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Abstract
In this paper, a better fast convergence zeroing neural network (BFCZNN) model with a new activation function (AF) for

solving dynamic nonlinear equations (DNE) and applying to control of robot manipulator is presented. The proposed

BFCZNN model not only finds the solutions of DNE in fixed time, but also has better robustness than most of the

previously reported studies. The numerical simulation results of the proposed BFCZNN and the previously reported robust

nonlinear zeroing neural network (RNZNN) for solving third-order DNE in the same condition are presented to demon-

strate the better robustness of our new BFCZNN model. Moreover, a successful kinematic control of robot manipulator of

our new BFCZNN model is used to verify the realistic availability of the proposed BFCZNN model.

Keywords Nonlinear equation (NE) � Better fast convergence zeroing neural network (BFCZNN) � Activation function

(AF) � Robustness

1 Introduction

Most phenomena in nature are inherently nonlinear, and

many of these nonlinear phenomena can be represented by

nonlinear equations. Nonlinear equations can be encoun-

tered frequently in science, mathematics, engineering and

many other fields, and effectively finding the solutions of

nonlinear equations becomes a considerable hot spot in

academia and industry [1–6]. Figure 1 is a 3D surface

diagram of solution for the second-order dynamic nonlin-

ear equation (g(x) = 0.1x2-0.1 x -1.2), and Fig. 2 is a 3D

surface diagram of solution for the third-order dynamic

nonlinear equation (g(x(t),t) = 0.01(x-cos2t)(x-cos2t-

5)(x?cos2t?5)). As shown in Figs. 1, 2, the solutions of

the two equations are real time and dynamic. In the past

decades, the Newton iteration method in the numerical

analysis has been commonly used to find the solutions of

NE [7–11]. However, the Newton iteration method also has

many shortcomings. For example, the Newton iteration

method is a local convergence, and the Heisen matrix must

be invertible [12]. In order to improve the Newton iterative

for solving DNE, many improved Newton-like iterations

have been proposed [13–18].

Recurrent neural network (RNN) as a kind of deep

learning method and its intrinsic advantages of GPU par-

allel computing [22, 23] is widely used in many fields

[3, 19–21]. As two kinds of classic typical RNNs, the

gradient-based neural network (GNN) and zeroing neural

network (ZNN) developed quickly in recent years. GNN is

designed as a neural network evolving along the negative

gradient-descent direction to make the error norm decrease

to zero with time [24]. Based on the existing RNN and

GNN, the ZNN was proposed by Zhang et al. [25]. Because

of its better robustness and convergence performance [26],

ZNN has attracted more and more attention in dealing with

time-varying problems. The robustness and convergence of

ZNN model are affected by different AFs [27]. Considering

these facts, various novel AFs are proposed to improve its

convergence speed [28–33].

In the previously reported ZNN models, many studies

focused on how to find the solution of the time-varying

matrix equations, and they did not consider the robustness

of the model. In actual applications, many models are

disturbed by noise, and their efficiency and accuracy are
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seriously deteriorated by noise and disturbance. To over-

come interference, many scholars have also studied the

robustness of the ZNN model. For example, a NTZNN

model is proposed in [34–36], which works appropriately

under various interferences. However, its convergence time

is not controllable, and its robustness still needs to be

improved. A robust nonlinear zeroing neural network

(RNZNN) is presented in Ref. [28], which enables the ZNN

model to converge in fixed time. Therefore, the ability for

real-time computation and robustness of the ZNN model is

further enhanced.

In this paper, a BFCZNN with a new AF for finding the

real-time solution of DNE is proposed. The proposed

BFCZNN model further improves the convergence speed

and robustness of the recently reported RNZNN model

[28], and its feasibility and superiority are verified by

simulated and experimental verification. The main work of

this paper is summarized in the following.

A new AF is applied to the proposed BFCZNN model

for solving DNE.

The proposed BFCZNN model has faster convergence

speed and better robustness than the original ZNN model,

and its convergence and robustness are verified by theo-

retical analysis and numerical verification.

Two robot path tracking examples by noise are applied

for its further applications.

