
ORIGINAL ARTICLE

Surface crack detection using deep learning with shallow CNN
architecture for enhanced computation

Bubryur Kim1
• N. Yuvaraj1 • K. R. Sri Preethaa2 • R. Arun Pandian3

Received: 24 February 2020 / Accepted: 5 January 2021 / Published online: 23 January 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

Abstract
Surface cracks on the concrete structures are a key indicator of structural safety and degradation. To ensure the structural

health and reliability of the buildings, frequent structure inspection and monitoring for surface cracks is important. Surface

inspection conducted by humans is time-consuming and may produce inconsistent results due to the inspectors’ varied

empirical knowledge. In the field of structural health monitoring, visual inspection of surface cracks on civil structures

using deep learning algorithms has gained considerable attention. However, these vision-based techniques require high-

quality images as inputs and depend on high computational power for image classification. Thus, in this study, shallow

convolutional neural network (CNN)-based architecture for surface concrete crack detection is proposed. LeNet-5, a well-

known CNN architecture, is optimized and trained for image classification using 40,000 images in the Middle East

Technical University (METU) dataset. To achieve maximum accuracy for crack detection with minimum computation, the

hyperparameters of the proposed model were optimized. The proposed model enables the employment of deep learning

algorithms using low-power computational devices for a hassle-free monitoring of civil structures. The performance of the

proposed model is compared with those of various pretrained deep learning models, such as VGG16, Inception, and

ResNet. The proposed shallow CNN architecture was found to achieve a maximum accuracy of 99.8% in the minimum

computation. Better hyperparameter optimization in CNN architecture results in higher accuracy even with a shallow layer

stack for enhanced computation. The evaluation results confirm the incorporation of the proposed method with autonomous

devices, such as unmanned aerial vehicle, for real-time inspection of surface crack with minimum computation.

Keywords Deep learning � Crack detection � Convolution neural network � Computer vision � Concrete structures

1 Introduction

Structures, such as bridges, tall buildings, and highways,

deteriorate with time, which causes damage to the health of

the structures [1]. Structural safety remains challenging in

all infrastructures due to various internal and environ-

mental parameters [2, 3]. Ensuring structural safety of the

infrastructure plays a significant role in structural mainte-

nance, and it is exponentially related to the age of the

infrastructure [3, 4]. Building inspection for damages is

important to maintain the safety of its residents [6]. The

lack of inspection guidance and the inadequate use of

available technologies for structural health monitoring

(SHM) reduce the safety and durability of the infrastructure

[7]. However, to minimize the loss of the lives of people

and property, the inspection methodologies for the condi-

tional assessment of the infrastructure need to be improved

[8]. Continuous structure monitoring for damages is

important to improve the health and reliability of the

structures.

Among the various parameters that ensure structural

health, cracks remain as a key parameter directly indicating

the condition of the structures [9]. Cracks exhibit the

magnitude of the structural damage. Periodical monitoring

& N. Yuvaraj

yuvaraj.n@kpriet.ac.in

1 Department of Architectural Engineering, Dong-A

University, Busan 49315, South Korea

2 Department of Artificial Intelligence and Data Science, KPR

Institute of Engineering and Technology,

Coimbatore 641407, India

3 Artificial Intelligence and Data Science Lab, KPR Institute of

Engineering and Technology, Coimbatore 641407, India

123

Neural Computing and Applications (2021) 33:9289–9305
https://doi.org/10.1007/s00521-021-05690-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0422-8374
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-05690-8&domain=pdf
https://doi.org/10.1007/s00521-021-05690-8

of building surfaces for cracks and taking measures for

restoration are necessary to improve the durability of the

building. Continuous and effective monitoring for cracks is

greatly important to ensure structural safety. The analysis

of a train accident in Japan in 1999, which resulted in the

loss of the lives of people and property, reveals that shear

cracks on concrete blocks were the root cause of the

accident [10]. Statistical analysis shows that 46% of the

structural weakness is only due to the failure to detect

structural cracks [11]. To prevent such accidents, contin-

uous autonomous inspection of civil infrastructures should

be carried out [12].

Conventionally, the method of human visual inspections

was employed to detect cracks. However, this method has

limitations in terms of human experience, time consump-

tion, and risk of inspection in inaccessible areas [13]. To

enhance the accuracy of monitoring, the health vibration-

based structural system identifications were applied [14]. In

SHM, numerical method conjugations have been widely

adopted [15, 16]. Monitoring of large-scale civil infras-

tructures, structural uncertainties, and environmental dis-

turbances are the main challenges associated with the

vibration-based approach [17, 18]. The computer vision

and image processing techniques have become an integral

part of SHM compared with the traditional manual

inspection-based crack detection system [19, 20]. Com-

puter vision-based approaches are employed to provide

rich hidden insights out of the image and video data which

facilitate in the automation of crack detection and identi-

fication systems [21–23]. The detection systems were

mainly built using common image processing methods,

such as segmentation, pattern recognition, fuzzy clustering

[24], histogram analysis, Fourier transform [25], and image

filtering [26] techniques. However, these traditional meth-

ods failed to accurately handle noisy image data.

To further improve the accuracy, researchers have ini-

tially used various edge detection algorithms [27]. The

Canny edge detector, wavelet method, and Laplace of

Gaussian [28, 29] were employed for edge detection in

concrete crack identification. Among the various edge

detection algorithms, wavelet method was mostly used in

the literature [30]. Abdel-Qader et al. [31] considered and

compared four edge detection algorithms, namely, the Haar

transform, fast Fourier transform, Sobel, and Canny. A

histogram-based method for feature extraction and fuzzy

logic for crack classification were proposed. However, the

outcome of the algorithm emphasized the need for accu-

racy improvement [32]. Researches using the Canny and

k-means clustering techniques were conducted to detect

surface cracks [33]. However, these traditional algorithms

were unsuccessful in effectively processing a huge volume

of concrete image data, which paved the way for machine

learning-based approaches for crack detection [34].

Initially, support vector machine (SVM) [35] was

employed for the binary classification of concrete images

into to crack and non-crack via handcrafted manual feature

extraction. Moreover, principal component analysis (PCA)

[36] was used as a dimensionality reduction technique for

extracting the healthy features out of a large set of features.

SVM with PCA exhibited a significant improvement in the

classification. To enhance the accuracy of crack identifi-

cation, other classification algorithms, such as artificial

neural network (ANN) [37], k-nearest neighbors (k-NN),

fuzzy logic, and genetic [38], were implemented as a

hybrid approach with SVM. Aside from classical machine

learning algorithms, deep learning techniques were suc-

cessfully implemented in computer vision, pattern recog-

nition image classification, and object detection. The recent

developments of computer vision techniques have resulted

in end-to-end learning using ANNs [39] and convolutional

neural networks (CNNs). ANNs and CNNs are capable of

relating the complex input and output relationship of data

using parameterized nonlinear activation functions. CNNs

were employed to effectively classify the low-level fea-

tures of biological microscopy images with high accuracy

[40]. CNNs with machine learning methods were imple-

mented to classify the crack and non-crack images from the

video frames [41]. A CrackNet model without pooling

layers was proposed to improve the accuracy of crack

detection [32]. The combination of CNN and the sliding

window technique was designed to classify the crack and

non-crack images more accurately over IPMs [42]. To

detect multiple crack damages, a faster region-based CNN

(faster R-CNN) was adopted [42].

