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Abstract
This paper investigates the ability of deep neural networks (DNNs) to improve the automatic recognition of dysarthric

speech through the use of convolutional neural networks (CNNs) and long short-term memory (LSTM) neural networks.

Dysarthria is one of the most common speech communication disorders associated with neurological impairments that can

drastically reduce the intelligibility of speech. The aim of the present study is twofold. First, it compares three different

input features for training and testing dysarthric speech recognition systems. These features are the mel-frequency cepstral

coefficients (MFCCs), mel-frequency spectral coefficients (MFSCs), and the perceptual linear prediction features (PLPs).

Second, the performance of the CNN- and LSTM-based architectures is compared against a state-of-the-art baseline system

based on hidden Markov models (HMMs) and Gaussian mixture models (GMMs) to determine the best dysarthric speech

recognizer. Experimental results show that the CNN-based system using perceptual linear prediction features provides a

recognition rate that can reach 82%, which constitutes relative improvement of 11% and 32% when compared to the

performance of LSTM- and GMM-HMM-based systems, respectively.

Keywords Deep neural network � Convolutional neural network � Long short-term memory � Mel-frequency cepstral

coefficient � Mel-frequency spectral coefficient � Perceptual linear prediction � Hidden Markov model � Gaussian mixture

models

1 Introduction

Dysarthria is known as a motor speech disorder resulting

from the malfunction of the muscles controlling the vocal

apparatus [1]. The causes of dysarthria are multiple and

include Parkinson’s disease, stroke, head trauma, tumors,

muscular dystrophies, and cerebral palsy [2, 3]. Dysarthria

may affect breathing, phonation, resonance, articulation,

and prosody. The consequences are hypernasality and the

drastic reduction in speech intelligibility. Vowels may also

be distorted in the most severe cases. The range of

degradation of intelligibility is wide and depends on the

extent of neurological damage.

1.1 Dysarthric speech recognition

Automatic speech recognition (ASR) systems can be very

useful for people who are suffering from dysarthria and

other speech disabilities. Unfortunately, due to the high

variability and distortions in dysarthric speech [4, 5], the

automatic recognition of dysarthric spoken words is still a

challenging task [6, 7]. These distortions have a negative

impact on the production and articulation of phonemes,

which leads to a great complexity of their automatic

analysis and characterization. For instance, an effortful

grunt is often heard at the end of vocalizations; an
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excessively low pitch is frequently found, producing a

harsh voice. In some cases, phonemes are characterized by

pitch breaks in vocalic segments and imprecision of con-

sonants’ production. Therefore, the acoustical analysis of

dysarthric speech has to deal with many issues related to

aberrant voicing, tempo disturbance, unpredictable shifting

of formant frequencies in sonorants and utterances where

erroneously dropped phonemes are observed.

This complexity was also demonstrated by the acoustic

study carried out by Zeigler and von Cramon’s which

involved ten patients with spastic dysarthria [8]. This study

revealed that impaired acceleration of moving articulators

increases production time and thus induces slower speech

rate. These alterations disrupt or mask the acoustical

characteristics that can normally help discriminating

between phonemes, which makes the dysarthric speech

recognition a more complex process.

Thus, there has recently been a trend toward the creation

of tailored ASR systems for people with dysarthria

[6, 9–11]. Indeed, the best results for dysarthria speech

recognition have been provided by isolated word ASR

models and conventional ASR algorithms, such as artificial

neural networks (ANNs) [12], but an effective ASR system

requires the ability to recognize continuous speech

[13, 14]. Recently, some research initiatives have been

successful in recognizing dysarthric speech with a limited

vocabulary. However, currently, a large-vocabulary dys-

arthric speech recognition system is unavailable.

Most conventional dysarthric speech recognition sys-

tems are generally based on statistical approaches such as

hidden Markov models (HMMs) that perform the modeling

of the sequential structure of speech signals. The HMMs of

speech are mainly based on Gaussian mixture models

(GMMs) that are considered the best statistical represen-

tation of the spectral distributions of speech waveforms.

The probabilistic modeling remains a powerful approach

when coupled with flexible time dimension representation

of uncertainty. In this context, a Gaussian process regres-

sion (GPR) method was proposed to predict the human

intention [15]. For some applications such as dysarthric

speech synthesis where there is a need to complete partially

observable sequences, the GPR method could be useful to

improve the synthetic speech naturalness.

Nevertheless, these methods cannot be applied in the

recognition of dysarthric speech. Actually, GMM-based

modeling is effective when a large quantity of data is used

to train a robust model. However, it is not as efficient for

dysarthria because the corpora used for training are always

small [16].

As an alternative to the statistical approaches and in the

context of the considerable progress made by connectionist

approaches, numerous configurations based on deep neural

networks (DNNs) have been proposed to deal with the

inherent complexity of dysarthric speech. Among these

advanced configurations, convolutional neural networks

(CNNs) [17] and long short-term memory (LSTM) net-

works [18] have achieved state-of-the-art recognition

accuracy in many applications.

1.2 Dysarthric speech processing using CNN-
based architectures

Isolated word ASR models and conventional ANN archi-

tectures have been widely used to perform dysarthric

speech recognition. The authors of [12] identified the best-

performing set of mel-frequency cepstral coefficient

(MFCCs) parameters to represent dysarthric acoustic fea-

tures for use in ANN-based ASR. The results show that the

speech recognizer trained by the conventional 12-coeffi-

cient MFCC features without the use of delta and accel-

eration features provided the best accuracy, and the

proposed speaker-independent ASR recognized the speech

of unforeseen dysarthric subjects with a word recognition

rate of 68.38%. To improve dysarthric speech identifica-

tion, the authors in [19] proposed a system using features

resulting from the coding of 39 MFCCs by a deep belief

network (DBN). The evaluation was performed using the

Dysarthric Speech Database for Universal Access Research

in both text-dependent and text-independent conditions

where an accuracy rate of 97.3% was achieved. Using the

same data, a study presented in [20] explored multiple

methods for improving a hybrid GMM-DNN-based HMM

for dysarthric speech recognition. The experiments were

carried out using DNNs with four hidden layers and sig-

moid activation functions for the 1024 neurons of each

layer; a dropout factor of 0.2 for the first four DNN training

epochs was applied. This configuration reduced the average

relative word error rate (WER) by 14.12%.

Recently, DNN-based architectures have been proposed

to generate artificial samples of dysarthric speech. In [21],

artificial dysarthric speech samples were presented to five

experienced speech-language pathologists. The authors

used CNN-based architectures in both the generator and the

discriminator of dysarthric speech. The results reveal that

speech-language pathologists identified transformed speech

as dysarthric 65% of the time.

In [22], an interpretable objective severity assessment

algorithm for dysarthric speech based on DNNs was pro-

posed. An intermediate Darley–Aronson–Brown (DAB)

layer containing a priori knowledge provided by speech-

language pathologists and neurologists was added to the

DNN. The model was trained with a scalar severity label at

the output of the network and intermediate labels that

describe how atypical the impaired speech was along four

perceptual dimensions in the DAB layer. The best perfor-

mance for severity prediction was 82.6%.

9090 Neural Computing and Applications (2021) 33:9089–9108

123



In [23], an automatic detection of dysarthria using

extended speech features called centroid formants was

presented. The experimental data consisted of 200 speech

samples from 10 dysarthric speakers and 200 speech

samples from 10 age-matched healthy speakers. The cen-

troid formants enabled an accuracy of 75.6% achieved with

just one hidden layer and 10 neurons.

