
S.I. : DEEP SOCIAL COMPUTING

HeteGraph: graph learning in recommender systems via graph
convolutional networks

Dai Hoang Tran1 • Quan Z. Sheng1 • Wei Emma Zhang2 • Abdulwahab Aljubairy1 • Munazza Zaib1 •

Salma Abdalla Hamad1 • Nguyen H. Tran3 • Nguyen Lu Dang Khoa4

Received: 2 June 2020 / Accepted: 27 December 2020 / Published online: 8 January 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

Abstract
With the explosive growth of online information, many recommendation methods have been proposed. This research

direction is boosted with deep learning architectures, especially the recently proposed graph convolutional networks

(GCNs). GCNs have shown tremendous potential in graph embedding learning thanks to its inductive inference property.

However, most of the existing GCN-based methods focus on solving tasks in the homogeneous graph settings, and none of

them considers heterogeneous graph settings. In this paper, we bridge the gap by developing a novel framework called

HeteGraph based on the GCN principles. HeteGraph can handle heterogeneous graphs in the recommender systems.

Specifically, we propose a sampling technique and a graph convolutional operation to learn high-quality graph’s node

embeddings, which differs from the traditional GCN approaches where a full graph adjacency matrix is needed for the

embedding learning. We design two models based on the HeteGraph framework to evaluate two important recommen-

dation tasks, namely item rating prediction and diversified item recommendations. Extensive experiments show the

encouraging performance of HeteGraph on the first task and the state-of-the-art performance on the second task.

Keywords Recommender systems � Graph convolutional network � Heterogeneous graphs � Neural networks

1 Introduction

Nowadays, online users are surrounded with huge amount

of information, and having great difficulty when making

decision from online services such as e-commerce, music

and news. Recommender systems have been developed and

adopted as effective solutions, where users are recom-

mended items tailored to their needs and preferences. Due

to their practicality, recommender systems have been an

active research field until now. The early methods were

mainly based on the principles of the neighbourhood col-

laborative filtering and content-based filtering [1]. Then,

model-based methods became dominant thanks to their

efficiency and accuracy, especially the matrix factorization

approaches [2].

However, in recent years, we are seeing an increasing

amount of deep learning methods that contribute greatly to

this field. Several new approaches using deep learning

methods have been applied and achieved promising results

[3–6]. Particularly, the combination of deep learning

methods and graph methodologies are commonly used to

& Dai Hoang Tran

dai-hoang.tran@hdr.mq.edu.au

Quan Z. Sheng

michael.sheng@mq.edu.au

Wei Emma Zhang

wei.e.zhang@adelaide.edu.au

Abdulwahab Aljubairy

abdulwahab.aljubairy@hdr.mq.edu.au

Munazza Zaib

munazza-zaib.ghori@students.mq.edu.au

Salma Abdalla Hamad

salma-abdalla-ibrahim-mah.h@students.mq.edu.au

Nguyen H. Tran

nguyen.tran@sydney.edu.au

Nguyen Lu Dang Khoa

Khoa.nguyen@data61.csiro.au

1 Macquarie University, Sydney, Australia

2 The University of Adelaide, Adelaide, Australia

3 The University of Sydney, Sydney, Australia

4 CSIRO Data61, Sydney, Australia

123

Neural Computing and Applications (2023) 35:13047–13063
https://doi.org/10.1007/s00521-020-05667-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-0636-377X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05667-z&domain=pdf
https://doi.org/10.1007/s00521-020-05667-z

solve recommendation problems, thanks to their synergy.

The common workflow of this combined approach is

illustrated in Fig. 1. The complete workflow involves

multiple steps. Typically the raw data get converted to

graph-structured data, then an embedding process will

learn the graph’s node embeddings, and use these embed-

dings in a deep neural network model to generate

recommendations.

A very crucial part of the workflow in Fig. 1 is the

embedding method. A meaningful embedding can encode

important properties of either the nodes, the edges, the

local node’s neighbourhoods or the entire graph depending

on what specific applications we want to solve. For the

solving of recommendation problems, we usually need to

learn the node embeddings with the purpose of finding a

group of similar nodes as recommendations. As such, a

major component of solving recommendation tasks using

deep learning model with graph is to have a good

embedding learning algorithm. Especially, finding high-

quality embeddings that have low dimension from the

graph entities is very important. Over the years, the

research space of graph embedding has grown rapidly and

several deep learning methods have been developed to

learn graph-structure data embeddings effectively [7].

One popular approach in deep learning that recently has

spurred a lot of exciting developments is the graph con-

volutional networks (GCNs) [8]. GCNs are neural network

models that have been designed to work with graph-

structured data using graph adjacency matrix. Based on

GCNs, GraphSage [9] is another prominent method to learn

graph-structured data via graph convolutional operation

(GCO) and random-walk sampling technique to reduce the

memory footprint, as well as having the inductive learning

capability. However, these proposed methods originally

work with homogeneous graph data, while

recommendation problems are mostly based on heteroge-

neous data types. The main challenge of working with

heterogeneous data is the coalescing of multiple semantic

data types into one uniform embedding. We give an

example of a movie recommendation problem modelled as

a heterogeneous graph in Fig. 2. In this recommendation

scenario, we have heterogeneous node types such as user

nodes and movie nodes, each having their own attributes.

The rating between a user and a movie is represented as the

connected edge. Additionally, each node or edge can have

its own set of attributes such as movie genre and title or

user age and location. Our objective of this recommenda-

tion problem is to predict which movies to be recom-

mended to a user based on their previous rating interactions

as well as their attributes.

Our work in this paper follows the new direction of

using deep learning in solving recommendation problems.

Particularly, we look at the problem of making recom-

mendations as link prediction task in graph, because we

can construct recommendation data input as a bipartite

heterogeneous graph. We present our work in handling

heterogeneous graph-structured data of the recommenda-

tion problems based on the recent developments of GCN

techniques. We aim to bridge the gap with current limita-

tions of GCN techniques and heterogeneous data challenge

by building our framework called HeteGraph. HeteGraph

exploits the users’ and items’ attributes, their neighbour-

hood information, and the edge weight to learn useful

embeddings, then feeds these embeddings into downstream

recommendation tasks. With this novel architecture for

learning heterogeneous node embeddings, we continue to

tackle two recommendation tasks.

The first task is item rating prediction. It is about

making a rating prediction between a user and an item,

which is a fundamental task of a recommender system.

Original
Data

Construction of graph data Embedding Strategy Neural Network Model Recommendations

Return recommended items to user

Fig. 1 Common workflow of deep learning recommender systems

using graph-constructed data. Users, items and the interaction

information are constructed as graph-structured data. Then, the

embedding method will derive the useful embeddings of those data

which will be fed into deep neural network model. The final result is

usually the top-k recommendations for a particular user

13048 Neural Computing and Applications (2023) 35:13047–13063

123

Specifically, we want to show that using GCO technique

can help generate more accurate rating predictions based

on user and item interactions. The second task is the ability

to generate a diversified list of items to recommend to an

active user. This second task, namely diversified item

recommendations, has a different objective to the first one,

which is to put more focus on the novelty of the generated

recommendations. Novelty in the recommendations may

give an active user a surprise as she discovers unanticipated

items based on her previously interacted items, thus it can

improve her satisfaction from the recommendations. In our

evaluations, HeteGraph framework is able to make rec-

ommendations for both tasks with positive performance.