The ability of deep learning (DL) techniques to handle

huge volume of data and to automate the feature extraction

processes enables the DL techniques to develop solutions

for crack detection problems on concrete structures [43].

CNN combined with Naı̈ve Bayes was employed to ana-

lyze individual video frames for crack detection [44].

Moreover, CNN models were implemented for various

crack detection applications, such as pavement crack

detection [45], cracks on asphalt surfaces [46], automatic

road crack detection [47], cracks on mechanical steel

structures [48], damage detection, steel corrosion, bolt

corrosion, and steel delamination [49]. Due to the

advancements in hardware and computational software,

deep convolutional neural networks (DCNNs) were widely

used for concrete crack image classification and object

detection [50]. In the literature, deeper CNN architectures

were designed to handle images of sizes 99 9 99 9 3 [19],

256 9 256 9 3 [40], and 227 9 227 9 3 [11].

Vision-based techniques depend on continuous motion

videos, which exponentially increase the volume of data to

be handled. Thus, these techniques remain a tough task.

When the data volume increases, interpreting the inner

9290 Neural Computing and Applications (2021) 33:9289–9305

123

working of DCNN becomes difficult owing to its black box

nature [51]. A building damage assessment model was

established based on post-hurricane satellite images using

the CNN architecture [52]. Researches have used many

other CNN models, such as AlexNet [53], ResNet [22],

VGG16 [54], and Inception [5], for crack identification.

VGG16 is the most commonly used pretrained model

deeply stacked with a 16-layer depth. ResNet is a residual

architecture with a 152-layer depth, whereas Inception is a

parallel stacked convolutional network with a 159-layer

depth. To obtain accuracy, these pretrained models require

a huge volume of high-quality data and high computational

power.

Although the use of deep CNN layers can better extract

more information from an image, overfitting to training

data and vanishing gradients are the major challenges

associated with deep CNN architectures. Due to these

challenges, deep CNN architectures render the model void

and unusable. More robust CNN architectures, such as

VGG16, ResNet, and Inception, are computationally

expensive to train and deploy during real-time analysis.

Moreover, the use of very deep and advanced architectures

is overrated for our surface crack binary classification as it

they involve simple image features.

The enhancement of the accuracy of CNN models can

be achieved by optimizing their hyperparameters [54]. The

selection of hyperparameters for optimization in deep

architectures becomes challenging due to the exponential

increase in the number of parameters and the requirement

of deep structures for complex tasks [55]. In addition, an

efficient training of deep CNN architecture requires pow-

erful hardware resources. Deep CNN models depend on

Graphic Processing Unit (GPU), Tensor Processing Unit

(TPU), Computer Unified Device Architecture (CUDA),

and other servers to handle the large volume of data. A

backpropagation learning algorithm using multiplexing

layer scheme was attempted on a field-programmable gate

array (FPGA) board to achieve more learning on low-

performance devices [56]. The Internet of things (IoT)

enabled devices, such as unmanned aerial vehicles (UAVs),

which are used for autonomous monitoring, to handle only

a minimum quantity of data due to their limited compu-

tational power [57]. Applying deep architecture in UAVs is

practically impossible. Hence, the implementation of the

deep CNN models in all applications involving UAV for

live data monitoring is not feasible. Therefore, the

deployment of such architectures in embedded and smart

devices remains challenging.

The original LeNet-5 proposed by LeCunn [4] in 1998 is

capable of doing most of the image classifications that do

not involve complex image features. Initially, LeNet-5 was

used for handwritten digit recognition. Since the estab-

lishment of the LeNet-5 architecture, new functions and

design changes have been developed and have proven to be

very robust inclusions in the newer architectures. To

improve the accuracy of the LeNet-5 architecture for image

classification, an Optimized LeNet (OLeNet) was proposed

in this work. OLeNet infuses new functions, such as rec-

tified linear unit (ReLU), dropout, and adaptive moment

estimation (Adam) algorithm, to LeNet-5 to train the best

accurate and possible hardware-efficient model. OLeNet

can be trained using a small dataset and with relatively

faster training time. It is capable of making fast predictions

with high accuracy in a low-power computational device.

The OLeNet architecture can also overcome the challenges

associated with deep CNN architecture owing to its mini-

mum layer stack [58].

The remainder of this paper is organized as follows.

Section presents the overview of the proposed work. Sec-

tion 3 describes the architecture of different pretrained

models. Section 4 discusses the technical work of the

proposed shallow OLeNet architecture. Finally, Sect. 5

provides the results and discussions.

2 Overview of the proposed model

In this section, the overview of the proposed OLeNet CNN

model is summarized. Optimization of the hyperparameters

with the shallow LeNet-5 architecture results in the

establishment of OLeNet. Since OLeNet utilizes low-

power computational resources, it is greatly suitable for

IoT applications. LeNet-5 is the first core architecture of

CNN with very simple and shallow layer arrangements. It

provides the basic architecture over which the deep CNN

models were developed. The LeNet-5 architecture exhibits

98.5% accuracy in the classification of the MNIST data-

base with hand written digits [26]. Moreover, it utilizes

minimum computational power, which enables its

deployment on normal machines. The layer stack

arrangement of LeNet-5 is loosely coupled, which enables

the model to configure the hyperparameters easily

according to the applications [55]. Since concrete crack

images are not diversified images, depending on very deep

architectures for crack classification is not necessary.

The present study proposes an OLeNet architecture by

fine-tuning the hyperparameters of the LeNet-5 architec-

ture for the detection of surface cracks on concrete struc-

tures. The proposed architecture is capable of processing

even low-quality images of 50 9 50 pixels. This enables

OLeNet to effectively work with IoT devices without

depending on the GPU, unlike all the other existing deep

architectures. First, the proposed model is trained for low-

quality image classification on a benchmark crack dataset.

Second, using a new set of images, the performance of the

proposed OLeNet architecture is evaluated. Finally, the

Neural Computing and Applications (2021) 33:9289–9305 9291

123

performance is validated by comparing the proposed model

(OLeNet) with other deep pretrained models, namely,

VGG16 [25], Inception [55], and ResNet [56].

IoT devices employed for the SHM of the building are

proposed to be used with the shallow OLeNet architecture

(Fig. 1a). Owing to its shallow architecture, OLeNet is

capable of running low-power computational devices. The

configuration of the OLeNet architecture (Fig. 1b) is per-

formed by fine-tuning the optimum hyperparameters of the

core LeNet-5 architecture. The entire dataset is divided into

training and testing data. To train and validate the proposed

CNN model, the entire high-quality images are resized into

minimum sizes of 50 9 50 pixels. Then, the images are

converted into an array of numbers of the size 50 9 50.

3 Pretrained convolutional neural networks
for crack identification

A fully connected pretrained DCNN is employed to clas-

sify the input images into crack and non-crack [5–8]. In the

literature [2–5], the performance of the pretrained CNN

models was evaluated on the open-source dataset obtained

from multiple buildings in the Middle East Technical

University (METU). Table 2 presents the details of the

METU dataset. In this section, the basic process of CNN

and other pretrained models used for the validation of the

proposed work is summarized.