In [24], 39 MFCCs were used as input features for a

dysarthric speech recognizer based on a hybrid framework

using a generative learning-based data representation and a

discriminative learning-based classifier. The authors also

proposed the use of example-specific HMMs to obtain log-

likelihood scores for dysarthric speech utterances to form a

fixed-dimensional score vector representation. The dis-

criminative capabilities of the score vector representation

technique were demonstrated, particularly in the case of

utterances with very low intelligibility.

In a recent application [25], the authors proposed to rate

dysarthric speakers along five perceptual dimensions:

severity, nasality, vocal quality, articulatory precision, and

prosody on a scale from 1 to 7 (from normal to severely

abnormal). They also used the Google ASR engine to

calculate the WER of uttered sequences. Based on the

obtained results, 32 dysarthric speakers were categorized

with respect to the severity of their impairment.

To capture relevant acoustic–phonetic information of

impaired speech, numerous studies have investigated dif-

ferent types of features. In this context, mel-frequency

spectral coefficients (MFSCs) have been proposed as the

basic acoustic features [26]. For the CNN, the authors used

40-dimensional filter bank features to obtain more evolved

speaker-independent MFSC features, a linear discrimina-

tive analysis transformation for projecting sequences of

frames into 40 dimensions, and then a maximum likelihood

linear transformation for diagonalizing the matrix and

gather the correlations among vectors. For speaker-de-

pendent features, the authors employed a feature-space

maximum likelihood linear regression. A comparison of

the speech recognition architectures shows that even with a

small database, the hybrid DNN-HMM models outperform

classical GMM-HMM models according to WER

measures.

In another study published in [16], different types of

input features used by DNNs were assessed to automati-

cally detect repetition stuttering and nonspeech dysfluen-

cies within dysarthric speech. The authors used the

TORGO database, and the results obtained using MFCCs

and linear prediction cepstral coefficient (LPCCs) features

produced similar recognition accuracies. Repetition stut-

tering in dysarthric speech and nondysarthric speech was

correctly identified with accuracies of 86% and 84%,

respectively. Nonspeech sounds were recognized with

approximately 75% accuracy in dysarthric speakers.

In [27], a convolutive bottleneck network, which is an

extension of a CNN, was proposed to extract disorder-

specific features. A convolutive bottleneck network stacks

a bottleneck layer, where the number of units is extremely

small compared with the adjacent layers. The database

used in their work was the American Broad News corpus.

The use of bottleneck features in a convolutive network

improved the accuracy from 84.3 to 88.0%.

In the context of speech-to-text systems for clinical

applications, multiple speaker-independent ASR systems

robust against pathological speech are presented in [28].

The authors investigated the performance of two convo-

lutional neural network architectures: (1) a time–frequency

convolutional neural network (TFCNN), which performs

time and frequency convolution on the gammatone filter-

bank features, (2) a fused-feature-map convolutional neural

network (FCNN), which uses frequency and time convo-

lution in the acoustic and articulatory space, enabling the

joint use of information from acoustic and articulatory

space. The authors also compared TFCNN models with

standard DNN and CNN models.

Recently, authors in [29] proposed a novel approach that

is able to assess dysarthria intelligibility, which correlates

strongly with perceptual intelligibility. Their approach

requires the patient to speak a limited set of words (no

more than 5 words). The system is based on the end-to-end

deep speech framework to obtain a string of characters.

1.3 Dysarthric speech processing using recurrent
neural network (RNN)-based architectures

A recurrent neural network (RNN) is a category of artificial

neural networks with the capacity to exhibit the temporal

dynamic behavior of a given input sequence. Its main

feature is that connections between nodes form a directed

graph along the input time sequence. In the conventional

RNN, the training algorithm uses gradient-based back-

propagation through time. This configuration has the

drawback of slow updating of the network weight. To solve

this problem, a new structure LSTM has been introduced.

Unlike conventional RNNs, LSTM networks connect their

units in a specific way to avoid the problems of vanishing

and exploding gradients. This makes them very useful for

tasks such as unsegmented speech processing and recog-

nition. The performance of various RNN architectures to

train acoustic models for large-vocabulary speech recog-

nition, namely LSTM, conventional RNN, and DNN, was

compared in [30]. A distributed training of LSTM-RNNs

using asynchronous stochastic gradient descent optimiza-

tion was proposed [30]. The authors also showed that two-

layer deep LSTM-RNNs, where each LSTM layer has a

linear recurrent projection layer, can exceed state-of-the-art

speech recognition performance. The deep LSTM-RNNs
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[31] were extended by introducing gated direct connections

between memory cells in adjacent layers. CNN and LSTM

networks with very deep structures were investigated. The

performances of each method were analyzed and compared

with those of the DNNs. The obtained results clearly

demonstrated the advantage of the CNN and LSTM tech-

niques in terms of improving ASR accuracy for various

tasks [31]. As with DNNs with deeper architectures, deep

LSTM-RNNs have been successfully used for speech

recognition [32–34].

Based on the RNN with LSTM units, [35] determined

whether Mandarin-speaking individuals were afflicted with

a form of dysarthria based on samples of syllable pro-

nunciations. Using accuracy and receiver operating clas-

sification tasks, the authors evaluated several LSTM

network architectures. Their results showed that the

LSTMs’ ability to leverage temporal information within its

input makes for an effective step in the pursuit of acces-

sible dysarthria diagnoses.

Similarly, [36] proposed a machine learning-based

method to automatically classify dysarthric speech into

intelligible and unintelligible using LSTM neural networks.

The classification and training of dysarthric speech were

performed using the bidirectional LSTM type of RNNs.

The authors adopted a transfer learning approach, where

the internal representations are learned by DNN-based

ASR models.

Despite the availability of numerous technological

solutions and fundamental approaches, the design of robust

dysarthric speech recognition systems still faces numerous

issues. Dysarthric speech is versatile, is uncertain and

remains in many situations intractable to conventional

formalism and methods. It is worth mentioning that a very

little research has been done to give dysarthric speech

recognition systems the required robustness by realizing

the potential benefit from the joint optimization of both

front-end processing and recognition modeling.

In an attempt to provide new insights into dysarthric

speech recognition, a unified approach that aims to provide

robustness when the systems are confronted with imprecise

and distorted dysarthric speech signal is proposed. Unlike

state-of-the-art methods, this approach investigates the

benefits that can be derived from DNN-based architectures

that jointly optimize the selection of front-end processing,

multiple parameters such as framing and training configu-

ration as well as classifier architectures. A comprehensive

and holistic analysis of the dysarthric speech recognition

process is carried out to provide a theoretical scheme based

on the most effective components leading to a usable user

interface.

