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Abstract
Recommender systems face longstanding challenges in gaining users’ trust due to the unreliable information caused by

profile injection or human misbehavior. Traditional solutions to those challenges focus on leveraging users’ social rela-

tionships for inferring the user preference, i.e., recommending items according to the preference by user’s trusted friends;

or adding random noise to the input to improve the robustness of the recommender systems. However, such approaches

cannot defend the real-world noises like fake ratings. The recommender model is generally built upon all the user-item

interactions, which incorporates the information from fake ratings or spammer groups, that neglects the reliability of the

ratings. To address the above challenges, we propose an adversarial training approach in this work. In details, our approach

includes two components: a predictor that infers the user preference; and a discriminator that enforces cohort rating

patterns. In particular, the predictor applies an encoder-decoder structure to learn the shared latent information from sparse

users’ ratings and trust relationships; the discriminator enforces the predictor to provide ratings as coherent with the cohort

rating patterns. Our extensive experiments on three real-world datasets show the advantages of our approach over several

competitive baselines.
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1 Introduction

Recommender systems offer an effective way of delivering

information, products, and services to users with person-

alized information, which have been proven successful in

various domains such as online entertainment and e-com-

merce [29]. However, users may not trust the recommender

systems due to inaccurate recommendation results. For

example, a user may not trust a stranger’s preference even

when they have similar rating records. Another example is

that the system may recommend an item that is deliberately

highly rated by malicious users.

One traditional solution to the above issues is leveraging

external trust relationships, which is often called trust-

aware recommendation [19]. Related research diverges into

memory-based and model-based methods. The former

mainly employ memory-based collaborative filtering

methods—they search the trust networks to obtain the

neighbors and then make recommendations based on those

trusted neighbors [17]. For example, Jamali and Ester [12]

combine TrustWalker [11] with neighborhood collabora-

tive filtering. They first use random walks to get the user

representation from the trust network and then perform a

probabilistic strategy for selecting items to give recom-

mendation. Similarly, Zhang et al. [31] retrieve the user

trust information from user feedback and infer the user

preference from the top-k identified friends. Model-based

methods are majorly apply model-based collaborative fil-

tering methods, such as matrix factorization [7, 28], for

recommendation. For example, Zhao et al. [32] incorporate

the social trust information based on a Bayesian

& Manqing Dong

manqing.dong@unsw.edu.au

Lina Yao

lina.yao@unsw.edu.au

Xianzhi Wang

xianzhi.wang@uts.edu.au

Xiwei Xu

xiwei.xu@data61.csiro.au

Liming Zhu

liming.zhu@data61.csiro.au

1 University of New South Wales, Sydney, Australia

2 University of Technology Sydney, Sydney, Australia

3 Data 61, CSIRO, Sydney, Australia

123

Neural Computing and Applications (2023) 35:13065–13075
https://doi.org/10.1007/s00521-021-05722-3(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-1987-2207
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-05722-3&amp;domain=pdf
https://doi.org/10.1007/s00521-021-05722-3


Personalized Ranking approach. They assume that the user

preference will be affected by their friends, i.e., the user

will also leave high ratings to items preferred by their

friends. Guo et al. [7] integrates the social trust information

with using a SVD??[14] based method. Both memory-

based and model based trust-aware recommendation

methods improve the model performance by leveraging the

explicit or implicit relationship among users. However,

they may fail to consider the reliability of ratings in

determining the trustworthiness of recommender systems.

Another direction toward trust-aware recommendation

is to design a robust recommender system that resists

biased or randomized ratings provided by users in a real-

world context. One approach is to insert man-made noise

into the input to force the system to learn robust parameters

of the input so that to improve the model’s ability in

resisting the noise. One example is the denoising auto-

encoder (DAE) [3], which corrupts the inputs with man-

made noises. The work [27] used collaborative denoising

auto-encoder (CDAE) which shares similar ideas of DAE.