Overall, our work on HeteGraph framework allows us to

contribute several aspects in solving recommendation

problems based on graph convolutional principles. Our

main contributions of this work are as follows:

• An adapted graph convolutional operation from the

GCN approaches to work with heterogeneous graph-

structured data. This process includes the heteroge-

neous neighbourhood sampling and the adapted GCO to

learn graph embeddings. These embeddings will then

can be used for different recommendation applications.

• A novel framework named HeteGraph based on our

adapted GCO to solve challenging recommendation

tasks. We conduct experiments with two recommenda-

tion tasks that have different objectives as a proof of

concept to show how HeteGraph can help solve

recommendation problems.

• The strong performant evaluation on item rating

prediction and diversified item recommendations tasks

by using the HeteGraph framework on two real-world

datasets.

This work is an extended version from our previous work

accepted in the World Congress on Computational Intelli-

gence Conference (WCCI 2020). Compared to the previous

work, we provide a more in-depth model explanation, and

elaborate more details in the evaluation process, including

the model-parameters tuning procedures through our

observation. The rest of this paper is organized as follows.

In Sect. 2, we overview the related works on recent

researches of GCNs and its applications in recommender

systems. We detail the HeteGraph framework architecture

in Sect. 3. We illustrate the recommendation application

models in Sect. 4. The evaluations are described in Sect. 5,

and we conclude our work in Sect. 6.

2 Related work

In recent years, the works on embedding learning of graph-

structured data have gained significant attention. The core

mechanic of the graph embedding learning is to find a node

embedding method to embed the node data into tensor

form, then these tensors are applied into various

Bob

Alice

Peter

Elen

Miki

 Name: Bob
 Age: 25
 Job: Officer

 Genre: Drama
 Year: 1998

Fig. 2 Example of a heterogeneous graph in a movie recommender

system. There are user node type and movie node type. Each node

type has its own attributes. The edges (lines) between these nodes are

their interactions which in this case is the rating that a user gives to a

specific movie. The rating score is represented by the thickness of the

edge. The dash line is the rating prediction that the system wants to

perform

Neural Computing and Applications (2023) 35:13047–13063 13049

123

downstream machine learning tasks. We outline here the

mainstream graph embedding approaches and how they are

used in recommender systems.

2.1 Graph embedding approaches

Matrix factorization approaches In the early development,

the classical methods to learn node embedding of graph-

structured data are spectral clustering [10], PageRank [11]

and multi-dimensional scaling [12]. Based on these early

works, several new and enhanced methods for deriving

node embedding using random-walk and matrix factoriza-

tion have been proposed [13–17]. One limitation of these

algorithms is the transductive inference, because they train

node embedding for each individual node. As such, new

nodes which did not appear during the training phase can

have poor inference for certain machine learning tasks.

Still, a notable exception is the algorithm Planetoid [18],

which is a semi-supervised embedding approach that can

produce inductive inference. The main difference of Plan-

etoid from our framework is that we leverage the graph-

structure data for inference, while Planetoid just uses the

graph-structure data for regularization in the training phase.

Supervised learning approaches Aside from the matrix

factorization approaches, supervised learning of the graph-

structured data is another popular approach, such as the

graph kernel methods [19] or recent neural network algo-

rithms [20–22]. These early works of leveraging deep

learning methods have inspired the development of recent

advanced methods of GCNs. The main difference of those

approaches from our work is the objective. We focus on

learning node embedding for downstream machine learn-

ing tasks, while previous approaches put their focus on

learning and classifying the whole graph.

Graph convolutional network approaches GCNs have

been a rising trend recently for the task of learning node

embedding. The terminology of ‘‘graph convolution’’ is

originated by the seminal work of Bruna et al. [23], where

the concept was developed based on special graph theory.

Continuing this line of research, several other researchers

proposed improvements and extensions of this spectral

convolution [8, 9, 20, 24–29], and provided new state-of-

the-art performance on benchmarking tasks such as node

classification and link prediction. These successes have

popularized these GCN algorithms, and researchers started

to use them to solve other graph-structured data problems

such as recommendation or drug-design tasks [27, 28].

However, a strong limitation of these spectral GCN

approaches is the requirement of the entire graph Laplacian

L during the training phase [8], which is a prohibitively

expensive operation for large graphs. To address this issue,

GraphSage [9] employed the random-walk technique to

sample node’s neighbourhood and performs GCO on the

target node and its sampled neighbourhood to train the

model. This new approach significantly reduces the mem-

ory consumption, and also removes the burden of working

with the whole graph Laplacian matrix. Our framework is

inspired by the work of GraphSage, and we improve it to

work with heterogeneous graph-structured data, that is

suitable for recommendation tasks, while the work of

GraphSage only deals with homogeneous graph. Addi-

tionally, by extending the handling of graph data into

heterogeneous setting, we enable more machine learning

applications to deploy with our framework in compare to

the limited amount of machine learning tasks in Graph-

Sage. Due to this extension, our work cannot be measured

against GraphSage evaluation since GraphSage did not

provide recommendation task measurement in the original

work.

2.2 Recommender systems based on graph
convolution

Recommender systems have been traditionally relied on

collaborating filtering approaches such as K-nearest

neighbour or matrix factorization [1]. The field was seeing

a stable adaption in the e-commerce industry such as

Amazon and Netflix services. However, deep learning has

changed the landscape of recommender algorithms.

Researchers have used advanced models of deep learning

to improve the recommender systems, such as autoencoder

[4], recurrent neural network [3], and wide and deep model

[30]. Given the heterogeneous and graph-structured data

properties of the recommender systems, there is a strong

synergy by using deep learning methods with graph algo-

rithms to solve recommendation tasks.

Henceforth, it is expected to see new recommender’s

algorithms that leverage the convolution operation of the

GCN’s principles. However, these works either rely on

spectral convolutional approach [29] or belong to a pro-

prietary and specific service’s task [31]. Therefore, our

purpose in developing HeteGraph is to have a flexible and

general framework that can handle common recommen-

dation tasks, while leveraging the strong aspects of the

GCO technique.

3 HeteGraph architecture

Our framework architecture is illustrated in Fig. 3. Hete-

Graph comprises of four phases, each of them handle a

specific operation. The whole sequential process can be

described as follows. For each node in the graph, we collect

its neighbourhood via random-walk technique and learn the

node embedding using our adapted GCO technique (Phase

1 and 2). We can learn the node embeddings either in

13050 Neural Computing and Applications (2023) 35:13047–13063

123

supervised or unsupervised manner depending on the

specific application model (Phase 3). These embeddings

are then used as inputs to solve the targeted recommen-

dation task (Phase 4).

3.1 Phase 1—Node neighbourhood sampling

The learned embedding of each node in the HeteGraph

model encodes both the node’s attributes as well as its

neighbourhood’s attributes, thus we need to sample the

node’s neighbourhood first to handle the graph hetero-

geneity. Figure 4 shows our sampling strategy using the

random-walk technique. For a user node, we sample its

neighbourhood by walking through an item node to reach

the next user node via the connected edges. Similar strat-

egy is applied for the item node. Due to the heterogeneity

aspect, we need to use a 2k hop (k 2 N; k[0) so that each

node can walk to other same-type nodes. For example, with

k ¼ 1, user A can reach user B via one common item I with

2-hop (both users have rated item I). Likewise, with k ¼ 2,

we can find connection between a user pairs or item pairs

via 4-hop. By increasing k, we can sample each node

neighbourhood with longer path, but at the expense of

having lower relevancy between each connection, and

longer sampling process.