1.4 Objective and contributions

In this paper, the best approaches for automatically rec-

ognizing dysarthric speech using DNN-based architectures

are investigated. Our goal is to contribute to the research

effort that ultimately will open the doors toward the design

of personalized assistive speech systems and devices based

on robust and effective speech recognition that are still not

available for people who live with dysarthria. In this con-

text, the contributions of this paper are as follows:

(i) to propose a new design of a speaker-dependent

dysarthric speech recognizer. The proposed sys-

tem is an important step toward the realization of

usable speech-enabled interface for people with

dysarthria;

(ii) to assess original DNN-based architectures, pro-

viding a benchmark for DNN models on the

Nemours publicly available dataset [37];

(iii) to provide a detailed analysis that investigates the

ability of acoustic modeling using perception and

hearing mechanisms of yielding more robustness

to the dysarthric speech recognition system. In this

context, the performance of three acoustical ana-

lyzers, mel-frequency cepstral coefficients, mel-

frequency spectral coefficients and perceptual

linear prediction coefficients, is assessed;

(iv) to present a comprehensive investigation of the

pre-processing pipeline that leads to the optimal

framing and method of training/test while reduc-

ing the risk of bias and overfitting.

The remainder of this paper is organized as follows:

Section 2 describes the methodology of this work. Sec-

tion 3 presents the experimental protocol used in the

experiments, particularly regarding the different input

features and the baseline HMM-GMM system against

which the CNN and LSTM systems were compared. The

obtained results and related discussions are provided in

Sect. 4. Finally, Sect. 5 draws the conclusions and high-

lights future work.

2 Methodology

2.1 Data

The Nemours database is a collection of 814 short non-

sense sentences; 74 sentences are uttered by each of the 11

American male speakers with different degrees of dysar-

thria. Each sentence has been transcribed at the word and

phoneme levels.
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To provide input data to the CNN- and LSTM-based

systems, we divided each sentence’s waveform into its

phoneme waveforms. A set of 14,080 waveform files were

created (see Table 1) and used in the experiments.

Different subsets were extracted from the new phoneme

set using the following splitting techniques [38]: normal

subset, threefold top subset, threefold middle subset, and

threefold bottom subset.

The threefold technique is widely used for corpus

splitting in the context of neural network-based classifica-

tion. It consists of splitting the corpus into three equal

parts, each comprising 33% of the whole corpus. From the

three parts, we chose a single part as the test part (upper

part, middle part, or lower part) and used the rest for

training. Table 2 shows the extracted subsets used

throughout the experiments.

2.2 Auditory-based input features

Several acoustic features can be used as input parameters

of recognition systems dealing with speech disorders. In

our case, we extracted the MFCC [39], MFSC [40], and the

perceptual linear prediction (PLP) features [41] from the

data subsets and used them to train and test the HMM-

GMM baseline system as well as the CNN- and LSTM-

based systems. These three acoustical analysis methods

perform modeling of perception and hearing mechanisms,

which is expected to provide more robustness to the dys-

arthric speech recognition system. The detailed results

obtained by each system using different types of acoustic

features are presented in Sect. 3.

2.2.1 Mel-frequency Cepstral coefficients (MFCCs)

MFCCs are frequency-domain features that have demon-

strated their effectiveness in speech recognition [39]. They

are the most commonly used frame-based features with the

assumption that the speech is wide-sense stationary over

short frames with time lengths ranging from 10 to 25 ms.

The frequency bands are equally spaced on the mel scale,

which approximates the human auditory system’s response.

The extraction process follows the steps illustrated in

Fig. 1.

The input vector of each frame is composed of the 13

first static coefficients of the MFCCs, their first derivatives

that represent the velocity (DMFCCs), and their second

derivatives that represent the acceleration (DDMFCCs) to

obtain a vector of 39 MFCCs. We used a 25-ms Hamming

window with a 10-ms offset.

2.2.2 Mel-frequency spectral coefficients (MFSCs)

The mel-frequency spectral coefficients were extracted

before performing the discrete cosine transform (DCT) in

the MFCC procedure. As shown in Fig. 1, this led to the

log mel-frequency spectral coefficients. The human audi-

tory system’s response is approximated by the frequency

bands that are equally spaced on the mel scale. Despite the

presence of the correlation within the MFSC, these features

can be used in a DNN-based configuration since the deep

structure will subsequently perform an implicit decorrela-

tion. [40]. In our study, 39 mel filterbanks were used while

calculating the MFSC for 16-kHz sampled speech

waveforms.

2.2.3 Perceptual linear prediction (PLP)

The goal of the original PLP model developed by Her-

mansky [41] was to describe the psychophysics of human

hearing more accurately in the feature extraction process.

In contrast to pure linear predictive analysis of speech, PLP

modifies the short-term spectrum of speech by several

psychophysically based transformations. In this study, we

used 39 PLP coefficients for each frame. Figure 2 illus-

trates the main steps for calculating the PLP coefficients.

Table 3 shows the configuration of feature extraction

used for all experiments.

2.3 HMM-GMM: baseline system

HMM-GMM modeling has been widely used in ASR. In

such a probabilistic-based approach, each HMM state is

represented by a GMM output probability distribution.

Mostly, diagonal covariance Gaussians are used because

they are easier to train than full covariance Gaussians of the

same size.

Building HMM-GMM for smaller units of sound such as

phonemes is a more efficient solution since phonemes are

the basic units of speech. The HMM-GMM can be built on

using single phonemes (monophone configuration) or

context-dependent phoneme models that have individual

phonemes linked to their left and right contexts (a triphone

configuration). Triphone models are commonly used in

ASR. A three-state left-to-right HMM is generally used to

build a phoneme model with an incoming state, a middle

Table 1 Nemours database
Speakers Sentences uttered by each speaker Sentence files Phoneme files

Total 11 74 814 14,080
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state, an outgoing state, and dummy start and end nodes.

Each state node is associated with an HMM state index,

whereas dummy nodes are not related to any acoustic event

and are used to mark the two end points of a unit.

HMM mimics a random process that at each time t [ {1,

…, T} seems to be in one of the N hidden states belonging

to the set s and at each next time, left-over in prior state or

pass across to different hidden state in accordance with

certain transition probabilities. Hidden states are described

by features that show in observation sequence O.

We currently specify parameters’ number that totally

depict the HMM with discrete observations. The hidden

state of the HMM at time t is indicated as qt, and the

observation generated at time t is indicated as ot.

The discrete HMM is typified by:

• Set of hidden states: s ¼ s1; s2; . . .; sNf g; ð1Þ

•
Observation sequence : O ¼ fot; t ¼ 1; Tg; ð2Þ

•
Initial distribution:Y

¼ pi ¼ p q1 ¼ sið Þ; i ¼ 1;N
� �

;
ð3Þ

•
Transition probabilitiesmatrix :

A ¼ aij ¼ p qtþ1 ¼ sjnqt ¼ si
� �

; i; j ¼ 1;N
� �

;
ð4Þ

Table 2 Subsets generated using different splitting techniques

Corpus split

90/10

(%)

80/20

(%)

70/30

(%)

60/40

(%)

50/50

(%)

Threefold top

(%)

Threefold middle

(%)

Threefold bottom

(%)

Training ? validation 90 80 70 60 50 67 67 67

Test 10 20 30 40 50 33 33 33

Fig. 1 MFCC and MFSC feature extraction

Fig. 2 PLP feature extraction

Table 3 Configuration of the

different methods of feature

extraction used in this study

MFCC MFSC PLP

Hamming window size 25 ms 25 ms 25 ms

Length of offset 10 ms 10 ms 10 ms

Number of cepstral coefficients 12 12 12

Number of final coefficients 39 (MFCC_0_D_A) 39 39 (PLP_0_D_A)

Filter coefficient value 0.97 0.97 0.97

Number of cepstral filters 22 22 22

Number of filterbank channels 26 39 20
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• Set of symbols : V ¼ v1; . . .; vMf g; ð5Þ

where M is the observation symbols’ number per state.