The inputs (ratings) are corrupted by the Gaussian noises

and then fed into the neural nets via an encoder to get a

dense representation. The decoder is trying to map the

dense representation into the user-item interactions and for

recommendation. Instead of man-made noise, some work

adds adversarial noise to the model. The majority of this

type of work focus on introducing noise in model config-

urations to improve the robustness of the model parame-

ters. For example, He et al. [9] introduced an additional

objective function in the traditional Bayesian Personalized

Ranking approach to quantify the loss of a model under

perturbations on its parameters. In details, the adversarial

noises are added to the model parameters; the recom-

mender model is updated by considering both the training

loss and the adversarial loss, where they minimize the

training loss while maximize the adversarial loss. Yuan

et al. [30] mixed adversarial noise with model parameters

and latent user representations to improve the robustness of

the model. Their training strategy includes two learning

steps: first, obtain optimal parameters by a training step;

and second, minimize the recommendation loss while

maximize the adversarial noise loss. Similar to trust rela-

tionship-aware recommendation approaches, a limitation of

the above proposed noises is that the model cannot defend

the real-world noises like fake ratings.

To the best of our knowledge, few studies have focused

on the robustness issue caused by user misbehaviors in

rating. In this regard, we embrace the advantages of

adversarial training in simulating biased or malicious rat-

ings and propose reinforced trust-aware recommendation to

harvest the benefits of both social information and the

denoising approach. Our method consists of a predictor that

infers the ratings and a discriminator that enforces cohort

rating patterns on the predicted ratings. In a nutshell, we

make the following contributions:

– We propose a rating predictor based on an encoder-

decoder structure to learn latent information about user

rating patterns and user social trust networks. User

social trust embedding learned by an attentive graph

neural network can balance the contributions of user

neighbors. The predictor distinguishes from previous

studies in considering not only user’s trust relationship

but also rating quality.

– We introduce a discriminator to learn transferable

patterns in rating behaviors while eliminating user-

specific bias, thereby enforcing consistent rating pat-

terns among different users to lift the robustness of the

model.

– We have tested the proposed model on three real-world

datasets to show its competitive performance against

several baselines. We provide detailed parameter stud-

ies and model discussions.

We will review the related work for social-aware recom-

mendation and the robustness of the recommender systems

in the following Sect. 2. We further present our proposed

method in Sect. 3 and show the model performance in Sect.

4. The conclusion and future works are discussed in Sect. 5.

2 Related work

Traditional recommendation techniques to deal with the

trust issue include the exploitation of social relations or

adding randomly generalized noise to the model configu-

rations to improve the robustness of the recommender

system [2].

Social-aware recommendation approaches utilize the

user trust network to complement the sparse rating data.

This will improve the recommendation performance by

considering two source of rating information: the original

user preference and the preference from the trusted users.

Traditional social-aware recommendations include mem-

ory-based methods and model-based methods. The former

mainly propose trust propagation methods by leveraging

the ratings of friends to deduce the ratings of a targeted

user [26]. The work by [18] is one of the first works that

leverages the social relationships. The idea is replacing the

role of collaborative filtering by trust network. Specifically,

the model propagates trust information over the social trust

network to estimate the weight for the trust link that can be

used in place of the user similarity weight. Jamali and Ester

[12] combine TrustWalker [11] with neighborhood col-

laborative filtering. They first use random walks to get the

user representation from the trust network and then per-

form a probabilistic strategy for selecting items to give
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recommendation. Zhang et al. [31] retrieve the user trust

information from user feedback and infer the user prefer-

ence from the top-k identified friends. Model-based

methods largely depend on matrix factorization. The social

relations are generally used to form the user representation.

For example, Wen et al. [25] use graph embedding

approaches for learning learn the user social trust repre-

sentation and then combine the trust representation with

user ratings as the input of matrix factorization. Guo et al.

[7] integrates the social trust information with using a

SVD??[14] based method. Ahn et al. [1] have quantified

by how much social network information can reduce

sample complexity, which provides the theoretical support

for integrating the social trust information. Zhao et al. [32]

incorporate the social trust information based on a Baye-

sian Personalized Ranking approach. They assume that the

user preference will be affected by their friends, i.e., the

user will also leave high ratings to items preferred by their

friends.

