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Abstract
With the frequent occurrence of natural disasters, timely warning of flood disasters has become an issue of concern. This

research mainly discusses flood disaster risk assessment based on random forest algorithm. This study uses the special

functions of GIS to collect, manage, and analyze data to propose a method of flood disaster risk assessment based on GIS.

This method is based on the characteristics of natural disaster-causing factors in the study area, selects an appropriate grid

size, and finally realizes the function of visual expression of regional disaster risk. First, use ArcGIS10.1 to analyze and

integrate each hazard factor into the flood disaster report index model. Second, the random forest algorithm is used as the

weight of each parameter of the flood disaster index model. Finally, use ArcGIS spatial analysis tool map algebra function

to model, carry out flood risk assessment in different periods, and use spatial analysis function to extract the median value

to point function to extract the flood inundation depth of the study area in a specific scenario. In the experimental part, this

research uses layer overlay to determine the number and types of affected areas. Using the natural break point method of

ArcGIS 10.1 platform, the study area is divided according to the magnitude of the flood disaster risk value. At the same

time, there are a total of 85 samples that have experienced flood disasters, of which only six have been misjudged as no

flood disasters. Generally speaking, the model prediction accuracy is high. The research results show that the combination

of random forest algorithm and GIS technology is convenient for analyzing the spatial pattern and internal laws of flood

risk, and has good applicability.
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1 Introduction

Due to the randomness, suddenness, high destructiveness,

and wide distribution of time and space of flood disasters,

traditional loss assessment methods are low in efficiency

and costly, and the assessment results are not ideal. With

the continuous and in-depth application of GIS technology

in flood disaster monitoring, it is possible to carry out

research on flood disaster risk assessment and crop loss

assessment based on GIS. GIS technology performs real-

time monitoring of flood disasters. Random forest algo-

rithm can carry out regionalization and loss assessment of

agricultural flood disaster risk. The combination of random

forest algorithm and GIS technology can not only grasp the

possibility of flood disaster in time, predict the degree of

loss, and temporal and spatial distribution of losses can also

help relevant flood prevention and mitigation departments

and agricultural departments to actively respond to flood

disasters, and formulate flood prevention and mitigation

plans in advance according to the risk levels of different

regions.

The ability of crops to withstand flood disasters is poor,

especially early crops. The climate zone in which my

country is located makes the frequency of flood disasters

high and the intensity of floods is high. Flood disasters

have become one of the main disasters that cause crop

production reduction or no harvest in my country, which is

a serious obstacle. And destroy food security and social

production. The real-time monitoring of GIS technology
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allows us to take measures in advance to minimize the

economic loss caused by flood disasters, and to turn the

flood disaster prevention work from passive to active, from

low efficiency to high efficiency. The use of random forest

algorithm to study the risk analysis and evaluation of flood

disasters not only provides important reference value for

disaster prevention command and dispatch, rescue and

relief, emergency response and agricultural flood disaster

insurance, but also for crop production management and

agricultural disaster compensation, planting structure

adjustment, yield forecasting is of great significance.

The random forest algorithm is very versatile. Polan

investigated and optimized the random forest algorithm for

automatic organ segmentation, explored the limitations of

the random forest algorithm suitable for CT environments,

and proved the accuracy of segmentation in feasibility

studies for pediatric and adult patients. He used Matlab and

FIJI’s TWS plug-in to classify seven materials: the random

forest algorithm uses 200 trees, and each node randomly

selects two features. He analyzed the dice similarity coef-

ficient (DSC) calculation between the manually segmented

images from 21 patient image parts and the random forest

algorithm segmented images. His research process is too

complicated [1]. Xu proposed a real-time traffic classifi-

cation method for power services based on an improved

random forest algorithm. On the basis of analyzing the

characteristics of real-time traffic in the secure access of

electric power services, the traditional random forest

algorithm is improved. He pruned the random forest based

on the edge weight to improve the real-time classification,

and edited the new sample data to improve the classifica-

tion accuracy. Based on the improved algorithm, he

designed the real-time traffic classification process in the

secure access of power services. Finally, the feasibility and

effectiveness of this method are verified by taking a pro-

vince electric power enterprise’s safe access to real-time

traffic classification as an example. His research lacks data

[2]. Joshuva believes that wind energy is converted into

electrical energy using rotating blades connected to a

generator. He uses structural health monitoring to diagnose

downtime regularly, which can reduce downtime. These

are considered as pattern recognition problems, which

include three stages, namely feature extraction, feature

selection and feature classification. He extracted statistical

features from vibration signals, used J48 decision tree

algorithm for feature selection, and used random forest

algorithm for feature classification. His research lacks data

[3]. He believes that the study of Mendelian disease and the

identification of its causative genes are of great significance

in the field of genetics. He calculated the genetic

pathogenicity prediction (GPP) score through a machine

learning method (random forest algorithm) to evaluate the

pathogenicity of genes. Apply the GPP score to the test

gene set. His research lacks data [4]. Wang Y believes that

inspecting the steel surface is important to ensure the

quality of the steel. He proposed an improved random

forest algorithm (OMFF-RF algorithm) with optimal fea-

ture set fusion for distributed defect recognition. He

extracted and merged the histogram of the oriented gradi-

ent (HOG) feature set and the gray-level co-occurrence

matrix (GLCM) feature set to describe local and global

texture features, respectively. Secondly, in view of the

small number of samples of the distributed defect images

and the high dimensionality of the extracted feature set, a

random forest algorithm is introduced for defect classifi-

cation. His research lacks data [5].