•
Observationprobabilitiesmatrix :

B¼ bi mð Þ¼p ot¼ vmnqt¼ sið Þ; i¼1;N;m¼1;M
� �

;

ð6Þ

We indicate an HMM as a triplet:

k ¼ ðA;B; pÞ; ð7Þ

In a continuous density HMM-based system, each state

is associated with a continuous probability density func-

tion. The most effective probability density used in speech

recognition is the density of the Gaussian mixture (the

GMM part of the scheme) defined as follows:

N Ot; ljm;Ujm

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞn Ujm

�� ��
q e�

1
2
ðOt�ljmÞ

0
U�1

jm ðOt�ljmÞ;

ð8Þ

where N denotes a multivariable Gaussian, where l is the

vector of the mean and U is the covariance matrix.

In practice, a mixture of Gaussian densities is used to

generate a distribution that is closest to the real distribution

of the data. For state j associated with a GMM, the prob-

ability of observation Ot is calculated from:

bj Otð Þ ¼
XM

m¼1

CjmNðOt; ljm;UjmÞ; ð9Þ

where M is the number of components of the mixture and

Cjm is the mth weight of the Gaussian of the state j.

In HMMs, Gaussian mixture models are used to repre-

sent the emission distribution of states. The probability of

the vector Ot at each instant t in state j is represented by the

following equation:

bj Otð Þ ¼
YS

S¼1

XM

m¼1

CjsmNðOst; ljsm;UjsmÞ
" #cjs

; ð10Þ

where M is the number of components of the mixture and

Cjsm is the mth weight of the Gaussian of the state j for the

source S.

The exponent c specifies the contribution of each flow to

the global distribution by measuring its corresponding

distribution. We assume that the value of cjs satisfies the

following constraints:

0� cjs � 1 and
XS

s¼1

cjs ¼ 1; ð11Þ

The classification of a speech is fundamentally based on

the value of the observation sequence probability gifted by

the model. This value is calculated for the observation

sequence and for each competitive HMM. Finally, the

sequence is linked to a class, which corresponds to HMM-

GMM that have the utmost probability. To calculate the

probability of the sequence O, given the model k the for-

ward–backward algorithm is often used. The first part of

the forward–backward algorithm allows calculating the

values of forward variables, denoted by:

atðiÞ ¼ P o1; . . .; ot; qt ¼ sinkð Þ; t ¼ 1;T ; i ¼ 1;N; ð12Þ

The following calculation steps lead to the determina-

tion of forward variables:

(1)
Initialization-calculate : a1ðiÞ ¼ pibi o1ð Þ; i ¼ 1;N;

ð13Þ

(2)

induction : atþ1 ið Þ ¼ bi otþ1ð Þ
XN

j¼1

at jð Þaij

" #
; i

¼ 1;N; t ¼ 1; T � 1; ð14Þ

(3)

termination : p Onkð Þ ¼
XN

i¼1

aT ið Þ; ð15Þ

The second part of the forward–backward algorithm

enables us to calculate the backward variables by:

btðiÞ ¼ P otþ1; . . .; oTnqt ¼ si; kð Þ; t ¼ 1; T; i ¼ 1;N; ð16Þ

The calculation of backward variables is as follows:

(1)
initialization : bTðiÞ ¼ 1; i ¼ 1;N; ð17Þ

(2)

induction : bt ið Þ ¼
XN

j¼1

btþ1 jð Þbj otþ1ð Þaij; i ¼ 1;N; t

¼ 1; T � 1;

ð18Þ

(3)

termination : p Onkð Þ ¼
XN

i¼1

b1 ið Þ; ð19Þ

In our experiments and as illustrated in Fig. 3, each

phoneme is represented by a 5-state HMM model with two

non-emitting states (the 1st and 5th states) and a mixture of

2, 4, 8, or 16 Gaussian distributions (the GMM compo-

nent). We used three different types of coefficients

(MFCCs, MFSCs or PLPs) as inputs to train and test the

system.

This HMM-GMM is the baseline system used for

comparison with the two proposed systems, namely the

CNN- and LSTM-based systems.
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2.4 CNN-based system: first proposed system

The principle of a CNN is to perform a convolution

operation that produces filtered feature cards stacked on top

of each other. A conventional neural network has the fol-

lowing characteristics [17]:

• A convolutional layer: This is the basic element of a

CNN. The main purpose of this layer is to extract

characteristics from the input features. The resulting

output of the convolutional layer is given as follows:

Cðxu;vÞ ¼
Xn

2

i¼�n
2

Xm
2

j¼�m
2

f k i; jð Þxu�i;v�j; ð20Þ

where f k is the filter with a kernel size of n� m applied

to the input x, and n� m is the number of input con-

nections to each CNN neuron (unit).

• A pooling layer: This layer reduces the number of

features and makes the learned functions more robust

by making them more invariant to changes in scale and

orientation. Certain functions are used to reduce

subregions, such as taking the average or maximum

value. The max-pooling function given below is used

by our CNN-based system.

M xið Þ ¼ max xiþk;iþlj kj j �
m

2
; lj j � m

2
k; l 2 N

n o
; ð21Þ

where x is the input and m is the size of the filter.

• A Rectified Linear Unit (ReLU): The ReLU is an

operation that replaces all negative values in the feature

map with zero. The goal of ReLU is to introduce

nonlinearity into our CNN-based system because most

of the data we want our CNN to learn are nonlinear.

Other nonlinear functions, such as tanh or sigmoid

functions, can be used, but in most cases, ReLU is more

efficient. Given the input x, ReLU uses the activation

function R(x) = max (0, x) to calculate its output.

• A fully connected layer: This layer takes all the neurons

of the previous layer and connects them to each of its

neurons. Adding a fully connected layer is a good

method for learning nonlinear combinations of these

features. The output of this layer is given by:

F xð Þ ¼ r Wl�k � xð Þ; ð22Þ

where r is the activation function, k is the size of the input

x, and l is the number of neurons in the fully connected

layer. This results in a matrix W.

• An output layer: The output layer is a one-hot vector

representing the class of the given input vector.

Therefore, its dimensionality is equal to the number

of classes. In our work, we used 44 classes. The

resulting class for output vector x is represented by:

C xð Þ ¼ ij 9 i8j 6¼ i : xj � xi
� �

; ð23Þ

• A softmax layer: The error is propagated back over a

softmax layer. Let N be the dimension of the input

vector. Then, the softmax calculates a mapping such

that:

S xð Þ : RN ! 0; 1½ �N ; ð24Þ

For each component 1� j�N, the output is calculated

as follows:

SðxÞj ¼
exjPn
i¼1 e

xi
; ð25Þ

The output of a layer is the input of the next layer, and

most of the features learned from the convolution and

Fig. 3 Baseline system based on

HMM-GMM
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clustering layers may be good. However, the combinations

of these features could be even better.

Conventionally, a CNN consists of several iterations of

this succession of layers. One of the advantages of a CNN

is its relatively rapid training.

The first proposed and implemented system for this

study is the CNN-based system with the architecture

depicted in Fig. 4. The input of the CNN is represented by

several feature maps that are either MFCCs, MFSCs, or

PLPs coefficients. Each input map is represented in two

dimensions composed of 112 frames per phoneme and 39

coefficients per frame, corresponding to 4368 features per

phoneme.