Another direction is designing robust recommender

systems. A general way is introducing noise to the system

configurations to improve system performance. By doing

so, the model is forced to learn robust parameters to

improve denoising capability. Traditional methods include

introducing human-made noise. For example, in the col-

laborative denoising auto-encoder [27], the input data are

corrupted by Gaussian noise before fed to the neural net-

work. The decoder is trying to map the dense representa-

tion into the user-item interactions and thus for

recommendation. Wang et al.[23] integrate both recurrent

neural networks (RNNs) [15] and denoising autoencoders

for recommendation. The RNNs are used for extracting the

information from the item textual description. The whole

model is in an autoencoder structure, where the RNNs are

used as encoder and decoder layers. The proposed recurrent

autoencoder can learn both rating information and

sequential information (e.g., textual information) to get the

dense representation. Strub et al. [21] corrupt the inputs by

stacked denoising autoencoders[22]. They also considered

the side information, e.g., user profiles and item profiles, to

enhance the robustness of the model. In the later resear-

ches, some works leverage adversarial noise to improve the

robustness of the model. Wang et al. [24] propose a gen-

erative adversarial model that consists of a generator and a

discriminator for recommendation [6]. The generator

(predictor) acts as an attacker to cheat the discriminator by

capturing the rating patterns from the users and generating

ratings with similar patterns; the discriminator targets dis-

tinguishing the generated samples from the real ratings.

The two models update step by step by competing with

each other, like playing a minimax game until the generator

(predictor) provides well and stable rating prediction. He

et al. [9] introduced an additional objective function in the

traditional Bayesian Personalized Ranking approach to

quantify the loss of a model under perturbations on its

parameters. In details, the adversarial noises are added to

the model parameters; the recommender model is updated

by considering both the training loss and the adversarial

loss, where they minimize the training loss while maximize

the adversarial loss. Yuan et al. [30] mixed adversarial

noise with model parameters and latent user representa-

tions to improve the robustness of the model. Their training

strategy includes two learning steps: first, obtain optimal

parameters by a training step; and second, minimize the

recommendation loss while maximize the adversarial noise

loss.

However, The above two directions of trust-aware rec-

ommender systems do not consider the reliability of the

ratings, i.e., the existence of biased, randomized, or mali-

cious ratings provided by users. The former social-aware

approaches mostly do not consider the robustness issues,

and the denoising approaches majorly focus on the

parameter robustness. In this paper, we bridge the advan-

tages of both social-aware recommender systems and

robustness issues for the recommendation with reinforcing

cohort rating patterns.

3 Methodology

3.1 Overview

In this work, we consider the rating prediction problem in

recommender systems. Our target is predicting users’ rat-

ings on new items based on the user-item rating interac-

tions and social trust relationships. Let R 2 Rm�n denotes

the user-item rating matrix, where each entry ru;i represents

the rating of user u on item i; m and n are the numbers of

users and items, respectively. We use Iu to represent the set

of items rated by user u and ru to represent the according

ratings. The social network can be represented by a graph

G ¼ ðV;EÞ, where V is a set of m nodes (users), and E

denotes directed trust relations among users. We use T to

describe the weight of E, where tu;v 2 T indicates the trust

degree between u and v. The trusted users by user u is

represented by Vu, i.e., ftu;v ¼ 1jv 2 Vug. The ratings from

the trusted users are denoted as frvjv 2 Vug. Thus the

recommender model is trying to predict ru;i for new items

by ru;i  ðru; rVu
Þ. Figure 1 illustrates the structure of the

proposed model, where we have the recommender model

works as the predictor and a discriminator to force the

cohort rating patterns in the predicted ratings. The pre-

dictor first learns the latent representation of users’ ratings

and trust relations and then combines them into a shared

hidden layer that contains users’ latent patterns. It also acts
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as a generator to simulate rating patterns of real users. The

rating pattern embedding is learned from neural networks,

i.e., Hr  ru; while the social trust embedding is learned

by attentive graph neural networks [5], i.e.,

Ht  frvjv 2 Vug. The discriminator determines whether

the predicted ratings fr̂u;iji 2 Iug follow the cohort patterns

as the meta-information fru;iji 2 Iug, thereby providing

accurate and confidential rating prediction. It also detects

the abnormal rating patterns to improve the robustness of

the model. We provide more details about the proposed

model as in the followings.