3.1 Convolutional neural network architecture

CNN is a deep neural architecture that is widely applied for

image classification. It is made up of convolutional layers

for analyzing the features out of the input and connected

layers for the classification process. Each convolutional

layer is configured with a convolutional layer, activation

function, and a pooling layer [40, 41]. To capture the

correlation between the input features, CNN employs a set

of connected kernel filters. These filters form the core part

of the CNN which performs the convolutional operation

with the output of the preceding layers. Figure 2 demon-

strates the operating principle of the CNN architecture.

The mathematical relationship for the convolution in

each location of Py of the output y is expressed as follows:

y Py

� �
¼

X
w PGð Þ:x Py þ PG

� �
ð1Þ

where x denotes the input variable; w, the filter; G, the

field in the convolutional layer; and PG, the positions in the

field G. The activation function improves the nonlinearity

in the model. Some of the activation functions most com-

monly used by CNN are sigmoid, ReLU, and Tanh. The

inputs of a 2D CNN layer can be visualized as multiple 2D

matrices with different channels based on the image rep-

resentations. The convolutional layer is enabled with

multiple filters capable of scanning the inputs and pro-

ducing the output mappings. If there are M inputs and

N outputs, then it is important to have M 9 N filters to

perform the convolutional operations.

Fig. 1 Overview of the

proposed model

9292 Neural Computing and Applications (2021) 33:9289–9305

123

3.2 LeNet-5 architecture

LeNet-5 is the basic and one of the simplest CNN archi-

tectures. It holds a total of five layers with two convolu-

tional and three fully connected layers [26]. LeNet-5 uses

Tanh as the activation function, whereas the softmax

activation function is used at the final layers for conver-

gence. The basic architecture of LeNet-5 is presented in

Fig. 3.

The average-pooling layer acts as a subsampling layer

and has trainable weights [27]. This architecture consists of

60,000 parameters and occupies a less storage space [44]. It

has become the standard for stacking convolutional layers,

pooling layers, and ending the network with one or more

fully connected layers.

3.3 VGG16 architecture

VGG16 is the most commonly used version of CNN. It has

a total of 16 layers with 13 convolutional and 3 fully

connected layers [25, 44]. VGG16 has introduced the

deeper way of designing the CNN. It uses ReLU as an

activation function to improve the nonlinearity in the

model, whereas the softmax function is used at the final

layers for classification. The basic architecture of VGG16

is presented in Fig. 4.

The main contribution of the VGG16 architecture is its

homogeneous topology and the introduction of small ker-

nel size. This network stacks more layers to make the

architecture deeper and uses small-sized filters (2 9 2 and

3 9 3). VGG16 consists of 138 million parameters and

takes up about 500 mb of storage space.

3.4 Inception architecture

Inception is a deeper version of CNN with 24 million

parameters. It is the first architecture to employ batch

normalization. Inception architecture is made up of

inception modules that enable the deep representations of

the input feature set by multiple convolutions. [55]. This

architecture is capable of handling problems of represen-

tational bottleneck using batch normalization and by

replacing large filters with small ones [44]. The basic

architecture of Inception is presented in Fig. 5.

Inception occupies a storage space of 92 mb with a

depth of 159. It uses ReLU as the activation function in the

middle layers, whereas the softmax activation function is

used for convergence. Each module in the Inception

architecture has parallel towers of convolutions with dif-

ferent filters followed by concatenation [16]. This works by

the principle of a layer-by-layer construction, in which one

layer should analyze the correlation statistics of the last

Fig. 2 Operating principle of the CNN architecture

Fig. 3 Basic LeNet-5

architecture

Neural Computing and Applications (2021) 33:9289–9305 9293

123

layer and cluster them into groups of units with high

correlation.

3.5 ResNet architecture

ResNet is one of the early adopters of batch normalization.

It has 25 million parameters [56]. ResNet is the architec-

ture that supports hundreds of convolutional layers. It is the

first architecture to conduct identity mapping using skipped

connections [44]. The process of the ResNet architecture is

presented in Fig. 6.

The basic building blocks of ResNet are the convolu-

tional and identity blocks. The convolutional block

depends on the ReLU activation function and batch nor-

malization. Finally, it uses the softmax activation function

for convergence. This architecture makes it possible to

design deeper CNNs up to 152 layers without compro-

mising the generalization power of the model.

3.6 Comparison of familiar pretrained CNN
models

The comparison of different configuration parameters of

familiar pretrained CNN models, such as LeNet-5, VGG16,

Inception, and ResNet, is presented in Table 1. Such a

comparison is performed by considering the important

aspects, such as the total storage space occupied, depth of

the model, activation function, number of parameters, and

error rate involved in the execution of the input data

[2, 26, 44, 55]. The error rate data are presented based on

the performance of the algorithm on the MNIST database

and ImageNet database.

The error rate can be computed using log loss [59]. Log

loss is a probabilistic measure, and it is used to measure the

performance of the concrete crack image classification

model. The log loss probability value lies between 0 and 1.

The higher the log loss value, the higher the accuracy of the

developed model [60]. The entire dataset is divided into

training dataset and testing dataset. The images in both

datasets are labeled as either crack or non-crack images.

The test dataset images are provided as input to the

developed model, and the predicted results are derived as

Fig. 4 Basic VGG16 architecture

Fig. 5 Basic Inception architecture

9294 Neural Computing and Applications (2021) 33:9289–9305

123

output from the model. The actual label and predicted label

are used to calculate the log loss value.

For binary classification with a true label y and proba-

bility estimate p, the log loss per sample is defined as the

negative log likelihood of the classifier given the true label,

which is calculated as given in Eq. (1).

Llogðy; pÞ ¼ � log PrðyjpÞ
¼ �y logðpÞ þ ð1 � yÞ logð1 � pÞÞ ð2Þ

where y 2 0; 1f g, and p ¼ Prðy ¼ 1Þ. The binary log

loss given above is generalized for the binary case by

considering pi;0 ¼ 1 � pi;1 and yi;0 ¼ 1 � yi;1. Expanding

the inner sum over yi;k 2 f0; 1g provides the values of the

binary log loss. The comparison of the different pretrained

CNN models considering the different parameters is pre-

sented in Table 1.

It can be seen from Table 1 that the LeNet-5-based CNN

model holds a minimum depth compared with the other

models [44]. Since the model only holds a minimum depth,

the total storage space used during the execution of the

input and the total number of parameters involved in the

execution are also very minimal compared with those of

the other models [4]. The diagrammatic representation of

the model complexity of various pretrained models is

presented in Fig. 7.

As the depth of the total number of layers in the CNN

architecture increases, the complexity of the model also

increases [9]. The increase in depth exponentially increases

the total number of parameters, which in turn results in the

increase in the storage space. An additional insight is that

increasing the depth and the total number of parameters

does not improve the performance of the model [11]. The

overall performance of the model is based on the opti-

mization of the hyperparameters involved in the network.

From the literature [26, 27], it is clear that the LeNet-5

architecture operates in a high speed than the other DCNN

models owing to its spatial arrangement. Since concrete

images are not diversified images like the images available

in the ImageNet database, dependency on deep architecture

results is not essential.

