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Abstract
Radar target detection (RTD) is one of the most significant techniques in radar systems, which has been widely used in the

field of military and civilian. Although radar signal processing has been revolutionized since the introduction of deep

learning, applying deep learning in RTD is considered as a novel concept. In this paper, we propose a model for multitask

target detection based on convolutional neural network (CNN), which works directly with radar echo data and eliminates

the need for time-consuming radar signal processing. The proposed detection method exploits time and frequency

information simultaneously; therefore, the target can be detected and located in multi-dimensional space of range, velocity,

azimuth and elevation. Due to the lack of labeled radar complex data, we construct a radar echo dataset with multiple

signal-to-noise ratio (SNR) for RTD. Then, the CNN-based model is evaluated on the dataset. The experimental results

demonstrated that the CNN-based detector has better detection performance and measuring accuracy in range, velocity,

azimuth and elevation and more robust to noise in comparison with traditional radar signal processing approaches and other

state-of-the-art methods.

Keywords Radar target detection � Radar signal processing � Deep radar detection � Deep learning models �
Convolutional neural network

1 Introduction

Radar echoes returned from targets are usually submerged

in noise, clutter or jamming signal. Radar target detection

(RTD) is a fundamental but significant process in order to

differentiate and measure targets from increasingly com-

plex background. In traditional radar signal processing,

effective methods such as matched filtering, Doppler pro-

cessing and clutter suppression are mostly adopted to

improve signal-to-noise ratio (SNR) and signal-to-clutter

ratio (SCR) [1], and constant false alarm rate (CFAR)

detection is a well-studied and widely used approach which

is based on hypothesis testing for detection in demanding

noisy environments [2]. However, due to the diversified

development trend of target types and complex detection

environment, selecting an optimal parameter set for tradi-

tional method is extremely challenging; thus, developing

reliable and robust methods for RTD seems to be

inevitable [3].

As a subset of machine learning, deep learning methods

attempt to create models and extract features automatically

from large complex datasets. It has brought a dramatical

breakthrough in various domains including image pro-

cessing, speech recognition, natural language processing,

etc. [4–7]. As one of the most important technologies of

deep neural network (DNN), currently, convolutional

neural network (CNN) is widely used in computer vision

tasks [8], such as semantic segmentation [9], image clas-

sification [10] and object detection [11]. In the field of

remote sensing image segmentation, Wang et al. [12] cre-

ated an 11-layer CNN for image segmentation of polari-

metric synthetic aperture radar. Chen et al. [13] proposed

an improved semantic segmentation neural network which

adopts dilated convolution, a fully connected fusion path

and pre-trained encoder for the semantic segmentation task

of high-resolution remote sensing images. Zhang et al. [14]
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introduced a neural network architecture search method for

sematic segmentation of high-resolution remote sensing

images. In the field of medical, an effective segmentation

method for skin lesion segmentation is also presented in

[15]. For image classification, Öztürk et al. [16] presented

an effective CNN-based classification method for gas-

trointestinal tract images. Zhang et al. [17] designed a

13-layer CNN for fruit category classification. For object

detection, Zhang et al. [18] proposed a two-stream con-

textual CNN to adaptively capture body part information of

face. Zhu et al. [19] proposed a contextual multi-scale

region-based CNN in face detection.

1.1 Related work

Thanks to the outstanding success achieved by AlexNet

[20], VGGNet [21], GoogLeNet [22], ResNet [23], etc.,

DNN architecture has spread to almost all fields, including

RTD. In the past decades, many artificial neural network

(ANN)-based and DNN-based approaches have been pro-

posed to solve the problem of RTD in various complex

scenarios. To differentiate the targets from noise, Gandhi

et al. [24] firstly employed ANNs to detect signals in non-

Gaussian noise. Amores et al. [25] deduced that the ANN

approach could improve radar detector robustness. Rohman

et al. [26] presented an adaptive ANN-CFAR detector to

improve the performance of RTD in non-homogeneous

noise. Akhtar et al. [27] presented an ANN-CFAR detector

for fluctuating target detection in noisy background.

Compared with noise background, detecting targets within

clutter is a more common but challenging task. Cheikh

et al. [28] assessed the problem of RTD using different

architectures of ANNs in a K-distributed clutter. Akhtar

et al. [29] proposed a more general training strategy to

extract fluctuating targets in K-distributed clutter. Pan et al.