Due to these drawbacks and with extensive experiments,

we have decided to employ a 2-hop walking distance in our

model (k ¼ 1), since it gives the best performance in our

algorithms based on the evaluations. The edge between a

user-item node-pairs during the walk represents their

interaction, and the edge weight represents that interaction

affinity between a user-node and item-node. We leverage

the edge weight to bias our walks when sampling. For

instance, in the case of movie recommendation problem,

edge weight is the rating value. We define a relevant

threshold d. During the walk, edges with weight higher

than d are selected in random orders. This helps HeteGraph

to guide the random-walk process effectively. Therefore,

for any node type, we can sample its neighbourhood with

high relevance. This process is repeated several times for

each node, forming a set of paths NBp ¼ fp1; p2; . . .; pig
and each path pi contains heterogeneous nodes

pi ¼ fn1; n2; . . .; nkg. The cardinality of jNBpj and jpij is
both predefined constants.

Algorithm 1 describes the implementation in pseu-

docode. First, we start the random-walk process by

selecting the first target node n (line 7). Its neighbourhood

is retrieved and sorted by connected edge weight in

descending order (lines 9–10). To avoid getting fixed

neighbourhood of node n for every sampling, we keep k þ
c highest edge weight neighbourhood nodes, then select

random k nodes from this ‘‘k þ c list’’ (lines 11-12).

Finally, we select a random node rnbi in the ‘‘k list’’ and

add it to the ith path of K sampling paths (line 13). The rnbi
is the next target node of the path-forming process (line 14)

until we retrieve D nodes for this ith path (line 5). This

random-walk process is repeated until we sample K paths

for the node n’s neighbourhood NBn (line 3).

User

Activation

Embedding

Application Model

Convolution &
Pooling

Feature Extraction

Neighbouring nodes

Sampling

Feature Extraction

Phase 1
Sampling

Phase 2
Convolution

Phase 3
Embedding

Phase 4
Application Model

Fig. 3 The HeteGraph recommender framework for heterogeneous

graph-structured data. In Phase 1, we sample the user neighbourhood.

In Phase 2, we perform our GCO technique on the user and its

neighbours features. In Phase 3, we learn the embeddings, and the

embedding learning strategy depends on the application model of

Phase 4

Neural Computing and Applications (2023) 35:13047–13063 13051

123

Hop 2

Hop 1

: User Node

: Item Node

: Path p

: Connected Edge

Fig. 4 HeteGraph

neighbourhood sampling

strategy. For a certain node of

type v, we perform a 2-hop

random-walk to reach the next

neighbour node of the same type

v. The walking path is biased by

the connected edge’s weight

13052 Neural Computing and Applications (2023) 35:13047–13063

123

3.2 Phase 2—Graph convolutional operation

3.2.1 Feature extraction

As the GCO uses the node’s attributes to learn the

embeddings, we need to convert the raw attribute data of

each node into a vectorized form. We use different tech-

niques to transform raw data into vector inputs depend on

the attribute data types. The detailed transformation is

outlined as follows:

– Text data type

Certain node attributes contain text description such

as item’s title, item’s summary. To transform these

textual attributes to vectorize form, we use pre-train

word embedding such as [32] for each word, then we

apply an GRU neural network [33] to translate them

into a fixed size vector.

– Category data type

Few node attributes contain categorical data type,

such as user’s location, and item’s genre. To transform

these categorical attributes to vectorize form, we use

one-hot-encoding technique to transform them into a

fixed size vector.

– Numerical data type

For numerical data type attributes such as user’s age,

we apply the scaling transformation by using the

standard score formulation as follows:

z ¼ x� l
r

ð1Þ

where l is the mean of all samples, and r is the stan-

dard deviation of all samples.

– Rating scale

Finally, for the rating score as the interaction

between a user node and item node, depending on the

application models, we scale it differently. During the

experimentation, we mostly use the explicit ratings

value as the ground true values without any transfor-

mation. But when we perform ranking tasks which are

not included in this paper, we transform them in

implicit rating values that are zero and one.

With the transformation taking place, each node will be

extracted as a featured vector in the graph. For the user-

item bipartite graph, we remove all isolated nodes to

reduce the graph’s size. Finally, we split the ratings

(graph’s edges) into training set and test set with a ratio of

80% and 20%, respectively.

3.2.2 Convolutional operation

After each node gets its sampled neighbourhood, which is

denoted by a set of bias random paths

NBp ¼ fp1; p2; . . .; pig, they become the inputs for our

adapted GCO algorithm. This GCO process is critical

because it extracts the prominent characteristics of a node’s

neighbourhood, and puts them into the node embedding.

The main reason for doing this is to train our model to be

able to infer node into node-embedding transductively,

thanks to its local neighbourhood. Each node has its own

neighbourhood, and similar nodes will have similar

neighbour nodes. By training our model to be able to learn

each node in conjunction with its neighbourhood proper-

ties, we allow to model to extract patterns of each node

relationship with others regardless of node type or node

location. As such, even when a new node is added to the

graph, our model still can infer its embedding quickly

without replying on the whole graph structure. This is why

GCO process is vital for HeteGraph.

Neural Computing and Applications (2023) 35:13047–13063 13053

123

Algorithm 2 describes our approach. The GCO involves

two operational layers, the neighbourhood attribute

aggregation (NAA) layer and the attribute pooling layer.

The NAA layer takes each neighbourhood set of paths,

transforms each path to an attributed tensor by combining

all node’s attributes in that path via concatenation opera-

tion. The final aggregated tensor of each neighbourhood is

fNBn
¼

attp1

attp2

:::

attpi

2
6664

3
7775; ð2Þ

where attpi is the combined attributes of all nodes nk in path

pi of the neighbourhood NBn (line 4). These neighbourhood

tensors fNB will be fed into the next attribute pooling layer.

Similar to the pooling operation in a traditional convolu-

tional neural network, our attribute pooling layer extracts

the most prominent characteristics of the fNB. Since it is

very important that the attribute pooling layer’s output is

symmetric (permutation of its inputs will not change the

output), we apply the symmetric pooling method called

‘‘mean pooling’’ after an activation function:

fPOn
¼meanðrðWpool � fNBn

ÞÞ; ð3Þ

mean

x11 . . . x1m

..

. . .
. ..

.

xn1 . . . xnm

2
664

3
775

0
BB@

1
CCA ¼

Pn
i¼1

xi1

n
. . .

Pn
i¼1

xim

n

2
4

3
5

ð4Þ

The attribute pooling layer comes with its own weight

parametersWpool and performs the mean operation (4) over

the aggregated neighbourhood tensor fNB to form the

pooling neighbourhood tensor fPOn
(line 5). Afterwards, the

pooling neighbourhood tensor fPOn
is concatenated with its

original node attributes tensor (line 6). Finally, we apply

nonlinear activation function r and normalization opera-

tion on the combined tensor, which we call the convolved

tensor z, then use this z tensor in the embedding phase

(lines 7–8).

3.3 Phase 3—Embedding learning strategy

The embedding phase is the next step in the process of

learning node embedding of the heterogeneous graph. To

learn the embedding process of each node during the

training, we apply a particular loss method depending on

the application model. The reasons for this decision are the

strong connection of node embedding with its application.

A rating prediction task has a different interpretation for

node embedding than a ranking prediction task. Hence-

forth, in the HeteGraph framework, embedding phase and

application phase are tightly coupling together. In this

work, we employ two type of loss functions for two dif-

ferent embedding strategies. Firstly, we have a supervised

model where we use the ‘‘root-mean-square error’’ (RMSE)

loss function to train the model on every pair of user-item

interactions.