2 Problem formulation

2.1 The model of DNE

DNE problems can be summarized in mathematics as

follows:

f ðxðtÞ; tÞ ¼ 0 2 R ð1Þ

where t is the time, x(t) is the unknown dynamic parameter

and f(•) is the nonlinear AF. Our purpose is to find the

theoretical solution x*(t) of DNE (1) with the proposed

BFCZNN model in fixed time. In order to achieve this

purpose, we suppose DNE (1) at least has one solution. In

addition, the construction of original ZNN for solving DNE

(1) is introduced in the following part.

2.2 Zeroing neural network (ZNN)

First, according to the expression of (1), a dynamic error

function e(t) is adopted as:

f ðxðtÞ; tÞ ¼ eðtÞ: ð2Þ

Here, if e(t) converges to zero, the state parameter x(t) will

satisfy f(x(t), t) = 0. Solving the DNE (1) is equivalent to

make the error function e(t) converge to zero.

Second, according to the method in [25], the expression

of DNE (1) problem solved by ZNN model is as follows:

deðtÞ
dt

¼ �cw eðtÞð Þ ð3Þ

where c [ 0 is a adjustable parameter and w(•) is an

activation function (AF).

Let us perform time differentiation on both sides of

equation (2)

deðtÞ
dt

¼ of

ox
� ox

ot
þ of

ot
ð4Þ

At last, substituting equation (3) into (4), the ZNN

model is realized as:

of

ox
x
�ðtÞ ¼ �cwðf ðxðtÞ; tÞÞ � of

ox
: ð5Þ

It has been proved that the ZNN model (5) is stable with

any monotonically increasing odd AF [3, 21], and choosing

Fig. 1 Dynamic solution of the second-order dynamic nonlinear

equation

Fig. 2 Dynamic solution of the third-order dynamic nonlinear

equation
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different AFs will lead to different convergence perfor-

mances and robustness of the ZNN model. The commonly

used AFs and the recently reported new AF in the robust

nonlinear zeroing neural network (RNZNN) [28] are listed

in Table 1.

In the table, 1[p[0, n 1[0, n 2 [0, g[0, x[0 and

sgnn (�) is defined as:

sgnn xð Þ ¼
xj jn ; x[ 0

0 ; x ¼ 0

� xj jn ; x\0

8
><

>:

9
>=

>;
ð6Þ

The convergence performance of ZNN model(5) can be

significantly influenced by adopting different AFs w(•),
e.g., if the ZNN model (5) choosing LAF and PSAF will

converge exponentially [3]; if the ZNN model (5) choosing

SBPAF will converge in finite time [21]; and if the NAF in

[28] is adopted, the RNZNN model will converge in fixed

time [28]. Although the RNZNN with NAF in ref. [28] can

converge in fixed time, its convergence speed and robust-

ness can be further improved.

3 Analysis of BFCZNN model

Generally, we want a neural network to converge as fast as

possible. Moreover, any neural network will be affected by

external noise, so the convergence performance and

robustness are two important indicators of a neural

network.

Based on the existing AFs in the previous works, a new

AF is obtained as follows:

/ðxÞ ¼ w1 exp xj jpð Þ xj j1�p
sgnðxÞ=p

þ w2 xj jqþw3 xj j
1
q

� �
sgnðxÞ ð7Þ

where 1[p[0, 1[q[0, p = q, w1[ 0, w2[ 0, w3[ 0.

Then, the proposed BFCZNN model for solving DNE

(1) is proposed as follows:

of

ox
x
�ðtÞ ¼ �c/ðf ðxðtÞ; tÞÞ � of

ox
: ð8Þ

In the following section, the noise suppression and

convergence of BFCZNN (9) will be analyzed, and formula

(9) is the BFCZNN model attacked by noise.

of

ox
x
�ðtÞ ¼ �cuðf ðxðtÞ; tÞÞ � of

ox
þ nðtÞ ð9Þ

where n(t) stands for external noise.

3.1 BFCZNN analysis with convergence

In the previous section, we mentioned that the BFCZNN

model has the property of convergence in fixed time. In this

part, the convergence time of BFCZNN for solving DNE

(1) will be analyzed. Before analyzing BFCZNN models,

the following theorem of the ZNN for solving the DNE is

proposed.

Theorem 1 Assuming the DNE (1) is solvable and starting

from any random initial state, the neural state solutions x(t)

of the BFCZNN model (8) converge to the theoretical roots

x*(t) of DNE (1) in fixed time ts:

ts �
1

cw1

where design parameters c and w1 are defined as before.