[30] proposed a deep CNN approach for marine small

target detection in strong sea clutter background. The

above references provided solutions to a binary classifica-

tion problem, namely differentiating target present or

absent.

In addition, researchers tried to utilize multiple types of

inputs to deep learning models for RTD, such as pulse–

range maps, range–Doppler spectrums, time–frequency

images, etc. Pan et al. [30] adopted pulse–range images as

inputs of a deep CNN model for RTD. Wang et al. [31]

designed a CNN-based target detector on range–Doppler

spectrum and compared the proposed method against tra-

ditional CFAR detector. Brodeski et al. [32] introduced a

CNN-based architecture for automotive radar detection

using range–Doppler data to detect and localize targets.

Gustavo et al. [33] implemented a time–frequency block by

the Wigner–Ville distribution (WVD) and designed a

WVD-CNN detector for RTD. Su et al. [34] adopted short-

time Fourier transform (STFT) to transform IPIX measured

data and designed a CNN-based method for maritime tar-

gets detection.

1.2 Motivation and contributions

At present, the difficulty in RTD mainly lies in target high-

resolution feature extraction, environment clutter suppres-

sion, anti-jamming measures, especially for strong active

jamming, ‘‘low-slow-small’’ target detection, etc. [2].

Traditional CFAR-based detection methods are based on

statistical theory, which considers the target or environ-

ment models as a stochastic process. However, due to the

diversified trend of target and environment models,

selecting an optimal parameter set and declaring potential

objects in complex environment with a high probability of

detection (PD) but a low false alarm rate (Pfa) still remains

to be an extremely challenging task.

The above studies aiming at the problem of RTD used

various forms of input which can be regarded as ‘‘two-

dimensional images.’’ All inputs were preprocessed by

methods of radar echo signal processing. Some researchers

have proved that conventional radar signal processing

serves as the preprocessing of the training data, which can

help to sharpen features, thus improving the detection

performance. But in fact, these preprocessing methods,

such as pulse compression and Doppler processing, are

intrinsically convolution operation, and in nature, deep

learning models can automatically extract features from

radar complex data. In addition, the primary objective of

RTD is not only to distinguish whether the received signal

undertested containing echo from the target or just corre-

sponds to the noise and clutter, but also to obtain multi-

dimensional location and velocity information. Therefore,

realizing a complete ‘‘end-to-end’’ learning scheme for

multitask RTD is reasonable and feasible.

In this paper, we propose a novel CNN-based detector

for RTD and apply radar echo data directly to locate the

target in multi-dimensional space of range, velocity, azi-

muth and elevation. The proposed approach eliminates the

need for time-consuming radar signal processing and pre-

sents better detection performance in comparison with the

classical radar signal processing methods. However, due to

the specificity of RTD tasks, currently, the actual radar

dataset is not widely published or accessible. To overcome

the lack of labeled radar complex data, we constructed a

radar echo dataset with multiple SNR. The shortcoming of

our method is that we evaluated our model on the simulated

radar dataset and hence it may not perform well on the

actual dataset. In the future, we shall try to collect realistic

radar data and evaluate and improve our model further.
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The main contributions of our work are summarized as

follows:

• We propose a Feature Extraction Net which exploits

both time and frequency information and extracts

range–Doppler information as feature maps from raw

radar echo data.

• A multitask target detection method is designed, in

which a RD Detection Net is adopted to measure range

and radial velocity of target and an Angle Detection Net

is used to predict azimuth and elevation.

• In order to perform velocity measurement and angle

estimation, we construct a three-channel sum–differ-

ence pattern radar echo dataset with multiple SNR for

training and testing.

The rest of this paper is organized as follows: Sect. 2

introduces traditional signal processing for RTD, which is

often used for performance comparison. In Sect. 3, the

proposed CNN-based approach for RTD is described. In

Sect. 4, the performance of the proposed model is evalu-

ated in simulation data. Section 5 discusses the challenges

and research opportunities. Finally, conclusion is presented

in Sect. 6.

2 Traditional signal processing method
for RTD

In a typical pulsed coherent radar system, the received

multiple coherent pulses echoes are processed in general

radar signal processing method including matched filter,

clutter suppression, Doppler processing, CFAR detector,

etc. Figure 1 shows a traditional radar signal processing

procedure of radar detection.