Fig. 6 Basic ResNet architecture

Table 1 Comparison of familiar

pretrained CNN models
Model Storage space (MB) Depth Activation function Total parameters Error rate

LeNet-5 26 5 Tanh 60,000 0.8 (MNIST)

VGG16 500 23 ReLU 138 Million 7.3 (ImageNet)

Inception 92 159 ReLU 24Million 3.5 (ImageNet)

ResNet 98 152 ReLU 25 Million 3.6 (ImageNet)

Fig. 7 Model complexity of CNN

Neural Computing and Applications (2021) 33:9289–9305 9295

123

4 Methodology

4.1 Optimized LeNet (OLeNet) architecture

In the proposed work, the optimization of the hyperpa-

rameters of the LeNet-5 results in OLeNet has been

attempted. Significant changes were carried out to optimize

the process of the conventional LeNet-5 architecture.

Moreover, two convolutional layers were added to the

convolutional block of OLeNet. These convolutional layers

enhance the property of spatial invariance to recognize the

key features in the crack images. To improve the nonlin-

earity, the ReLU activation function was used as an alter-

native to the Tanh and sigmoid functions. Using the ReLU

activation function makes it possible to easily backpropa-

gate the errors and activate multiple layers of neurons. In

OLeNet, a fully connected layer occupies most of the

parameter results in co-dependency among the neurons

during training, which degrades the individual power of

each neuron, leading to overfitting of the training data. To

overcome the problem of overfitting, the dropout function

is also added in the proposed OLeNet architecture (Fig. 8).

OLeNet follows the same math behind the CNN oper-

ation. The mathematical relationship for the convolution in

each location of Py of the output y in the OLeNet archi-

tecture is expressed as YOLeNet in Eq. (3).

YOLeNet Py

� �
¼

X
w PGð Þ:x Py þ PG

� �
ð3Þ

where w denotes the filter; G, the field in the convolu-

tional layer; and PG, the positions in the field G.

The convolutional layer (conv2d) in the convolutional

block ensures the extraction of more features from the

image. The convolutional block now consists of two con-

v2d convolutional layers followed by a subsampler (max-

pool2d) layer. This enables the model to perform a deeper

feature extraction from the input image. For an input image

(Fig. 9) of dimension (h 9 w 9 d) and filter size of (fh-

9 fw 9 d), the dimensions of the convoluted image will

be of the dimensions (h - fh ? 1 9 w - fw ? 1 9 1).

ReLU is used as an activation function to improve the

nonlinearity in the model to achieve better performance.

The ReLU activation layer is added to each convolutional

block. This layer reduces the linearity between the

extracted features. Moreover, it improves the ability of the

model to predict a more diverse set of input data. ReLU is

also capable of including more nonlinearity in the model.

The ReLU activation function for an input variable x is

expressed in Eq. (4).

ReLU xð Þ ¼ max x; 0ð Þ ð4Þ

The process of ReLU as a transfer function in handling

the image matrix is presented in Fig. 10.

The dropout function drops the less relevant data and

only keeps the significant feature data. It improves the

model to achieve better classification and feeds relevant

data to fully connected dense layers. Since the training data

have a low resolution (50 9 50) for training, it is reason-

able to use a relatively low-power computational model for

enhanced execution. Such models are enabled to run in

low-power devices, such as smartphones and IoT devices.

The kernel convolutional and pooling operations in

OLeNet play a significant role in optimization. Convolu-

tional operation is the integral building block of CNN. In

the OLeNet architecture, convolutional operation is the

process in which a small matrix of numbers, called kernel,

pass over the image pixel matrix and outputs a feature map

based on the kernel values. The kernel values are utilized to

detect a variety of features in the image, such as horizontal

lines, vertical lines, intersections, and shapes. These values

represent the features of various real-world objects with

curves and lines. Convolutional operation is very powerful

and important in the image classification as it can be

adopted to learn the features of the object rather than taking

them as absolute static values observed in standard neural

Fig. 8 OLeNet architecture configuration Fig. 9 Operating principle of convolution

9296 Neural Computing and Applications (2021) 33:9289–9305

123

networks. Here, the values in the filters are the parameters

that can learn through backpropagation using the labeled

training data. The kernel convolutional operation in the

OLeNet architecture is expressed in Eq. (5).

G m; n½ � ¼ f � mð Þ m; n½ � ¼
X

j

X

k

h j; k½ � � f m� j; n� k½ �

ð5Þ

where f denotes the input image, and k denotes the

kernel. The indices of rows and columns of the resultant

matrix are denoted by m and n, respectively.

Pooling operation is the process of downsampling the

features of the image generally given by the output of the

CNN layer filters. Pooling downsamples the features as an

effort to retain only the significant features for the

sequential layers of the convolutional parts. In OLeNet, the

operation carries through each channel, thereby affecting

just the height and weight dimensions of the feature maps,

keeping the number of channels intact. The pooling oper-

ation in OLeNet is calculated as in Eqs. (6) and (7).

dim pooling al�1
� �� �

¼ nh þ 2p� f

s
þ 1;

nw þ 2p� f

s
þ 1; nc

� �
; s[0

ð6Þ

dim pooling al�1
� �� �

¼ nh þ 2p� f ; nw þ 2p� f ; ncð Þ; s
¼ 0

ð7Þ

where al�1 denotes the feature map; a0, the input image;

nh, the height of the feature map al�1; nw, the width of the

feature map al�1; nc, the number of channels of al�1; p, the

size of the padding used in the feature map before pooling;

and f, the size of the pooling filter. Conventionally, the

values of f and s are set to f = 2 and consider s = 2.

4.2 Implementation procedure

4.2.1 Concrete image dataset

The open-source dataset used in the proposed work for

classification is collected from multiple buildings in the

METU [2] (Table 2). The dataset consists of a total of

40,000 images of 227 9 227 pixels and was equally

grouped into ‘‘crack’’ and ‘‘non-crack’’ for the binary

classification (Fig. 11). A total of 32,000, 4000, and 4000

images were used for the training, validation, and testing,

respectively.

4.2.2 Proposed architecture

The overall execution process of the proposed work begins

with the OLeNet architecture configuration. Some of the

important hyperparameters of the deep learning architec-

tures are the total number of layers, number of hidden

units, activation function, epochs, and learning rate. In the

OLeNet architecture, these hyperparameters are optimized

to achieve enhanced performance with a shallow layer

stack architecture arrangement. The shallow architecture

depends on minimum computational resources. The overall

computational architecture for the OLeNet-based crack

detection model (Fig. 12) focuses on model training, model

validation, and performance evaluation.

Image pre-processing is performed before building and

training the CNN architecture model. High-resolution

images have variance in terms of surface finish and illu-

mination conditions. In terms of random rotation or flip-

ping, no data augmentation performed. All the images from

the input are read and stored in a numpy array together with

their label. For negative images, the numpy array is

encoded as [1, 0], and for positive images the numpy array

is encoded as [0, 1]. Encoding improves the model training

and prediction. Data transformation is performed by pro-

cessing the input images and is saved as a numpy array.

The saved numpy array can be directly loaded without the

need to pre-process the data every time. The pseudocode

presented in Table 3 explains the technical function of

OLeNet for image classification.

Training data out of the entire data are used to build the

OLeNet model. Epoch indicates the sum of one forward

pass and backward pass for all the training samples. For

better time optimization, the model is limited with the

epoch value of 20. To reduce the memory space, the batch

size of the input data is kept at a minimum. Since the

proposed model is shallow with seven layers, the total

number of the parameters used and the total memory space

occupied are also kept at a minimum. The segregated

Fig. 10 Process of ReLU as a

transfer function

Neural Computing and Applications (2021) 33:9289–9305 9297

123

validation data are utilized to ensure the finalized version

of the OLeNet crack detection model. The performance of

the OLeNet model is validated by comparing it with those

of the other pretrained CNN models discussed in Sect. 5.