This research first clarifies the background and signifi-

cance of the topic. Then, for the principles and methods of

regional flood disaster risk assessment, relevant theories

are analyzed, summarized and refined, the principles and

methods of flood disaster risk assessment are explained, the

evaluation model and method of this research are proposed,

the research area is introduced, and the research is

explained. Using data and sources, preprocessing the rel-

evant data, and establishing a spatial database under the

ArcGIS platform. Finally, for the construction and index

analysis of the flood disaster risk evaluation index system,

analyze the factors that affect the flood disaster risk,

introduce the principles and methods for selecting the

evaluation index, analyze the flood disaster risk evaluation

index, determine the composition of the evaluation index

system, and analyze the selected items. The indicators are

analyzed and standardized.

2 Flood disaster risk assessment

2.1 Flood disaster

The remote sensing monitoring method of rainstorm and

flood disaster is relatively mature at present, and the

method has the characteristics of diversified, deep and

comprehensive. In the research of this article, it is found

that the method of extracting the information of rainstorm

and flood disaster only realizes the determination of the

flood disaster area by extracting the distribution range of

the flood disaster water body, and has not studied the

specific dynamic process of crop damage in the cultivated

area [6, 7]. And more research is limited to a single remote

sensing data source, and more attention is paid to the use of

satellite remote sensing data to detect and extract infor-

mation about sudden changes in flooded cultivated land

caused by heavy rains and floods [8].

Traditional manual survey and monitoring of disasters

are not only time-consuming, labor-intensive and expen-

sive, but also the survey data cannot reflect the dynamic
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information of crop damage. Remote sensing technology

can make up for many shortcomings of traditional disaster

monitoring, and realize real-time, macro, and large-scale

ground monitoring. Obtain information on the dynamic

changes of crop growth affected by the disaster area of a

wide range of cultivated land and heavy rain disasters

[9, 10]. The management and analysis functions of GIS

technology combined with multi-source satellite data can

quickly and comprehensively analyze disaster information.

During the heavy rain and flood disaster, the weather is

bad, and the remote sensing data obtained by satellites are

mostly affected by the cloud layer, which leads to the

extremely unsatisfactory quality and quantity of the remote

sensing data that captures changes in the ground state [11].

2.2 Application of GIS in flood disaster risk
assessment

Geographic information system (GIS) provides a powerful

technical means for spatial data processing, analysis,

management, and mapping. It is widely used in the

research and practice of flood disaster risk assessment

[12, 13]. Geographical information system can effectively

manage and update various spatial data in flood disaster

risk assessment. A large amount of data is involved in flood

disaster risk assessment. These data include historical flood

data, socio-economic data, remote sensing images, geo-

graphic thematic data, and various vector data and raster

data. Most of these data have both attributes and space.

Location, these data are not only complex but also massive.

Geographical information systems can store these data in

sub-databases, layers, types, and plots [14]. If the image

function is converted into a binary image to represent the

shape area of the GIS partial discharge map, the image

p ? q moment is defined as:

Mpq ¼
X

x

X

y

xpypf x; yð Þ p; q ¼ 0; 1; 2; . . .ð Þ ð1Þ

Among them, x; yð Þ is the center of mass [15, 16].

Geographic information system provides powerful analysis

tools for flood disaster risk assessment research. In flood

disaster risk assessment, sometimes discrete precipitation

monitoring data are spatially gridded, and the spatial

interpolation analysis function of GIS can quickly realize

this demand. Sometimes, it is necessary to comprehen-

sively calculate various risk indicators according to a cer-

tain model to obtain the final risk result. The grid

mathematical operation function of GIS is quite powerful,

which can quickly calculate a large amount of grid data.

The spatial statistical analysis of GIS can help us to make

statistics according to plots and fields. At present, it is

relatively mature to use a series of analysis functions of

GIS technology to carry out flood disaster risk assessment

and zoning research [17]. Geographic information system

is the best method for making flood disaster risk maps. GIS

software can directly display and output flood disaster risk

related data and evaluation results as two-dimensional

maps or three-dimensional images, and produce various

flood disaster risk maps [18, 19].

2.3 Random forest algorithm

In the random forest algorithm, a large number of decision

tree classifiers are constructed first, and then, these classi-

fiers are used to vote on the test samples, and finally the

final decision result is made through the principle of

majority dominance. The model selection of random forest

is to select a specified number of suitable classifiers from

the many decision tree classifiers constructed, and then use

these classifiers to vote on the test samples [20].

There are two main steps in the random forest algorithm.