Proof According to eq. (3), the error function e(t) of

BFCZNN model (8) can be expressed as:

de tð Þ
dt

¼ �cu eðtÞð Þ:

Letting the Lyapunov function uðtÞ ¼ e2ðtÞ, the time

differentiation of u(t) is

duðtÞ
dt

¼ 2 e
�ðtÞeðtÞ ¼ �2cuðeðtÞÞeðtÞ:

When we use AF (7) with the above formulation, we

have

_uðtÞ ¼ �2cðw1 expð eðtÞj jpÞ eðtÞj j2�p=p

� ðw2 eðtÞj jqþw3 eðtÞj j
1
qÞsgnðxÞeðtÞ

� � 2cðw1 expð eðtÞj jpÞ eðtÞj j2�p=p

¼ �2cðw1 expðup=2Þu1�p=2=p

Table 1 Different AFs
No. Name of AF Expression

1 Linear activation function (LAF) WðxÞ ¼ x

2 Power-sigmoid activation function (PSAF)

Wðx ¼Þ ¼
xp; xj j � 1

1þ e�n � e�nx

1� e�n þ e�nx
; otherwise

8
<

:

3 Sign-bi-power activation function (SBPF) W xð Þ ¼ 1
2
sgnn1 xð Þ þ 1

2
sgnn2 ðxÞ

4 Novel activation function [NAF] in ref. [28] W xð Þ ¼ a1 xj jgþa2 xj jxð Þsgn xð Þ þ a3xþ a4sgn xð Þ
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We can compute the fixed time of BFCZNN model (11)

by solving inequality u
�ðtÞ� � 2cðw1 expðup=2Þu1�p=2=p

ts �
1� expð�up=2ð0ÞÞ

cw1

� 1

cw1

:

When expð�up=2ð0ÞÞ ¼ expð� eð0Þj j
p=2

Þ 2 ð0; 1�, the

convergence time of BFCZNN model (8) is

ts �
1

cw1

:

We can draw the following conclusions that the ZNN

model in (8) is fixed-time stable.

4 Robustness analysis of BFCZNN

This section will verify the effectiveness and robustness of

the proposed BFCZNN model (9) attacked by various

noises.

4.1 Case 1: Dynamic non-bounded noise (DNBN)

Theorem 1 Consider the proposed BFCZNN model (9)

with DNBN time-varying disturbances, e.g., n(t) = kt , and

it should be satisfying |n(t)| B d|e(t)|. Let xð0Þ 2 R be an

initial matrix and cw1 Cd (d [ (0, ?!)). The BFCZNN

model (9) starts from any random initial state; the neural

state solutions x(t) of the BFCZNN model (9) converge to

the theoretical roots x*(t) of DNE (1) in fixed time ts.

ts �
1

cw1

:

The parameters c and w1 are the same as previously

defined.

Proof According to (3), assume eðtÞ 2 R, n(t) = k*t is a

NVN. Therefore, the error function e(t) of BFCZNN model

(11) can be expressed as:

deðtÞ
dt

¼ �cu eðtÞð Þ þ nðtÞ:

Here, we choose the Lyapunov function candidate

u(t)=|e(t)|2 to prove the fixed-time convergence of the

BFCZNN model (9) with DNBN. The time differentiation

of u(t) is

duðtÞ
dt

¼ 2 e
�ðtÞeðtÞ ¼ �2ðc/ðeðtÞÞ þ nðtÞeðtÞ

Because the new AF (7) is used, |n(t)| B d|e(t)| and cw1

Cd, we can obtain the following result:

_uðtÞ ¼ �2cðw1 expð eðtÞj jpÞ eðtÞj j2�p=pþ 2eðtÞnðtÞ

� ðw2 eðtÞj jqþw3 eðtÞj j
1
qÞsgnðxÞeðtÞ

� � 2cðw1 expð eðtÞj jpÞ eðtÞj j2�p=pþ 2ðd eðtÞj jÞ2

� ðw2 eðtÞj jqþw3 eðtÞj j
1
qÞsgnðxÞeðtÞ

� � 2cðw1 expð eðtÞj jpÞ eðtÞj j2�p=p

¼ �2cðw1 expðup=2Þu1�p=2=p

We can compute the fixed time of BFCZNN model (9)

by solving inequality u
�ðtÞ� � 2cðw1 expðup=2Þu1�p=2=p.

ts �
1� expð�up=2ð0ÞÞ

cw1

� 1

cw1

:

When expð�up=2ð0ÞÞ ¼ expð� eð0Þj j
p=2

Þ 2 ð0; 1�, the

convergence time of BFCZNN model (9) is

ts �
1

cw1

:

We can draw the following conclusions that the

BFCZNN model in (9) is fixed-time convergence with

DNBN.