3.2 Rating prediction with correlative trust
relationship fusion

Autoencoder is an unsupervised model that reconstructs its

inputs in the output layer, which has been used in many

recommendation tasks [20]. The encoder-decoder structure

can help with learning the latent preferences of users

according to the user-item interactions and providing pre-

dictions based on the latent preferences. In this work, we

integrate trust information into the layers to conduct

comprehensive recommendations. We first learn a shared

latent representation from two types of sparse information:

users’ previous ratings and ratings from trust users, i.e.,

dual autoencoders, and then predict ratings based on that

representation.

3.2.1 Embedding learning

Here we learn two types of sparse information to get the

latent representation, i.e., social trust embedding and rating

pattern embedding.

The meta representation for the user rating pattern is

simply represented by ru. To infer the rating pattern

embedding, the encoder layer maps the inputs into a low-

dimensional space by neural networks. The simplest case is

using fully connected layers:

Hr ¼ rðW>e ru þ breÞ ð1Þ

where We is the weight in encoder layers, bre is the bias

term, and r is the activation function. The encoder layer

could also be in other forms, such as convolutional neural

network [15], according to the learning tasks.

The meta representation of the social trust relationships

is learned from the rating patterns of the trusted users.

Given a set of trusted users Vu, i.e., tu;v ¼ 1 for v 2 Vu,

where each user has a rating record rv, we employ an

attentive graph neural network [5] for learning the social

trust meta representation su:

su ¼ rðW>s Rv2Vu
avrv þ bsÞ ð2Þ

where a represents the contribution of user v, which could

be regarded as attention values; r stands for the activation

function; Ws and bs are weights and biases. We will hereby

omit explanation of similar notations of weights and bias

for simplicity. Intuitively, the neighbors of user u are not

equally contributed to the social trust representation of

users; thus, we utilize the attention mechanism, i.e., the

attention values av proposed in equation 2, to balance the

social influences. Suppose user u has strong connections

with the neighbors who has similar tastes, then we learn the

attention value for each user as follows:

bv ¼ rðW>a f ðru; rvÞ þ baÞ ð3Þ

av ¼
exp b>v wv

Rv2Vu
exp b>v wv

ð4Þ

where f ðru; rvÞ is the correlation function representing the

correlative rating patterns between user u and trusted user

v; wv is a randomly initialized vector that captures the

correlative latent patterns. The correlation function evalu-

ates the rating pattern similarity between the user and the

trusted users. It can be in different forms. For example, the

correlation function can be the concatenation or the dif-

ference of two rating lists. We will discuss the model

performance on different correlation functions in the fur-

ther experiments. Now we have the social trust meta rep-

resentation su. Similarly, the encoder layer will map the

meta representation su into a low-dimensional space by

neural networks:

Fig. 1 Structure of our proposed end-to-end model. The predictor

predicts users’ ratings based on their previous ratings and trust

relationships. The discriminator enforces consistent predictions

regardless of individuals’ behavioral differences in rating
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Ht ¼ rðV>e su þ bseÞ ð5Þ

where Ve stands for the weights.

The two encoder layers works simultaneously. Given the

user history ratings ru and the information of the trusted

users, we get the social trust embedding Ht and rating

pattern embedding Hr by several encoder layers.

3.2.2 Rating prediction

After several encoder layers, we get more concise repre-

sentations of the rating records as Hr and trust information

as Hs.

To integrate two sources of information, we sum up the

latent representations Hr and Hs with weights to form a

shared latent representation:

H ¼ c � Hr þ ð1� cÞ � Ht ð6Þ

where c 2 ½0; 1� is the parameter to control the contribution

of the rating information to the shared latent representation

in comparison with social trust information. Another way

to combine two sources of information is concatenating the

latent representation, i.e., H ¼ ½Hr;Ht�. The experimental

results showed that the summing of the two representations

performs better than the concatenation of the two repre-

sentations. We will discuss the performances of such two

ways later in the ablation studies.

Differing from the encoder, the decoder aims to explain

or expand the concise latent representation. Given the

concentrated information about a user’s preferences

embedded in the shared latent representation, we obtain the

predicted ratings r̂u by decoding it into a list of ratings and

trust relationship:

r̂u ¼ rðW>d H þ bdÞ: ð7Þ

The performance of the recommendation can be evaluated

by the loss between the original inputs and the predictions,

i.e., ‘ðr; r̂Þ and ‘ðt; t̂Þ, where ‘ is the loss function.