LRMSE ¼
ffi
1

n
Rn
i¼1

�
ri � yi

�2
r

: ð5Þ

The RMSE value is also a standard measurement metric for

the accuracy of recommendation problems based on

explicit feedback. In Eq. (5), ri and yi are the predicted

rating and the actual rating, respectively.

Secondly, when we want to learn the node embeddings

in an unsupervised manner, we apply an adapted version of

hinge loss (HL) function with negative samplings to opti-

mize the model parameters. For a user-item node-pairs

(u, i) that has high edge weight value, we want the dot

product of their convolved tensor zu and zi to have a higher

value than the dot product of the user-item node-pairs

(u, j), which has lower edge weight value (negative item).

LHLðzuziÞ ¼ Enegu �PnegðuÞmaxf0; zu � znegu � zu � zi þ Cg:
ð6Þ

Equation (6) shows our adapted HL function. PnegðuÞ is the
probability distribution of the negative samplings for user u

(irrelevant items to user u), C is the margin hyper-param-

eter and znegu is the negative convolved tensor from the

negative items sampling negu of user u. Our negative

sampling technique is inspired by the work of T. Mikolov

et al. [34]. We first select k random item nodes of the

graph. Then, out of those k items, we remove the ones that

have high edge weight value with user node n. The LHL
value is then optimized by using back-propagation with

stochastic gradient descent method.

3.4 Phase 4—Application models

As mentioned in Sect. 3.3, the embedding learning strategy

of Phase 3 depends on the application model for a partic-

ular recommendation task. In our work, we aim to tackle

two recommendation scenarios, which are (1) item rating

prediction and (2) diversified item recommendations. We

derive a supervised model for the first task, and an unsu-

pervised model for the second task. We purposely choose

these two different tasks with a contrasted way of model

training to evaluate how effectively the GCO technique can

be applied in solving recommendation problems. Addi-

tionally, these two tasks are also the canonical examples of

recommendation tasks. The detail of our application

models is explained in the next section.

13054 Neural Computing and Applications (2023) 35:13047–13063

123

4 Recommendation application models

We evaluate the HeteGraph framework by building a

supervised model for task 1: item rating predictions, and an

unsupervised model for task 2: diversified item recom-

mendations. They represent different real-world scenarios

of the recommender system’s applications.

4.1 Model 1—Item rating predictions

Predicting item ratings for an active user is the most fun-

damental task of a recommender system, and based on

these predicted ratings, a list of top-k relevant items is

served to the active user. This is the typical feature of

e-commerce/media consumption services such as book

recommendations of Amazon [35] or movie recommen-

dations of Netflix [36]. In these scenarios, a user expresses

her interest for an item via a rating score, usually in the

numerical range such as from 1 to 5, whereas a low score

provides the least favourable expression and a high score

shows huge interest of the user to the item. Alternatively,

when the system does not have an explicit rating mecha-

nism, implicit rating mechanism can be deployed. Very

often, we have e-commerce services that do not provide

rating feedback to users. Thus, to record a user interaction

with an item, implicit signals from the system can be used

such as item clicks, item checkout, etc. These implicit

signals can be encoded as rating 1, otherwise 0 for non-

interactive items. The HeteGraph framework can handle

both rating styles. Due to the choice of datasets, we use the

explicit feedback scenario for our first model. But the other

implicit rating scenario should work the same for any other

recommendation datasets. From the graph perspective, we

can consider this task as the link prediction or the link

attribute inference problem between a user node and an

item node. Given an unconnected user-item node-pairs, we

want to predict whether this node-pairs should form an

edge, based on the node-pairs’ attributes and its neigh-

bourhood. In case of link attribute inference, we also want

to predict the weigh value of this edge if we use explicit

rating feedback.

In this work, we build the first model for the rating

prediction problem by using the feed-forward neural net-

work multilayer perceptron (MLP). As depicted in Fig. 5,

for every known rating between a user-item pair, we rep-

resent its feature vector input as an edge embedding vector

ej. The edge embedding ej is formed by concatenating the

user convolved tensor zuj and item convolved tensor zij with

the attention layer au;ij . The input ej is then fed into the

MLP network, which can have multiple hidden layers and

one output layer. The output layer of the MLP network

contains the predicted rating. We use two hidden layers for

this MLP network during our training and evaluation steps.

To train this model, we split each dataset into a training set

and a test set with a ratio of 80% and 20%, respectively.

Through Phase 1 to Phase 3 as explained in Sect. 3, we

learn the edge embedding and use them as the model

inputs, and we use the true explicit rating of that user-item

node-pairs as the model output. The whole model is then

optimized using RMSE loss to learn the shared weight

parameters W between all training users’ attributes and

items’ attributes. We denote this model as HeteGraph

Supervised Attention Model (HeteGraphat sup). This is the

enhanced version in compare to our previous conference

model HeteGraphsup.

4.2 Model 2—Diversified item recommendations

While the first model concerns about the HeteGraph per-

formance on the common task of a recommender system,

which is rating prediction, we also would like to explore a

new and less popular task in our second model. Our pur-

pose is to see other practical aspects of graph convolution

approach in a recommender system. Therefore, we derive a

model to recommend items for their diversity. Very often,

diversity plays an important role in a recommender service.

For instance, a travel service should recommend excited

and unexplored local places for their users in a new travel

destination since those are quite often the main motivation

for many travellers. Another example where recommend

diversified items can excel in increasing user satisfactory is

the online video services. For example, researchers from

YouTube show how improving diversity in their recom-

mendations increases user engagement with their service

[37].

Diversity concept can be quite opinionated depend on

the applications. Thus in our application, we consider the

diversity of items is based on the item attributes. A

majority of items are considered to have certain common

attributes based on their local community. For instance, in

the movie recommendation problem, a very common

movie attribute is the genre. But if we look at the global

scale of movies in different countries, another common

attribute of movie is the language. Hence, if we want to

recommend relevant movies, we recommend movies with

similar common attributes such as both genre and lan-

guage. But any deviation of the common movie attributes

are considered as diversified items. For instance, we now

recommend two action movies but with different lan-

guages, that means those two items belong to different

communities in the movie recommendation graph, and this

is a diversified recommendation.

As a naive approach, we can recommend random items

to an active user. This could ensure our recommendations

Neural Computing and Applications (2023) 35:13047–13063 13055

123

have huge diversity, but it would not capture user interest.

Hence, a better strategy is to recommend new items and

still preserve a certain level of relevance to that user’s

preferences. To be able to do this, we need to capture user-

item interest score from her interaction history as well as

the item novelty score based on the user interest level. Our

strategy to accomplish this task is to build a second model

named HeteGraphbat div as depicted in Fig. 6. It is clear in

Fig. 6 that first we use the unsupervised training in Phase 3

to learn the low dimensional node embedding of each user

and item. The node embedding’s position in its embedding

space signifies its relationship with other nodes. Two

embedding nodes that stay close to each other implies high

similarity in their attributes as well as their local neigh-

bourhood information, despite the fact that they may

belong to different communities in the original graph.

Phase 4 as illustrated in Fig. 6 describes the process. Given

this intuition, we want to find users who are close in the

embedding space but have a long distance in the original

heterogeneous graph. Henceforth, their rated items can act

as diversified recommendations to each other. In this

enhanced model in compare to our conference model

HeteGraphdiv, we apply batch normalization during the

training to improve the embedding learning accuracy.