The first is to build a large number of decision tree clas-

sifiers, and the second is to integrate these decision tree

classifiers into voting [21, 22]. In the original random

forest (the original random forest, referred to as RF) model

algorithm, it uses the method of all selection integration

when the model is selected. That is to say, if k decision

trees are built, then these k. All decision trees are selected

for integration, and then, the random forest model con-

taining k decision tree classifiers is used to vote and finally

vote [23]. Suppose S ¼ x1; y1ð Þ. . . xN ; yNð Þf g is a sample

set, and the classification error of the classifier f on the

sample set is:

g error ¼ 1

N

X

xi;yið Þ2S
1 f xið Þ6¼yif g þ PD ð2Þ

Among them, N is the size of the sample set (total

number of samples), and 1 f xið Þ6¼yif g is the indicator function

[24, 25]. Because in the static model selection method, the

model selection is only performed once, and the built

integrated model does not need to be changed. Therefore,

the calculation amount of this method in the model selec-

tion stage is relatively low, and the time complexity will be

relatively small. In the static model selection method, the

decision tree classifier is generated based on training

samples at the beginning, so these classifiers are more

dependent on the training samples in the probability dis-

tribution. When several classifiers are selected from these

decision tree classifiers for integration, this ensemble

model will to some extent be more biased toward correctly

classifying samples with the same probability distribution

as the training samples [26]. The strength of the classifier

set fhðXÞg is the expectation of the marginal function of

the random forest:
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s ¼ E mr X; Yð Þð Þ ¼ 1

n

Xn

i¼1

Q xi; yð Þ �maxQc xi; yj
� �� �

ð3Þ

If there is a large difference between the test sample and

the training sample in the probability distribution, the

ensemble model may make wrong classification predic-

tions for the test sample. And because the ensemble model

does not change after construction, when there are large

differences between the test samples, then using the same

ensemble model for prediction may also lead to incorrect

classification. For a given classifier, the input vector x and

its corresponding output y, define the interval function of

the sample point x; yð Þ as follows:
mg x; yð Þ ¼ avkI hk xð Þ ¼ yð Þ �max

j 6¼y
avkI hk xð Þ ¼ jð Þ ð4Þ

Among them, I hk xð Þ ¼ yð Þ is the indicator function.

3 Flood disaster risk assessment experiment

3.1 Data sources

The data used in this study includes remote sensing data,

geographic basic data, and statistical data. Remote sensing

data mainly includes land use data, which is obtained by

unsupervised classification and interpretation of Landsat

remote sensing images in 2000 using EDRAS software.

The basic geographic data includes digital line maps (in-

cluding administrative area boundaries, traffic, rivers, and

other elements), topographic data (contour lines, elevation

points) and topographic data are vectorized from the

1:250,000 topographic map of our province. Statistics

include rainfall data, population data, economic data, and

agricultural data.

3.2 Modeling of random forest model

In the algorithm package random forest of R language, two

important parameters need to be carefully selected. These

two parameters are the number of preselected feature

attributes mtry and the number of decision trees in the

random forest model ntree. Generally speaking, ntree is

usually set to 500, the value of mtry is generally the root of

the sample format, the number of mtry is too small, and a

decision tree is generated, which will cause the classifier to

overfit and cause the classification accuracy to be low. If it

is too large, it will cause the running speed to become

much slower. Simply put, if the mtry gets smaller and

smaller, the correlation between the trees will become

smaller and smaller, and at the same time, the classification

accuracy will decrease. Therefore, in the random forest

model, the number of decision trees must be set reasonably.

If the number of decision trees is small, the training will be

insufficient, and if the number of decision trees is relatively

large, the model will be greatly increased. The amount of

calculation. The algorithm is based on the randomForest()

function of the R language machine learning package.

Therefore, in this experiment, 375 samples are randomly

selected for replacement, and six features are randomly

selected each time, and 100 decision trees are selected to

build each the decision tree is fully grown. Natural disaster

risk assessment based on GIS is the use of special functions

of GIS: collecting, managing, analyzing data, etc. This

method selects the appropriate grid size according to the

characteristics of the natural disaster-causing factors in the

study area, and finally realizes the visual expression of the

disaster risk in the scenic area.

3.3 Establishment of flood disaster index model

This study uses the flood disaster index model to evaluate

the flood risk in different periods in Guanzhong area.

Firstly, use ArcGIS10.1 to analyze and integrate each

hazard factor into the flood disaster report index model.

Secondly, experts in related fields (hydrology, geographic

information system, urban science) are invited to decide

the relative importance of hazards. Random forest algo-

rithm is used as a method to determine the weight of each

parameter of the flood disaster index model. Finally, use

ArcGIS spatial analysis tool map algebra function to

model, carry out flood risk assessment in different periods,

and use spatial analysis function to extract the median

value to point function to extract the flood inundation depth

of the study area in a specific scenario. Determine the

number and types of affected areas by overlaying layers.

Using the natural break point method of ArcGIS 10.1

platform, the study area is divided according to the mag-

nitude of the flood disaster risk value. The risk is divided

into five levels: disaster loss in extremely low-risk areas is

defined as\ 5%, low-risk areas are defined as 5–10%,

medium-risk areas are defined as 10–50%, and high-risk

areas are defined as disaster losses. It is defined as

80–100% for 50–80%, high-risk area disaster loss.

Obtaining flood risk prevention and control maps through

evaluation is helpful to flood control and management

decision-making. Finally, according to the spatial analysis

function of GIS, the disaster area statistics and calculation

are carried out, and finally the disaster level evaluation is

carried out.