3.3 Cohort rating patterns enforcement

The predictor works fine alone after training but may

neglect noises in the input, due to the possible diverse

rating distributions from abnormal users in a real-world

context. We design a discriminator to distinguish the

generated ratings r̂ from real ratings and train the model

until the discriminator cannot classify them accurately [6].

This way, we can enforce cohort rating patterns on the

generated ratings to reduce the adverse impact of users’

biases, misbehaviors, and low-quality ratings. We use a

multilayer perceptron as the classifier to predict any type of

rating inputs (ru or r̂u), say r�:

ŷ ¼ Dðr�Þ ¼ softmaxðrðWT
c r� þ bcÞÞ ð8Þ

We train the classifier in two steps: discriminating and

generating. In the first step, a discriminator aims to output

y ¼ 0 for any generated rating r̂ and y ¼ 1 for real ratings

r, by minimizing

LD ¼ Er�2fr;r̂g½‘ðy; ŷÞ� þ kjjHjj1 ð9Þ

via gradient descent, where Er�2fr;r̂g½‘ðy; ŷÞ� is the mean

prediction loss for our generated ratings or the real ratings,

‘ is the cross entropy loss function, H represents model

parameters, k is the hyper-parameter, and jjHjj1 is the

regularization item to avoid over-fitting, where here we use

absolute-value norm for regularization. Since the generated

ratings r̂ are not as sparse as the real data (the real data are

sparse due to the limited user-item rating records), we

multiply them with a mask vector before feeding them into

the discriminator, where the i-th element will be zero if a

user does not provide a rating to item i.

The generating step trains a predictor to cheat the dis-

criminator the discriminator aims to output y ¼ 1 for the

generated ratings (r̂) by minimizing the gaps between the

predicted labels of generated ratings r̂ and y ¼ 1, in order

to learn a transferable rating patterns. The loss for the

generating step is:

LG ¼ Er�2r̂½‘ð1;Dðr�ÞÞ� þ kjjHjj1 ð10Þ

The whole process iterates until the discriminator cannot

predict the generated ratings correctly.

Before training the discriminator, we train the predictor,

i.e., our recommender model by minimizing the rating

prediction loss (i.e., mean squared loss ‘) until convergence

to train an accurate and robust model:

LR ¼ ‘ðr; r̂Þ þ kjjHjj1 ð11Þ

The overall training process of our method is described in

algorithm 1, where the model is updated for u 2 UTrain. The

pseudo code of the testing phase is showed in algorithm 2.

In the actual experimental settings, we update the model

with batch of users. Specifically, we update the recom-

mender model and the discriminator asynchronously. The

target of our method is constructing an accurate and robust

model; the design for the cohort rating patterns enforce-

ment will help the model produce reliable rating predic-

tions. Thus, we update the recommender model with every

batch of training users, and we update the discriminator

with every few batches of training users.
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4 Experiments

4.1 Datasets

We evaluate the proposed model on three real-world

datasets: FilmTrust, Epinions and Ciao1. FilmTrust is a

small dataset that consists of 35,497 ratings of 2071 items

from 1508 users, and 1853 trust links. The latter two

datasets contain over 100 thousand items from thousands of

users. For Epinions, which is a product review dataset,

there are 469,126 ratings from 37,701 users in 19,627

items. There are about 487,000 trust relationships among

users. Ciao consists of 137,187 ratings from 7237 users for

8819 products, and there are 111,781 trust links.

4.2 Model setups

Data-preprocessing First, we filter the missing values of

the dataset. Second, we preprocess the two larger datasets

to make them applicable to our method. The Epinions and

Ciao are two large dataset that contains over 100 thousand

items. Our approach is based on the user-item interactions,

i.e., the rating records for each user is represented by

ru 2 Rn, where n is the number of items. The computation

cost of our method will be high if with a large n; besides,

using fully connected layers for encoding the inputs will

aggravate such situation. There are two ways for alleviating

the computation cost: decrease the number of items or use

less complicated model structure (less parameters). Thus,

we filter the dataset with items that with less than 10 rating

records, and we use convolutional layers for encoding the

inputs.