The implemented CNN consists of a single convolu-

tional layer that allows for the output of 64 activation cards

(ReLU), each with a kernel filter of size 39 9 39.

At the output of the convolution layer, we applied max-

pooling downsampling layers (2, 2) to reduce the size of

the activation cards. The reduced output of the max-pool-

ing layer (64 small activation boards) serves as a dense

two-layered input parameter of 500 neurons with a ReLU

activation function. The output of the dense hidden layer is

connected to the output layer, which represents a single

vector. The last layer represents the class of input data (in

this case, 44 classes, which represent the 44 phonemes)

with a softmax activation function. The dropout regular-

ization method (p = 0.5) is only used with dense hidden

layers.

2.5 LSTM-based system: second proposed
system

An LSTM network is a type of RNN that can learn long-

term dependencies between the time steps of sequence

data. It consists of a set of recurrently connected subnet-

works referred to as memory blocks [18], as illustrated in

Fig. 5b. Each memory block contains memory cells to

store the temporal state of the network, as well as three

multiplicative gate units to control the information flow.

The input gate controls the information transmitted from

the input activations into the memory cells, and the output

gate controls the information transmitted from the memory

cells to the rest of the network. Finally, the forget gate

adaptively resets the memory of the cell.

An LSTM network computes a mapping from an input

sequence x ¼ x1; :::; xTð Þ to an output sequence y ¼
ðy1; :::; yTÞ by calculating the network unit activations

using the following equations iteratively from t ¼ 1 to T:

it ¼ r Wixxt þWimmt�1 þWicct�1 þ bið Þ; ð26Þ
ct ¼ f t � ct�1 þ it � g Wcxxt þWcmmt�1 þ bcð Þ; ð27Þ
ot ¼ r Woxxt þWommt�1 þWocct þ boð Þ; ð28Þ
mt ¼ ot � hðctÞ; ð29Þ

yt ¼ £ Wymmt þ by
� �

; ð30Þ

where the W terms represent the weight matrices (e.g., Wix

is the matrix of the weights from the input gate to the

input); Wic, Wfc, and Woc are the diagonal weight matrices

for the peephole connections; the b terms denote the bias

vectors (bi is the input gate bias vector); r is the logistic

sigmoid function; it, ft, ot, and ct are, respectively, the input

gate, forget gate, output gate, and cell activation vectors at

step t; mt is the output of the LSTM layer; � is the ele-

mentwise product of the vectors; g and h are the cell input

and cell output activation functions, respectively; and £ is

the network output activation function. The architecture of

implemented system is depicted in Fig. 5a.

3 Evaluation setup

The evaluation and comparison experiments were carried

out using the Nemours database of pathological voices

[37]. We created subsets (see Sect. 2.1) that allowed us to

carry out experiments and to draw conclusions regarding

Fig. 4 Implemented CNN-based

architecture
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the effectiveness of deep learning approaches to recognize

dysarthric speech.

For comparison and validation purposes, we developed a

baseline system based on HMM-GMM that is similar to the

system described in [42]. Both implemented CNN- and

LSTM-based systems were compared against the HMM-

GMM baseline system. The HTK [43] toolkit was used to

build the HMM-GMM models. The TensorFlow [44] and

Keras [45] tools were used to implement the CNN and

LSTM systems. Different architectures using different

features were investigated to find the best configurations.

Table 4 describes the hyperparameters used to obtain

results on the CNN- and LSTM-based systems.

3.1 Experiments and results

To train the CNN- and LSTM-based systems, we tried

several corpus splitting techniques to extract different data

subsets from the Nemours database. These subsets were

used for training, testing, and validation.

After running the HMM-GMM baseline system as well

as the CNN- and LSTM-based systems on the corpus

threefold middle using MFCCs, MFSCs, and PLP features,

we obtained a global accuracy for each system, as shown in

Table 5.

From these results, we noticed that the best recognition

rate for all speakers was obtained with the CNN-based

system using PLP features and ReLU activation function.

To find the best configuration for the test subsets, mul-

tiple experiments were carried out with different data

repartitions. Table 6 shows the results obtained for speaker

BB after training and testing the CNN-based system of

Fig. 4 and the LSTM-based system of Fig. 5a using dif-

ferent subsets with PLP features. The best performance was

achieved with the threefold middle configuration.

The accuracies were obtained with standard deviations

of rCNN ¼ 3:53 and rLSTM ¼ 2:73. We noticed that the

value of the standard deviation rCNN was higher than

rLSTM , which means that the values of the results with CNN

were more distant from the average compared to the values

with LSTM.

The LSTM-based system was trained and tested using

an architecture consisting of a single LSTM layer com-

posed of LSTM units. We noticed that an increase in the

number of units of the LSTM layer led to an improvement

in the recognition rate of dysarthria speech. Table 7 shows

the recognition rates for the speaker BB with respect to the

LSTM layer size. These rates were obtained with a stan-

dard deviation of r ¼ 3:23.

3.1.1 Effect of the filter size of the pooling layer

Table 8 shows that the ideal pooling layer filter size for the

implemented CNN is 2 9 2 because it yields a better

recognition rate for speaker BB. The best recognition rate

is 75.27% with a standard deviation of 0:95. These results

confirm that the size of the pooling layer has a substantial

impact on the performance of the CNN-based system.

3.1.2 Effect of the kernel filter size of the convolutional
layer

As shown in Table 9, the performance of the implemented

dysarthric speech recognition system is better when the

kernel filter size of the convolutional layer is large. These

results were obtained with a standard deviation of

r ¼ 1:99.

From the results in both Tables 8 and 9, we concluded

that an ideal configuration of CNN is a 2 9 2 pooling layer

filter size and a large kernel filter size for the convolutional

layer.

3.1.3 Effect of the CNN’s fully connected layer size

In this section, we investigate the effect of the number of

neurons and layers of the fully connected layers in the

CNN. Table 10 shows that CNN-based system performance

was better with two fully connected 500-neuron layers than

with a single fully connected layer of 1000 neurons.

3.1.4 Effect of Hamming window size

Table 11 and Figs. 6 and 7 show the impact of the Ham-

ming window size on the automatic recognition rate of

dysarthric phonemes with the CNN-based system of

Fig. 5 a Implemented LSTM-based architecture, b LSTM unit

architecture
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speakers BB, BK, and BV. These results show that for

speaker BB, who presented a low level of dysarthria

severity, the ideal length of the Hamming window was

25 ms.

For the two speakers BK and BV, who presented a high

level of dysarthria severity, we noticed that when

decreasing the size of the Hamming window (to 15 ms),

the performance was better. This is probably due to the

characteristics of dysarthric speech phonemes, where

abnormal phoneme durations are observed, particularly in

the most severe cases.

According to the statistical analysis of the experiments

in Table 11 (see Fig. 6), the values of the standard devia-

tions are, rBB ¼ 1:21, rBK ¼ 0:78 and rBV ¼ 0:49.

