object detection with region proposal networks. IEEE

Trans Pattern Analy Mach Intell 39(6):1137–1149. https://doi.

org/10.1109/TPAMI.2016.2577031

45. Schapire RE (2013) Explaining AdaBoost. In: Schölkopf B, Luo

Z, Vovk V (eds) Empirical Inference. Springer, Berlin, Heidel-

berg. https://doi.org/10.1007/978-3-642-41136-6_5

46. Soon FC, Khaw HY, Chuah JH, Kanesan J (2018) Hyper-pa-

rameters optimisation of deep CNN architecture for vehicle logo

recognition. IET Intell Transp Syst 12(8):939–946

47. TensorFlow: tensorflow lite (2019). https://www.tensorflow.org/

lite/guide

48. Treml M, Arjona-Medina J, Unterthiner T, Durgesh R, Fried-

mann F, Schuberth P, Mayr A, Heusel M, Hofmarcher M,

Widrich M, Nessler B, Hochreiter S (2016) Speeding up semantic

segmentation for autonomous driving

49. Van Etten A (2018) You Only look twice: rapid multi-scale

object detection in satellite imagery. http://arxiv.org/abs/1805.

09512

50. Viola P, Jones MJ (2004) Robust real-time face detection. Int J

comput vision 57(2):137–154

51. Vu TH, Murakami R, Okuyama Y, Abdallah AB (2018) Efficient

optimization and hardware acceleration of cnns towards the

design of a scalable neuro inspired architecture in hardware. In:

2018 IEEE international conference on big data and smart com-

puting (BigComp). IEEE, pp 326–332

52. Wang Z, Lin S, Xie J, Lin Y (2019) Pruning blocks for CNN

compression and acceleration via online ensemble distillation.

IEEE Access 7:175703–175716

53. Xue C, Cao S, Jiang R, Yang H (2018) A reconfigurable pipe-

lined architecture for convolutional neural network acceleration.

In: 2018 IEEE International Symposium on Circuits and Systems

(ISCAS). IEEE, pp 1–5

54. Yang Z, Li J, Li H (2018). Real-time pedestrian detection for

autonomous driving. In: 2018 International Conference on

Intelligent Autonomous Systems (ICoIAS). IEEE, pp 9–13

55. Zhang C, Sun G, Fang Z, Zhou P, Pan P, Cong J (2018) Caffeine:

toward uniformed representation and acceleration for deep con-

volutional neural networks. IEEE Trans Comput Aided Des

Integr Circuits Syst 38(11):2072–2085

56. Zhang P, Zhong Y (2019) Li X (2019) Slimyolov3: narrower,

faster and better for real-time UAV applications. In: IEEE/CVF

International Conference on Computer Vision Workshop

(ICCVW)

57. Zhang Q, Zhang M, Chen T, Sun Z, Ma Y, Yu B (2019) Recent

advances in convolutional neural network acceleration. Neuro-

computing 323:37–51

58. Zhao H, Zhou Y, Zhang L, Peng Y, Hu X, Peng H, Cai X (2020)

Mixed yolov3-lite: a lightweight real-time object detection

method. Sensors 20:1861. https://doi.org/10.3390/s20071861

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:9961–9973 9973

123

https://doi.org/10.1002/rob.21921
https://doi.org/10.1002/rob.21921
https://doi.org/10.1109/ITEC.2019.8790493
http://arxiv.org/abs/1809.05879
https://doi.org/10.1109/ITSC.2019.8917475
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.qualcomm.com/docs/snpe/overview.html
https://doi.org/10.1007/s00521-018-3390-8
https://doi.org/10.1007/s00521-018-3390-8
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1007/978-3-642-41136-6_5
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/guide
http://arxiv.org/abs/1805.09512
http://arxiv.org/abs/1805.09512
https://doi.org/10.3390/s20071861

	A dynamic discarding technique to increase speed and preserve accuracy for YOLOv3
	Abstract
	Introduction
	Related Work
	YOLOv3
	Analysis of previous works
	Convolutional neural networks improvements
	Pedestrian detection

	Design
	Bottlenecks in convolutional neural networks
	Network design
	Network design for tiny-YOLOv3(3l)

	Results
	Experimental setup
	Pruned-YOLOv3: analysis and results
	Implementation of the approach to a real use case
	Qualitative results

	Conclusions
	Open Access
	References