4.2 Case 2: Dynamic bounded non-vanishing
noise (DBNVN)

Theorem 2 Assuming DNE (1) is solvable, and the

external noise n(t) = k or n(t) = k*sin(t) is a DBNVN, it

satisfies |n(t)| B d|e(t)| and d B min(cx2 , cx3). Let xð0Þ 2
R be an initial matrix and cw1 Cd (d [ (0, ?!)). The

BFCZNN model (9) starts from any random initial state;

the neural state solutions x(t) of the BFCZNN model (9)

converge to the theoretical roots x*(t) of DNE (1) in fixed

time ts:

ts �
1

cw1

:

Proof As the same as Theorem 1, according to (3),

assume eðtÞ 2 R, and n(t) is a VN. Therefore, the error

function e(t) of BFCZNN model (9) can be expressed as:

deðtÞ
dt

¼ �cu eðtÞð Þ þ nðtÞ:

Here, we choose the Lyapunov function candidate

u(t)=|e(t)|2 to prove the fixed-time convergence of the

BFCZNN model (9) with DBNVN. The time differentia-

tion of u(t) is

duðtÞ
dt

¼ 2 e
�ðtÞeðtÞ ¼ �2ðcuðeðtÞÞ þ nðtÞeðtÞ:
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Because the new AF (7) is used, |n(t)| B d|e(t)| and cw1

Cd, we can obtain the following result:

_uðtÞ ¼ � 2cðw1 expð eðtÞj jpÞ eðtÞj j2�p=pþ 2eðtÞnðtÞ

� ðw2 eðtÞj jqþw3 eðtÞj j
1
qÞsgnðxÞeðtÞ

� � 2cðw1 expð eðtÞj jpÞ eðtÞj j2�p=pþ 2ðd eðtÞj jÞ2

� ðw2 eðtÞj jqþw3 eðtÞj j
1
qÞsgnðxÞeðtÞ

� � 2cðw1 expð eðtÞj jpÞ eðtÞj j2�p=p

¼ �2cðw1 expðup=2Þu1�p=2=p

Similar to the proof of case 1, let us solve the above

differential inequality; it is also easily derived that the

convergence time of BFCZNN model (9) under a DBNVN

is

ts �
1

cw1

:

Therefore, BFCZNN model (9) also exhibits a prede-

fined time convergence property even under a DBNVN.

The proof is thus complete.

4.3 Case 3: Dynamic random-form noise

We have previously discussed the robustness of the model

with a single type of noise. But in practice, many noises

can be linear combinations of multiple noises. Therefore, it

is necessary to analyze the robustness of dynamic random-

form noise.

Theorem 3 When DNE (1) is solvable, BFCZNN model

(9) is attacked by random-form disturbances n(t), and n(t)

satisfies |n(t)| B d|e(t)| and d B min(cx2 , cx3). Let xð0Þ 2
R be an initial matrix and cw1 Cd (d [ (0, ?!)). The

BFCZNN model (9) starts from any random initial state;

the neural state solutions x(t) of the BFCZNN model (9)

converge to the theoretical roots x*(t) of DNE (1) in fixed

time ts.

ts �
1

cw1

:

Proof According to (3), assume eðtÞ 2 R, and n(t) is a

random-form noise. Therefore, the error function e(t) of

BFCZNN model (9) can be expressed as:

deðtÞ
dt

¼ �c/ eðtÞð Þ þ nðtÞ:

Here, we choose the Lyapunov function candidate

u(t)=|e(t)|2 to prove the fixed-time convergence of the

BFCZNN model (9) with dynamic random-form noise. The

time differentiation of u(t) is

duðtÞ
dt

¼ 2 e
�ðtÞeðtÞ ¼ �2ðc/ðeðtÞÞ þ nðtÞeðtÞ:

Because the new AF (7) is used, |n(t)| B d|e(t)| and cw1

Cd, we can obtain the following result:

_uðtÞ ¼ � 2cðw1 expð eðtÞj jpÞ eðtÞj j2�p=pþ 2eðtÞnðtÞ

� ðw2 eðtÞj jqþw3 eðtÞj j
1
qÞsgnðxÞeðtÞ

� � 2cðw1 expð eðtÞj jpÞ eðtÞj j2�p=pþ 2ðd eðtÞj jÞ2

� ðw2 eðtÞj jqþw3 eðtÞj j
1
qÞsgnðxÞeðtÞ

� � 2cðw1 expð eðtÞj jpÞ eðtÞj j2�p=p

¼ �2cðw1 expðup=2Þu1�p=2=p

Based on the previous proof, it is easily derived that the

convergence time of BFCZNN model (9) under a dynamic

random-form noise is

ts �
1

cw1

:

We can draw the following conclusions that the

BFCZNN model (9) is also fixed-time stable in this case.

5 Comparative numerical simulation
verification

The convergence and stability of the BFCZNN model are

theoretically analyzed in the previous sections. In order to

further prove the superiority of the new AF, in this part,

comparative simulation verification of the different AFs of

ZNN models is presented. One robotic application is

presented.

Example 1 Third-order dynamic nonlinear equation

(TODNE)

In order not to lose generality, the design parameters w1

= w2 =2, c =1, p = 0.5, q=5, and the following third-order

DNE (TODNE) is considered:

gðxðtÞ; tÞ ¼ 0:01ðx� cos 3tÞðx� cos 3t � 5Þðxþ cos 3t
þ 5Þ:

ð10Þ

According to formula (10), we can get the theoretical

solution of the TODNE (i.e., x*(t) = cos(3t), x*(t) =

cos(3t)?5, x*(t)= -cos(3t)-5). We will solve TODNE

(10) with the proposed BFCZNN model (9) and the ZNN

model activated by different AFs in two cases: One is to

find the solution of TODNE (10) in noiseless environment

and the other one is to find the solution of TODNE (10) in

noise polluted environment.
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Figures 3, 4 are the computer numerical simulation

results for solving TODNE (10) with the proposed

BFCZNN model (9) and the ZNN model activated by

different AFs in noiseless environment (the red dotted lines

represent the theoretical solution at each moment, and the

solid lines represent the solutions of neural network mod-

els). Fig. 3 is the neural state solutions x(t) generated by the

BFCZNN (8) for solving TODNE (10) in the noiseless

environment, and Fig. 4 is the simulated residual errors of

the different models. Different from Fig. 3, Figs. 5, 6 are

the computer numerical simulation in random noises

results for TODNE. The random noise shown in Fig. 5 is a

combination of constant noise and periodic noise. The

random noise shown in Fig. 7 is a combination of non-

vanishing noise and periodic noise. The random noise

shown in Fig. 8 is a combination of all noises mentioned in

Table 2.

Following Figs. 3, 4, the ZNN model can effectively

find the solution of TODNE with all the AFs in Table 1 in

ideal environment, but their convergence time is different.

It takes 5 seconds for the LAF to converge, and SBPF also

needs about 3 seconds, while the BFCZNN (8) spends only

about 0.2s. The BFCZNN (8) model is the most effective

model in ideal environment.

Based on Figs. 5, 9, it can be seen that the ZNN model

with LAF and SBPF for solving TODNE is very vulnerable

to random noise. When being attacked by constant and

periodic noises, the ZNN model with LAF and SBPF fails

to solve TODNE (28). The residual error of the RNZNN in

Ref. [28] decreases to 0, and its neural state solutions still

converge to the theoretical solutions of the TODNE.

However, the convergence rate of RNZNN in Ref. [28] is

not as fast as that of the BFCZNN model, which demon-

strates that the BFCZNN (9) has better robustness than the

other three AFs under random noise attacks.