5 Results and discussions

In this section, the results of the proposed algorithm

(OLeNet) are compared with those of the other deep

learning models, such as VGG16, Inception, and ResNet.

Section 5.1 validates the performance of OLeNet by con-

sidering the different evaluation measures. In Sect. 5.2, the

performance of OLeNet is validated by comparing it with

those of the other models in terms of hyperparameter

values.

5.1 Overall performance of algorithms

Accuracy score, precision, recall, and F-Measure are used

as metrics for analyzing the performance of the proposed

model. The definition and formula for determining the

Table 2 Dataset details

Dataset details Training – 32,000 Val – 4000 Test – 4000

Total images Image size Crack Non-crack Crack Non-crack Crack Non-crack Crack Non-crack

40,000 227 9 227 20,000 20,000 18,000 18,000 2000 2000 2000 2000

Fig. 11 Sample collection of crack and non-crack images

Fig. 12 Proposed OLeNet architecture for crack detection

9298 Neural Computing and Applications (2021) 33:9289–9305

123

different performance metrics are explained in the fol-

lowing section.

Accuracy score denotes the measure of correctness of

the model’s prediction. If ŷi is the predicted label of the ith

sample test image and yi is its corresponding actual label,

then the fraction of correct predictions over the nsamples of

the test images is computed as follows:

accuracyðy; ŷÞ ¼ 1

nsamples

Xnsamples�1

i¼0

1ðŷi ¼ yiÞ ð8Þ

The performance of the model is analyzed by observing

the true positive (TP), true negative (TN), false positive

(FP), and false negative (FN) metrics. A TP is an outcome

in which the model correctly classifies the crack images.

Similarly, a TN is an outcome in which the model correctly

classifies the non-crack images. An FP and FN are the

outcomes in which the model incorrectly classifies the

crack images and the non-crack images, respectively.

Precision denotes the estimation of the model’s ability to

perform with minimum FP results. It evaluates the

robustness of the model and enables the model to avoid

labeling an input image as crack that is actually non-crack

(Eq. 9).

Precision ¼ TP

TP þ FP
ð9Þ

Recall denotes the measure of the ability of the model to

correctly identify the crack images (Eq. 10).

Table 3 Pseudocode of OLeNet

Neural Computing and Applications (2021) 33:9289–9305 9299

123

Recall ¼ TP

TP þ FN
ð10Þ

F-Measure denotes the harmonic mean of precision and

recall. It is utilized to evaluate the model with a more

considerate score (Eq. 11).

F-Measure ¼ 2 � Precision � Recall

Precision þ Recall

� �
ð11Þ

The overall performance analysis of the proposed

OLeNet algorithm and the other pretrained CNN models is

presented in Table 4. Confusion matrix (Fig. 13) clearly

visualizes that OLeNet performs comparatively better than

the other algorithms.

The performance measures (Table 5) derived from the

confusion matrix present clear insights into the algorithms.

The proposed OLeNet algorithms produce maximum

accuracy, similar to VGG16 and Inception. Despite its

shallow configuration, OLeNet withstands to produce

maximum accuracy similar to other deep architectures. In

addition to the accuracy, OLeNet remains competitive with

other pretrained models in terms of the values of precision,

recall, and F-Measure. The graphical representation of the

performance is demonstrated in Figs. 14, 15, 16 and 17.

The OLeNet architecture was able to produce 99.8%

accuracy and the same value for precision, recall, and

F-Measure evaluations, respectively. The VGG16, Incep-

tion, and ResNet architectures produced an accuracy of

99.8%, 99.8%, and 97.1%, respectively. Being computa-

tionally lightweight in nature, the proposed shallow

architecture is persistent in exhibiting better performance

compared with the other pretrained deep CNN

architectures.

5.2 Performance of OLeNet based
on hyperparameters

The hyperparameters of the deep learning model govern

the entire training process of model building. The perfor-

mance comparison between the OLeNet architecture and

other pretrained CNN models provides a clear insight into

the importance of hyperparameter optimization. The

hyperparameter performance of OLeNet (Figs. 18, 19, 20,

Table 4 Confusion matrix

Algorithm TP TN FP FN

OLeNet 1995 1996 4 5

VGG16 1996 1996 3 5

Inception 1994 1997 6 3

ResNet 1890 1988 110 12

9300 Neural Computing and Applications (2021) 33:9289–9305

123

21, 22, 23, 24, 25, 26) is compared with those of the other

deep CNN architectures in terms of training accuracy,

validation accuracy, training loss, and validation loss at

each epoch.

To reduce the used computational power, minimization

of the epoch value is required [14]. The performance of

other pretrained models used for comparison and their

visual representations (Figs. 20, 21) in this proposed work

indicate the significance of hyperparameter optimization.

The visual representation (Figs. 22, 23) clearly demon-

strates that the proposed algorithm is capable of meeting

the maximum accuracy and minimum loss within 20 epoch

counts. In this work, it has been found that by reducing

each epoch count, the computation time reduces by 11 s.

The VGG16 based-CNN model is capable of producing

the maximum value in all the performance measures.

Inception exhibits better performance compared with the

ResNet architecture. The VGG16 and Inception architec-

tures are capable of producing the same accuracy with

OLeNet. The concept of identity mapping with the ResNet

architecture complicates the network to obtain maximum

accuracy in limited epoch counts, compared with other

pretrained CNN models. The performance comparison

between the CNN models and epoch values (Table 6)

indicates the significance of hyperparameter optimization.

The optimized version of LeNet exhibits better perfor-

mance than the other CNN models (Figs. 22, 23, 24, 25, 26)

at minimum epoch counts.

The computational performance of all the CNN models

can be analyzed by comparing the accuracy and loss values

with respect to epoch count. In this proposed work, the

bFig. 13 Confusion matrices

Table 5 Performance measure

Accuracy Precision Recall F-Measure

OLeNet 0.998 0.998 0.998 0.998

VGG16 0.998 0.999 0.998 0.999

Inception 0.998 0.997 0.998 0.998

ResNet 0.970 0.945 0.994 0.969

0.998 0.998 0.998

0.970

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

ur
ac

y
M

ea
su

re

OLeNet VGG16 Inception ResNet

Accuracy Comparison

Fig. 14 Accuracy measure analysis

0.998 0.999 0.997

0.945

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Pr
ec

is
io

n
M

ea
su

re

OLeNet VGG16 Inception ResNet

Precision Comparison

Fig. 15 Precision measure analysis

0.998 0.998 0.998
0.994

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

R
ec

al
l M

ea
su

re

OLeNet VGG16 Inception ResNet

Recall Comparison

Fig. 16 Recall measure analysis

0.998 0.999 0.998

0.969

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

F-
M

ea
su

re

OLeNet VGG16 Inception ResNet

F-Measure Comparison

Fig. 17 F-Measure analysis

Neural Computing and Applications (2021) 33:9289–9305 9301

123

maximum accuracy achieved is 99.8%. The VGG16- and

Inception-based CNN models are capable of achieving this

accuracy at the 45th and 47th epoch counts, respectively,

whereas the proposed shallow OLeNet model is capable of

achieving the same accuracy at the 19th epoch count. The

minimum loss value is 0.01. The VGG-, Inception-, and

ResNet-based CNN models can achieve this minimum loss

at the 45th, 47th, and 42nd epoch counts, respectively,

whereas the proposed OLeNet model can achieve this loss

at the 18th epoch count.