After emission of each pulse, the incoming echoes are

sampled with a given rate and a pulse compression is

performed through a matched filter operation over fast time

domain which could obtain narrow pulse width and high

resolution of range profile. MTI and MTD are effective

approaches for clutter suppression. Doppler processing is

applied over multiple pulses by applying fast Fourier

transform (FFT) over slow time at each range cell and thus

range–Doppler spectrum can be obtained. Next, the echoes

in the range–Doppler spectrum, whose energy exceeds the

detection threshold, are disclosed by the CFAR detector.

Then, the position and velocity information can be

evaluated.

In target detection, the Neyman–Pearson criterion is

widely used for decision making in order to minimize the

Pfa and maximize the PD [35]. In a general CFAR detector,

the square-law detected range samples are sent serially

(cell by cell) into a shift register of length 2nþ 1. The

statistic value z, which is proportional to the estimate of

total noise power, is formed by processing the contents in

2n reference cells surrounding the cell under test (CUT)

whose content is y. A target is declared to be present if its

energy exceeds the detection threshold az:

y[ az; target present

y� az; target absent

(
ð1Þ

Here, a constant scale factor a is used to achieve a

desired constant Pfa for a given window of size 2n when

the total background noise is homogeneous. The processor

configuration varies with different CFAR schemes. Fig-

ure 2 presents the diagram of several typical CFAR pro-

cessors. Take the CA-CFAR detector as an example, as

shown in Fig. 2, consisted of 2n cells surrounding the

CUT. The average level in the CUT is estimated by taking

the arithmetic sum of the reference cells as

zCA ¼
Xn
i¼1

xi þ
X2n
i¼nþ1

xi

 !,
2 ð2Þ

This average value zCA is scaled by a factor a to yield an

adaptive threshold az and then compared with the value of

CUT y to estimate whether the target is present or not.

Radar is always required to operate in a variety of sig-

nificantly diversified scenes. Selecting a single optimal

parameter set is extremely important, because predefined

parameters, such as threshold, margin, sizes of the refer-

ence and guard windows, would determine the detection

performance. Therefore, developing a data-driven deep

learning approach for target detection seems to be

inevitable and reasonable.

Fig. 1 Typical signal processing diagram of a radar system
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3 The proposed CNN-based method for RTD

In this section, we present a CNN-based RTD

scheme which works directly on the raw radar data to

detect target. Radar echo signal is a one-dimensional dis-

crete complex sequence. Firstly, we construct the radar

data cube as input of network by preprocessing the one-

dimensional discrete echo sequence, which could better

reflect the characteristics of samples. Then, a novel CNN-

based model for RTD is designed to detect and locate the

target in multi-dimensional space of range, radial velocity,

azimuth and elevation. The block diagram of the procedure

is depicted in Fig. 3, and the various stages are described in

the following subsections.

3.1 Processing of input data for RTD

Radar emits multiple pulses in a coherent processing

interval (CPI), and the received echoes are integrated

together coherently or incoherently, which can be

processed as a one-dimensional discrete sequence. There

are many commonly used processing methods for discrete

time sequences, which determine the diverse forms of input

for detection network. However, compared with other input

forms, using radar complex data (real and imaginary)

directly can make better use of the original information

contained in the echo signal.

We consider using the three-channel sum–difference

pattern to construct radar echo data sets, which enables us

to measure angle, respectively, in azimuth and elevation

plane. The values of sampling points are usually stored in a

matrix form. Figure 4 shows the raw radar echo cube,

which is collected during the simulation process with the

ground truth label of the detection: range, velocity, azimuth

angle and elevation angle. Dimensions of the radar echo

cube are Ns� Np� Nc, where Ns denotes the number of

sampling points within a range gate, Np denotes the

number of pulses in a CPI and Nc denotes the number of

received channels. Since echo data are complex number,

Fig. 2 Block diagram of several typical CFAR processors

Fig. 3 Block diagram of the CNN-based target detector
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each sample is split into a real part and an imaginary part as

the input to the network and thus Nc = 6.

We obtain and process suitable two-dimensional sam-

ples from the input cube of radar echo data for RTD. In the

transverse direction (fast time domain), the sampling points

are determined by the pulse repetition frequency and the

sampling frequency, while in the longitudinal direction

(slow time domain), the pulses in a CPI are listed in order.