Table 4 Hyperparameters used

for experiments using the CNN

and LSTM configurations

CNN LSTM

Input dimensions 112 frames, 39 coefficients 112 frames, 39 coefficients

Batch size 50 50

Number of epochs 200 200

Validation split 0.01 0.01

Dropout rate 0.5 –

Number of filters 65 –

Adadelta algorithm Learning rate = 0.001 Learning rate = 0.001

Rho = 0.95 Rho = 0.95

Epsilon = 1e-7 Epsilon = 1e-7

Table 5 Global accuracy of

phonemes uttered by all

speakers using threefold middle

corpus using MFCCs, MFSCs,

and PLP features

All speakers CNN-based system LSTM-based system GMM-HMM baseline system

Accuracy (%) PLP 58.94 45.71 44.13

Accuracy (%) MFSCs 49.75 47.41 34.53

Accuracy (%) MFCCs 58.24 50.78 43.78

Bold indicates the highest accuracy

Table 6 Corpus splitting influence on BB speaker recognition rate with PLP coefficients in CNN and LSTM

Corpus split

90/10 80/20 70/30 60/40 50/50 Threefold top Threefold middle Threefold bottom

Training ? validation 90% 80% 70% 60% 50% 67% 67% 67%

Test 10% 20% 30% 40% 50% 33% 33% 33%

CNN Acc. (%) 63.93 66.55 68.17 70.46 70.55 72.71 75.27 70.58

LSTM Acc. (%) 58.21 58.36 58.91 64.06 60.60 65.03 61.91 63.75

Bold indicates the highest accuracy

Table 7 Influence of the LSTM layer size on the recognition rate of

the phonemes uttered by speaker BB

LSTM layer size

100 units 120 units 140 units 160 units

Acc. (%) 59.06 61.91 64.18 65.25

Bold indicates the highest accuracy

Table 8 Influence of the filter size of the max-pooling layer in the

CNN on the recognition rate of speaker BB

Filter size of pooling layer (max-pooling)

1 9 2 2 9 2 3 9 3 4 9 4 5 9 5 6 9 6

Acc. (%) 72.71 75.27 73.56 72.71 73.35 73.13

Bold indicates the highest accuracy

Table 9 Influence of the kernel filter size of the convolutional layer in

the CNN on the recognition rate of speaker BB

Kernel filter size of the convolutional layer

6 9 6 39 9 39 112 9 112

Acc. (%) 76.11 75.27 79.07

Bold indicates the highest accuracy
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In Fig. 7, we can see that the recognition rate follows a

normal distribution because most of the observations were

between the mean and mean ± r and 100% of the obser-

vations were between the mean and mean ± 2r.

3.1.5 Effect of acoustic features

We compared three types of features (see Sect. 2) as inputs

to the CNN-based system. Each vector of input features

was composed of 39 coefficients. Table 12 compares the

three types of features, namely MFCC, MFSC, and PLP

coefficients, used as inputs of the CNN-based system.

According to the obtained results, the best recognition rate

was 80.13%, obtained with the PLP coefficients for speaker

FB. In the case of speaker LL, using the MFSCs led to a

recognition rate of 54.16%, which represented the lowest

result. For all cases, the best results were obtained when the

PLP coefficients were used as input features.

Figure 8 describes the statistical analysis of the experi-

ments used to identify the best-performing parameter

among these three coefficients: MFCC, MFSC, and PLP

coefficients.

3.1.6 Effect of activation functions

We carried out experiments using different DNN activation

functions in order to investigate their impact on the per-

formance of the training procedure. A variety of standard

activation functions, namely ReLU [46], AReLU [47], and

SELU [48], were evaluated. Moreover, in the context of the

Table 10 Impact of the number of neurons and layers of the fully connected layer in the CNN on the recognition rate of phonemes uttered by

speaker BB

Fully connected layer sizes

Number of layers Neurons by layer Number of layers Neurons by layer Number of layers Neurons by layer

1 1000 1 500 2 500

Acc. (%)

72.07 70.36 75.27

Bold indicates the highest accuracy

Table 11 Impact of the Hamming window size on the automatic

recognition rate of dysarthric phonemes for speakers BB, BK, and BV

using PLP coefficients on the CNN-based system

Hamming window size

15 ms 20 ms 25 ms 30 ms

Speaker BB: Acc. (%) 73.13 73.13 75.27 72.49

Speaker BK: Acc. (%) 43.97 43.13 42.07 42.92

Speaker BV: Acc. (%) 53.09 53.07 52.64 52.03

Bold indicates the highest accuracy

Fig. 6 Statistical analysis of the impact of the Hamming window size on the automatic recognition rate of dysarthric phonemes for speakers BB,

BK, and BV using PLP coefficients on the CNN-based system
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growing and recent interest in polynomial activation

functions, we have also introduced and evaluated new

functions that we called: Poly1ReLU and Poly2Relu. The

description and evaluation of both standard and new

functions are given in the following subsections.

(a) Rectified Linear Units (ReLU)

The Rectified Linear Units activation function is a

piecewise linear function that will output the input directly

if it is positive; otherwise, it will output zero. It has become

the default activation function for many types of neural

networks because a model that uses it is easier to train and

often achieves good performance [46]. The ReLU activa-

tion function is defined as:

R xið Þ ¼ 0; xi\0

xi; xi 	 0

�
¼ max 0; xið Þ; ð31Þ

where X ¼ fxig is the input of the current layer.

(b) Attention-based Rectified Linear Units (AReLU)

The Attention-based Rectified Linear Units (AReLU)

activation function [47] is given by:

F xi; a; bð Þ ¼ R xið Þ þ L xi; a; bð Þ

¼ C að Þxi; xi\0

1þ r bð Þð Þxi; xi 	 0

�
; ð32Þ

where R xið Þ is the standard ReLU activation function;

L xi; a; bð Þ represents the function in elementwise Sign-

based attention (ELSA) with a network layer having

learnable parameters a and b; C :ð Þ clamps the input vari-

able into [0.01, 0.99]; r is the sigmoid function. AReLU is

expected to amplify positive elements and to suppress

negative ones based on the learned scaling parameters b
and a.

(c) Scaled Exponential Linear Unit (SELU)

The Scaled Exponential Linear Unit (SELU) activation

function [48] is defined as:

SELU xð Þ ¼ k
x; x[ 0

aex � a; x� 0

�
; ð33Þ

where a and k are predefined constants with a = 1.67 and

k= 1.05 in our case.

(d) Poly1ReLU activation function

Fig. 7 Statistical analysis of the impact of the Hamming window size on the automatic recognition rate of dysarthric phonemes for speakers BB,

BK, and BV using PLP coefficients on the CNN-based system

Table 12 Comparison of the correct recognition rate of the CNN-

based system using MFCCs, MFSCs, and PLP coefficients

Acoustic feature

MFCC MFSC PLP

Speaker BB: Acc. (%) 74.20 60.75 75.27

Speaker FB: Acc. (%) 78.22 69.77 80.13

Speaker LL: Acc. (%) 63.33 54.16 63.54

Speaker MH: Acc. (%) 71.88 60.25 72.73

Bold indicates the highest accuracy
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The main idea of using polynomial activation functions

is to learn nonlinearity and to approximate continuous real

values of input data in order to provide the best discrimi-

native model. The proposed Poly1ReLU activation func-

tion can be considered as a first-order polynomial

activation function and is given by:

Poly1ReLU xið Þ ¼
0; xi\0

xi
MAX Xj jð Þ ; xi 	 0

(
; ð34Þ

where X ¼ fxig is the input of the current layer and

MAXðjXjÞ is the maximum of the absolute of X.