Zi

+
Zu

ai,u

True rating

MLP network
Edge

embedding

Phase 3 Phase 4

Attention layerFig. 5 HeteGraph Model 1—

Item rating prediction model. In

this model, we use attention

layer with user and item

embedding to form the edge

embedding from the rating of a

pair of user-item as input to the

multilayer perceptron neural

network (MLP) to train the

rating prediction. The edge

embedding is constructed via

the concatenation operation C
between the convolved tensor zu
of user u and the convolved

tensor zi of item i

Zi σ

Zu σ

BN

BN

Ni

Nu

N

User A

User B

User A User B

Phase 3 Phase 4

Fig. 6 HeteGraph Model 2—

Long distance search for

diversified recommendations. In

this model, user-A and user-B

have node embeddings that are

close to each other in the

embedding space, thus they can

have similar characteristics and

preferences. However, in the

original graph, they belong to

different communities with a

long distance between them. By

recommending rated items from

user-B to user-A, we can

increase the diversity of the

recommendations

13056 Neural Computing and Applications (2023) 35:13047–13063

123

5 Evaluations

We evaluate the HeteGraph models with different metrics

in recommendation accuracy and recommendation diver-

sity. We compare them with popular matrix factorization

and K-Nearest neighbourhood methods.

5.1 Preparation

We detail our dataset preprocessing steps, the evaluated

metrics and compared algorithms in this section.

5.1.1 Datasets

We perform evaluations on three datasets, the ‘‘Movie-

Lens 100K’’ (ML-100K), ‘‘MovieLens 1M’’ (ML-1M)1 and

‘‘BookCrossing’’ (BX)2. The ML-100K dataset contains

100,000 ratings of 1,682 movies from 943 users, each

movie or user has its own respective attributes such as

movie’s genre, movie’s title, user’s age, and user’s occu-

pation. Similarly, the ML-1M is the bigger version of ML-

100K with 1,000,000 ratings of 6,000 users and 4,000

movies. The rating density of ML-100K is 6.3% and 4.17%

for ML-1M.

The BX dataset contains more than 1,000,000 ratings of

books from its users, each also having their own attributes

such as book’s name, book’s publisher, and user’s location.

One interesting aspect of the BX dataset is that it contains

both implicit and explicit rating values. Value 0 means

implicit rating, which can be interpreted as the user has an

interaction with the book. Any other value above 0 is the

explicit rating value. Table 1 summarizes the chosen

datasets. Due to hardware limitation and the extreme

sparseness of the BX dataset ratings (0.001%), we filter the

BX dataset to include about 200,000 ratings of 5,102 users

and 4,405 books, where each user has rated more than 30

books and each book is rated by more than 30 users. This

helps increase the density of the BX dataset ratings to

0.98% as well as allow our hardware to process all of the

data. Table 1 shows the datasets statistic for our HeteGraph

evaluation.

5.1.2 Feature preprocessing

The ML datasets and the BX dataset come with little

attribute information for item node type. For instance, the

ML dataset provides movie’s title, its online address,

released date and genre, while the BX dataset provides

book’s title, its author, the publication date and image

address. To be effective in capture semantic meaning of

these items, we need more detailed information. As a

result, we perform additional feature preprocessing to

enrich the dataset attributes. This step also help our model

phase two, when it does feature extraction before the GCO

operation to have richer data to learn the hidden patterns.

By using movies services such as IMDb3 and TIMDb4, we

are able to collect a handful more attribute for movie item.

Likewise, we apply the same procedure for the BX dataset

using Amazon Book5 to get additional book details such as

description, category, etc. Table 2 lists the additional fea-

tures we put into the ML and BX datasets for our Hete-

Graph platform. Adding these rich semantic features help

us learn the node embedding accurately and effectively.

5.1.3 Evaluation metrics

We evaluate the HeteGraph framework performance on

different metrics to see how effective our models are for a

particular recommendation task. We describe these metrics

below. These are off-line measurement metrics. It means

they cannot be used to assert the true user’s satisfaction

upon receiving the recommendations.

• Intra-list Similarity (ILS) [38]: ILS measures the

diversity of a recommendation list, and lower score

means more diversity. Equation (7) is our adapted

formula of the original ILS. For a recommendation list

L of user u, the ILS score of user u is the summation of

all similarity scores between item ij and ik in list L. Any

similarity function sim can be used such as the cosine

similarity or Jaccard similarity coefficient. In our

evaluation, we use the cosine similarity function. The

ILS score is then normalized by a factor of 2|L|. The

average ILS score of the whole test set is the average

ILSu scores of all users in the test set.

1 https://grouplens.org/datasets/movielens.
2 https://grouplens.org/datasets/book-crossing.

3 https://www.imdb.com.
4 https://www.themoviedb.org.
5 https://www.amazon.com.

Table 1 Datasets for the evaluation

Dataset ML-100K ML-1M BX-200K

User size 943 6,000 5,102

Item size 1,682 4,000 4,405

Rating size 100,000 1,000,000 219,289

Rating scale 1–5 1–5 0–10

Rating density 6.3% 4.17% 0.98%

Neural Computing and Applications (2023) 35:13047–13063 13057

123

https://grouplens.org/datasets/movielens
https://grouplens.org/datasets/book-crossing
https://www.imdb.com
https://www.themoviedb.org
https://www.amazon.com

ILSu ¼

P
ij2L

P
ik2L

simðij; ikÞ

2jLj
ð7Þ

• Mean Absolute Error (MAE): MAE value evaluates the

statistical difference between predicted ratings and true

ratings for a recommendation list R. In Eq. (8), rui is the

predicted rating and yui is the actual rating between the

user u and item i. MAE is also less sensitive to outliers.

MAE ¼ 1

jRj
X
rui2R

jrui � yuij ð8Þ

• Root-Mean-Square Error (RMSE): RMSE is the most

common accuracy measurement metric for recommen-

dation task. Its formula is expressed in Eq. (5). Similar

to MAE, RMSE represents the accuracy difference

between predicted and actual ratings, but it is more

sensitive to outliers.

• Precision-at-K (Pr@k) and Recall-at-K (Re@k): Both

Pr@k and Re@k are metrics from the information

retrieval research area. They are decision support

metrics and do not consider the deviation between

predicted ratings and actual ratings. They only measure

how relevant a recommendation list to an active user.

Eqs. (9) and (10) express the formulas. For a user u who

receives a recommendation list pu of size k, each item i

in pu is relevant to the user u if the relevant indicator

function reluj’s value is 1. The relui value is determined

by the actual relevant list cu. Thus, the Pr@k value

shows the probability that a predicted item is relevant in

k items of pu, while the Re@k value shows the

probability that a relevant item is recommended in k

items of pu. The average Pr@k and Re@k scores are the

average Pru@k scores and Reu@k scores of all users in

the test set. In out experiments, we set k to the value of

20.

Pru@k ¼
Pminfk;pug

i¼1 relui
k

ð9Þ

Reu@k ¼
Pminfk;pug

i¼1 relui
cu

ð10Þ

5.1.4 Comparison algorithms

To benchmark the recommendation tasks with the Hete-

Graph framework, we compare our empirical results with

five other algorithms: SVD [2], SVD?? [2], SlopeOne

[39], NMF [40], and the kNN [41]. SVD and SVD?? are

popular matrix factorization methods for recommender

systems. SVD?? also accounts for implicit ratings while

SVD does not. NMF is another matrix factorization algo-

rithm that is similar to SVD, but it keeps the user and item

factors positive. SlopeOne is a non-trivial item-based col-

laborative filtering algorithm, which has wide practical

usages in real-world due to its simple and intuitive for-

mulation. kNN is the basic user-based collaborative filter-

ing method. The reasons we choose these algorithms for

comparison with our models are that not only they are well

known and being used in many e-commerce services

[35, 36], but also we can reimplement these algorithms in

our system. This gives us the confidence in our evaluated

measurements. Admittedly, there are recent algorithms

Table 2 Additional attributes

added to ML and BX datasets
Attributes Type Description ML BX

Summary Text A short summary about the content of the item.