In classical radar signal processing, echo data in fast time

domain are used to calculate range and those in slow time

domain which represents Doppler bins are used to calculate

velocity. Similarly, we slide the convolution kernels with

preset size to extract information in time and frequency

domain with rectangular samples as shown in Fig. 5.

Rectangular samples may not necessarily be square, but it

also needs to determine the sliding step and the size of data

samples according to the actual data.

In fact, processing radar raw echo data as one-dimen-

sional input for classification or regression will greatly

reduce the computational complexity of the model, but it

will also split the spatial–temporal correlation and even

destroy certain texture information of targets. Compared

with one-dimensional data, two-dimensional data can make

use of temporal and spatial correlation simultaneously,

therefore improving discrimination ability and detection

accuracy. CNN is good at extracting features automatically

from large-scale raw data and classifying two-dimensional

graph structure data. It is also necessary to ensure that

enough amount of data and enough features are available

for detection.

3.2 Design of the CNN-based target detector

The CNN-based detector consists of three parts: Feature

Extraction Net, RD Detection Net and Angle Detection

Net. Figure 6 shows the proposed structure of CNN-based

detector aiming to detect targets in multi-dimensional

space and obtain the information of range, velocity, azi-

muth angle and elevation angle with radar raw data.

Detection steps are given as follows:

Fig. 4 Raw radar echo cube as the input of network

(a)

(b)

Fig. 5 Direct input in two-dimensional form
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Feature Extraction Net: Extract range–Doppler infor-

mation as feature maps from raw radar echo data, detection

of range, velocity, angles in subsequent network rely on

these feature maps. Feature Extraction Net exploits both

time and frequency information from raw radar signals by a

specially designed CNN. Dimensions of the input are Ns�
Np� Nc; while those of the output are R� D� Ch. This

section consists of multiple convolutional layers. Convo-

lution layer is calculated as:

ykþ1
i ¼ f

X
j

xkj � wk
ij þ bki

 !
ð3Þ

where x represents the input data of the convolutional

layer, w represents the weights of convolution operator, b

denotes the bias and f denotes the activation function.

The pooling layer has the most significant effect on

reducing the size of the input data according to the selected

neighborhood values. When dimensions of input data x are

m� n, the kernel size is p� q and the step is t, the max

pooling operation is calculated as:

Pij ¼ maxðxi�tþr;j�tþsÞ
r ¼ 0; 1; 2; :::; p� 1 i�ðm� pÞ=t
s ¼ 0; 1; 2; :::; q� 1 j�ðn� qÞ=t :

ð4Þ

The ReLU layer is calculated as:

RðxÞ ¼ maxð0; xÞ ¼
x; x� 0

0; x\0

(
ð5Þ

RD Detection Net: Detect targets and predict range and

velocity of all targets in the range–Doppler domain. The

input of the RD Detection Net is the range–Doppler–

channel data (R� D� Ch), while the outputs are the range

and radial velocity by regression and a list of detections in

range–Doppler feature map with their associated classes. A

global feature vector from the middle layer of the RD

Detection Net is extracted for the Angle Detection Net. In

addition to convolutional layers, upsampling layers are also

used in this section in order to regain the same size as

original input.

Angle Detection Net: Predict the azimuth angle and the

elevation angle of each target detected by the RD Detection

Net. The input form of the Angle Detection Net is a

cropped region from the range–Doppler feature maps

which is centered at the location provided by the RD

Detection Net. A global feature vector is concatenated with

the convolutional output vector, which contributes to

obtain azimuth and elevation of each detection. The out-

puts of the Angle Detection Net are values of the azimuth

angle and the elevation angle by regression.

Configurations of the CNN-based radar target detector

are as follows:

1. The Feature Extraction Net consists of multiple

computational layers. Six convolutional layers, six

ReLU layers, three max pooling layers and batch

normalization with each convolutional layer form a

feature extractor which is able to automatically extract

feature maps from the input radar data. The size of the

echo data sample is determined by the size of the

sliding window. The size of each convolutional filter is

3 9 3; each max pooling layer has a 2 9 2 spatial

pooling area with a stride of 2.