3.4 Feature selection

In this paper, rainfall, elevation, and rainfall are selected as

features. The rainfall is divided into 12 dimensions such as

January rainfall, February rainfall up to December rainfall,
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and a total of 15 features. Before the model calculation, in

order to verify will there be any correlation between the

features of our fifteen dimensions, whether there is a con-

nection between them, if there is a correlation, we need to

carry out preliminary data cleaning work, such as reducing

the dimensionality of the data, so then we need to diagnose

multiple collinearity for these characteristic attributes.

3.5 Model sample data selection

The model sample data select the historical flood disaster

data of 34 districts and counties from 2000 to 2010. The

points where the flood disaster has occurred are marked as

1, and the points that have not occurred are marked as 0, so

a total of 375 sample data. 15 features constitute the final

sample data set. Generalization ability is the most direct

manifestation of model effect.

3.6 Early warning model process design

The early warning model process is as follows:

(1) Sort out the historical example samples of fault

tripping under flood disasters, construct the misclas-

sification cost function according to the actual

distribution of the samples, and calculate the mis-

classification cost of the fault samples and the normal

samples.

(2) Using the Bagging method to extract the sample set

for the sample sample set to form k sample subsets

and the corresponding out-of-bag data set.

(3) For k sample subsets:

� Select m features from the feature

space of the original data set to form a

feature subset.

` Calculate the misclassification cost

reduction value Rcc of each feature in

the feature subset.

´ Select the largest feature attribute of

Ree to split the node.

ˆ Repeat `–´ until the samples in the

sample subset are classified or reach the

maximum node level, and finally a

decision tree model is generated based

on cost-sensitive learning and the flood

fault warning model of random forest.

(4) Each decision tree uses the out-of-bag data set

corresponding to the sample subset for classification

testing.

(5) For the prediction sample set, the final classification

result is obtained through the weight voting of

k decision trees.

3.7 Model training

First, the normal samples in the example sample set are

down-sampled to extract 500 normal samples, and the

failure samples are not expanded. The cost function is

determined according to the actual distribution of 538

samples. Subsequently, Borderine-SMOTE oversampling

was performed on 20 of the 38 fault samples, which

expanded the number of minority samples to 216; the non-

fault samples were denoised, and the non-fault samples

were further reduced to 216. There is a total of 432 samples

in the training sample set based on the hybrid sampling

algorithm. Since the method in this paper has not been

deployed in the actual system, some historical samples are

used as test samples to verify the effectiveness of the

method in this paper. In the calculation example, 292

samples (non-fault sample: fault sample = 1:1) are input

into the model to train the model, and the remaining 140

samples including 18 instance fault samples are used as

subsequent prediction samples. Therefore, in this experi-

ment, the training sample and the test sample set are dis-

tinguished at a ratio of 7:3. The number of training sample

sets is 260, of which the number of positive samples

(marked as samples that have experienced landslides) is

190. The number of negative samples (marked as samples

that have not experienced landslides) is 70: the number of

test sample sets is 115, of which the number of positive

samples (marked as samples that have experienced land-

slides) is 85, and the number of negative samples (marked

as the number of samples that have experienced landslides

is 30): some data of the test sample set are shown in

Table 1.

3.8 Establish a risk analysis model

Use the sklearn machine learning package in the Python

language to implement the random forest algorithm. 70%

of the sample set is used for training, and 30% is used to

test the prediction ability of the trained random forest

model on new samples. In the process of evaluating the

accuracy of the model, the accuracy of the model is 98.1%

on the training set and 94.3% on the test set, which means

that the model has good predictive ability. According to the

prediction results of the model, ArcGIS software is used to

Table 1 Partial data of the test

sample set
Type X1 X2 X4 X5

1 13 3 31 110

1 10 1 31 183

0 14 3 19 133

0 11 3 31 138
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generate the prediction map of the railway network failure

probability affected by the heavy rainfall disaster.

3.9 Selection of risk samples

According to detailed disaster site survey data, various

evaluation indicators and relevant government data (re-

ports, planning documents, etc.) to determine the disaster

risk level of the sample. First, calculate the disaster impact

coefficient of each county in the study area according to the

attributes of the disaster scale, the density of the disaster

point, the number of people threatened, the threatened

property, the number of damaged houses, and the area of

the damaged road in the detailed investigation data of the

impact coefficient. The law preliminarily delineates the

disaster risk level of each county: high, high, medium, and

low risk, and counties without flood disasters are classified

as low-risk areas. Secondly, through various evaluation

indicators, relevant government data and previous research

results, the classification risk level is revised. Then, input

various indicators and risk levels of the selected samples

into the model to form disaster risk classification rules.

Finally, according to the above rules, all the data to be

tested in the study area are re-input into the RF model to

predict the flood disaster risk level of the study area. The

weights and classification criteria are implicit in the

inherent rules of the data. The modeling and calculation of

the random forest model are realized by Rstuo software

platform using R language programming.