The summary usually contains five to ten sentences.

Yes No

Keyword Text The main keywords that describes the item. Each

keyword contains one to four words, describing

different aspects of the item.

Yes No

Review Text The user reviews of the item. If an item has more than

twenty reviews, we choose random twenty of them, and

ignore the rest. These reviews express the general

sentiment of the item.

Yes Yes

Language Category The spoken or written language of the item. The majority

is English, but there are other languages as well.

Yes Yes

Plot Text The main plot of the item, only available for the BX

dataset. The plot is usually shorter than the summary.

No Yes

Actor Text The actors that featured in the item. Only available for

the ML dataset. One item can have multiple actors.

Yes No

Author Text The author of the item. Only available for the BX dataset. No Yes

13058 Neural Computing and Applications (2023) 35:13047–13063

123

which leverage deep learning in recommender systems

similar to our models. Unfortunately, we cannot implement

those new methods in our system to compare with our

models, due to lacking of the source-code as well as the

datasets that they used.

5.2 Model evaluations

5.2.1 Accuracy evaluation of item rating predictions
(Model 1)

The main evaluation metrics for item rating prediction is

the accuracy. It is well known that accuracy metrics do not

represent the overall satisfactory measurement of an active

user when receiving recommendations [38]. However, it is

still the most common evaluation metric used nowadays to

assert certain confidence on the capability of a recom-

mender system. Hence, we measure our models perfor-

mance based on four metrics. They are RMSE, MAE,

Pr@K and Re@K as detailed in Sect. 5.1.3. We compare

our model with other algorithms as described in Sect. 5.1.4.

The parameters for the Pr@k and Re@k evaluations are k,

which is the size of recommendation list and the relevant

threshold b, which is the value where both the predicted

rating and the true rating values of a user-item pair must be

higher, to be considered as relevant recommendation. For

the ML-100K and ML-1M dataset, we set k as 20, and the

threshold score b as 3.5. For the BX dataset, we set k also

as 20, and the threshold score b as 6. Table 3 shows our

evaluation results. Surprisingly, both of the HeteGraph

models achieve encouraging results. Admittedly, both of

them cannot outscore the SVD or SVD?? in terms of

RMSE and MAE metrics (lower is better), but we score

higher than the SVD?? in the BX dataset for the Pr@k

and Re@k metrics (higher is better).

Additionally, our models consistently perform better

than the kNN, NMF and SlopeOne in the RMSE and MAE

metrics in the ML dataset. For the comparison between our

models variances HeteGraphat sup and HeteGraphsup, it is

clear that HeteGraphat sup scores better than HeteGraphsup
in most of the evaluated metrics. This suggests that our

unsupervised training model is able to extract useful node

characteristics and learn useful embedding. Additionally,

by benchmarking the models on both ML-100K and ML-

1M, we confirm the generalization of our models on the

ML dataset. It is clear that the models perform better on

ML-100K, but it keep being consistent in the raking with

other methods when performing in ML-1M, this proves

that the HeteGraph can generalize well on bigger dataset.

5.2.2 Diversity evaluation of diversified recommendations
(Model 2)

To verify the diversity of the recommendations, we use the

intra-list similarity (ILS) score [38] for the diversification.

ILS measures the diversity of a recommendation list, and

lower score means more diversity. We modify the ILS

score for each user by scaling down with a factor equal to

Table 3 Item rating prediction evaluation of application model 1

Metrics RMSE MAE Pr@20 Re@20

ML-100K dataset

HeteGraphat sup 0.955 0.733 0.747 0.681

HeteGraphsup 0.976 0.761 0.737 0.679

SVD 0.943 0.743 0.763 0.659

SVD?? 0.917 0.718 0.749 0.670

NMF 0.963 0.763 0.728 0.637

SlopeOne 0.950 0.745 0.733 0.654

kNN 0.981 0.776 0.717 0.706

ML-1M dataset

HeteGraphat sup 1.269 1.126 1.218 1.227

HeteGraphsup 1.379 1.231 0.997 1.134

SVD 1.267 1.199 0.987 1.089

SVD?? 1.223 1.186 0.984 1.086

NMF 1.421 1.301 1.078 1.152

SlopeOne 1.391 1.332 1.043 1.161

kNN 1.435 1.387 1.227 1.239

BX-200K dataset

HeteGraphat sup 3.534 2.709 0.903 0.415

HeteGraphsup 3.702 2.802 0.843 0.388

SVD 3.556 2.763 0.910 0.333

SVD?? 3.796 2.793 0.808 0.392

NMF 3.885 2.785 0.743 0.438

SlopeOne 3.531 2.706 0.882 0.395

kNN 3.795 2.944 0.898 0.322

Table 4 Diversity Evaluation with ILS scores of Application Model 2

Dataset ML-100K ML-1M BX-200K

HeteGraphbat div 0.855 1.056 0.807

HeteGraphdiv 0.891 1.023 0.812

SVD 0.921 1.176 0.870

SVD?? 0.914 1.135 0.893

SlopeOne 0.937 1.198 0.915

NMF 0.908 1.202 0.902

k-NN 0.945 1.338 0.921

Neural Computing and Applications (2023) 35:13047–13063 13059

123

that user’s recommendation list size. Table 4 shows the

evaluation results of the HeteGraphbat div and HeteGraphdiv
(conference method) models. The enhanced model

HeteGraphbat div with batch normalization show an

increased score over the previous conference method. In

terms of diversity, our model has the lowest ILS scores in

both ML and BX datasets, which means we achieve the

highest diversification in the recommendation list. To

verify the results, we generate samples of recommendation

list, and with the application is able to generate movies in

different languages as well as variation in the genres. This

is to ensure that an active user does not keep seeing rec-

ommended movies that is quite repetitive to her taste. We

see similar results for BX dataset as well.

5.3 Hyper-parameters analysis and observations

Hyper-parameter tuning is vital in training a deep neural

network. During the evaluations, we conduct experiments

with different learning rate a to find the best learning rate

value for our models. We also tune our models using dif-

ferent optimizers and regulation techniques. In this section,

we briefly discuss our observations.

5.3.1 Hyper-parameters grid search

We make a grid-search attempt with different learning rate

a, several optimizers and regularization techniques. We

select five popular optimization techniques. They are the

Stochastic Gradient Descent (SGD), RMSProp [42], Ada-

delta [43], Adagrad [44], and Adam [45]. We observe that

the training converges quite fast after about twenty-one

epochs for certain optimizers such as SGD with momentum

[46] or Adagrad. This greatly reduces the training time.

Thus in both ML and BX datasets, we perform training

with SGD with momentum value of 0.9. For the learning

rate a, we choose two values, which are 0.001 and 0.0005.

They both help us converge smoothly, but we find that the

a rate of 0.001 performs slightly better than the a rate of

0.0005. Figure 7 illustrates the converging loss of different

optimizers. We also see similar patterns when we apply

these hyper-parameters to the ML-1M and BX-200K

datasets. As a result, for all models, we decide to use SGD

optimizer, learning rate of 0.001, and batch size of 256.

