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Abstract
Modeling and optimization for compliant mechanisms are challenging tasks thanks to an unclear kinematic merging among

rigid and flexible links. Hence, this paper develops a computational intelligence-based method for modeling and opti-

mization. The proposed method concerns about statistics, numerical simulation, computational intelligence, and meta-

heuristics. A two degrees of freedom compliant mechanism is investigated to illustrate the effectiveness of the suggested

computational intelligence method. First, numerical datasets are collected by simulations. Then, sensitivity of design

parameters is analyzed by analysis of variance and Taguchi technique. The results of sensitivity are employed to separate a

few populations for lightning attachment procedure optimization (LAPO). Next, the values of two output performances of

the mechanism are changed into the values in the range from zero to one through desirability function method. The

calculated output values become two inputs of the fuzzy logic model, and the output of this system is a single objective

function (SOF). Subsequently, the SOF is modeled by using adaptive neuro-fuzzy inference system (ANFIS). LAPO

algorithm is then utilized to maximize the SOF. The results revealed that the numerical example 3 is the best design for the

mechanism. In comparison with artificial intelligence techniques and regression, the results show that the performance

indexes of the proposed ANFIS model (R2 close 1, MSE about 10–4, and RMSE about 10–2) are superior to those of the

multilayer perceptron, deep neural network, and multiple-linear regression. Additionally, the proposed computational

intelligence method is more effective than the Taguchi-fuzzy logic, ANFIS-integrated teaching learning-based opti-

mization, and ANFIS-integrated Jaya in searching the optimal design of the compliant mechanism. The results determined

that the optimal displacement and parasitic error are about 2.2109 mm and 0.0028 mm, respectively.

Keywords Modeling � Optimization � Compliant mechanism � Desirability � Fuzzy logic � ANFIS � LAPO �
Non-parameter analysis � Artificial intelligence

1 Introduction

Compliant mechanism is a promising platform in accurate

positioning engineering. It is widely used across multidis-

ciplinary applications, e.g., micro-electromechanical

system, robotics, bioengineering, actuator, and sensor

[1–9]. In recent years, two degrees of freedom (2-DOF)

compliant mechanisms have received much attention in

industry and academy because they can provide an ultra-

high precision and save manufacturing costs. Additionally,

they inherit excellent advantages of monolithic fabrication

with a lightweight and a friction free compared to con-

ventional counterparts [10–14].

Until now, modeling of the performance for the com-

pliant mechanisms is an extremely complex task due to an

incorporation of compliant elements with rigid ones, and a

strictly merging of simultaneously kinematic-and-me-

chanical behaviors. The kinematic methods are mainly

based on a relative movement among links and joints,

which ignore the simultaneously kinematic-and-
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mechanical behaviors. Especially in analyzing a flexible

element with largely nonlinear deformation, the applica-

tions of kinematic methods are failed. When a flexible

element has one more degree of freedoms in movements,

the modeling task is more complicated. So, their structures

are difficult to analyze and model when they undergo a

large nonlinear deformation.

In the last decades, modeling methods for compliant

mechanisms have received a great interest by many

researchers. Particularly, analytical methods and numerical

techniques have been developed such as pseudo-rigid-body

model [15], improved pseudo-rigid-body model [16, 17],

stiffness matrix [18], kinematic-based methods [4, 19, 20],

kineto-static and dynamic model [21], compliance matrix

method [22], finite element method (FEM) [23, 24], nor-

malization-based methods [25, 26], nonlinear model [27],

and building block [28].

The analytical methods have been successfully applied

for modeling simple structures but the state-of-the-art

procedures are still challenging due to their complicated

applications and even unsolvable for highly nonlinear

deformation. Specifically, the pseudo-rigid body model is

strongly influenced by assigning the locations of torsional

springs and amount of them, and the prediction accuracy is

limited. Meanwhile, the compliance matrix method is not

capable of analyzing structures with multiple forces.

On the contrary, the FEM method has been successfully

employed for analyzing compliant mechanisms due to its

efficiency. The FEM can divide each flexible link and rigid

into a number of elements and nodes so as to describe a

large nonlinear deformation of multiple degree of freedoms

compliant mechanisms. The FEM can also analyze com-

plex or irregular shapes. For example, the FEM technique

was developed to model the statics and dynamics of cir-

cular hinge [29]. And then, this technique was extended for

the amplification mechanism with a high accuracy. Addi-

tionally, the inverse FEM technique was discovered as a

modeling method for compliant mechanism. In this article,

microgripper, microvalve, and lens folding devices were

illustrated as the irregular shapes or complex structures

[30]. The shapes of flexible elements in these devices are

irregular curves, and their deformations have very high

nonlinearity. For data-based optimization problems in

engineering, the FEM is a suitable tool to initialize datasets

which are then employed for some tasks such as modeling,

prediction, regression, and optimization [31]. So, the FEM

is considered as an alternative design method for compliant

mechanisms.

In the present work, a computational intelligent method

is motivated to solve the compliant mechanisms. The FEM

is a key technique which is integrated in the proposed

method. The main purpose of the present article is to reach

a computation-based intelligent method in modeling and

optimization for compliant mechanisms. The suggested

method is based on computational intelligence, statistics,

fuzzy logic theory, adaptive neuro-fuzzy inference system,

finite element method, and metaheuristic algorithm.

In order to enhance the performances of compliant

mechanisms, e.g., fatigue life, displacement, parasitic error,

stress, frequency, and strain energy, the mechanical struc-

tures are almost changed randomly by designer’s experi-

ences. Then, the aforementioned analytical procedures are

applied to predict the performances. This improvement

process can take a long time and spend a large computing

cost. In order to overcome this restriction, researchers have

suggested an optimal design method for compliant mech-

anisms. In the field of optimization, mathematical models

of fitness and constraint functions are established, and then

a population-based metaheuristic algorithm is applied.

Structural optimization is a common type in this field,

including topology optimization [32], shape optimization,

and size optimization [33–35]. The topology optimization

and shape optimization are directly related to FEM and

evolutionary algorithm while the size optimization is

involved to mathematical models. In the light of this

problem, the present study focuses on multi-objective

optimization (MOO) via the computational intelligent

method. Nowadays, MOO issues have been growing by

many researchers [36–38]. Regarding a general MOO,

design parameters should be properly chosen to decrease

complexity of the problem. Therefore, this article considers

an enough amount of design parameters. This work helps to

reduce space of populations and make new ones in mod-

eling and optimization process.

Before implementing the optimization problems, fitness

functions and constraint objectives must be formulated. In

compliant mechanisms, the performances have high non-

linearity. Hence, the objective and constraint functions are

difficult to be established through the traditionally analyt-

ical methods. In order to overcome this limitation,

approximation models are alternated in the present article.

Based on the datasets from the FEM simulations, the

approximate models can accurately model the perfor-

mances of compliant mechanisms. In order to reach a

global value, data-driven methods are priority. Data-driven

methods allow to build regression models or equations such

as the response surface method (RSM) [39–41] and Kriging

technique [42]. These two methods are still limited because

these techniques strongly depend on approximation order,

such as linear, second-order, and high polynomial order.

To solve the engineering problems with high nonlin-

earity behaviors, artificial intelligences (AI) methods or

genetic expression programming (GEP) are potential

techniques which offer precisely approximate the regres-

sion models. Recently, Güllü coupled the AI with genetic

expression programming to predict average shear wave
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velocity which is soil property [43]. Then, the GEP was

developed to forecast the rheological behavior of grout

with bottom ash in jet grouting columns [44]. The results of

this study show that the performance metrics of the develop

model are better than the nonlinear regression models. In

order to estimate the nonlinearly rheological characteristics

of jet grout cement mixtures, the GEP was applied [45].