3.10 Urban expansion and mountain disaster
risk coupling

Taking the flood disaster risk change rate of the study area

as the explanatory variable, taking the urban expansion

intensity and the effective grain size change rate as the

explanatory variable, the spatiotemporal geographic

weighted regression model is used to further analyze the

spatiotemporal coupling relationship between urban

expansion and disaster risk. The calculation of regression

coefficients is implemented in the GTWR plug-in in Arc-

GIS 10.4 software. What needs to be clear is that the dis-

aster risk evaluation results in this article are risk levels,

which are type variables. Participating in the model

regression directly by assigning values may cause the

regression results to have lower accuracy. Therefore, this

study uses the contribution of each index obtained by the

random forest model as the index weight, combined with

each index value, and uses the weighted sum method to

calculate the flood disaster risk value of each county unit in

the study area.

3.11 Flood disaster risk assessment design

Compared with other disaster risk studies, this study starts

from the dynamics of disaster risk, comprehensively con-

siders the dynamic change characteristics of disaster fac-

tors in the study area, and incorporates the static and

dynamic factors of each county into the study area. In the

disaster evaluation system, it can objectively reflect the

temporal and spatial evolution of flood disaster risk in the

study area. It should be pointed out that in the process of

selecting and assigning levels to disaster risk samples for

each year, it is inevitable that they will be subjectively

affected by individuals, which may have an important

impact on the evaluation results. Therefore, this study first

carried out the disaster risk of the study area in 2015 by

constructing a random forest evaluation model, and used

the correlation between the indicators built in the model

and the correlation with disaster risk to compare the data in

2000, 2005, and 2010. The index data are also incorporated

into the random forest model, and the index data of each

county in 2015 are used as training and testing samples, so

that the results of disaster risk zoning in each year can be

obtained.

4 Flood disaster assessment analysis

4.1 Analysis of flood disaster assessment results

The disaster risk samples of the study area in 2019 are

selected and assigned corresponding risk levels. There are

10 disaster risk sample counties for each level, for a total of

50 counties. Based on the fivefold cross-validation method,

the selected disaster risk samples are input into the random

forest model. After many debugging and parameter anal-

ysis, the classification tree of the random forest model is set

to 1000, and the variables at the nodes are set to 4

according to the model parameter setting requirements.

Run the random forest model to obtain the accuracy eval-

uation results of the model. From the training results of the

random forest model, the RF model has a good effect in

flood disaster risk assessment, with an AUC value of 0.952,

indicating that the RF model has good robustness and

generalization ability and high evaluation accuracy. A total

of 278 points to be tested for various indicators of each

county were input into the trained random forest model,

and the results of flood disaster risk zoning in the study

area in 2019 were further obtained. Taking the 2019

evaluation results as the training and testing samples, the

random forest model was run again to obtain the flood

disaster risk classification results of the study area in 2016,
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2017, and 2018. The flood disaster risk classification results

are shown in Table 2.

On the whole, the flood disaster risk in the study area is

roughly low in the west and high in the east. The high-

value areas are roughly distributed along the fault zone,

river valleys, and low hills. The high-risk areas and high-

risk areas are mainly distributed in the long fault zone,

along the river valley, hills and ridge-valley areas, and river

valley areas. The reason is that the above-mentioned areas

are located near broken rivers, with active rainfall, at the

same time, the population and economic industry layout

are relatively dense, the infrastructure is relatively com-

plete, and they are easily affected by flood disasters. The

medium-risk area is adjacent to the high-risk area and the

higher-risk area, mainly concentrated in hills, river valleys

and some districts and counties at the edge of the river

valley; the lower-risk areas are in the low mountain and

hilly area, the plateau area and the northwest plateau area.

There are distributions, and low-risk areas are mainly

distributed in plateau districts and counties, and they are

widely distributed. Although the plateau area has the

conditions for the development of flood disasters, due to its

sparse population, low level of economic development, and

imperfect infrastructure, it is not easy to be threatened by

flood disasters, so it has become a low-risk area for flood

disasters. From the perspective of time change, from 2016

to 2019, the dynamic change characteristics of flood dis-

aster risk in the study area are very obvious. In 2016, the

number of high-risk and high-risk counties in the study

area accounted for 25.93% of the total counties. Medium-

risk areas dominate the total number of counties,

accounting for 33.81%. There are more counties in the

lower-risk districts, accounting for about 26.62% of the

total study area. The low-risk area accounts for approxi-

mately 14.39% of the total study area. In 2017, the pro-

portion of counties with various levels of disaster risk was

basically the same as that in 2016, and the spatial distri-

bution of various types of risks changed little. From 2017

to 2018, the high-risk and high-risk areas have increased

rapidly, and their rising rates were 18.75% and 4%,

respectively, and the proportion of the two in the total

counties rose rapidly to 7%. The number of other risk-level

counties showed a downward trend. The newly added high-

risk areas are mainly distributed along fault zones and river

valleys, and the disaster risk of mountain ranges close to

rivers has also increased significantly. This is mainly due to

the great damage caused by the earthquake to the counties

in the affected area. After the disaster, aftershocks con-

tinued, and secondary flood disasters such as landslides,

collapses, and mudslides occurred frequently, which fur-

ther increased the flood disaster risk in the earthquake area.

From 2018 to 2019, the high-risk and high-risk areas in the

study area have declined, and their proportion in the total

counties has dropped to 28%. The proportions of counties

in the medium-risk area, low-risk area and low-risk area

have all increased, with increasing rates of 22.78%, 5.17%,

and 13%, respectively.