2. The range–Doppler feature maps are then filtered by

the convolution layers where the size of each convo-

lutional filter is 3 9 3 and a global feature vector of the

size 4096 is extracted by the middle layer of the RD

Detection Net. The global feature vector is then passed

through two fully connected layers to obtain range and

velocity. The latter part of the RD Detection Net

consists of convolutional layers, ReLU layers and

Fig. 6 Architecture of the proposed CNN detector for RTD
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upsampling layers in order to regain R� D� clc

output. Notice that the 2-class network with target

and not-target outputs is considered in this task.

Therefore, the output layer is equipped with soft-max

activation function.

3. For each detection, the Angle Detection Net crops a

N �M � Ch frame from the input feature map which

is centered at the location provided by the RD

Detection Net. The crop is then filtered with convolu-

tion layers, providing the 1� 1� 4096 output. This

output vector is concatenated with the 1� 1� 4096

global feature vector. The concatenated vector is then

passed through two fully connected layers; subse-

quently, azimuth angle and elevation angle are pre-

dicted by two independent fully connected layers.

Specifications of the layers, including kernel size,

number of kernels, pooling size, etc., are summarized in

Table 1.

3.3 Loss functions

The task of RTD addressed in this work is a multitask

regression model. The L1-loss and the L2-loss are widely

applicable to regression problem. The L1-loss function is

used to calculate the mean absolute error between predicted

values and true ones, which has good stability with

stable gradient, but non-differentiable. The L1-loss is

defined as:

L1ðx; yÞ ¼
1

n

Xn
i¼1

yi � f ðxiÞj j: ð6Þ

The L2-loss denotes the mean square error of predic-

tions and true values which could guarantee the advantages

of continuous and smooth. The L2-loss converges fast with

analytical solution. However, it is more sensitive to outliers

than L1-loss, which could lead to gradient explosion. The

L2-loss function is given as follows:

L2ðx; yÞ ¼
1

n

Xn
i¼1

ðyi � f ðxiÞÞ2: ð7Þ

The smooth L1-loss combines the advantages of the L1-

loss and the L2-loss, which is more robust to outliers and

defined as:

Smooth L1ðx; yÞ ¼
1

n

Xn
i¼1

0:5 � ðyi � f ðxiÞÞ2; yi � f ðxiÞj j\1

yi � f ðxiÞj j � 0:5; otherwise

(

ð8Þ

To address the issue of multitask RTD, we train the

proposed network using a weighted smooth L1-loss. After

adding each item, the cost function, thus, becomes

Loss ¼ k1LossRD þ k2LossAz þ k3LossEl ð9Þ

where LossRD denotes the loss of the RD Detection Net,

LossAz denotes the azimuth angle predicting loss, LossEl
denotes the elevation angle predicting loss and k1, k2, k3
are the weights of different losses. During supervised

training, the network tries to minimize the reconstruction

error.

Table 1 Specifications of layers

in the proposed CNN
Net Name Layer No. Convolution kernels Pooling after convolution

Feature Extraction Net Conv1 3 9 3@32 –

Conv2 3 9 3@32 2 9 2 max pooling

Conv3 3 9 3@64 –

Conv4 3 9 3@64 2 9 2 max pooling

Conv5 3 9 3@128 –

Conv6 3 9 3@128 2 9 2 max pooling

RD Detection Net Conv7 3 9 3@256 2 9 2 max pooling

Conv8 3 9 3@512 2 9 2 max pooling

Conv9 3 9 3@256 2 9 2 up sampling

Conv10 3 9 3@128 2 9 2 up sampling

Fc1 @512

Fc2 @2

Angle Detection Net Conv11 3 9 3@256 2 9 2 max pooling

Conv12 3 9 3@512 2 9 2 max pooling

Fc3 @2046

Fc4 @512

Fc5 @1

Fc6 @1
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3.3.1 Experimental results and performance analysis

In this section, we demonstrate the effectiveness of the

CNN-based target detector. The labeled radar echo dataset

is constructed for training and testing. Then, our model is

evaluated under different signal-to-noise ratios (SNRs) and

compared with traditional radar signal processing approa-

ches. The experimental procedures are described below.

3.4 Dataset preparation and implementation
details

The effectiveness of deep learning models highly depends

on the training process and the availability of high-quantity

data. However, due to the specificity of RTD tasks, cur-

rently, real-world radar data for RTD are not widely

accessible. In order to evaluate the considered target

detector, a large set of labeled radar complex data is gen-

erated, which contains the radar sensor responses to a

known point target located at a variety of locations with

different velocity. The simulation of dataset is summarized

as follows.