Güllü and Fedakar developed AI techniques such as radial

basis neural network, multilayer perceptron, generalized

regression neural network, and adaptive neuro-fuzzy

inference system (ANFIS) to predict the unconfined com-

pressive strength of silty soil. The results indicated that the

performance indexes of the AI models are better than the

nonlinear regression [46]. Next, the GEP was employed to

formulate the unconfined compressive strength with high

accuracy [47]. Then, the GEP was utilized to predict the

peak ground acceleration [48]. In order model the peak

ground acceleration, artificial neural network (ANN) was

suggested. They found that the ANN technique outper-

formed to the regression method [49]. In addition, AI

techniques have been successfully applied for other areas,

e.g., ANN [50–55], fuzzy logic [56–59], and ANFIS

[60–62]. On the contrary, ANFIS techniques attract much

attention because it can accurately formulate a pseudo-fit-

ness function and constraint functions. In order to model

the highly nonlinear performances of the 2-DOF compliant

mechanism, the ANFIS approach is chosen in this study.

After formulating the approximate models for fitness

functions and constraint functions, an optimization method

is employed. Until now, a few optimization approaches

have been proposed to simultaneously solve the MOO, e.g.,

desirability [63], gray [64], and Taguchi-combined fuzzy

(TCF) [65]. Most of methods are still valuable but the

optimal value may trap a local point. Besides, meta-

heuristic algorithms have been have attracted much atten-

tion in MOOs, e.g., genetic algorithm (GA) [66], particle

swarm optimization (PSO) [67, 68], differential evolution

(DE) [69], improved differential evolution (IDE) [70],

cuckoo search algorithm (CSA) [71], improved binary

differential evolution algorithm (IBDE) [72], nondomi-

nated sorting genetic algorithm II (NSGA-II) [38], inter-

active Search algorithm (ISA) [73], bi-objective

evolutionary algorithm (BOEA) [74], and other algorithms

[75–78]. However, the aforementioned algorithms are quite

complicated and require a long computing time because

they depend on specific-tuned parameters. If unsuit-

able parameters are used, the optimal solution is not true. In

other words, those algorithms limit to optimization prob-

lems with multiple constraints. Hence, researchers devel-

oped recent algorithms such as teaching learning-based

optimization algorithm (TLBO) [79–81], Jaya algorithm

[82], and lightning attachment procedure optimization

(LAPO) algorithm [83]. These three algorithms have good

behaviors but LAPO can be considered as the best one. So,

the LAPO is selected to extend for the 2-DOF compliant

mechanism.

From this perspective, this study suggests some new

contributions as: (1) A large nonlinear deformation of

compliant mechanisms can be resolved by nonlinear FEM.

(2) The suggested computational intelligence method is

capable of making new populations for evolutionary

algorithm. (3) The output performances of the 2-DOF

mechanism are changed into a single objective function

(SOF) by combination of desirability and fuzzy logic. (4)

The SOF is modeled by ANFIS. The output of ANFIS is a

pseudo-fitness function which is then optimized by LAPO.

(5) The suggested method is hybrid combination of intel-

ligent computation, statistics, FEM, ANFIS, and evolu-

tionary algorithms thanks to its robustness and simplicity.

(6) The suggested computational intelligence approach can

reach a global optimum value.

The goal of the present paper is to suggest a computa-

tional intelligence method which is employed for 2-DOF

compliant mechanism. The structure of this article includes

following parts. The computational intelligence method is

presented in Sect. 2. The optimization formulation for

2-DOF compliant mechanism is described in Sect. 3.

Section 4 includes results and discussion. Comparison is

given in Section 5. Conclusions and future work are made

in Section 6.

2 Computational intelligence method

A computational intelligence method is developed to

resolve the MOO process of complaint mechanism in this

paper. In the field of precise engineering systems, the

2-DOF compliant mechanism simultaneously needs a large

displacement and a small parasitic motion [84]. The sug-

gested computational intelligence method undergoes fol-

lowing phases: (1) mechanical structure, (2) desirability’s

calculation for objective functions, (3) combination of all

objective functions into a single fitness function by fuzzy

logic system, (4) modeling the combined fitness function

through ANFIS, and (5) maximizing this objective by

LAPO algorithm. Figure 1 illustrates the main computa-

tional procedure of the suggested method.

Step 1: Design and analysis

Design and analysis undergo the main procedures as

follows.

• Architecture design This mechanism desires to reach a

large displacement and a small parasitic error but it

must work under an elastic area of material. The

displacement is a performance along the desired axis

(e.g., x-axis) while the parasitic error motion is an error
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along the undesired axis (e.g., y-axis). The parasitic

motion is perpendicular to the displacement. If parasitic

error is limited, and the precision of the mechanism is

enhanced.

• Determination of design variables This an important

task to find the main parameters affecting the perfor-

mances of the mechanism.

• Objective functions The displacement and the parasitic

error are the output performances. Particularly, stress is

considered as a constraint.

• Finite element analysis (FEA) A FEM model is

analyzed by FEA implementation to reach the displace-

ment, the parasitic motion, and the equivalent stress

(Von Mises stress).

Fig. 1 Suggested framework of computational intelligence method
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• Numerical dataset numerical datasets are got from FEA

in which design of experiment is generated by central

composite design (CCD).

• Investigation of sensitivity It is analyzed by using

analysis of variance (ANOVA) and the Taguchi

method.

• Reduce the space of design variables It helps to find

main parameters which contribute to the population

space for the LAPO.

• Rebuild 3D model and recollect numerical dataset

Based on the space of new populations, 3D model is

rebuilt, and the corresponding numerical datasets are

collected again.

Step 2: Desirability calculation

Step 2 changes the displacement and parasitic error to

become the desirability index in a range from zero to one.

This helps to avoid a deviation of both performances. The

displacement and the parasitic error are suitable with the

larger-the-bester and the smaller-the-better, respectively

[85].

Larger-the-bester:

Di ¼ 0; f � � Lb

Di ¼
f � � Lb
Ub � Lb

� �r

; Lb � f � �Ub

Di ¼ 1; f � �Ub;

8>>>><
>>>>:

; f � is ith

performance; Di is desirability value: r

is desirability index

ð1Þ

Smaller-the-bester:

Di ¼ 0; f � �Ub

Di ¼
f � � Ub

Lb � Ub

� �r

; Lb � f � �Ub

Di ¼ 1; f � � LB;

8>>><
>>>:

;

Lb and Ub are lower and upper range

ð2Þ

Step 3: Fuzzy logic modeling

This step is aimed to combine the desirability of dis-

placement and the desirability of parasitic error to become a

SOF (see in Fig. 1). A fuzzy logic system [86] is utilized to

this modeling process. A decision maker with a support of

fuzzy inference system (FIS) and fuzzy if–then rules is

employed to the fuzzy output into a non-fuzzy SOF.

According to the TCF [65], the SOF is maximized through

the Taguchi method to reach the local optimum value. In

order to avoid the local optimum value, the SOF is modeled

by the ANFIS, and then it is maximized by the LAPO later.

Step 4: ANFIS modeling

ANFIS model [87] is developed model the SOF. The

goal of this process is to create the SOF model for the

optimization (see in Fig. 1).

Step 5: Optimization by LAPO

LAPO is a recent algorithm in which its basic is replied

on a lightning phenomenon [83, 88]. This algorithm is

expanded to maximize the SOF in reaching a global opti-

mal design for the suggested 2-DOF mechanism. Details of

this algorithm are available in references [83, 88, 89]. Its

scheme is given in Fig. 1.

3 Numerical example

A 2-DOF mechanism is studied to confirm the usefulness

of the suggested computational intelligence method.

3.1 Optimization formulation for 2-DOF
compliant mechanism

A 2-DOF mechanism is created, as in Fig. 2. An actuator

(green color) applies a load to a mobile table in the y

direction. The output displacement is labeled dy. At the

same time, the mobile table also makes a parasitic motion

in the x-direction (dx). In contrast, if a force comes from the

actuator in x direction (yellow color), the platform moves

in the x-direction while the y-direction movement is a

parasitic motion error. The parasitic motion error reduces

the positioning precision of the device, which is an unde-

sired motion. Therefore, the displacement should be max-

imized and the parasitic error is minimized,

simultaneously. Overall device is located at four fixed

supports by using screws. In general, a change in geometry,

material, or configuration can make an expected large

Fig. 2 Diagram of 2-DOF mechanism (unit: mm)
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displacement and increase stiffness of undesired motion

direction. In this article, we choose stainless steel for

material due to its high strength. Besides, leaf springs are

adopted for flexure hinges 1 and 2 in order to displace the

mobile table because the leaf springs easily fabricate and

make a large deformation. As depicted in Fig. 3, the main

design parameters consist of a vector of design variable

X = [V1, V2, T1, T2, H]
T. Moreover, the mechanism must

work under an allowable stress. Design parameters and of

the suggested mechanism are given (see in Table 1).