4.2 Flood disaster forecast analysis

The specific error between the predicted value and the true

value is shown in Fig. 1. It can be seen from the figure that

the number of real flood disasters is 70, but due to model

errors, 30 samples are judged as flood disasters, and the

error rate is about 40%. At the same time, a total of 190

have occurred. Of the samples of flood disasters, only 6 of

them were misjudged as having never experienced flood

disasters. Therefore, due to the complexity and diversity of

flood disasters, there are certain errors. However, in gen-

eral, especially for floods that have occurred. The predic-

tion accuracy of disasters is higher than that of flood

disasters. The analysis of the reasons, a large part of which

is because there are 190 positive samples (referring to

samples marked as flood disasters) in the sample, and

negative samples (referring to marking as no flood disas-

ters). There are only 70 samples, the positive and negative

distribution of the samples are not uniform, and the sam-

ples contain noisy data, which leads to the prediction

accuracy of negative samples is not high enough, but

overall, the model prediction accuracy is high. The overall

OOB error analysis rate of the final model was 17.69%. It

was found that when 100 trees were selected, the residual

error of the model was small. Too many trees increase the

amount of model calculation, and the effect is not better.

Therefore, the random forest model of this study is selected

100 trees. According to the training sample data set of

OOB error, the estimated error and prediction error are

basically the same, and the trend of the two errors with the

value of K is also exactly the same, which shows that the

OOB error can be used to estimate the maximum number

Table 2 Results of flood

disaster risk classification
Years High-risk area Higher risk area Medium-risk area Lower risk area Low-risk area

2016 13 57 95 75 50

2017 16 57 95 76 53

2018 35 70 79 57 36

2019 25 55 97 61 50
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of trees. A good value range, as can be seen from Fig. 1,

OOB error tends to be stable as ntree increases. On the

other hand, it shows that the random forest algorithm has

better convergence. When choosing between 3 and 8 trees,

the error will be relatively low. It can be seen from Fig. 1

that the number of real unflooded disasters is 30, and the

predicted value is also 30. The accuracy of predicting flood

disasters is 93%. At the same time, there are a total of 85

samples that have experienced flood disasters, of which

only 6 was misjudged as no flood disaster. Generally

speaking, the model has a higher prediction accuracy. The

model can also evaluate the importance of features. In the r

language, analyze and explain the importance of features

according to the importance command, so that you can

understand which features are the more important factors in

the process of flood disasters. You can see the ranking of

the importance of the variables used in the model, the

importance of the variables, that is, assuming that the

variable is not in the model, how much influence the error

of the model is, slope, rainfall and altitude are more

important factors affecting flood disasters.

4.3 Macro coupling analysis of urban expansion
and flood disaster risk

In order to better analyze the influence of each character-

istic factor on the risk of flood disasters, in the research, the

curve of the effect of rainfall on the risk of flood disasters is

drawn for the first-ranked factor slope as shown in Fig. 2.

The importance of rainfall is ranked the highest. It can be

seen in Fig. 2 that the abscissa in Fig. 2 corresponds to the

value of the factor, and the ordinate corresponds to the

factor’s contribution to the probability of flood hazard, that

is, the larger the ordinate, the more likely it is to occur.

With the increase in rainfall, the possibility of flood

disasters gradually increases, which is basically consistent

with the laws of geology, and the risk of flood disasters also

increases. In the prediction results of the random forest

model, flood disasters mostly occur when rainfall is

between 15 and 30 mm, and flood disasters rarely occur

with low rainfall of 0–15 mm. In summary, compared with

the regional natural disaster risk, the natural disaster risk

assessment of scenic spots has its own uniqueness. This

uniqueness is mainly reflected in the following aspects.

First, the subject of natural disaster risk assessment in the

study area mainly tourists, and the disaster-bearers of the

regional natural disaster risk assessment are the permanent

population. Tourists are unstable for the regional scenic

spots; secondly, the value of tourism resources will not be

considered separately in the regional natural disaster risk

assessment. On the contrary, tourism resources play a very

important role in the natural disaster risk assessment of

scenic spots; third, the acquisition of data for natural dis-

aster risk assessment of scenic spots is more difficult than

that of regional natural disaster risk assessment. Therefore,

natural disasters in scenic spots. It is difficult to fully

quantify the risk assessment. The risk assessment of

regional natural disasters generally requires 20–30 years of

data. However, most of the tourist attractions in China are

not open for a long time. Therefore, whether it is the data

record of natural disasters or scenic tourism the statistical

data of usually fail to meet the continuity requirements.

This urges the natural disaster risk assessment of scenic

spots to not completely rely on historical statistics of dis-

aster loss data, but to be flexible. Based on the estimation

results of the spatial–temporal geographic weighted

regression model, in-depth analysis of the temporal and

spatial differences of the impact of urban expansion char-

acteristic measurement indicators on mountain disaster

risk. The fitting coefficients of the explanatory variables of
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the GTWR model vary with space and time, which can

express the coupling relationship between the explanatory

variables and disaster risk. The statistical results show that

the effective grain size change rate of the urban landscape

and the urban expansion intensity index have different

effects on the disaster risk changes of different counties in

different periods. The positive and negative effects coexist,

and the regression coefficient varies greatly. As for a cer-

tain single-influencing factor, its impact on disaster risk

changes also has temporal and spatial differences. There-

fore, it is necessary to consider the temporal and spatial

heterogeneity of the impact of various indicators on

regional disaster risk changes from a local perspective.