Experimental settings Our code is implemented with Ten-

sorFlow 2 in Python 3.7 and runs on a Linux server with

NVIDIA TITAN X. The processed datasets will take about

60MB hard disk space. The default activation function is

Sigmoid function [8]. We have parameters in model set-

ups, encoder-decoder structures, and hyperparameters. By

default, we use 90% of each dataset for training and others

for testing; the batch size is about 1/10 of the dataset; we

use two encoder layers for encoding the inputs and two

decoder layers for decoding the latent representation; the

hyperparameter c for controlling the contribution of rating

pattern embedding is set as 0.7; the hyperparameter k,

which is the coefficient for the regularization item, is set as

0.001; the learning rate is 0.001.

4.3 Parameter studies

We have three types of parameters for setting up the model:

the data set-up parameters, the encoder-decoder structure

settings, and the hyperparameters. In this section, we study

on the performance of our proposed model with different

settings on the FilmTrust dataset. We will show the results

under different settings and different learning epochs. The

results are under two evaluation metrics: Mean Absolute

Error (MAE) and Root-Mean Squared Error (RMSE).

– MAE: 1
mR

m
u¼1

1
nR

n
i¼1jru;i � r̂u;ij

– RMSE:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
mR

m
u¼1

1
nR

n
i¼1ðru;i � r̂u;iÞ2

q

A lower value indicates better model performance.

1 https://www.librec.net/datasets.html. 2 https://www.tensorflow.org/.
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Data set-up parameters include the train-test split ratio

and batch size. Default settings for these parameters are 0.9

(for training dataset), and the batch size is about 1/10 of the

training dataset. Figure 2a–b shows the overall model

performance on different settings. The results suggest a

larger training set improves the model performance; and

the model with a moderate batch size, rather than the

extreme settings of the batch size (e.g., 1/100 or 1/5),

delivers the best performance. Figure 3a–b shows the

model performance during the training process. We could

see that a larger training set also improves the stability of

the model, where the model performs best when training

ratio is 0.95. According to Fig. 3b, the model performance

fluctuates with a small batch size, while converges slowly

with a large batch size.

Encoder-decoder structure setting. We compare the

models under different settings regarding the number of

encoder/decoder layers (1, 2, 3) and the number of neural

nodes (1/20 to 1/2 of the dimension of inputs) in the hidden

layers. We show results of models with one, two, and three

layers, and we use ‘?’, ‘-’ to indicate higher (e.g., 1/10 to

1/20 of the dimension of inputs) or lower dimensions (e.g.,

1/2 to 1/10 of the dimension of inputs) of layer nodes. Our

experimental results (Fig. 2c) reveal that adding more

layers to the encoder or the decoder delivers better per-

formance, due to the sparsity and high dimensionality of

the datasets. The two-layer structure delivers very similar

results as the three-layer structure, though the performance

slightly fluctuates for a three-layer structure under high

dimensionality. Smaller dimensions of layer nodes gener-

ally result in better performance, given the same number of

layers (except for one layer). Figure 3c also suggests that it

is hard for the model to learn effective patterns with only

one neural layer, and a three layers encoder with lower

dimensionality provides most stable prediction.

Hyperparameters. Figure 2d–f shows the performance

over the hyperparameters (c, k) and learning rate. c controls

the weight for user rating patterns in comparison with user

social trust embedding. Our experiment on c reveals that

bias in user preference may lead to better performance of

our model. Besides, using only one source information

(ratings or trust relations) delivers inferior results, indi-

cating there exist hidden relationships between users, rating

behaviors, and their trust relationship. According to

Fig. 3d, we could also observe that using only one source

information will aggravate the over-fitting issue. So a

median value of c provides better and stable performance

for the recommendation. k is the regularization coefficient.

According to both Figs. 2e and 3e, a small value of k
(between 0.0001 and 0.00001) provides best and reliable

results, while a larger value (e.g., over 0.001) or a near zero

value will lead to a bad model performance. As for the

learning rate, it is reasonable to set the learning rate to a

moderate value because large values tend to make the

convergence difficult, while smaller values may slow down

the learning. Here, the value 0.001 provides the best

performance.