Stainless steel material is utilized for the mechanism with

yield stress (rY ) of 207 MPa.

According to background of compliant mechanisms

[7, 9, 22, 27, 84, 90], the geometrical dimension of flexible

hinges is the main design variables which are noted as

X = [V1, V2, T1, T2, H]
T. The objective functions consist of

the displacement (F1(X)) and the parasitic error (F2(X)).

Stress (F3(X)) is an extra constraint. The optimization for

the suggested 2-DOF mechanism is stated as:

Find X = [T1, T2, V1, V2, H]
T

Maximize F1 Xð Þ ð3Þ
Minimize F2 Xð Þ ð4Þ

Subject to constraint:

F3 Xð Þ� rY
SF

; SF: Safety factor is chosen as 1:5. ð5Þ

Initial space of design variables:

0.45 mm� T1 � 0:65 mm

0.5 mm� T2 � 0:7 mm

7 mm�V1 � 11 mm

8 mm�V2 � 12 mm

26 mm�H� 30 mm

8>>>>>><
>>>>>>:

ð6Þ

4 Results and discussion

4.1 Setup of simulations

Thickness of the mechanism (w) is 10 mm (see in Fig. 3).

Meshing is implemented with fine mesh at the hinges. The

meshing quality is well confirmed by Skewness criteria

(see in Fig. 4). A load of 15 N exerted the mobile

table along the x-axis. The mechanism is fixed by screws at

holes. Stainless steel material is also utilized in the

simulations.

4.2 Sensitivity analysis of design parameters

The aim of the sensitivity analysis is to estimate which

design parameter significantly contributes on the perfor-

mances of the 2-DOF mechanism. Moreover, the sensi-

tivity evaluation can redetermine the best important design

variables which largely influence on the displacement, the

parasitic error, and the equivalent stress. The results of this

analysis can reduce the searching space of design variables

that are utilized for the optimization process later.

As shown in Fig. 2, the geometrical factors (T1, T2, V1,

V2, and H) are the initial parameters to design the 2-DOF

mechanism. Table 2 gives the range of initial parameters.

Based on the setup of simulations in Figs. 3 and 4, the

initial datasets are collected in Table 3.

The ANOVA analysis for the displacement found that

the parameters T2 and V2 have very low contributions with

1.06% and 0%, respectively (see in Table 4). Then,

Taguchi technique is employed to illustrate the effective

plot of design parameters. The results of Taguchi indicated

that are two parameters T2 and V2 also have smallest

influences on the displacement (see in Fig. 5). On the other

Fig. 3 Meshing of the

mechanism

9570 Neural Computing and Applications (2021) 33:9565–9587

123



hand, these two parameters are not significant. They can be

abandoned in the modeling and optimizing for the dis-

placement later. Additionally, the results of Table 4

revealed that the p-values of T2 and V2 are larger than 0.05.

It means that these two factors do not have significant

correlation to the displacement. Meanwhile, the p-values of

the remaining parameters are smaller than 0.05, and they

are significant factors in designing the displacement.

Similarly, the ANOVA is employed for evaluating the

parasitic error. The results revealed that the contribution of

V1 is very small with 0.64% to the parasitic error (see in

Table 5). The result of Taguchi is the same with the results

of ANOVA (see in Fig. 6). Besides, the p-value of V1 is

higher than 0.05. It is noted that this factor has no signif-

icant contribution to the parasitic error. Hence, this factor

can be abandoned in modeling and optimizing for the

parasitic error.

Lastly, the ANOVA results for the stress indicated that

the contributions of V1 and H are very low with 0.19% and

2.26%, respectively (see in in Table 6). From the Taguchi

analysis, the results can be concluded the same with the

ANOVA results (see in Fig. 7). Moreover, the p-values of

these two factors are larger than 0.05. It can conclude that

they are not correlated to the stress. So, they can be left

from modeling and optimizing for the parasitic error.

Table 1 Design parameters
Notation Label Value

Thickness of flexure hinge 1 T1 0.45 mm� T1 � 0:65 mm

Thickness of flexure hinge 2 T2 0.5 mm� T2 � 0:7 mm

Length of flexure hinge 2 V1 7 mm�V1 � 11 mm

Length of flexure hinge 1 H 26 mm�H� 30 mm

Distance between mobile table and flexure hinge 1 V2 8 mm�V2 � 12 mm

Total size of the mechanism St 196� 196� 10mm3

Size of mobile table Sm 45� 45� 10 mm3

Fixed support by screw h 3 mm

Fig. 4 Meshing quality distribution

Table 2 Overall design parameters

Label Range (mm) Value 1 Value 2 Value 3

T1 0.45� T1 � 0:65 0.45 0.55 0.65

T2 0.5� T2 � 0:7 0.5 0.6 0.7

V1 7�V1 � 11 7 9 11

V2 8�V2 � 12 8 10 12

H 26�H� 30 26 28 30
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4.3 Modeling and optimization

4.3.1 Membership function

Table 7 gives the fuzzy labels for f the FIS modeling. The

membership function (MFs) for inputs is assigned in

Fig. 8a, b. The MFs of the output (SOF) is determined, as

depicted in Fig. 9.

4.3.2 Numerical example 1

Numerical example 1 is investigated to show the robust-

ness and efficiency of the developed computation method.

Based the results of Table 4 and Fig. 5, whole initial space

of design variables is reinitialized to create a new popu-

lation for the flowing modeling and optimization. Three

parameters V1, H, and T1 are the main design parameters.

The built SOF is then optimized by LAPO. The opti-

mization for example 1 is presented as.

Find X1 = [V1, H, T1]
T

Max SOFnumericalexample1 X1ð Þ ð7Þ

S.t.

F3 Xð Þ� ry
SF

7 mm�V1 � 11 mm

26 mm�H� 30 mm

0.45 mm� T1 � 0:65 mm

8>>>>><
>>>>>:

ð8Þ

The desirability results for the displacement and para-

sitic error are calculated in Table 8.

The fuzzy if–then-rules are built for two inputs and one

output (SOF), as given in Table 9. These rules are designed

according to the designer’s experience. The aim of these

rules is to find a correct combination of the D1 and D2

values for generating the SOF value.

Next, the FIS implementation is conducted in MATLAB

R2019b. The influencing plot among the two inputs and the

output is described (see in Fig. 10). Figure 11 illustrates

the rules of fuzzy logic modeling.

Table 3 Initial datasets
Trial Parameters (mm) F1(X) (mm) F2(X) (mm) F3 (X) (MPa)

T1 T2 T2 V1 V2 H

1 0.55 0.6 9 10 10 28 0.691159546 3.27804553 63.14738

2 0.45 0.6 9 10 10 28 1.48062408 2.068472538 100.0738

3 0.65 0.6 9 10 10 28 0.57487 2.9733 69.619

4 0.55 0.5 9 10 10 28 0.885428905 2.821824835 73.35679

5 0.55 0.7 9 10 10 28 0.5616 3.5636 58.088

6 0.55 0.6 7 10 10 28 0.8087731 2.883451716 71.78896

7 0.55 0.6 11 10 10 28 0.715246618 3.101355104 66.74502

8 0.55 0.6 9 8 8 28 0.838777363 3.183128198 65.03037

9 0.55 0.6 9 12 12 28 0.828020632 2.963956598 69.83908

10 0.55 0.6 9 10 10 26 0.609356463 3.279909061 63.11151

11 0.55 0.6 9 10 10 30 0.865474164 3.018661859 68.57343

12 0.45 0.5 7 8 8 30 1.123795271 2.176007809 95.12834

13 0.65 0.5 7 8 8 26 0.54471 3.112 66.516

14 0.45 0.7 7 8 8 26 0.475849152 3.487027936 59.36287

15 0.65 0.7 7 8 8 30 0.51004 4.7594 43.493

16 0.45 0.5 11 8 8 26 1.037148595 2.451213246 84.44798

17 0.65 0.5 11 8 8 30 1.0683 2.9321 70.597

18 0.45 0.7 11 8 8 30 0.952557325 2.70079298 76.64416

19 0.65 0.7 11 8 8 26 0.40705 3.4713 59.632

20 0.45 0.5 7 12 12 26 1.597374678 2.066197164 100.184

21 0.65 0.5 7 12 12 30 1.0619 2.7151 76.239

22 0.45 0.7 7 12 12 30 1.409378529 2.102362391 98.46067

23 0.65 0.7 7 12 12 26 0.45183 3.578 57.853

24 0.45 0.5 11 12 12 30 2.37579608 1.758489676 117.7147

25 0.65 0.5 11 12 12 26 0.71606 3.1628 65.449

26 0.45 0.7 11 12 12 26 0.844481587 2.313893723 89.4596

27 0.65 0.7 11 12 12 30 0.60898 3.8066 54.379

9572 Neural Computing and Applications (2021) 33:9565–9587

123



The calculations are proceeded in MATLAB and the

results of the SOF value for example 1 are given in

Table 10.