4.4 Analysis of risk assessment results

The random forest model has been used to evaluate the risk

of landslides in the study area, and a landslide danger zone

map based on the slope unit has been obtained. On this

basis, the kilometer grid unit and the risk zone layer are

superimposed, and the grid processing, assign each grid

cell according to the risk value corresponding to the grid,

and obtain the landslide risk evaluation of the research area

based on the grid cell. Using the grid calculator tool in

ArcGIS 10.2, it will be based on the grid. The landslide risk

evaluation layer of the unit and the vulnerability evaluation

layer based on the grid unit are multiplied to obtain the

landslide risk of all grid units in the research area, and then,

the natural breakpoint method is used to divide the risk

level to obtain. Based on the grid cell-based landslide risk

zone map in the study area, the risk assessment result is

shown in Fig. 3.

It can be seen that most of the slope units near the main

stream of the study area are high-risk and extremely high-

risk, while the slopes farther from the study area are less

dangerous. The extremely high-risk areas are mainly

concentrated in the slopes near the two banks of the study

area waters about 0–30 km away from the dam site, the

slopes near the right bank of the study area waters

30–90 km away, and a very small slope area at the end of

the reservoir. The high-risk areas are mainly concentrated

on the slopes on both sides of the waters in the study area at

the head of the reservoir, the slopes on the right bank

30–90 km away from the dam site and the slopes on both

sides of the waters in the study area 90–120 km. The

medium-risk areas are mainly concentrated in the part of

the slope on the left bank of the reservoir near the waters of

the study area, and most of the other slopes far away from

the waters of the study area are low-risk areas and extre-

mely low-risk areas.

Statistics of the area distribution of each dangerous level

area and the distribution data of landslide disasters within

each different level range, as can be seen from Fig. 3, the

area of the extremely high-risk zone, the high-risk zone, the

medium-risk zone, and the low-risk zone are 672.20 km2,

49,447 km2, respectively, 409.41 km2, 115,748 km2, and

904.27 km2 accounted for 18.48%, 13.59%, 11.25%,

31.82%, and 24.56% of the total area of the study area,

respectively. The medium-risk and below areas accounted

for 67.63% of the total area of the study area, indicating

that most of the slopes in the reservoir area were less

affected by flood disasters. Among them, the high-risk area

and the extremely high-risk area accounted for 32.37% of

the total area, but 76.33% of the study area was included.

The number of flood disasters shows that the distribution of

flood disasters in these areas is very dense, and the degree

of danger is naturally higher, which is consistent with the

actual situation. And with the increase in the degree of

danger, the corresponding proportion of flood disasters

increased from 0.55 to 12.79%. The distribution density of

flood disaster points gradually increases with the degree of

danger. There is a good positive correlation between the
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two, and the correlation coefficient reaches 0.8569, which

conforms to the principle of classification in theory. There

are 885 grid cells in the extremely high-risk area,

accounting for 24.67% of the total area of the study area.

These areas are densely populated areas, and the density of

buildings and cultivated land is relatively large. Some of

them are also built with factories, and most of these areas

are also located in high-risk areas of landslides close to the

main stream of the study area, so they are affected by

floods. The risk of harm is also higher. There are 446 grid

cells in the high-risk area of flood disaster, accounting for

12.43% of the total area of the study area. These areas are

mainly some areas with relatively dense human activities

far away from the two banks of the study area. There are

1015 grid cells in the medium risk area of flood disaster,

accounting for 28.29% of the area of the study area. The

medium-risk area is mainly distributed in some areas rel-

atively far from the main stream of the study area, and the

population density in this area is very low. Human activi-

ties are relatively weak, and even if there is a flood disaster,

the damage caused is relatively small. There are 1242 grid

units in the low-risk area of landslides, accounting for

34.61% of the total area of the study area. The main feature

of these areas is that the altitude is usually high, and there

is basically no human activity, so there are basically no

buildings or cultivated land. The economic loss caused by

the flood disaster is very small.