4.4 Comparison results

We compare the proposed model with several baseline

algorithms, including TrustMF [28], SoReg [16] and

SocialMF [13]. These methods use matrix-factorization

based methods and combining social information into user

embedding. Besides, considering the popularity of deep

learning in the recent recommendation research, we com-

pare three recent deep learning-based methods for com-

parison, which are NeuMF [10], DeepSoR [4], and

GraphRec [5].

– TrustMF: constructs a trust network and maps the users

into truster space and trustee space. Each user has

feature vectors in the trust networks, and the represen-

tation for each user is affected by the trusted users.

Then collaborative filtering method is used for

recommendation.

– SoReg: employs social trust networks to get regular-

ization terms for controlling the matrix factorization

objective function.

– SocialMF: also considers the matrix factorization

methods, where they incorporates the user social

information for forming the user representation. The

prediction is based on the user representation and item

representation.

– NeuMF: is a matrix factorization model with neural

network architecture.

– DeepSoR: forms user representation from social net-

works and use probabilistic matrix factorization for

rating prediction.

– GraphRec: models two graphs, i.e., the user-user social

graph and the user-item graph, with graph neural

networks; the rating prediction is based on the

concatenation of item representation and user

representation.

The above comparison methods all consider the social

relationships for recommendation, while they are mostly

based on matrix factorization algorithms. The GraphRec

method is similar to our work that they use graph neural

networks to infer the user trust embedding from the social

relationships; but it ignores the reliability of the user rat-

ings. We reuse the default parameters or the presented

results from the original papers for comparison. Table 1

shows the experimental results, where the last row stands

for the performance of our model. We can see that both

matrix-factorization based methods and deep learning-
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based methods use users’ latent preferences for recom-

mendation while in different ways. Both methods achieved

similar performance on the small FilmTrust dataset. Deep

learning-based methods perform better on the Ciao and

Epinions datasets, which are much larger than FilmTrust.

This can be attributed to the stronger capability of deep

neural networks in capturing complex relationships among

input. Due to the ascendant ability in handling complex

graph structures, GraphRec performs better than our model

in dataset Ciao, which has a higher density of social links

(a) Train-test Split Ratio (b) Batch Size (c) Autoencoder Settings

(d) Parameter γ (e) Parameter λ (f) Learning Rate

Fig. 2 Sensitivity to parameter settings

(a) Train-test Split Ratio (b) Batch Size (c) Autoencoder Settings

(d) Parameter γ (e) Parameter λ (f) Learning Rate

Fig. 3 Model performance during the training process
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and user-item ratings. Overall, our model performs con-

sistently well on three datasets and outperforms a series of

comparison methods, which shows the effectiveness of our

proposed attentive graphical user trust relationship learning

and the adversarial training strategy. We will discuss the

details about these modules in the following sections.

4.5 Ablation studies

In this section, we carry out a series of ablation studies to

show the effectiveness of leveraging both of the trust

information and the robustness of recommender systems,

i.e., our attentive graphical learning for user trust repre-

sentation and the adversarial training strategy for updating

the recommender model. Besides, we discuss the model

performance with different settings of the correlation

function, which is designed to balance the neighbors’

contributions to the user social trust representation. We

perform the studies on the FilmTrust dataset.

4.5.1 Impact of social trust information

We tested two methods to combine the latent representa-

tions of the rating and trust information. The first method

concatenates representations of rating and trust data for

each user; the second sums up the representations with

different weight settings (as introduced in our method).

According to the results listed in Table 2, the second

method exhibited better prediction performance in our

experiments.

The reason may lie in that our designs of user social

trust embedding share similar data structures with user

rating pattern embedding. The sum up way keeps more

structural information than simply concatenation. Besides,

we tested the model performance with different settings of

parameter c, which controls the weights for user rating

pattern embedding when summed up with user social trust

embedding. c ¼ 0 and c ¼ 1 indicate the cases that model

is trained without and solely based on user rating history,

respectively. We could observe that the combination of

user social trust embedding and the rating pattern embed-

ding performs better than a single perspective of embed-

ding. Interestingly, the model performs well with only the

user social trust embedding, confirming our assumption

that users share similar tastes with their neighbors.