In addition to the maximum accuracy and minimum loss

values, OLeNet can stabilize the model at minimum epoch

values compared with other pretrained CNN models

(Fig. 26). The inclusion of the activation function along

with the dropout function allows the model to skip the

unwanted features at the minimum epoch count. The ReLU

activation function improves the nonlinearity in the model,

0.9

0.92

0.94

0.96

0.98

1

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9

A
C

C
U

R
A

C
Y

EPOCH

OLeNet Training Accuracy OLeNet Validation Accuracy

Fig. 18 OLeNet accuracy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9

L
O

SS

EPOCH

OLeNet Training Loss OLeNet Validation Loss

Fig. 19 OLeNet loss

0.9

0.92

0.94

0.96

0.98

1

3 7 1 3 1 7 2 3 2 7 3 3 3 7 4 3 4 7

A
C

C
U

R
A

C
Y

EPOCH

VGG-16 Training Accuracy VGG-16 Validation Accuracy
Inception Training Accuracy Inception Validation Accuracy
RESNET Training Accuracy RESNET Validation Accuracy

Fig. 20 Accuracy comparison of pretrained CNN models

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

3 7 1 3 1 7 2 3 2 7 3 3 3 7 4 3 4 7

A
C

C
U

R
A

C
Y

EPOCH

VGG-16 Training Loss VGG-16 Validation Loss
Inception Training Loss Inception Validation Loss
RESNET Training Loss RESNET Validation Loss

Fig. 21 Loss comparison of pretrained CNN models

0.9

0.92

0.94

0.96

0.98

1

3 7 1 3 1 7 2 3 2 7 3 3 3 7 4 3 4 7

A
C

C
U

R
A

C
Y

EPOCH

OLeNet Training Accuracy
OLeNet Validation Accuracy
VGG16 Training Accuracy
VGG16 Validation Accuracy
Inception Training Accuracy
Inception Validation Accuracy
ResNet Training Accuracy
ResNet Validation Accuracy

Maximum OLENET Accuracy at 19
th

epoch

Fig. 22 OLeNet accuracy comparison with deep CNN models

0

0.1

0.2

0.3

0.4

3 7 1 3 1 7 2 3 2 7 3 3 3 7 4 3 4 7

L
O

SS

EPOCH

OLeNet Training Loss
OLeNet Validation Loss
VGG16 Training Loss
VGG16 Validation Loss
Inception Training Loss
Inception Validation Loss
ResNet Training Loss
ResNet Validation Loss

Minimum OLENET Loss at 18
th

Epoch

Fig. 23 OLeNet loss comparison with deep CNN models

9302 Neural Computing and Applications (2021) 33:9289–9305

123

thus enabling the model to extract the best feature set from

the available features. Due to hyperparameter optimization,

the proposed model gets trained within 220 s for 40,000

images of 50 9 50 pixels within 20 epoch counts.

6 Conclusion

In this study, a shallow CNN-based architecture is

employed for concrete surface crack detection. The entire

procedure of the proposed method consists of fine-tuning of

the LeNet-5 architecture with the METU dataset. Fine-

tuning of the hyperparameters of LeNet-5 results in the

establishment of OLeNet, which enables OLeNet to per-

form competitively with other pretrained deep learning

models, such as VGG16, ResNet, and Inception. A shallow

optimized CNN model (OLeNet) has been built and vali-

dated with 40,000 crack and non-crack images obtained

from the METU dataset. Contrary to the previous research

works, the proposed model does not depend on high-

quality images and high-end computational devices for

building real-time crack detection models used to identify

the concrete cracks on the structures. The validation of the

proposed OLeNet architecture has proven to achieve a

maximum accuracy of 99.8% with a minimum computation

of 19 epoch counts with its shallow layer stack (deep CNN

architectures require a minimum of 45 epoch counts to

achieve 99.8% accuracy). In addition, the proposed model

gets trained within 220 s to achieve maximum accuracy

(deep CNN architectures require a minimum computation

time of 524 s to achieve maximum accuracy). Rather than

depending on high-quality images by deep CNN models,

the proposed shallow OLeNet architecture is capable of

achieving maximum accuracy using simple images.

The minimum layer stack arrangement and dependency

on simple images reduce the computational time and

operational time of the OLeNet architecture. Despite the

advantages, the system is not fully automatic, which

remains as a limitation for the proposed method. The

proposed architecture can be employed using low-power

computational IoT devices for image classification to

develop a fully functioning autonomous system. Therefore,

future studies shall concentrate on integrating the proposed

shallow CNN architecture with low-power computational

0.998 0.998 0.998 0.997

19

45 47
42

OLeNet VGG16 Inception ResNet

Maximum Accuracy Epoch at Maximum Accuracy

Fig. 24 Epoch at maximum accuracy

0.01 0.01 0.01 0.01

18 20

35

45

OLeNet VGG16 Inception ResNet

Minimum Loss Epoch at Minimum Loss

Fig. 25 Epoch at minimum loss

4
7

9

22

6

10

13
15

OLeNet VGG16 Inception ResNet

Epoch at Stabilized Accuracy Epoch at Stabilized Loss

Fig. 26 Epoch at stabilized values

Table 6 Performance comparison with epoch

Algorithm Max

accuracy

Epoch at max

accuracy

Min

loss

Epoch at min loss Epoch at stabilized

accuracy

Epoch at stabilized

accuracy

OLeNet 0.998 19 0.01 18 4 6

VGG16 0.998 45 0.01 20 7 10

Inception 0.998 47 0.01 35 9 13

ResNet 0.971 42 0.01 45 22 15

Neural Computing and Applications (2021) 33:9289–9305 9303

123

autonomous devices, such as unmanned aerial vehicles, to

achieve enhanced performance.

Funding This work was supported by Korea Research Fellowship

Program through the National Research Foundation of Korea (NRF)

funded by the Ministry of Science and ICT (No.

2019H1D3A1A01101442). This work was supported by the National

Research Foundation of Korea (NRF) grant funded by the Korea

Government (MSIT) (No. 2019R1G1A1095215).

Code availability Not applicable.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Kim H, Ahn E, Shin M, Sim SH (2018) Crack and non-crack

classification from concrete surface images using machine

learning. Struct Health Monit 18:725–738

2. Kang D, Cha Y-J (2019) Autonomous UAVs for structural health

monitoring using deep learning and an ultrasonic beacon system

with geo-tagging. Comput-Aided Civ Infrastruct Eng

33:885–902. https://doi.org/10.1111/mice.12375

3. Gibb S, La HM, Louis S (2018) A genetic algorithm for convo-

lutional network structure optimization for concrete crack

detection. IEEE Congress Evolut Comput. https://doi.org/10.