Based on a combination of the refined space of design

parameters (Table 8) and the calculated SOF value

(Table 10), ANFIS model is built to establish the SOF

regression model in relation to the design parameters. In

the ANFIS modeling, 70% datasets are for training, 15%

datasets are for testing, and 15% datasets for validating.

Table 4 Displacement’s

ANOVA
Source DF Seq SS Contribution (%) Adj SS Adj MS F value p value

Model 20 0.000821 94.79 0.000821 0.000041 5.45 0.022

Linear 5 0.000333 38.49 0.000333 0.000067 8.86 0.010

T1 1 0.000139 16.02 0.000139 0.000139 18.44 0.005

T2 1 0.000009 1.06 0.000009 0.000009 1.22 0.311

V1 1 0.000094 10.89 0.000094 0.000094 12.53 0.012

V2 1 0.000000 0.00 0.000000 0.000000 0.00 0.994

H 1 0.000091 10.51 0.000091 0.000091 12.10 0.013

Square 5 0.000038 4.39 0.000038 0.000008 1.01 0.484

T1*T1 1 0.000008 0.89 0.000001 0.000001 0.15 0.714

T2*T2 1 0.000004 0.51 0.000000 0.000000 0.00 0.949

V1*V1 1 0.000000 0.00 0.000002 0.000002 0.25 0.638

V2*V2 1 0.000003 0.35 0.000000 0.000000 0.05 0.828

H*H 1 0.000023 2.64 0.000023 0.000023 3.04 0.132

Two-way interaction 10 0.000450 51.91 0.000450 0.000045 5.97 0.020

T1*T2 1 0.000013 1.48 0.000013 0.000013 1.70 0.240

T1*V1 1 0.000123 14.24 0.000123 0.000123 16.39 0.007

T1*V2 1 0.000012 1.34 0.000012 0.000012 1.54 0.261

T1*H 1 0.000108 12.49 0.000108 0.000108 14.38 0.009

T2*V1 1 0.000017 1.99 0.000017 0.000017 2.29 0.181

T2*V2 1 0.000069 7.92 0.000069 0.000069 9.12 0.023

T2*H 1 0.000003 0.30 0.000003 0.000003 0.35 0.575

V1*V2 1 0.000004 0.43 0.000004 0.000004 0.49 0.510

V1*H 1 0.000071 8.16 0.000071 0.000071 9.39 0.022

V2*H 1 0.000031 3.55 0.000031 0.000031 4.08 0.090

Error 6 0.000045 5.21 0.000045 0.000008

Total 26 0.000866 100.00

Fig. 5 Influencing plot of the

displacement
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Table 5 Parasitic error’s

ANOVA
Source DF Seq SS Contribution (%) Adj SS Adj MS F value P value

Model 20 4.64835 96.65 4.64835 0.23242 8.66 0.007

Linear 5 3.67838 76.48 3.67838 0.73568 27.40 0.000

T1 1 1.59208 33.10 1.59208 1.59208 59.30 0.000

T2 1 0.97476 20.27 0.97476 0.97476 36.30 0.001

V1 1 0.03058 0.64 0.03058 0.03058 1.14 0.327

V2 1 0.47876 9.95 0.47876 0.47876 17.83 0.006

H 1 0.60220 12.52 0.60220 0.60220 22.43 0.003

Square 5 0.26710 5.55 0.26710 0.05342 1.99 0.213

T1*T1 1 0.24443 5.08 0.14889 0.14889 5.55 0.057

T2*T2 1 0.01258 0.26 0.00806 0.00806 0.30 0.603

V1*V1 1 0.00075 0.02 0.00088 0.00088 0.03 0.863

V2*V2 1 0.00471 0.10 0.00673 0.00673 0.25 0.635

H*H 1 0.00463 0.10 0.00463 0.00463 0.17 0.692

Two-way interaction 10 0.70286 14.61 0.70286 0.07029 2.62 0.126

T1*T2 1 0.06744 1.40 0.06744 0.06744 2.51 0.164

T1*V1 1 0.00863 0.18 0.00863 0.00863 0.32 0.591

T1*V2 1 0.33902 7.05 0.33902 0.33902 12.63 0.012

T1*H 1 0.03774 0.78 0.03774 0.03774 1.41 0.281

T2*V1 1 0.05103 1.06 0.05103 0.05103 1.90 0.217

T2*V2 1 0.06350 1.32 0.06350 0.06350 2.37 0.175

T2*H 1 0.01170 0.24 0.01170 0.01170 0.44 0.534

V1*V2 1 0.03860 0.80 0.03860 0.03860 1.44 0.276

V1*H 1 0.05827 1.21 0.05827 0.05827 2.17 0.191

V2*H 1 0.02693 0.56 0.02693 0.02693 1.00 0.355

Error 6 0.16110 3.35 0.16110 0.02685

Total 26 4.80944 100.00

Fig. 6 Influencing plot of the

parasitic error
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And then, MAPE, RMSE, R2, and MSE are used to verify

the accuracy of the ANFIS predictor [91–94]. MAPE ¼ 100%

N

Xn
i¼1

zi � z0i
zi

����
����;

Mean absolute percentage error

ð9Þ

Table 6 Stress’s ANOVA
Source DF Seq SS Contribution (%) Adj SS Adj MS F value p value

Model 15 6636.90 88.41 6636.90 442.46 5.60 0.003

Linear 5 5817.74 77.50 5817.74 1163.55 14.72 0.000

T1 1 3689.38 49.15 3689.38 3689.38 46.66 0.000

T2 1 1287.96 17.16 1287.96 1287.96 16.29 0.002

V1 1 14.30 0.19 14.30 14.30 0.18 0.679

V2 1 656.75 8.75 656.75 656.75 8.31 0.015

H 1 169.36 2.26 169.36 169.36 2.14 0.171

Two-way interaction 10 819.16 10.91 819.16 81.92 1.04 0.474

T1*T2 1 6.38 0.08 6.38 6.38 0.08 0.782

T1*V1 1 5.26 0.07 5.26 5.26 0.07 0.801

T1*V2 1 366.28 4.88 366.28 366.28 4.63 0.054

T1*H 1 219.30 2.92 219.30 219.30 2.77 0.124

T2*V1 1 27.05 0.36 27.05 27.05 0.34 0.570

T2*V2 1 20.53 0.27 20.53 20.53 0.26 0.620

T2*H 1 82.87 1.10 82.87 82.87 1.05 0.328

V1*V2 1 66.24 0.88 66.24 66.24 0.84 0.380

V1*H 1 5.13 0.07 5.13 5.13 0.06 0.804

V2*H 1 20.12 0.27 20.12 20.12 0.25 0.624

Error 11 869.75 11.59 869.75 79.07

Total 26 7506.65 100.00

Fig. 7 Influencing plot of the

stress

Table 7 Fuzzy labels

Label VT VL NL L A AH H VH VVH

Fuzzy Very very tiny Very low Near low Low Average Average high High Very high Very Very high
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

zi � z0ið Þ2
vuut ; Root mean square error

ð10Þ

R2 ¼ 1�
PN

i¼1 zi � z0i
� �2

PN
i¼1 zi � zið Þ2

; Correlation coefficient ð11Þ

MSE =
1

N

XN
i¼1

zi � z0i
� �2

, mean square error ð12Þ

in which zi is the ith actual value,z0i is the ith predicted

value, and z is the average value, and N is number of

repetitions.