5.3.2 Random & sequential sampling of mini-batches

Another interesting observation during our evaluation is

the effectiveness of mini-batch sampling strategy on dif-

ferent HeteGraph’s models. Mini-batch gradient descent is

a variation of the gradient descent method, where the

training set data is split into small batches to calculate error

loss and update the model’s parameters. This is a very

effective way to balance between the model’s training

speed as well as the model’s learning capability.

Normally, the data of every mini-batch is sampled ran-

domly from the whole training set. However, we observe

that using this random sampling strategy decreases our

models’ performance. To understand why, we look at the

scores’ distribution histogram of both datasets, and observe

that each of them exhibits certain bias in their distribution.

Figure 8 clearly depicts this issue. In the BX dataset, most

of the rating mass is on the 0 rating score (which means

implicit feedback), while in the ML dataset, most of the

rating values are 3 or 4. Henceforth, to make our models

learn better, instead of using random sampling, we apply

sequential sampling for the mini-batches. This helps us

derive more accurate models for the item rating prediction.

Figure 9 illustrates the histogram of different optimizers for

HeteGraphmix on the ML dataset. The x-axis represents the

predicted scores during training, while the y-axis represents

the amount of repetitions for a certain precondition-score,

and get scaled down to the range of 0 to 1. As it can be seen

that many of these histograms have similar structure to the

data distribution of ML dataset in Fig. 8. It indicates that

our sampling strategy makes the prediction scores to have a

similar distribution in compare with the labels, thus

increase the prediction accuracy of the models.

Fig. 7 RMSE losses of different optimizers on the ML-100K dataset

during training. The SGD converges at the lowest RMSE loss after 21

epochs, while the other optimizers converge slower than the SGD

13060 Neural Computing and Applications (2023) 35:13047–13063

123

6 Conclusion

In this paper, we propose a novel framework called Hete-

Graph to handle heterogeneous graph-structured data to

solve recommendation problems. The flexible architecture

of HeteGraph enables the composition of different con-

textual models to learn high-quality embeddings of the

heterogeneous graph nodes and derive solution for various

recommendation tasks. We present the important features

of the framework including the bias neighbourhood sam-

pling phase, the graph convolutional operation phase, the

embedding objective and the application models. To

evaluate how the GCO (graph convolutional operation)

technique can be used to solve recommendation problems,

we propose novel models for two different recommenda-

tion tasks: item rating prediction and diversified recom-

mendations. We perform extensive evaluations on these

models and our proposed methods achieve encouraging

results. In the future work, we plan to improve the Hete-

Graph in two directions. First, we want to improve the

neighbourhood sampling technique to account for more

entities in the heterogeneous graph, since our current

Fig. 8 Rating scores histogram

of ML and BX datasets. The

ML dataset has high percentage

of score rating at value 3 and 4,

while the BX dataset has most

of the rating mass at value 0.

They both have a skewed

distribution

Fig. 9 Inference rating scores histograms of the ML dataset from different optimizers. Thanks to the sequential sampling, the histogram’s shapes

of these optimizers show similar structure to the ground-truth histogram of ML dataset in Fig. 8

Neural Computing and Applications (2023) 35:13047–13063 13061

123

technique is only apply to two entities which are user and

item. Second, we want to incorporate external knowledge

graph sources such as Wikidata6 into the framework to

handle more machine learning tasks not just recommender

systems.

Funding This study was funded by Australian Research Council

Discovery Project ARC, Grant number DP200102298.

Availability of data and material Public dataset MovieLens is avail-

able at: https://grouplens.org/datasets/movielensPublic dataset Book-

Crossing is available at: www2.informatik.uni-freiburg.de/*cziegler/

BX.

Code availability The source code of HeteGraph is available at: http://

github.com/heroddaji/dai_hetegraph.

Compliance with ethical standards

Conflict of Interest Author Quan Z. Sheng has received research

grants from Company Australian Research Council.

References

1. Adomavicius G, Tuzhilin A (2005) Toward the next generation of

recommender systems: a survey of the state-of-the-art and pos-

sible extensions. IEEE Trans Knowl Data Eng 17(6):734–749

2. Koren Y, Bell RM, Volinsky C (2009) Matrix factorization

techniques for recommender systems. IEEE Comput 42(8):30–37

3. Hidasi B, Karatzoglou A (2018) Recurrent neural networks with

Top-k gains for session-based recommendations. In: Proceedings

of the 27th ACM international conference on information and

knowledge management (CIKM 2018), Torino, Italy, pp 843–852

4. Sedhain S, Menon AK, Sanner S, Xie L (2015) AutoRec:

autoencoders meet collaborative filtering. In: Proceedings of the

24th international conference on world wide web companion

volume (WWW 2015), Florence, Italy, pp 111–112

5. Kang W-C, McAuley J (2018) Self-attentive sequential recom-

mendation. In: Proceedings of the IEEE international conference

on data mining (ICDM 2018), pp 197–206, Singapore

6. Liu F, Xue S, Wu J, Zhou C, Hu W, Paris C, Nepal S, Yang J, Yu

PS (2020) Deep learning for community detection: Progress,

challenges and opportunities. In: Proceedings of the twenty-ninth

international joint conference on artificial intelligence, IJCAI-20,

pp 4981–4987

7. Hamilton WL, Ying R, Leskovec J (2017) Representation

learning on graphs: methods and applications. IEEE Data Eng

Bull 40(3):52–74

8. Kipf TN, Welling M (2017) Semi-supervised classification with

graph convolutional networks. In: Proceedings of the 5th inter-

national conference on learning representations (ICLR 2017),

Toulon, France

9. Hamilton WL, Ying Z, Leskovec J (2017) Inductive representa-

tion learning on large graphs. In: Proceedings of the 31st annual

conference on neural information processing systems (NIPS

2017), Long Beach, CA, USA, pp 1025–1035

10. Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering:

analysis and an algorithm. In: Proceedings of the 15th annual

conference on neural information processing systems (NIPS

2001), Vancouver, British Columbia, Canada, pp 849–856

11. Page L, Brin S, Motwani R, Winograd T (1999) The pagerank

citation ranking: Bringing order to the web. Technical report,

Stanford InfoLab

12. Kruskal JB (1964) Multidimensional scaling by optimizing

goodness of fit to a nonmetric hypothesis. Psychometrika

29(1):1–27

13. Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk: online

learning of social representations. In: Proceedings of the 20th

ACM SIGKDD international conference on knowledge discovery

and data mining (KDD 2014), New York, NY, USA, pp 701–710

14. Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) LINE:

large-scale information network embedding. In: Proceedings of

the 24th international conference on world wide web (WWW

2015), Florence, Italy, pp 1067–1077

15. Wang D, Cui P, Zhu W (2016) Structural Deep Network

Embedding. In: Proceedings of the 22nd ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining

(KDD 2016), San Francisco, CA, USA, pp 1225–1234

16. Grover A, Leskovec J (2016) Node2vec: Scalable Feature

Learning for Networks. In: Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and

data mining (KDD 2016), San Francisco, CA, USA, pp 855–864

17. Cao S, Lu W, Xu Q (2015) GraRep: Learning Graph Represen-

tations with Global Structural Information. In: Proceedings of the

24th ACM international conference on information and knowl-

edge management (CIKM 2015), Melbourne, VIC, Australia,

pp 891–900

18. Yang Z, Cohen WW, Salakhutdinov R (2016) Revisiting Semi-

Supervised Learning with Graph Embeddings. In: Proceedings of

the 33nd international conference on machine learning (ICML

2016), New York City, NY, USA, pp 40–48

19. Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K,

Borgwardt KM (2011) Weisfeiler-lehman graph kernels. J Mach

Learn Res 12:2539–2561

20. Dai H, Dai B, Song L (2016) Discriminative embeddings of latent

variable models for structured data. In: Proceedings of the 33nd

international conference on machine learning (ICML 2016), New

York City, NY, USA, pp 2702–2711

21. Beck D, Haffari G, Cohn T (2018) Graph-to-Sequence Learning

using Gated Graph Neural Networks. In: Proceedings of the 56th

annual meeting of the association for computational linguistics

(ACL 2018), Melbourne, Australia, pp 273–283

22. Scarselli F, Gori M, Tsoi AC, Markus H, Gabriele M (2009) The

Graph Neural Network Model. IEEE Trans Neural Netw

20(1):61–80

23. Bruna J, Zaremba W, Szlam A, LeCun Y (2014) Spectral net-

works and locally connected networks on graphs. In: Proceedings

of the 2nd international conference on learning representations

(ICLR 2014), Banff, AB, Canada

24. Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P

(2017) Geometric deep learning: going beyond Euclidean data.