(e) Poly2ReLU activation function

We extend polynomial-based activation functions by

proposing a second-order polynomial activation function

Poly2ReLU xið Þ ¼
0; xi \ 0
x2i þ xi
� �

MAX Xj jð Þ ; xi 	 0

8
<

: ; ð35Þ

The second-order polynomial activation function is

expected to have the ability to learn more suitable nonlin-

earity. However, it is important to mention that the order of

the function cannot be increased indefinitely because of the

instability due to exploding gradients. Indeed, despite the

use of normalization which performs the inputs scaling, the

abrupt fluctuations of the high-order polynomials cannot be

prevented in the particular case of pathological speech.

Table 13 presents the results obtained by the CNN-based

system using different activation functions by maintaining

the best features and parameters depicted in the previous

sections: threefold middle cross-validation corpus with

PLP coefficients. From the obtained results, we notice that

the Poly1ReLU activation function gives the best results

compared to the other activation functions.

3.1.7 Effect of the number of Gaussians and mixture
weights on GMM-HMM system

In order to find the best configuration of the GMM-HMM

system, an embedded optimization process is carried out

within the procedure of probability re-estimation to deter-

mine the number of Gaussian mixtures M and the corre-

sponding weighting coefficients c.

The methodology we used to select the number of

mixtures consists of repeatedly increasing the number of

components by a process of mixture splitting until the

desired level of performance is reached. The process

increments the number of mixtures step by step and then

performs a re-estimation which continues until obtaining a

convergence of the estimation probability. Given m mix-

ture components, the probability density function is con-

verted to m ? 1 mixture components by cloning them

through a process where the two resulting mean vectors are

perturbed by adding 0.2 standard deviation to one and

subtracting the same amount from the other. The re-esti-

mation allows a floor to be set on each individual variance

of every mixture, and thus, if any diagonal covariance

component falls below the threshold of 0.00001, then the

corresponding mixture weight is set to zero. The updating

of all parameters is done by using embedded forward–

backward algorithm presented in Sect. 2.3. The re-esti-

mation procedure used in this work is provided by the HTK

Tools [43].

Table 14 presents the results of the GMM-HMM dys-

arthric speech recognition for all speakers. The increased

number of mixtures was presented with the corresponding

Fig. 8 Statistical analysis of the correct recognition rate of the CNN-based system using MFCCs, MFSCs, and PLP coefficients
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sets of optimal weights that were obtained by using the

HTK toolkit [43]. These results show that the best recog-

nition rate for all speakers is obtained with a number of

components M of the mixture Gaussian which is equal to 1.

This result is to a certain extent predictable since the

limited amount of data available to design speaker-de-

pendent systems are not sparse to the point of requiring

multiple mixtures. In this type of systems, the mixture

components have little associated training data, and

therefore, both the variance and the corresponding mixture

weight become very small. The additional mixture com-

ponents are then deleted, and only one Gaussian is retained

to represent the HMM.

3.1.8 Comparison of the CNN- and LSTM-based systems

Table 15 compares the results of the correct recognition

rate obtained by the three different recognition systems,

CNN, LSTM, and HMM-GMM with optimal number of

Gaussians, for each of the ten dysarthric speakers of the

Nemours database.

From these results, the best recognition rate of 82.02%

was obtained with the CNN-based system. The lowest rates

were obtained in the case of speaker BK. This speaker was

the most severely impaired by dysarthria. For all cases, the

best results were obtained when the CNN-based system

was used.

Figure 9 shows the results obtained by the three systems

for speaker BB using PLP features for the eight experi-

mental subsets. According to this graph, the best recogni-

tion rate was obtained with the CNN-based system using

the threefold middle subset.

Figure 10 describes the statistical analysis of experi-

ments used to identify the best-performing system for

dysarthric speech. From Figs. 8 and 10, we noticed that the

recognition rate followed a normal distribution because the

majority of the observations were between the mean and

mean ± r and 100% of the observations were between the

mean and mean ± 2r.

4 Discussion

The results clearly show that the CNN-based system

achieves the best recognition rate compared to the HMM-

GMM- and LSTM-based systems. Theoretically, the

LSTM has a salient feature that makes it a potentially

useful configuration to capture time variability and

dependencies of factors linked to the impact of dysarthria

on the utterances’ duration. However, this capacity was not

demonstrated by the obtained results. Indeed, the CNN

architecture achieved better performance even for the most

severe cases where the prosody of speech is disturbed, the

speech rate is slowed and timing of phonemes is abnormal.

The CNN is thus capable, in the context of speaker-de-

pendent application, of capturing these timing artifacts and

can be used as a robust recognizer of dysarthric speech.

As presented in Table 16, the number of convolution

layers needed for the CNN is one; an additional convolu-

tional layer did not significantly improve the recognition

rate. As for the Kernel filter size and the number of filters

used at the input of the convolutional layer, an increase of

it led to a better recognition rate. The filter size of the

pooling layer, as mentioned in the literature, had a signif-

icant impact on the recognition performance. In addition,

two fully connected layers composed of 500 neurons each

were found to be effective, but no clear rule could be

derived for the number of neurons in the fully connected

layer.

In terms of acoustic analysis, although there is a supe-

riority of PLPs when used in conjunction with CNNs, the

results show that conventional MFCCs remain robust in

recognizing dysarthric speech.

An important finding is related to the optimal frame

duration. The results show that when the level of severity is

Table 13 Impact of activation functions on the accuracy of dysarthric speech recognition

Activation function Accuracy (%) PLP by speaker Global/average

BB BK BV FB JF LL MH RK RL SC

ReLU 75.27 42.28 53.30 80.13 57.51 66.10 72.73 49.03 60.68 50.74 60.77

SELU 72.49 43.34 56.01 80.01 57.99 63.11 72.24 44.51 62.27 51.34 60.33

AReLU 75.05 45.87 57.78 81.60 60.04 65.45 73.15 46.68 62.57 52.85 62.10

Poly1ReLU 73.13 47.78 58.42 82.02 59.40 65.67 75.05 47.34 62.57 55.60 62.69

Poly2ReLU 71.42 45.24 57.14 80.97 58.98 64.17 74.20 44.69 63.84 52.64 61.32

Bold indicates the highest accuracy
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high, it is recommended to use a shorter Hamming win-

dow. This can be explained by the need to adapt to the

distortions induced by impaired speech. This is because a

shorter duration allows the system to cope with the rapid

changes that characterize the high severity levels of

dysarthria.

The threefold cross-validation is found optimal to

evaluate the models’ ability to generalize on unseen data

during the test phase. The experiments confirm that the use

of cross-validation results in a less-biased and a reduced

overfitting estimate compared to simple train/test split

strategy.

Table 14 Influence of the number of components M of the mixture and weighing coefficients c on the recognition rate for all dysarthric speakers

The number of components M of the mixture and weighing coefficients W

M = 1

(c1 = 1.0)

M = 2

(c1 = 0.4;

c2 = 0.6)

M = 3

(c1 = 0.2;

c2 = 0.4;

c3 = 0.4)

M = 4

(c1 = 0.2;

c2 = 0.2;

c3 = 0.2;

c4 = 0.4)

M = 5

(c1 = 0.2;

c2 = 0.2;

c3 = 0.2;

c4 = 0.2;

c5 = 0.2)

M = 6 (c1 = 0.2;

c2 = 0.2;

c3 = 0.2;

c4 = 0.2;

c5 = 0.1;

c6 = 0.1)

M = 7 (c1 = 0.2;

c2 = 0.2; c3 = 0.2;

c4 = 0.1; c5 = 0.1;

c6 = 0.1; c7 = 0.1)

M = 8 (c1 = 0.2;

c2 = 0.2; c3 = 0.1;

c4 = 0.1; c5 = 0.1;

c6 = 0.1; c7 = 0.1;

c8 = 0.1)

Speaker

BB:

Acc.