The results found that the ANFIS parameters include

nodes of 78, linear factors of 108, nonlinear factors of 27,

total factor of 135, training data of 15, testing data of 5, and

fuzzy if–then rules of 27. Besides, the performance indexes

are relatively good.

By using the TCF method, the optimal parameters are

with V1 = 9 mm, T1 = 0.5 mm, and H = 28 mm. The dis-

placement is about 0.911678 mm and the parasitic error is

0.0009359 mm. These optimum points are local optima

Fig. 8 MFs for: a the

desirability of displacement,

b desirability of parasitic error

Fig. 9 MFs for the SOF
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thanks to this reasoning is strongly influenced by the

Taguchi technique (see in Table 11).

On the contrary, LAPO algorithm is extended to reach a

global optimum value. From the ANFIS modeling, the SOF

is maximized. The optimal parameters determine as

V1 = 7 mm, T1 = 0.45 mm, and H = 26 mm. The dis-

placement is approximately 0.6890 mm and the parasitic

error is about 0.0018 mm. Because the SOF predicted by

the LAPO is higher than that by the TCF, it can conclude

that the suggested computational intelligence method is

superior to the TCF method (see in Table 11).

4.3.3 Numerical example 2

In this example, a new population is generated by the use

of the results of Table 5 and Fig. 6. Four parameters T1, T2,

V2, and H are the main design parameters. The optimiza-

tion for the example 2 is formulated as.

Find X2 = [T1, T2, V2, H)
T

Max SOFnumericalexample2 X2ð Þ ð13Þ

S.t.

F3 Xð Þ� ry
SF

0.45 mm� T1 � 0:65 mm

0.5 mm� T2 � 0:7 mm

8 mm�V2 � 12 mm

26 mm�H� 30 mm

8>>>>>>><
>>>>>>>:

ð14Þ

The desirability values for the displacement and the

parasitic error are computed in Table 12.

The results of SOF for example 2 are calculated, as

given in Table 13.

By combination of the refined parameters (Table 12) and

the SOF (Table 13), ANFIS model is built to establish the

SOF model. The ANFIS model incudes nodes of 193,

linear factors of 405, nonlinear factors of 36, total factors

of 441, training data of 25, testing data of 8, and fuzzy if–

then rules of 81. The performance indexes of the estab-

lished ANFIS model are relatively good.

The optimal parameters are T1 = 0.45 mm,

T2 = 0.5 mm, V2 = 12 mm, and H = 30 mm based on the

TCF approach (Table 14). Using the TCF, the displacement

is found about 2.0433 mm and the parasitic error is

approximately 0.0047 mm. Through LAPO algorithm, the

parameters are found as T1 = 0.45 mm, T2 = 0.7 mm,

V2 = 12 mm, and H = 30 mm. The displacement is

0.9773 mm and the parasitic error is 0.0105 mm. The

predicted SOF by the present method has an efficiency

better than the TCF method.

4.3.4 Numerical example 3

From the results of Table 6 and Fig. 7, three main design

parameters include T1, T2, and V2. The optimization of

numerical example 3 is presented as follows.

Find X3 = [T1, T2, V2]
T

Table 8 Numerical results of example 1

Trial Parameters (Unit: mm) F1(X) (mm) F2(X) (mm) F3(X) (MPa) Desirability for F1(X) Desirability for F2(X)

V1 H T1 D1 D2

1 9 28 0.5 1.07935 0.00058 79.26453 0.59360 0.82443

2 7 28 0.5 0.79764 0.00063 74.20616 0.37095 0.86503

3 11 28 0.5 0.73144 0.00183 71.22364 0.44213 0.70596

4 9 26 0.5 0.94955 6.57E-06 72.83156 0.42801 0.83281

5 9 30 0.5 0.86410 0.00303 72.22312 0.89101 0.62964

6 9 28 0.45 0.80384 0.00152 77.83952 0.65736 0.72772

7 9 28 0.55 0.92922 0.00076 66.94232 0.51837 0.87765

8 7 26 0.45 0.68902 0.00180 80.66029 0.37045 0.92212

9 11 26 0.45 0.75295 0.00028 80.31530 0.16468 0.77127

10 7 30 0.45 1.14026 0.00113 91.67427 0.74677 0.53551

11 11 30 0.45 1.07905 0.00530 87.49335 0.86293 0.15343

12 7 26 0.55 0.689615 0.00092 58.87820 0.18977 0.66559

13 11 26 0.55 0.57780 0.00272 61.51795 0.21596 0.72954

14 7 30 0.55 0.75107 0.00155 70.63687 0.41751 0.87708

15 11 30 0.55 1.12654 0.00011 73.99249 0.76564 0.70980

In which: D1 is the desirability of displacement, D2 is the desirability of parasitic error
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Max SOFnumericalexample3 X3ð Þ ð15Þ

S.t.

F3 Xð Þ� ry
SF

0.45 mm� T1 � 0:65 mm

0.5 mm� T2 � 0:7 mm

8 mm�V2 � 12 mm

8>>>>><
>>>>>:

ð16Þ

The results of desirability are given in Table 15.

The SOF value is calculated, as given in Table 16.

This part builds a relation among the fined parameters

(Table 15) and the calculated SOF (Table 16) by estab-

lishing ANFIS model. The ANFIS parameters are nodes of

78, linear parameters of 108, nonlinear parameters of 27,

total number of parameters of 135, training data of 15,

testing data of 5, and fuzzy if–then rules of 27. The per-

formance indexes are calculated with good values for the

modeling.

The optimal parameters are T = 0.45 mm, T2 = 0.5 mm,

V2 = 10 mm through TCF method (Table 17). The dis-

placement is 1.6126 mm and the parasitic error is

0.0055 mm by the TCF. Then, with the suggested com-

putational method, the optimal parameters are

T1 = 0.45 mm, T2 = 0.5 mm, V2 = 12 mm. The results

indicated that the displacement is 2.2109 mm and the

parasitic error is 0.0028 mm. Additionally, by the present

method, the predicted SOF is larger than that of the TCF.

4.4 Discussion

In previous section, a comparison based on the optimum

values and the predicted SOF value are not enough. This

part carries out an error calculation (Ec) among the fore-

casted value (Vf) and FEA simulation value (Vs). The

comparison results are calculated in Table 18. A relative

error is defined as.

Ec %ð Þ ¼ vf
vs

� 1

� �
� 100

����
���� ð17Þ

The errors for three numerical examples are approxi-

mately 4–6% by using the present method. Meanwhile, the

errors are about 68–97%. This confirms that the suggested

computational intelligence method is better than the TCF

method. The numerical example 3 is the best choose for the

mechanism. Overall optimal parameters and performances

are given in Table 18.