IEEE Signal Process Mag 34(4):18–42

25. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional

neural networks on graphs with fast localized spectral filtering.

In: Proceedings of the 30th annual conference on neural infor-

mation processing systems (NIPS 2016), Barcelona, Spain,

pp 3837–3845

26. Duvenaud DK, Maclaurin D, Aguilera-Iparraguirre J, Gómez-

Bombarelli R, Hirzel T, Aspuru-Guzik A, Adams RP (2015)

Convolutional Networks on Graphs for Learning Molecular

Fingerprints. In: Proceedings of the 29th annual conference on
6 https://www.wikidata.org.

13062 Neural Computing and Applications (2023) 35:13047–13063

123

https://grouplens.org/datasets/movielens
http://www2.informatik.uni-freiburg.de/%7ecziegler/BX
http://www2.informatik.uni-freiburg.de/%7ecziegler/BX
http://github.com/heroddaji/dai_hetegraph
http://github.com/heroddaji/dai_hetegraph
https://www.wikidata.org

neural information processing systems (NIPS 2015), Montreal,

Quebec, Canada, pp 2224–2232

27. Monti F, Bronstein MM, Bresson X (2017) Geometric Matrix

Completion with Recurrent Multi-Graph Neural Networks. In:

Proceedings of the 31st Annual Conference on Neural Informa-

tion Processing Systems (NIPS 2017), pages 3700–3710, Long

Beach, CA, USA

28. Zitnik M, Agrawal M, Leskovec J (2018) Modeling polyphar-

macy side effects with graph convolutional networks. Bioinfor-

matics 34(13):i457–i466

29. van den Berg R, Kipf TN, Welling M (2017) Graph convolu-

tional matrix completion. CoRR, arXiv:abs/1706.02263

30. Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H,

Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong

L, Jain V, Liu X, Shah H (September 2016) Wide & Deep

Learning for Recommender Systems. In: Proceedings of the 1st

Workshop on Deep Learning for Recommender Systems

(DLRS@RecSys 2016), Boston, MA, USA, pp 7–10

31. Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec

J (August 2018) Graph Convolutional Neural Networks for Web-

Scale Recommender Systems. In: Proceedings of the 24th ACM

SIGKDD international conference on knowledge discovery &

data mining (KDD 2018), London, UK, pp 974–983

32. Pennington J, Socher R, Christopher D (2014) Manning. Glove:

Global vectors for word representation. In: EMNLP 2014, ACL,

pp 1532–1543

33. Cho K, van Merrienboer B, Gülçehre Ç, Bahdanau D, Bougares

F, Schwenk H, Bengio Y (2014) Learning phrase representations

using RNN encoder-decoder for statistical machine translation.

EMNLP 2014:1724–1734

34. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013)

Distributed representations of words and phrases and their com-

positionality. In: Proceedings of the 27th annual conference on

neural information processing systems (NIPS 2013),

pp 3111–3119, Lake Tahoe, Nevada, USA

35. Linden G, Smith B, York J (2003) Amazon.com Recommenda-

tions: Item-to-Item Collaborative Filtering. IEEE Internet Com-

put 7(1):76–80

36. Gomez-Uribe CA, Hunt N (2016) The netflix recommender

system: algorithms, business value, and innovation. ACM Trans

Manag Inf Syst 6(4):13:1–13:19

37. Wilhelm M, Ramanathan A, Bonomo A, Jain S, Chi EH, Jennifer

G (2018) Practical diversified recommendations on youtube with

determinantal point processes. In: Proceedings of the 27th ACM

international conference on information and knowledge man-

agement, CIKM 2018, Torino, Italy, October 22-26, 2018,

pp 2165–2173. ACM

38. Ziegler C-N, McNee SM, Konstan JA, Lausen G (2005)

Improving recommendation lists through topic diversification. In:

Proceedings of the 14th international conference on world wide

web, WWW, Chiba, Japan, pp 22–32

39. Lemire D, Maclachlan A (2005) Slope one predictors for online

rating-based collaborative filtering. In: Proceedings of the 2005

SIAM international conference on data mining, SDM 2005,

Newport Beach, CA, USA, pp 471–475

40. Luo X, Zhou M, Xia Y, Zhu Q (2014) An efficient non-negative

matrix-factorization-based approach to collaborative filtering for

recommender systems. IEEE Trans Ind Inform 10(2):1273–1284

41. Sarwar BM, Karypis G, Konstan JA, Riedl J (2001) Item-based

collaborative filtering recommendation algorithms. In: Proceed-

ings of the tenth international world wide web conference, WWW

10, pp 285–295

42. Graves A (2013) Generating sequences with recurrent neural

networks. CoRR, arXiv:abs/1308.0850

43. Zeiler MD (2012) ADADELTA: an adaptive learning rate

method. CoRR, arXiv:abs/1212.5701

44. Duchi JC, Hazan E, Singer Y (2011) Adaptive subgradient

methods for online learning and stochastic optimization. J Mach

Learn Res 12:2121–2159

45. Kingma DP, Ba J (2015) Adam: A method for stochastic opti-

mization. In: 3rd International conference on learning represen-

tations, ICLR conference track proceedings. San Diego, CA,

USA, (May 2015)

46. Sutskever I, Martens J, Dahl GE, Hinton GE (2013) On the

importance of initialization and momentum in deep learning. In:

Proceedings of the 30th international conference on machine

learning, ICML 2013, vol 28., Atlanta, GA, USA, pp 1139–1147

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2023) 35:13047–13063 13063

123

http://arxiv.org/abs/abs/1706.02263
http://arxiv.org/abs/abs/1308.0850
http://arxiv.org/abs/abs/1212.5701

	HeteGraph: graph learning in recommender systems via graph convolutional networks
	Abstract
	Introduction
	Related work
	Graph embedding approaches
	Recommender systems based on graph convolution

	HeteGraph architecture
	Phase 1---Node neighbourhood sampling
	Phase 2---Graph convolutional operation
	Feature extraction
	Convolutional operation

	Phase 3---Embedding learning strategy
	Phase 4---Application models

	Recommendation application models
	Model 1---Item rating predictions
	Model 2---Diversified item recommendations

	Evaluations
	Preparation
	Datasets
	Feature preprocessing
	Evaluation metrics
	Comparison algorithms

	Model evaluations
	Accuracy evaluation of item rating predictions (Model 1)
	Diversity evaluation of diversified recommendations (Model 2)

	Hyper-parameters analysis and observations
	Hyper-parameters grid search
	Random & sequential sampling of mini-batches

	Conclusion
	Code availability
	References