(%)

50.00 50.00 50.00 50.00 47.10 49.21 49.24 50.00

Speaker

BK:

Acc.

(%)

31.39 30.11 30.11 30.11 29.45 30.78 30.78 30.11

Speaker

BV:

Acc.

(%)

46.00 45.33 45.33 45.33 42.67 45.33 45.33 45.33

Speaker

FB:

Acc.

(%)

49.31 49.20 49.20 48.67 47.33 49.23 49.20 48.67

Speaker

JF:

Acc.

(%)

45.14 44.00 43.33 41.33 42.00 38.00 42.67 42.67

Speaker

LL:

Acc.

(%)

46.00 45.33 44.00 42.67 43.33 43.33 43.33 43.33

Speaker

MH:

Acc.

(%)

34.67 34.00 34.00 34.67 34.00 33.00 33.00 33.00

Speaker

RK:

Acc.

(%)

45.33 45.33 42.67 42.00 42.00 41.33 41.33 42.00

Speaker

RL:

Acc.

(%)

42.00 42.00 40.67 40.00 16.00 35.33 40.00 40.00

Speaker

SC:

Acc.

(%)

42.67 40.58 40.00 39.33 34.00 40.00 41.33 40.00

Bold indicates the highest accuracy
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Table 15 Comparison of the correct recognition rate of the three systems for all speakers using PLP features and the threefold middle corpus

Speaker/model HMM-GMM system (%) CNN-Poly1ReLU-based system (%) LSTM-based system (%)

BB 50.00 73.13 61.91

BK 31.39 47.78 32.77

BV 46.00 58.42 46.70

FB 49.31 82.02 71.46

JF 45.14 59.40 47.99

LL 46.00 65.67 53.73

MH 34.67 75.05 65.54

RK 45.33 47.34 32.30

RL 42.00 62.57 55.39

SC 42.67 55.60 37.84

The best results are in boldface

Fig. 9 Comparison results of the

CNN-, LSTM-, and HMM-

GMM-based systems for

speaker BB using PLP features

on the eight subsets

Fig. 10 Statistical analysis of the correct recognition rate of the three systems for all speakers using PLP features and the threefold middle corpus
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In the context where there have been several studies on

selecting optimal activation function, we have also inves-

tigated different types of activation functions considering

their potential of improving the performance of DNN

systems. ReLU is one of the most widely used activation

functions because it is easier to use in CNN training and

often achieves satisfactory performance. However, the

obtained results showed that in the case of dysarthric

speech recognition, it is recommended to replace it by the

AReLU or by the polynomial functions we propose. The

idea of using polynomial activation functions seems

effective and thus provides the best discriminative model.

The Nemours database is used throughout this study.

The quantity of samples extracted from this collection of

pathological data can be considered insufficient when it

comes to train deep learning networks. To face this chal-

lenge, we have opted for two strategies that have been

found effective when analyzing the outcomes. The first

strategy was to design the recognition systems targeted on

each dysarthric speaker, which limits the use of a high

number of samples in contrast to speaker-independent

configurations. The second strategy consisted of using the

k-fold cross-validation method to split the training and test

data, which is often recommended in the case of small

samples.

One of the main characteristics of dysarthria is its

extreme inter-speaker variability. The general interpreta-

tion of the promising results obtained through this study

leads us to conclude that a further work is required in order

to perform a kind of prior classification of different vari-

eties of dysarthria and/or their corresponding severity

levels before recognition. Therefore, the acoustical and

DNN parameters investigated in this study might be seen as

not only the best values for recognition, but they may also

be associated with a particular type of dysarthria or group

of impairment varieties; that is, it may be that they are

interpreted as impairment-specific. Studies of other dysar-

thria or speech impairment varieties are needed to follow

up on these issues.

5 Conclusion and future work

In this paper, several solutions have been proposed to bring

advancements in using deep learning architectures in the

context of dysarthric speech recognition. Two DNN-based

architectures, namely CNN and LSTM, have been imple-

mented and compared with a statistical HMM-GMM-based

system.

The first contribution made by this study pertains to the

design of a robust speaker-dependent dysarthric speech

recognition system using a CNN-based model using dif-

ferent activation functions. The performance of the ReLU,

AReLU, and SELU standard activation functions has been

compared to two polynomial functions Poly1ReLU and

Poly2ReLU that we proposed as alternative to the con-

ventional functions.

The CNN configuration using the proposed Poly1ReLU

activation function achieved the best recognition rate of

82%, which is obtained by a speaker with a mild severity

level of dysarthria. The CNN score represents an

improvement of 11% and 32% when compared with the

performance of LSTM- and HMM-GMM-based systems,

respectively.

The second contribution consisted of presenting the

results of a benchmark study that enhanced the under-

standing of the challenges encountered when creating

optimal deep learning models of dysarthric speech. This

comprehensive investigation, carried out on the Nemours

publicly available dataset, may have an impact on selecting

the best architecture of pathological speech processing

applications in the future. These results have shown the

ability of the speaker-dependent CNN architecture to deal

with the most severe cases of dysarthria by capturing the

relevant timing artifacts.

The third contribution provided new insights by inves-

tigating the ability of acoustic modeling using perception

and hearing mechanisms of yielding more robustness to

dysarthric speech recognition systems. The performance

assessment of three acoustical analyzers using auditory

perception modeling, namely the MFCCs, the MFSCs, and

the PLP coefficients, was carried out. The results demon-

strated competitive performance of the PLP analysis when

used in conjunction CNNs.

The fourth contribution consisted of presenting a com-

prehensive investigation that advances practical knowledge

related to the waveform preprocessing in order to improve

the performance of deep learning dysarthric speech rec-

ognizers. This improvement was reached by optimizing the

framing duration and finding the best structure of the

datasets that reduces the risk of bias and overfitting.

The main challenge faced by this study remains the

availability of a large amount of data needed to train deep

Table 16 Configurations for CNN and LSTM models

CNN versus LSTM

CNN LSTM

Number of convolution layers 1 –

Kernel filter size (frequency 9 time) 112 9 112 –

Pooling size (frequency 9 time) 2 9 2 –

Number of filters in convolution layer 64 –

Number of LSTM units – 160

Number of layers 4 1
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learning algorithms in order to reach their full potential.

The lack of data affects the speech recognition of impaired

speech in more than one way. In the context where we are

currently witnessing the change of a paradigm moving

from signal processing and expert knowledge modeling

into highly data-driven approaches, the mitigation of the

risk linked to the lack of appropriate and representative

data for training should be addressed.

In future work, we plan to implement sequence-to-se-

quence architectures that will benefit from transfer learning

to integrate the knowledge of pretrained networks on

multiple datasets to cope with the limited availability of

pathological speech data. Besides this, a data augmentation

approach will be used to perform further training of

impairment-specific DNN-based dysarthric speech

recognizers.
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