5 Comparisons

In this part, a few AI methods such as multilayer percep-

tron (MLP) [46] and deep neural network (DNN) [95] and

multiple-linear regression (MLR) [96] are used in com-

parison with the developed ANFIS model. Three perfor-

mance indexes (MSE, RMSE, and R2) in Eqs. (10–12) are

Table 9 Fuzzy if–then-rules for

example 1
Trial D1 D2 SOF

1 L VLL VLL

2 A VLL VLL

3 H VLL VLL

4 L VL VL

5 A VL VL

6 H VL VL

7 L NL NL

8 A NL NL

9 H NL NL

10 L L L

11 A L L

12 H L L

13 L A A

14 A A A

15 H A A

16 L AH AH

17 A AH AH

18 H AH AH

19 L H H

20 A H H

21 H H H

22 L VH VH

23 A VH VH

24 H VH VH

25 L VVH VVH

26 A VVH VVH

27 H VVH VVH

Fig. 10 Influencing plot among inputs and output
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employed in this comparison. The MLP and DANN

include the same basic parameters as follows: (1) number

of hidden layers: 2, (2) number of neurons in each hidden

layer: 6, (3) activation function for first hidden layer: rec-

tified linear unit, (4) activation function for first hidden

layer: tansig, (5) activation function for output layer:

pureline, and (6) training algorithm: Levenberg–Mar-

quardt. The datasets are also divided as same as the pro-

posed ANFIS model, including 70% datasets are for

training, 15% datasets are for testing, and 15% datasets for

validating. The inputs of datasets include the design

parameters and the output is the SOF value. The purpose of

modeling is to find the best SOF approximate model before

transferring it to the optimization process. As shown in

Table 19, the results show that the performance indexes of

the proposed ANFIS model (R2 is close to 1, MSE is

around 10–4, and RMSE is about 10–2) are better than those

of the MLP, DNN, and MLR. It means that the developed

ANFIS model is the reliable and accurate model in

Fig. 11 Suggested fuzzy process

Table 10 Results of SOF for example 1

Trial D1 D2 SOF

1 0.59360 0.82443 0.70

2 0.37095 0.86503 0.75

3 0.44213 0.70596 0.58

4 0.42801 0.83281 0.70

5 0.89101 0.62964 0.62

6 0.65736 0.72772 0.61

7 0.51837 0.87765 0.75

8 0.37045 0.92212 0.75

9 0.16468 0.77127 0.64

10 0.74677 0.53551 0.56

11 0.86293 0.15343 0.43

12 0.18977 0.66559 0.47

13 0.215963 0.729545 0.579

14 0.417519 0.877089 0.75

15 0.765643 0.709807 0.641

Neural Computing and Applications (2021) 33:9565–9587 9579

123



establishing the fitness function for the optimization

problem of the 2-DOF compliant mechanism.

Subsequently, the optimal results by the proposed

method are compared with the other evolutionary algo-

rithms. The numerical example 3 is a feasibly optimal

candidate for the mechanism. In order to confirm the use-

fulness of the present method, the TLBO [97] and Jaya [98]

are integrated with the established ANFIS model for the

numerical example 3. Table 20 shows that the estimated

displacement and the parasitic error of the present method

are better than those of the other methods.

The performances of different methods are continued by

the use of nonparametric testing techniques Wilcoxon and

Friedman [67, 99, 100]. A number of 50 simulation runs

are for each method. The results show there is difference

among the present method with the two other methods

thanks to p-value B 0.001. It can conclude that the present

method has a superior behavior compared with other

methods (see in Table 21).

The results of Friedman analysis also have the same

conclusion in the results of Wilcoxon with to p-value

B 0.001 (see in Table 22).

A few advantages of the computational intelligence

method for the compliant mechanisms are as follows: The

suggested method deals with the global optimal design of

the 2-DOF mechanism with a less computational cost.

Table 11 Optimal solutions for

example 1
Method Parameters (mm) Performances

Displacement (mm) Parasitic error (mm) SOF

TCF V1 = 9

H = 28

T1 = 0.5

F1(X) = 0.9116 F2(X) = 0.00093 0.70

Present method V1 = 7 F1(X) = 0.6890 F2(X) = 0.00180 0.75

Table 12 Numerical results of

example 2
Trial Parameters (Unit: mm) F1(X) (mm) F2(X) (mm) F3(X) (MPa) D1 D2

T1 T2 V2 H

1 0.55 0.6 10 28 0.69103 0.00245 73.39641 0.24170 0.26721

2 0.45 0.6 10 28 1.25704 0.00963 95.14741 0.48778 0.22041

3 0.65 0.6 10 28 0.75246 0.00084 58.42203 0.21500 0.24705

4 0.55 0.5 10 28 0.87087 0.00227 81.02399 0.33035 0.44270

5 0.55 0.7 10 28 0.54860 0.00178 63.40808 0.05913 0.52202

6 0.55 0.6 8 28 0.65961 0.00958 69.48834 0.12308 0.16378

7 0.55 0.6 12 28 0.81375 0.00124 81.03241 0.29501 0.28620

8 0.55 0.6 10 26 0.60339 0.00252 70.54133 0.19490 0.34857

9 0.55 0.6 10 30 1.06883 0.00116 70.56628 0.32879 0.45674

10 0.45 0.5 8 26 1.10719 0.00052 88.62674 0.38396 0.37146

11 0.65 0.5 8 26 0.54193 0.00052 56.54990 0.09161 0.57368

12 0.45 0.7 8 26 0.49158 0.00279 62.01396 0.07622 0.39730

13 0.65 0.7 8 26 0.32767 0.00061 44.79286 0.06117 0.39607

14 0.45 0.5 12 26 1.68420 0.00055 110.37100 0.72249 0.37772

15 0.65 0.5 12 26 0.69844 4.56E-05 69.24026 0.19751 0.54197

16 0.45 0.7 12 26 0.78741 0.00329 79.80752 0.25723 0.64257

17 0.65 0.7 12 26 0.46378 0.00066 57.26488 0.00955 0.60335

18 0.45 0.5 8 30 1.12031 0.00340 83.21806 0.51550 0.48315

19 0.65 0.5 8 30 0.81465 0.00056 66.69990 0.21763 0.57564

20 0.45 0.7 8 30 0.68455 0.00188 59.94700 0.16102 0.58040

21 0.65 0.7 8 30 0.53622 0.00019 45.57497 0.14045 0.46944

22 0.45 0.5 12 30 2.21093 0.00281 110.45610 0.91098 0.52070

23 0.65 0.5 12 30 0.96381 0.00457 77.14788 0.38048 0.57521

24 0.45 0.7 12 30 0.97728 0.01045 82.19693 0.39898 0.85695

25 0.65 0.7 12 30 0.59823 0.00159 62.25600 0.14578 0.70801
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Besides, the present method also some disadvantages

include: FEM model becomes more difficult for compliant

mechanisms with more complex structures. So, the FEM

takes a large computing time. This can be enhanced via

using multiple processors. An adaptive dataset with each

design stage is out of the goal of the present study, and it

can be a future research direction. Furthermore, the AI

techniques can be feasible approaches to become a new

design method for compliant mechanisms. However, the AI

methods should be only utilized for highly nonlinear

behaviors. The mentioned analytical methods in the liter-

ature are suitable tools to solve for simple structures of

compliant mechanisms. For more compicated structures,

the present computaitonal method should be taken into

consideration. In future work, the fuzzy logic and ANFIS

models can be enhanced if the main parameters can be

improved better if their main parameters are properly

selected before they are utilized for modeling process.

6 Conclusions

In this article, the computational intelligence method has

been devised to resolve the optimal design for the 2-DOF

mechanism. It is built by a combination of FEM, statistics,

artificial intelligence models, and metaheuristic algorithm.

A 2-DOF mechanism is a numerical example to confirm

the usefulness of the suggested method. Initially numerical

datasets are collected by simulations. ANOVA and Tagu-

chi method are employed in evaluating the parameter’s

sensitivity. The analyzed results can generate the new

range of design parameters. Based on the datasets from the

new design spaces, the desirabilities are determined for the

displacement and parasitic error. The calculated results of

desirabilities are put into the FIS model as two inputs. The

output of the FIS model (SOF) related to the fined design

parameters is formulated through ANFIS modeling. The

modeled SOF is maximized by LAPO. The results found

that the numerical example 3 is determined as the best

optimal design for the mechanism.