4.5.2 Impact of adversarial training

To validate the discriminator’s effectiveness in enforce

cohort rating patterns among the real and generated ratings,

we compare the ratings generated by our proposed model

and those generated solely by the predictor (without

adversarial training). Figure 4 shows the model perfor-

mance and the distribution of the ratings. First, we can see

that the model with adversarial training consistently out-

performs the model with solely the predictor. Second,

compared with ratings generated by the sole predictor, the

predicted ratings with adversarial training tend to fall into

different ranges for different items with similar patterns as

real ratings.

4.5.3 Impact of correlation function

The correlation function f ðru; rvÞ defines the relationship

between a user and its neighbors to learn the neighbors’

contributions to the user’s social trust embedding. Intu-

itively, users with high consistency in history rating records

may share similar tastes. We compare the following cor-

relation functions:

– Cosine similarity: f ðru; rvÞ ¼ ru�rv
jjrujjjjrvjj

– Concatenation: f ðru; rvÞ ¼ ½ru; rv�
– Difference: f ðru; rvÞ ¼ ru � rv
– Dot product: f ðru; rvÞ ¼ ru � rv
– Equal contribution: f ðru; rvÞ ¼ 1

Figure 5a gives an example of the user social trust repre-

sentation learning with cosine similarity. The cosine sim-

ilarity is calculated based on the rating history of user and

Table 1 Comparison results

Methods FilmTrust Ciao Epinions

MAE RMSE MAE RMSE MAE RMSE

TrustMF 0.631 0.810 0.769 1.048 0.939 1.167

SoReg 0.668 0.875 0.861 1.085 0.932 1.232

SocialMF 0.638 0.837 0.827 1.050 0.825 1.070

NeuMF 0.655 0.867 0.806 1.062 0.907 1.148

DeepSoR 0.648 0.853 0.774 1.032 0.838 1.097

GraphRec 0.633 0.819 0.739 0.939 0.817 1.063

Ours 0.622 0.805 0.748 0.976 0.815 1.054

Table 2 Impact of social trust information

Settings MAE RMSE

Concatenation 0.722 0.965

Sum, c ¼ 0 (without rating info) 0.627 0.816

Sum, c ¼ 0:3 0.631 0.798

Sum, c ¼ 0:5 0.628 0.816

Sum, c ¼ 0:7 0.626 0.815

Sum, c ¼ 1 (without social info) 0.635 0.822
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her neighbors. We further use the cosine similarity to learn

the contribution of rFriend1 and rFriend2 to the social trust

embedding su with attention mechanism, referring to

Eqs. (2) to (4). Figure 5b shows the results with different

settings. The performance of the equal contribution mea-

sure indicates friends are not equally contributed to the user

social trust representation. Instead, other measures that

consider the distance between the user and her neighbors

present well performance. However, the performance of

the difference measure is quite unstable; it may eliminate

the information when users have the same ratings on the

same items.

5 Conclusion

In this work, we propose a unified reinforced trust-aware

recommendation model that leverages both users’ trust

relationships and rating quality to improve the recom-

mendation performance. The model employs a predictor

based on an encoder-decoder structure to learn the shared

latent information from sparse user ratings and trust rela-

tionships, and a discriminator to enforces cohort rating

patterns on the predicted ratings. We compare the proposed

method with a series of baselines and state-of-the-arts, and

discuss the model performance under different configura-

tion. The experiments on three datasets show the model’s

competitive performance. One limitation of our proposed

method is that the computation cost would be high with

larger number of items. We will address this issue in the

future work.

Fig. 4 a The performance on model with/without adversarial training. b The distribution of ratings. Red area shows the distribution for real

ratings; green area shows the predicted ratings without adversarial training; and the blue area shows the predicted ratings with adversarial training

4 5

5 5 4 4 3 5

Cosine Similarity = 0.994 Cosine Similarity = 0.968

Social Trust Representation

4 4.5 4 4.5

(a) (b)

Fig. 5 a An example for the user social trust representation learning with correlation function as cosine similarity. b The model performance with

different settings of correlation function
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