1. We consider a typical pulsed radar system in which the

transmitted waveform is emitted at a regular interval.

The radar carrier frequency is 10 GHz. It generates

received signals of 32 coherent pulses in a CPI, which

consists of echoes of a target and noise. The transmit-

ted pulses are chirp signal, the pulse repetition

frequency is 10KHz and the bandwidth of the chirp

signal is 5 MHz. The sampling frequency of the

received signals is 10 MHz, and the beam width is

3�. The target is assumed to be slowly fluctuating and

follow a standard Swerling 1 distribution. The noise is

white Gaussian noise which is an independent complex

Gaussian random variable with mean zero.

2. In total, the simulated dataset contains 140,000 data

frames. Dimensions of the raw radar echo frame are

256 9 32 9 6. By setting different power of noise,

radar echoes with different SNRs can be generated. We

set SNR as - 6 dB, - 2 dB, 0 dB, 2 dB, 6 dB, 10 dB

and 13 dB, respectively. A total of 99,225 examples

are used to train the CNN detector, 30,775 examples

for validation and 10,000 examples for testing.

Since the parameters of our CNN-based detector have to

be trained before being applied to detect the target, we

optimized the following hyperparameters: kernel size,

number of kernels per layer, the network depth, learning

rate and dropout rate. We also tried different combinations

of filter size and filter number in each layer to get the best

accuracy. The network model is trained with back-propa-

gation and Adam optimizer with initial learning rate

0.0001. In our experiment, we set the dropout rate to 0.4

and the batch size is 100 frames. For angle measurement,

ground truth of range and Doppler is used to obtain the

3 9 3 center crop region. Various k1, k2, k3 in Eq. (9) are

exploited, and k1 ¼ 0:5, k2 ¼ 1, k3 ¼ 1 are selected finally.

PyTorch is used for model implementation.

3.5 Experimental results

Measuring error and detection accuracy are used to eval-

uate our proposed detection model; the measuring error of

each item is defined as follows:

Rerror ¼ jRde � Rgtj
Verror ¼ jVde � Vgtj
Azerror ¼ jAzde � Azgtj
Elerror ¼ jElde � Elgtj

ð10Þ

where Rde,Vde,Azde and Elde denote range, velocity, azi-

muth and elevation angle of the obtained detection and

Rgt,Vgt,Azgt,Elgt are the corresponding ground truth. The

accuracy threshold of each detected item is related to

parametric resolution and SNR, which can be expressed as

D
� ffiffiffiffiffiffiffiffiffi

SNR
p

, where D represents parametric resolution of

each item. In our setting, for example, when SNR = 10 dB,

DR

� ffiffiffiffiffiffiffiffiffi
SNR

p
¼ 4:743m,DV

� ffiffiffiffiffiffiffiffiffi
SNR

p
¼1:482m=s,DAz

� ffiffiffiffiffiffiffiffiffi
SNR

p
¼

0:9	,DEl

� ffiffiffiffiffiffiffiffiffi
SNR

p
¼0:9	.

During the training process, the total loss of the CNN-

based detector and detection performance of each item

changes with the number of iterations, which is shown in

Fig. 7. The training epoch is 100.

For measuring error of each item, Table 2 shows the

average detection error of range, velocity, azimuth and

elevation of the proposed approach under different SNRs.

According to Table 2, as SNR increases, the detection error

drops. The average errors of range and velocity slightly

Fig. 7 The loss and detection accuracy of CNN-based detector in each

epoch
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drop as SNR increases, but when SNR is higher than 6 dB,

the overall trend remains steady. The average errors of

azimuth and elevation drop as the SNR increases, but both

in a small scale, and the average errors of range and

velocity are larger than those of azimuth and elevation.

In conventional radar processing methods, the received

echoes are processed by matched filtering, Doppler pro-

cessing, CA-CFAR detection, sum–difference angle mea-

surement, etc. For the CA-CFAR detector, there are six

reference cells, four guard cells on each side of range

domain, and five reference cells, three guard cells on each

side of Doppler domain. The threshold of CFAR com-

parator changes with various SNR. According to Table 3,

the average errors of range and velocity are slightly varied

in different SNRs, while the average errors of azimuth and

elevation drop as the SNR increases.