In evaluating the precision of approximate model, a few

AI techniques and regression are utilized in comparison

with the developed ANFIS model. The datasets of example

3 are divided into the training, testing, and validating sets

for modeling and comparing among the AI and MLR

methods. The results indicate that the performance mea-

surements of the proposed ANFIS model (R2 is close to 1,

MSE is around 10–4, and RMSE is about 10–2) are better

than those of the MLP, DNN, and MLR. Based on the

results of by using Wilcoxon and Friedman analysis, the

proposed computational intelligence method is more

effective than the TCF, ANFIS-integrated TLBO, and

ANFIS-integrated Jaya in searching the optimal displace-

ment and parasitic error. The results revealed that the

optimal displacement and parasitic error are approximately

2.2109 mm and 0.0028 mm, respectively. In future work,

the achieved results can be facilitated to the optimal design

for general compliant mechanisms with irregular shapes

and complex structures. Some physical prototypes are

manufactured to validate the predicted results. Moreover,

Table 13 Results of SOF for example 2

Trial D1 D2 SOF

1 0.24170 0.26721 0.30

2 0.48778 0.22041 0.35

3 0.21500 0.24705 0.29

4 0.33035 0.44270 0.42

5 0.05913 0.52202 0.37

6 0.12308 0.16378 0.16

7 0.29501 0.28620 0.33

8 0.19490 0.34857 0.28

9 0.32879 0.45674 0.43

10 0.38396 0.37146 0.37

11 0.09161 0.57368 0.37

12 0.07622 0.39730 0.26

13 0.06117 0.39607 0.26

14 0.72249 0.37772 0.42

15 0.19751 0.54197 0.40

16 0.25723 0.64257 0.50

17 0.00955 0.60335 0.37

18 0.51550 0.48315 0.49

19 0.21763 0.57564 0.42

20 0.16102 0.58040 0.38

21 0.14045 0.46944 0.34

22 0.91098 0.52070 0.62

23 0.38048 0.57521 0.50

24 0.39898 0.85695 0.74

25 0.14578 0.70801 0.53

Table 14 Optimal solutions for example 2

Method Parameters

(mm)

Performances

Displacement

(mm)

Parasitic error

(mm)

SOF

TCF T1 = 0.45

T2 = 0.5

V2 = 12

H = 30

F1(X) = 2.0433 F2(X) = 0.0047 0.60

Present

method

T1 = 0.45

T2 = 0.7

V2 = 12

H = 30

F1(X) = 0.9773 F2(X) = 0.0105 0.73
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Table 15 Numerical results of example 3

Trial Parameters (Unit: mm) F1(X) (mm) F2(X) (mm) F3(X) (MPa) D1 D2

T1 T2 V2

1 0.55 0.6 10 1.26410 0.00269 76.84500 0.34234 0.49844

2 0.45 0.6 10 1.58790 0.01849 101.6900 0.68495 0.47364

3 0.65 0.6 10 0.98778 0.00056 62.24400 0.25879 0.43193

4 0.55 0.5 10 1.14328 0.00377 85.84876 0.45133 0.66606

5 0.55 0.7 10 1.06500 0.00062 73.48100 0.27303 0.48652

6 0.55 0.6 8 0.70051 0.00442 76.43731 0.06799 0.24092

7 0.55 0.6 12 0.95025 0.00538 74.26800 0.32346 0.47601

8 0.45 0.5 8 1.12031 0.00339 83.21806 0.36320 0.51901

9 0.65 0.5 8 0.92413 0.00079 73.08900 0.19935 0.43202

10 0.45 0.7 8 0.96999 0.00572 82.37400 0.24267 0.37913

11 0.65 0.7 8 0.53622 0.00019 45.57497 0.06427 0.25351

12 0.45 0.5 12 2.21093 0.00281 110.45610 0.92419 0.80695

13 0.65 0.5 12 0.94735 0.00275 71.26000 0.25028 0.48725

14 0.45 0.7 12 1.67830 0.01374 107.72 0.702683 0.43856

15 0.65 0.7 12 0.60350 0.00385 54.997 0.014207 0.110915

Table 16 Results of SOF for example 3

Trial D1 D2 SOF

1 0.34234 0.49844 0.48

2 0.68495 0.47364 0.50

3 0.25879 0.43193 0.38

4 0.45133 0.66606 0.53

5 0.27303 0.48652 0.44

6 0.06799 0.24092 0.25

7 0.32346 0.47601 0.44

8 0.36320 0.51901 0.50

9 0.19935 0.43202 0.34

10 0.24267 0.37913 0.30

11 0.06427 0.25351 0.25

12 0.92419 0.80695 0.80

13 0.25028 0.48725 0.43

14 0.70268 0.43856 0.47

15 0.01420 0.11091 0.12

Table 17 Optimal solutions for example 3

Method Parameters

(mm)

Performances

Displacement

(mm)

Parasitic error

(mm)

SOF

TCF T1 = 0.45

T2 = 0.5

V2 = 10

F1(X) = 1.6126 F2(X) = 0.0055 0.70

Present

method

T1 = 0.45

T2 = 0.5

V2 = 12

F1(X) = 2.2109 F2(X) = 0.0028 0.80
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Table 18 Summary of feasible

candidates
Numerical example Method Parameters (mm) Performances

F1(X) (mm) F2(X) (mm) SOF

Numerical example 1 TCF V1 = 9

H = 28

T1 = 0.5

Vf = 0.9116

Vs = 0.7660

Ec = 19%

Vf = 0.0009

Vs = 0.0029

Ec = 68.36%

0.70

Present method V1 = 7

H = 26

T1 = 0.45

Vf = 0.6890

Vs = 0.7199

Ec = 4.3%

Vf = 0.0018

Vs = 0.0017

Ec = 4.4%

0.75

Numerical example 2 TCF T1 = 0.45

T2 = 0.5

V2 = 12

H = 30

Vf = 2.0433

Vs = 1.7053

Ec = 97.46%

Vf = 0.0047

Vs = 0.0110

Ec = 56.64%

0.60

Present method T1 = 0.45

T2 = 0.7

V2 = 12

H = 30

Vf = 0.9773

Vs = 1.0096

Ec = 3.19%

Vf = 0.0105

Vs = 0.0110

Ec = 5.05%

0.73

Numerical example 3 TCF T1 = 0.45

T2 = 0.5

V2 = 10

Vf = 1.61269

Vs = 1.7265

Ec = 6.59%

Vf = 0.0055

Vs = 0.0005

Ec = 855%

0.70

Present method T1 = 0.45 Vf = 2.2109 Vf = 0.0028 0.80

Table 19 Comparison among

approximate models
Method Performance index Model Training Testing Validating

MLP MSE 0.0038 0.0003 0.005 0.0212

RMSE 0.0616 0.0173 0.0707 0.1456

R2 0.8385 0.9748 0.8068 0.7264

DNN MSE 0.0096 0.0093 0.0480 0.0232

RMSE 0.0980 0.0964 0.2191 0.1523

R2 0.8840 0.9803 0.8150 0.8233

MLR MSE 0.0063 0.0035 0.0032 0.0012

RMSE 0.0794 0.0592 0.0566 0.0346

R2 0.7293 0.7668 0.7735 0.7942

Proposed ANFIS MSE 0.00012 0.00016 0.00015 0.00013

RMSE 0.0110 0.0126 0.0122 0.0114

R2 0.9997 1 0.9885 0.9796

Table 20 Feasible candidates by

different methods
Methods F1(X) (mm) F2(X) (mm)

ANFIS-integrated TLBO (T1 = 0.63 mm, T2 = 0.51 mm, V2 = 10.5 mm) 1.5671 0.0081

ANFIS-integrated Jaya (T1 =0.5 mm, T2 = 0.63 mm, V2 = 10.8 mm) 1.6093 0.0029

Present method (T1 =0.45 mm, T2 = 0.5 mm, V2 = 12 mm) 2.2109 0.0028
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the main controllable parameters of the AI methods can be

optimized to find the best suitable factors for modeling.
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49. Güllü H, Erçelebi E (2007) A neural network approach for

attenuation relationships: an application using strong ground

motion data from Turkey. Eng Geol. https://doi.org/10.1016/j.