1109/CEC.2018.8477790

4. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86:2278–2324

5. Zhang C-W, Yang M-Y, Zeng H-J, Wen J-P (2019) Pedestrian

detection based on improved LeNet-5 convolutional neural net-

work. J Algorithms Comput Technol. https://doi.org/10.1177/

1748302619873601

6. Cook W, Barr PJ (2017) Observations and trends among col-

lapsed bridges in New York state. J Perform Constr Facil. https://

doi.org/10.1061/(ASCE)CF.1943-5509.0000996

7. Road Bureau, Ministry of Land, Infrastructure, Transportation,

and Tourism, Roads in Japan. Accessed on http://www.mlit.go.jp/

road/road_e/index_e.html.

8. National Transportation Safety Board (2007) Collapse of I-35W

Highway Bridge, Minneapolis, Minnesota. http://www.dot.state.

mn.us/i35wbridge/ntsb/finalreport.pdf

9. Spencer BF, Hoskere V, Narazaki Y (2019) Advances in com-

puter vision-based civil infrastructure inspection and monitoring.

Engineering. https://doi.org/10.1016/j.eng.2018.11.030

10. Asakura T, Kojima Y (2003) Tunneling and underground space

technology. Tunnel Maint Jpn 18:161–169. https://doi.org/10.

1016/S0886-7798(03)00024-5

11. Dung CV, Anh LD (2019) Autonomous concrete crack detection

using deep fully convolutional neural network. Autom Constr.

https://doi.org/10.1016/j.autcon.2018.11.028

12. Koch C, Georgieva K, Kasireddy V, Akinci B, Fieguth P (2015)

A review on computer vision based defect detection and condi-

tion assessment of concrete and asphalt civil infrastructure. Adv

Eng Inform 29:196–210. https://doi.org/10.1016/j.aei.2015.01.

008

13. Kim I-H, Jeon H, Baek S-C, Hong W-H, Jung H-J (2018)

Application of crack identification techniques for an aging con-

crete bridge inspection using an unmanned aerial vehicle. Sen-

sors. https://doi.org/10.3390/s18061881

14. Yan J, Downey A, Cancelli A, Laflamme S, Chen A, Li J,

Ubertini F (2019) Concrete crack detection and monitoring using

a capacitive dense sensor array. Sensors. https://doi.org/10.3390/

s19081843

15. Teidj S, Khamlichi A, Driouach A (2016) Identification of beam

cracks by solution of an inverse problem. Procedia Technol

22:86–93. https://doi.org/10.1016/j.protcy.2016.01.014

16. Chatzi EN, Hiriyur B, Waisman H, Smyth AW (2011) Experi-

mental application and enhancement of the XFEM–GA algorithm

for the detection of flaws in structures. Comput Struct

89:556–570

17. Rabinovich D, Givoli D, Vigdergauz S (2007) XFEM based crack

detection scheme using a genetic algorithm. Int J Numer Methods

Eng 71:1051–1080. https://doi.org/10.1002/nme.1975

18. Cha Y-J, Choi W (2017) Deep learning-based crack damage

detection using convolutional neural networks. Comput-Aided

Civ Infrastr Eng 32:361–378

19. Adhikari RS, Moselhi O, Bagchi A (2014) Image-based retrieval

of concrete crack properties for bridge inspection. Autom Constr

39:180–194. https://doi.org/10.1016/j.autcon.2013.06.011

20. Noh Y, Koo D, Kang Y, Park D, Lee D (2017) Automatic crack

detection on concrete images using segmentation via fuzzy

C-means clustering. In: Proceedings of the 2017 international

conference on applied system innovation (ICASI), Sapporo,

Japan, pp 877–880

21. Dawood T, Zhu Z, Zayed T (2017) Machine vision-based model

for spalling detection and quantification in subway networks.

Autom Constr 81:149–160

22. Ali R, Gopal L G, Cha Y J (2018) Vision-based concrete crack

detection technique using cascade features. In: Proceedings of the

SPIE 10598, sensors and smart structures technologies for civil

mechanical, and aerospace systems. https://doi.org/10.1117/12.

2295962

23. Dinh T H, Ha Q, La H M (2016) Computer vision-based method

for concrete crack detection. In: Proceedings of the 2016 14th

international conference on control, automation, robotics and

vision (ICARCV), pp 1–6

24. Fathi H, Dai F, Lourakis M (2015) Automated as-built 3D

reconstruction of civil infrastructure using computer vision:

achievements, opportunities, and challenges. Adv Eng Inform

29:149–161. https://doi.org/10.1016/j.aei.2015.01.012

25. Seo J, Han S, Lee S, Kim H (2015) Computer vision techniques

for construction safety and health monitoring. Adv Eng Inform

29:239–251

26. Nishikawa T, Yoshida J, Sugiyama T, Fujino Y (2012) Concrete

crack detection by multiple sequential image filtering. Comput

Aided Civ Infrastruct Eng 27:29–47

27. Islam M, Kim J-M (2019) Vision-based autonomous crack

detection of concrete structures using a fully convolutional

encoder–decoder network. Sensors. https://doi.org/10.3390/

s19194251

28. Teizer J (2015) Status quo and open challenges in vision-based

sensing and tracking of temporary resources on infrastructure

construction sites. Adv Eng Inform 29:225–238. https://doi.org/

10.1016/j.aei.2015.03.006

29. Yang J, Park M-W, Vela PA, Golparvar-Fard M (2015) Con-

struction performance monitoring via still images, time-lapse

photos, and video streams: now, tomorrow, and the future. Adv

Eng Inform 29:211–224

30. Radopoulou SC, Brilakis I (2015) Patch detection for pavement

assessment. Autom Constr 53:95–104

9304 Neural Computing and Applications (2021) 33:9289–9305

123

https://doi.org/10.1111/mice.12375
https://doi.org/10.1109/CEC.2018.8477790
https://doi.org/10.1109/CEC.2018.8477790
https://doi.org/10.1177/1748302619873601
https://doi.org/10.1177/1748302619873601
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000996
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000996
http://www.mlit.go.jp/road/road_e/index_e.html
http://www.mlit.go.jp/road/road_e/index_e.html
http://www.dot.state.mn.us/i35wbridge/ntsb/finalreport.pdf
http://www.dot.state.mn.us/i35wbridge/ntsb/finalreport.pdf
https://doi.org/10.1016/j.eng.2018.11.030
https://doi.org/10.1016/S0886-7798(03)00024-5
https://doi.org/10.1016/S0886-7798(03)00024-5
https://doi.org/10.1016/j.autcon.2018.11.028
https://doi.org/10.1016/j.aei.2015.01.008
https://doi.org/10.1016/j.aei.2015.01.008
https://doi.org/10.3390/s18061881
https://doi.org/10.3390/s19081843
https://doi.org/10.3390/s19081843
https://doi.org/10.1016/j.protcy.2016.01.014
https://doi.org/10.1002/nme.1975
https://doi.org/10.1016/j.autcon.2013.06.011
https://doi.org/10.1117/12.2295962
https://doi.org/10.1117/12.2295962
https://doi.org/10.1016/j.aei.2015.01.012
https://doi.org/10.3390/s19194251
https://doi.org/10.3390/s19194251
https://doi.org/10.1016/j.aei.2015.03.006
https://doi.org/10.1016/j.aei.2015.03.006

31. Abdel-Qader I, Abudayyeh O, Kelly ME (2003) Analysis of

edge-detection techniques for crack identification in bridges.