4.5 Analysis of vulnerability zone statistics
results

Many research areas are simultaneously affected by flood

disasters, but the depth of submergence is obviously dif-

ferent. Then, extract the water depth information of the

flood disaster raster data to the point vector data of the

research area. The process is: spatial analysis tool in

ArcGIS10.2 software ? extraction analysis tool ? value

extraction to point tool, and finally obtain the affected

research area Use the ‘‘sampling’’ function in the ArcGIS

natural break point method to ignore the submerged depth

value of the non-coastal study area, and then use it for five-

level division, that is, the analysis result is extremely high

(2.62–4.49 m), medium (0.89–1.53 m), low (0.47–0.89 m),

very low (0–0.47 m) five grades, assigned 5, 4, 3, 2, and 1,

respectively. This natural breakpoint method is based on

the characteristics of the data itself, and the classification

breakpoints are selected based on the principle of the

minimum sum of variation in each level. Therefore, the

data classification effect is good, and it is also widely used

in GIS analysis. The result of risk assessment is the basis

for formulating measures to reduce flood disaster risk in

coastal research areas. The main content of the assessment

is to classify flood disaster risk. According to the flood

hazard and the vulnerability of the disaster-bearing body in

the coastal research area obtained in the first two sections

of this chapter, the basic model of risk assessment is

adopted: risk = risk 9 vulnerability, and then, the risks

mentioned above are passed. The matrix table determines

the flood disaster risk level, and finally uses ArcGIS to

spread the assessment results under the two scenarios to

show the spatial differences of risks. The analysis of the

statistical results of the vulnerability zone is shown in

Fig. 4. Through the analysis of the statistical results of the

vulnerability zone, it can be seen that the area of low

vulnerability and low vulnerability of the flood disaster

board in the study area is 1767 km2, accounting for 49.22%

of the total area of the study area, which indicates that

nearly half of the study area is vulnerable to landslides. The

damage is low, and most of these areas belong to unin-

habited areas in the study area or areas more than 2 km

away from main traffic roads. The vulnerable area in the

flood disaster is 1015 km2, accounting for about 28.27% of
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the total area of the study area. Most of these areas are

distributed in areas less than 2 km away from roads, but

less densely populated. The area with extremely high

vulnerability and high vulnerability to flood disasters is

808 km2, which accounts for about 22% of the total area of

the study area. The areas near the main waters of the study

area of 10–30 km and 50–80 km. These towns and regions

have relatively high population densities, and there are a

large number of residential houses and industrial plants that

are closely related to human production and life. Once

floods occur in these areas, it will cause great losses to

humans and buildings, and the natural vulnerability is

higher. If experiencing strong rainfall in a short period of

time, it is very easy to cause secondary disasters such as

landslides and mudslides, blocking railway traffic in

mountainous areas, and the inherent geological weakness

in southwestern China also increases the risk of secondary

disasters affecting line operations; in addition, the north-

west, southwest, and north China regions are all in the

active fault zone. The surface soil accumulates loose sed-

iments and lacks vegetation protection. If extreme rainfall

is encountered, it is easy to cause disasters such as mud-

slides and landslides, threatening the safety of the route.

Combined with the above analysis, it is necessary to

strengthen effective early warning for areas with harsh

natural conditions. In general, the intensity of human

activities in areas with extremely high risk of flood disas-

ters and high-risk areas is high, and human production

activities are frequent. Once a flood disaster occurs, it may

cause heavy casualties and property losses. Therefore, we

should focus on the extremely high and high landslides.

Risk areas should do a good job in disaster prevention,

mitigation, monitoring and early warning, and establish

corresponding protection projects for key dangerous land-

slides; in areas with moderate risk of flood disasters, the

intensity of human activities is weak, and there are fewer

load-bearing bodies. Even if a flood disaster occurs, it will

cause threat is also small, and preventive, monitoring, and

early warning measures can be taken. For the low-risk

areas of flood disasters, they basically belong to areas with

no human activities, and the losses caused by flood disas-

ters are very small, but corresponding disaster prevention

and mitigation work is also needed.

5 Conclusion

In general, the intensity of human activities in areas with

extremely high risk of flood disasters and high-risk areas is

high, and human production activities are frequent. Once a

flood disaster occurs, it may cause heavy casualties and

property losses. Therefore, we should focus on the extre-

mely high and high landslides. In risk areas, disaster pre-

vention and mitigation, monitoring and early warning

should be done well, and corresponding protection projects

should be established for key dangerous landslides. In view

of the characteristics of flood disaster risk assessment,

focusing on key issues such as the time range, spatial scale,

and flood disaster type of flood disaster risk assessment

research, it is concluded that compared with the current

mainstream geological disaster risk assessment, the space

for flood disaster risk assessment scope is relatively spe-

cial, and it is generally a striped area; the time range of the

evaluation and the type of flood disaster are relatively

clear, and the evaluation is carried out separately according

to the rainfall scheduling cycle. The flood disaster objects

studied need to consider the specific boundary to analyze

the water level.

This research established GIS-based data to obtain more

accurate comprehensive information of storm disasters, and
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realized comprehensive utilization of information to obtain

comprehensive information (scope, disaster starting period,

duration, and post-disaster recovery status). Based on the

time series change data of the random forest algorithm, the

calculation rules are established and the disaster feature

extraction is performed. It can extract rich spatiotemporal

dynamic information including the starting period and

duration of the disaster affected, and the coverage is large.

It is very useful for large-scale regional disaster monitoring

and evaluation.

This research first clarifies the background and signifi-

cance of the topic. Then, for the principles and methods of

regional flood disaster risk assessment, the connotations of

relevant terms are explained, related theories are analyzed,

summarized, and refined, and the principles and methods of

flood disaster risk assessment are described, and the eval-

uation model and method of this research are proposed,

introduce the general situation of the research area, explain

the data and sources used in the research, preprocess the

relevant data, and establish a spatial database under the

ArcGIS platform. Finally, for the construction and index

analysis of the flood disaster risk evaluation index system,

analyze the factors that affect the flood disaster risk,

introduce the principles and methods for selecting the

evaluation index, analyze the flood disaster risk evaluation

index, determine the composition of the evaluation index

system, and analyze the selected items. The indicators are

analyzed and standardized.
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