enggeo.2007.05.004

50. Wang B, Moayedi H, Nguyen H et al (2019) Feasibility of a

novel predictive technique based on artificial neural network

optimized with particle swarm optimization estimating pullout

bearing capacity of helical piles. Eng Comput. https://doi.org/

10.1007/s00366-019-00764-7

51. Koopialipoor M, Fahimifar A, Ghaleini EN et al (2019)

Development of a new hybrid ANN for solving a geotechnical

problem related to tunnel boring machine performance. Eng

Comput. https://doi.org/10.1007/s00366-019-00701-8

52. Macura L, Voznak M (2017) Multi-criteria analysis and pre-

diction of network incidents using monitoring system. J Adv

Eng Comput 1:29. https://doi.org/10.25073/jaec.201711.47

53. Wong EWC, Kim DK (2018) A simplified method to predict

fatigue damage of TTR subjected to short-term VIV using

artificial neural network. Adv Eng Softw 126:100–109. https://

doi.org/10.1016/j.advengsoft.2018.09.011

54. Li Z, Shi K, Dey N et al (2017) Rule-based back propagation

neural networks for various precision rough set presented

KANSEI knowledge prediction: a case study on shoe product

form features extraction. Neural Comput Appl. https://doi.org/

10.1007/s00521-016-2707-8

55. Talaat M, Gobran MH, Wasfi M (2018) A hybrid model of an

artificial neural network with thermodynamic model for system

diagnosis of electrical power plant gas turbine. Eng Appl Artif

Intell. https://doi.org/10.1016/j.engappai.2017.10.014

Neural Computing and Applications (2021) 33:9565–9587 9585

123

https://doi.org/10.1016/j.ymssp.2017.07.010
https://doi.org/10.1088/0964-1726/25/11/115033
https://doi.org/10.1016/j.mechmachtheory.2012.08.013
https://doi.org/10.1016/j.mechmachtheory.2012.08.013
https://doi.org/10.1115/1.4032592
https://doi.org/10.1115/1.4032592
https://doi.org/10.1177/0954406214535925
https://doi.org/10.1016/j.precisioneng.2014.06.001
https://doi.org/10.1016/j.precisioneng.2014.06.001
https://doi.org/10.1016/j.mechmachtheory.2013.02.009
https://doi.org/10.1016/j.mechmachtheory.2013.02.009
https://doi.org/10.1007/s00158-012-0841-1
https://doi.org/10.1007/s00158-012-0841-1
https://doi.org/10.1016/j.mechmachtheory.2017.11.021
https://doi.org/10.1016/j.mechmachtheory.2017.11.021
https://doi.org/10.1063/1.4948924
https://doi.org/10.1063/1.4948924
https://doi.org/10.1016/j.mechmachtheory.2010.09.007
https://doi.org/10.1016/j.mechmachtheory.2010.09.007
https://doi.org/10.1007/s12046-017-0714-9
https://doi.org/10.1007/s12046-017-0714-9
https://doi.org/10.1243/0954406JMES312
https://doi.org/10.1243/0954406JMES312
https://doi.org/10.1007/s11081-018-9403-8
https://doi.org/10.1007/s11081-018-9403-8
https://doi.org/10.1016/j.jphotobiol.2018.11.020
https://doi.org/10.1016/j.jphotobiol.2018.11.020
https://doi.org/10.1016/j.advengsoft.2018.09.012
https://doi.org/10.1016/j.advengsoft.2018.09.012
https://doi.org/10.1007/s12205-016-0724-x
https://doi.org/10.1016/j.advengsoft.2016.06.006
https://doi.org/10.1016/j.advengsoft.2016.06.006
https://doi.org/10.1007/s10518-013-9425-8
https://doi.org/10.1007/s10518-013-9425-8
https://doi.org/10.1016/j.sandf.2017.05.006
https://doi.org/10.1007/s00521-016-2360-2
https://doi.org/10.1007/s00521-016-2360-2
https://doi.org/10.12989/gae.2017.12.3.441
https://doi.org/10.1016/j.engappai.2014.06.020
https://doi.org/10.1016/j.engappai.2014.06.020
https://doi.org/10.1016/j.enggeo.2012.05.010
https://doi.org/10.1016/j.enggeo.2012.05.010
https://doi.org/10.1016/j.enggeo.2007.05.004
https://doi.org/10.1016/j.enggeo.2007.05.004
https://doi.org/10.1007/s00366-019-00764-7
https://doi.org/10.1007/s00366-019-00764-7
https://doi.org/10.1007/s00366-019-00701-8
https://doi.org/10.25073/jaec.201711.47
https://doi.org/10.1016/j.advengsoft.2018.09.011
https://doi.org/10.1016/j.advengsoft.2018.09.011
https://doi.org/10.1007/s00521-016-2707-8
https://doi.org/10.1007/s00521-016-2707-8
https://doi.org/10.1016/j.engappai.2017.10.014


56. Ahmed SS, Dey N, Ashour AS et al (2017) Effect of fuzzy

partitioning in Crohn’s disease classification: a neuro-fuzzy-

based approach. Med Biol Eng Comput. https://doi.org/10.1007/

s11517-016-1508-7

57. Ngan TT, Tuan TM, Son LH et al (2016) Decision making based

on fuzzy aggregation operators for medical diagnosis from

dental X-ray images. J Med Syst. https://doi.org/10.1007/

s10916-016-0634-y

58. Mhetre NA, Deshpande AV, Mahalle PN (2016) Trust man-

agement model based on fuzzy approach for ubiquitous com-

puting. Int J Ambient Comput Intell. https://doi.org/10.4018/

IJACI.2016070102

59. Bandyopadhyay S, Das S, Datta A (2020) A hybrid fuzzy fil-

tering—fuzzy thresholding technique for region of interest

detection in noisy images. Appl Intell. https://doi.org/10.1007/

s10489-019-01551-z

60. Moayedi H, Raftari M, Sharifi A et al (2019) Optimization of

ANFIS with GA and PSO estimating a ratio in driven piles. Eng

Comput. https://doi.org/10.1007/s00366-018-00694-w

61. Sreedhara BM, Rao M, Mandal S (2018) Application of an

evolutionary technique (PSO–SVM) and ANFIS in clear-water

scour depth prediction around bridge piers. Neural Comput Appl

6:1–15. https://doi.org/10.1007/s00521-018-3570-6

62. Le Chau N, Dao TP, Dang VA (2019) An efficient hybrid

approach of improved adaptive neural fuzzy inference system

and teaching learning-based optimization for design optimiza-

tion of a jet pump-based thermoacoustic-stirling heat engine.

Neural Comput Appl. https://doi.org/10.1007/s00521-019-

04249-y

63. Costa NR, Lourenço J, Pereira ZL (2011) Desirability function

approach: a review and performance evaluation in adverse

conditions. Chemom Intell Lab Syst 107:234–244. https://doi.

org/10.1016/j.chemolab.2011.04.004

64. Huang SC, Dao TP (2016) Multi-objective optimal design of a

2-DOF flexure-based mechanism using hybrid approach of grey-

Taguchi coupled response surface methodology and entropy

measurement. Arab J Sci Eng 41:5215–5231. https://doi.org/10.

1007/s13369-016-2242-z

65. Dao T-P (2016) Multiresponse optimization of a compliant

guiding mechanism using hybrid Taguchi-grey based fuzzy

logic approach. Math Probl Eng. https://doi.org/10.1155/2016/

5386893

66. Keshtiara M, Golabi S, Tarkesh Esfahani R (2019) Multi-ob-

jective optimization of stainless steel 304 tube laser forming

process using GA. Eng Comput. https://doi.org/10.1007/s00366-

019-00814-0

67. Chau NL, Le HG, Dao T et al (2019) Efficient hybrid method of

FEA-based RSM and PSO algorithm for multi-objective opti-

mization design for a compliant rotary joint for upper limb

assistive device. Math Probl Eng. https://doi.org/10.1155/2019/

2587373

68. Ding S, Du W, Zhao X et al (2019) A new asynchronous rein-

forcement learning algorithm based on improved parallel PSO.

Appl Intell. https://doi.org/10.1007/s10489-019-01487-4

69. Dao T-P, Huang S-C, Le Chau N (2017) Robust parameter

design for a compliant microgripper based on hybrid Taguchi-

differential evolution algorithm. Microsyst Technol. https://doi.

org/10.1007/s00542-017-3534-2

70. Ha MH, Vu QV, Truong VH (2020) Optimization of nonlinear

inelastic steel frames considering panel zones. Adv Eng Softw

142:102771. https://doi.org/10.1016/j.advengsoft.2020.102771

71. Dao T-P, Huang S-C, Thang PT (2017) Hybrid Taguchi-cuckoo

search algorithm for optimization of a compliant focus posi-

tioning platform. Appl Soft Comput J. https://doi.org/10.1016/j.

asoc.2017.04.038

72. Qian S, Ye Y, Liu Y, Xu G (2018) An improved binary dif-

ferential evolution algorithm for optimizing PWM control laws

of power inverters. Optim Eng 19:271–296. https://doi.org/10.

1007/s11081-017-9354-5
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