We compare the measuring errors of CNN-based

detector with that of the conventional method in Fig. 8. It

can be shown that errors have been greatly reduced in

range and velocity, although in Fig. 8(c)(d), the angle

errors are higher than classical one when SNR = - 6 dB,

as SNR increases, both angle errors of our proposed

method are lower than those of classical method.

3.6 Performance analysis

Only when measuring errors of four items, the below

respective threshold is the detection considered as valid,

which is defined as

Td ¼ Rerror �
DRffiffiffiffiffiffiffiffiffi
SNR

p
� �

& Verror �
DVffiffiffiffiffiffiffiffiffi
SNR

p
� �

&

Azerror �
DAzffiffiffiffiffiffiffiffiffi
SNR

p
� �

& Elerror �
DElffiffiffiffiffiffiffiffiffi
SNR

p
� � ð11Þ

Accuracy of detection Da is defined as

Da ¼
Ntd

Ntotal
ð12Þ

where Ntd denotes the number of correctly detected targets

and Ntotal denotes the total number of simulated targets.

According to evaluation criterion which is presented in

Eq. (12), the detection accuracy is obtained and listed in

Table 4. Then, we compare the detection performance of

CNN-based detection method with classical method under

different SNRs, which is shown in Fig. 9.

It is evident that our CNN-based detector shows a better

detection accuracy than the conventional radar signal

processing method. As the SNR rises, the detection accu-

racy of the two methods rises. The detection accuracy of

the CNN-based detector is larger than that of the conven-

tional one when SNR is lower than 10 dB. Evidently, our

proposed CNN-based detection model is able to get rich

information about target from raw radar echo data and it is

more robust to white noise and continues to outperform the

conventional radar processing methods under various SNR

conditions.

Accuracy of detection is also used to compare the pro-

posed RTD models fairly with other state-of-the-art

methods in the literature. Table 5 compares the perfor-

mance of the proposed CNN-based approach with the

conventional CA-CFAR method and the state-of-the-art

ANN-based and CNN-based methods on our dataset with

SNR = 10 dB. The detection and training procedure of

GO-ANN (Akhtar et al.) and DRD (Brodeski et al.) are

implemented on range–Doppler maps, which are generated

by multiple raw radar echoes. They have achieved 95.2%

and 96.7% detection accuracy on our dataset, respectively.

Notice that the proposed method outperforms the conven-

tional method and state-of-the-art ANN-based and CNN-

based methods with detection performance of 98.5%.

Table 2 Average measuring

error of CNN-based method
Average error SNR = -6 SNR = - 2 SNR = 0 SNR = 2 SNR = 6 SNR = 10 SNR = 13

Range (m) 1.1642 1.0182 0.9968 0.8963 0.8798 0.8847 0.8813

Velocity (m/s) 0.3966 0.3415 0.2904 0.2510 0.2288 0.2274 0.2233

Azimuth (�) 0.0161 0.0104 0.0079 0.0065 0.0042 0.0027 0.0019

Elevation (�) 0.0167 0.0108 0.0083 0.0070 0.0043 0.0027 0.0019

Table 3 Average measuring

error of conventional radar

processing method

Average error SNR = - 6 SNR = - 2 SNR = 0 SNR = 2 SNR = 6 SNR = 10 SNR = 13

Range (m) 3.2585 3.3725 3.2950 3.3050 3.4325 3.3675 3.340

Velocity (m/s) 1.2893 1.2147 1.2002 1.1994 1.2126 1.2118 1.1763

Azimuth (�) 0.0141 0.0135 0.0128 0.0117 0.0109 0.0099 0.0097

Elevation (�) 0.0172 0.0163 0.0133 0.0129 0.0124 0.0114 0.0100
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3.7 Ablation experiment

To research the need of passing the global feature vector

and classes vector to Angle Detection Net, we perform an

ablation experiment. The Angle Detection Net and the RD

Detection Net are trained separately with the same input

feature maps. The convolutional layers, the fully connected

layers and the loss functions remain the same except the

cropped part and concatenated part which are skipped. The

network model is trained as before using back-propagation

and Adam optimizer with initial learning rate 0.0001. The

dropout rate is 0.4 and the batch size is 100 frames.