J Comput Civ Eng 17:255–263

32. Prasanna P, Dana KJ, Gucunski N, Basily BB, La HM,

LimParvardeh RSH (2016) Automated crack detection on con-

crete bridges. IEEE Trans Autom Sci Eng 13:591–599

33. Oh JK, Jang G, Oh S, Lee JH, Yi B, Moon YS, Lee JS, Choi Y

(2009) Bridge inspection robot system with machine vision.

Autom Constr 18:929–941

34. Li G, Zhao X, Du K, Ru F, Zhang Y (2017) Recognition and

evaluation of bridge cracks with modified active contour model

and greedy search-based support vector machine. Autom Constr

78:51–61

35. Na W, Tao W (2012) Proximal support vector machine based

pavement image classification. In: IEEE Fifth international con-

ference on advanced computational intelligence (ICACI),

pp 686–688

36. Abdel-Qader I, Pashaie-Rad S, Abudayyeh O, Yehia S (2006)

PCA - based algorithm for unsupervised bridge crack detection.

Adv Eng Softw 37:771–778

37. Choudhary GK, Dey S (2012) Crack detection in concrete sur-

faces using image processing, fuzzy logic, and neural networks.

In: Proceedings of the 2012 IEEE fifth international conference

on advanced computational intelligence (ICACI), Nanjing,

China, pp 404–411

38. Sri Preethaa KR, Sabari A (2020) Intelligent video analysis for

enhanced pedestrian detection by hybrid metaheuristic approach.

Soft Comput 24(16):12303–12311

39. Bishop CM (2006) Pattern recognition and machine learning.

Springer-Verlag, New York City

40. Mhathesh TSR, Andrew J, Martin Sagayam K, Henesey L (2020)

3D convolutional neural network for bacterial image classifica-

tion. In: Peter J, Fernandes S, Alavi A (eds) Intelligence in big

data technologies beyond the hype. Advances in intelligent sys-

tems and computing, vol 1167. Springer, Singapore. https://doi.

org/10.1007/978-981-15-5285-4_42

41. Zhang H, Tan J, Liu L, Wu Q M J, Wang Y, Jie L (2017)

Automatic crack inspection for concrete bridge bottom surfaces

based on machine vision. In Proceedings of the 2017 Chinese

automation congress (CAC), Jinan, China, 20–22 Oct 2017,

pp 4938–4943

42. Cha YJ, Choi W, Suh G, Mahmoudkhani S, Buyukozturk O

(2017) Autonomous structural visual inspection using region-

based deep learning for detecting multiple damage types. Comput

Aided Civ Infrastruct Eng. https://doi.org/10.1111/mice

43. Zhang K, Cheng HD, Zhang B (2018) Unified approach to

pavement crack and sealed crack detection using preclassification

based on transfer learning. J Comput Civ Eng 32:04018001

44. Chen FC, Jahanshahi MR (2017) NB-CNN: Deep learning-based

crack detection using convolutional neural network and Naı̈ve

Bayes data fusion. IEEE Trans Ind Electron. https://doi.org/10.

1109/TIE.2017.2764844

45. Fan Z, Wu Y, Lu J, Li W (2018) Automatic pavement crack

detection based on structured prediction with the convolutional

neural network. arXiv:1802.02208.

46. Wang K C, Zhang A, Li J Q, Fei Y, Chen C, Li B (2017) Deep

learning for asphalt pavement cracking recognition using con-

volutional neural network. Airfeld and Highway Pavements,

pp 166–177

47. Zhang L, Yang F, Zhang Y D, Zhu Y J (2016) Road crack

detection using deep convolutional neural network. In: IEEE

international conference on image processing (ICIP),

pp 3708–3712. https://doi.org/10.1109/ICIP.2016.7533052

48. Pauly L, Hogg R D, Fuentes, Peel H (2017) Deeper networks for

pavement crack detection. In: Proceedings of the 34th ISARC.

34th international symposium in automation and robotics in

construction, IAARC, Taipei, Taiwan, pp 479–485

49. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards

real-time object detection with region proposal networks. IEEE

Tran Pattern Anal Mach Intell 39:1137–1149. https://doi.org/10.

1109/TPAMI.2016.2577031

50. Rawat W, Wang Z (2017) Deep convolutional neural networks

for image classification: a comprehensive review. Neural Comput

29:2352–2449. https://doi.org/10.1162/neco_a_00990

51. Gopala Krishnan K (2018) Deep learning in data-driven pave-

ment image analysis and automated distress detection: a review.

Data 3:28. https://doi.org/10.3390/data3030028

52. Cao QD, Choe Y (2020) Building damage annotation on post-

hurricane satellite imagery based on convolutional neural net-

works. Nat Hazards 103:3357–3376

53. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature

521:436

54. Kim B, Yuvaraj N, Sri Preethaa KR, Santhosh R, Sabari A (2020)

Enhanced pedestrian detection using optimized deep convolution

neural network for smart building surveillance. Soft Comput

24(22):17081–17092

55. Zhang C, Patras P, Haddadi H (2019) Deep learning in mobile

and wireless networking a survey. IEEE Commun Surv Tutor

21:2224–2287

56. Ortega-Zamorano F, Jerez JM, Gómez I, Franco L (2017) Layer

multiplexing FPGA implementation for deep back-propagation

learning. Integr Comput-Aided Eng 24(2):171–185

57. Yamaguchi T, Nakamura S, Saegusa R, Hashimoto S (2008)

Image-based crack detection for real concrete surfaces. IEEJ

Trans Electr Electron Eng 3:128–135

58. ASCE (2017) American Society of Civil Engineers (ASCE),

Infrastructure Report Card. https://www.infrastructurereportcard.

org/

59. Yuvaraj N, Sabari A (2016) Twitter sentiment classification using

binary shuffled frog algorithm. Intell Autom Soft Comput 1:1–9

60. Yuvaraj N, Sri Preethaa KR (2017) Diabetes prediction in

healthcare systems using machine learning algorithms on Hadoop

cluster. Cluster Comput 22:1–9. https://doi.org/10.1007/s10586-

017-1532-x

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:9289–9305 9305

123

https://doi.org/10.1007/978-981-15-5285-4_42
https://doi.org/10.1007/978-981-15-5285-4_42
https://doi.org/10.1111/mice
https://doi.org/10.1109/TIE.2017.2764844
https://doi.org/10.1109/TIE.2017.2764844
https://arxiv.org/abs/1802.02208
https://doi.org/10.1109/ICIP.2016.7533052
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.3390/data3030028
https://www.infrastructurereportcard.org/
https://www.infrastructurereportcard.org/
https://doi.org/10.1007/s10586-017-1532-x
https://doi.org/10.1007/s10586-017-1532-x

	Surface crack detection using deep learning with shallow CNN architecture for enhanced computation
	Abstract
	Introduction
	Overview of the proposed model
	Pretrained convolutional neural networks for crack identification
	Convolutional neural network architecture
	LeNet-5 architecture
	VGG16 architecture
	Inception architecture
	ResNet architecture
	Comparison of familiar pretrained CNN models

	Methodology
	Optimized LeNet (OLeNet) architecture
	Implementation procedure
	Concrete image dataset
	Proposed architecture

	Results and discussions
	Overall performance of algorithms
	Performance of OLeNet based on hyperparameters

	Conclusion
	Code availability
	References