The azimuth and elevation measuring error of the pro-

posed model and the separate Angle Detection Net are

presented in Fig. 10. It can be clearly observed the

improvement in the azimuth–elevation estimation accuracy

of the proposed method compared to the separate Angle

Detection Net. This improved detection accuracy may be

attributed to the additional information in the global feature

vector from the RD Detection Net.

4 Discussion

Many of the research works in the literature express an

evident trend that the traditional radar signal processing

methods and deep learning schemes are deeply integrated

in RTD application. On the one hand, conventional radar
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Fig. 8 Comparison of average error under different SNRs

Table 4 Accuracy of our CNN-

based and conventional

detection methods under

different SNRs

Accuracy SNR = - 6 SNR = - 2 SNR = 0 SNR = 2 SNR = 6 SNR = 10 SNR = 13

CNN-based 0.6450 0.7225 0.7985 0.8445 0.9070 0.9850 0.9985

Classic method 0.5630 0.6335 0.6935 0.7775 0.8335 0.9805 0.9980
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signal processing serves as the preprocessing method of the

training data, such as pulse compression, Doppler pro-

cessing and STFT, which can help to improve the detection

performance. On the other hand, neural networks inte-

grated with radar signal processing methods, such as

CFAR, working as training strategies, have contributed to

the performance improvement. Further, based on the

results obtained by our proposed method, we argue that

deep learning models can provide an end-to-end frame-

work to integrate sensing, processing and decision making.

Although there are some successful application para-

digms of deep learning-based methods in the field of RTD,

huge challenges still remain. One of the bottlenecks of

applying deep learning models to RTD is the lack of

labelled data. Unlike other application fields, high cost is

involved in obtaining the radar data. Although radar

modeling is a solution to overcome this issue, generating

the surrogate data is also extremely challenging and com-

putationally demanding since multiple effects must be

considered, such as interference, multipath reflections,

reflective surfaces, discrete cells and multiple attenuation.

Even if all the above problems are avoided, it inevitably

relies on a mathematical model for simulation which may

bring inaccuracies. To further promote the study of RTD

with insufficient real-world radar data, the following ideas

could be considered: 1) data augmentation; 2) some new

generation of deep learning algorithms, such as generative

adversarial networks (GANs) [36], are robust to the prob-

lem of insufficient training data; 3) some other learning-

based methods like transfer learning [37, 38] and meta

learning [39] could break through the limitation of data

insufficiency.

In addition, despite a remarkable improvement in the

application of deep learning in RTD, the available litera-

ture on ANNs and DNNs in RTD still remains relative

sparse and lacks high-level maturity. For example, a
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Fig. 9 Detection accuracy of CNN-based and classical detector under

different SNRs

Table 5 Comparison of

performance of the proposed

method with other state-of-the-

art methods

Method Feature extraction approach Input forms Da@10 dB

GO-ANN [29] Handcrafted Range–Doppler map 95.2%

DRD [32] CNN Range–Doppler map 96.7%

CA-CFAR Handcrafted Raw data 98.1%

Proposed method CNN Raw data 98.5%

 Measuring error of azimuth angle Measuring error of elevation angle
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Fig. 10 Accuracy comparison of the proposed net and the separate Angle Detection net
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common aspect found in some of the literature is that the

ANNs are in moderate size, the networks proposed in

[26, 27], containing only one hidden layer. Only CNNs are

widely used in RTD, even though various deep learning

architectures have been proposed in other fields. Since

radar processing system is facing more complex and

challenging tasks, more varied but practical powerful

learning-based training strategies are urgently required.

5 Conclusion

In this paper, we proposed a novel CNN-based model for

multitask RTD, which works directly with raw radar echo

data. Accordingly, the rich original information contained

in the echo signal can be fully exploited. The proposed

detection method is able to locate the target in multi-di-

mensional space of range, radial velocity, azimuth and

elevation. The CNN-based detector shows a better mea-

suring accuracy in each item than the conventional radar

signal processing method when evaluated under different

SNRs. In addition, the detection performance of the pro-

posed method outperforms other state-of-the-art methods in

the literature. Although this work adopts simulated data for

training, we believe that it has promising potential to apply

deep learning to RTD on radar complex data. In addition,

we expect to get sufficient training data from radar system

which will definitely prompt the detection model more

convincing. In the future, we will try to extend and evaluate

the CNN-based detector with real-world radar data.
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