Fig. 3 Neural state solutions

x(t) of the different ZNN

models for solving TODNE (10)

without noise. Error trace of the

different ZNN models without

noise. a State trace of the

RNZNN (8) without noise,

b state trace of BFCZNN (10)

without noise, c state trace of

the ZNN model by LAF without

noise, d state trace of the ZNN

model by SBPF without noise

Fig. 4 Transient residual errore(t)of a the different ZNN models for

solving TODNE (10) without noise. a Error trace of the different

ZNN models without noise
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To be more realistic, we have combined different kinds

of noises to carry out simulation experiment. Figures 6 and

7 present the simulation results of the other three AFs and

BFCZNN (9) attacked by the combination of four types of

noises in Table 1, which include PN n(t)=0.5cost, CN

n(t)=0.5, NVN n(t)=0.15t and VN n(t)=exp(-t). Following

Figures 5 and 10, it can be observed that the external noises

seriously affected the convergence performance of the

ZNN model with LAF and SBPF. The deviation between

them and the theoretical solutions is large, so they cannot

complete the task well. However, the BFCZNN (9) and

RNZNN in ref. [28] always converge quickly to the

theoretical solutions of the TODNE under various noise

disturbances, but the convergence speed of the proposed

BFCZNN model is still faster than the RNZNN model in

Ref. [28], which further demonstrate the better robustness

of the BFCZNN (9) than the existing NAF in Ref. [28].

Example 2 Application to robot manipulator

In this part, a robot manipulator simulation control is

designed to verify the feasibility of the BFCZNN model

further. The geometric model of the robot manipulator

control (RMC) was introduced in Ref. [30]. According to

Ref. [30], we can obtain the position level kinematics

equation of the RMC as follows:

RðtÞ ¼ nðHðtÞÞ: ð11Þ

According to Eq. (11), the RMC’s velocity level

kinematics equation can be expressed as:

R
�
ðtÞ ¼ JðHÞH

�
ðtÞ ð12Þ

where R(t) represents the position vector of the end-

effector, n(•) is a mapping function, matrix H
(H=[u,hT]T)[Rn?2 consists of the angle vector of the

platform u (u=[u1,ur]
T) and the joint space vector h

(h=[h1,h2,……,hn]
T, and the Jacobian matrix J(H)=

qn(H)/qH.

Fig. 5 Neural state solutions

x(t) of the different ZNN

models for solving TODNE (10)

with CN and PN a Error trace of
the different ZNN models with

CN and PN. a State trace of the

RNZNN (8) with CN and PN,

b state trace of BFCZNN (11)

with CN and PN, c state trace of
the ZNN model by LAF with

CN and PN and d state trace of

the ZNN model by SBPF with

CN and PN

Fig. 6 Transient residual errore(t)of a the different ZNN models for

solving TODNE (10) with NVN and PN. a Error trace of the different

ZNN model with NVN and PN
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Generally, R
�
ðtÞ is known and H

�
ðtÞ is unknown in (12),

which means the positioning control of RMC is actually

realized by solving Eq. (12). Equation (12) can be seen as a

time-varying linear matrix equation, and the proposed

BFCZNN can be applied to solve this matrix equation.

For better comparison, the BFCZNN model (9) and the

ZNN activated by LAF are both applied to the positioning

control of RMC. The positioning control models are shown

as follows:

JðHðtÞÞH
�
¼ R

�
ðtÞ � c/ðRðtÞ � fðHðtÞÞÞ þ NðtÞ ð13Þ

JðHðtÞÞH
�
¼ R

�
ðtÞ � cwðRðtÞ � fðHðtÞÞÞ þ NðtÞ: ð14Þ

Equations 13, 14 are the positioning control models of

the RMC using the BFCZNN and ZNN activated by LAF.

Noises n(t)=0.15 stand for CN.

By ZNN for solving the kinematics equation, the

manipulator is controlled to make a circular trajectory

motion at a specified position, and the initial state of the

RMC is set as H(0) = [p/6, p/3, p/6, p/3, p/6, p/3]T, and

Fig. 7 Neural state solutions

x(t) of the different ZNN

models for solving TODNE (10)

with NVN and PN. a State trace

of the RNZNN (8) with NVN

and PN, b state trace of the

BFCZNN (10) with NVN and

PN, c state trace of the ZNN

model by LAF with NVN and

PN, d state trace of the ZNN

model by SBPF with NVN and

PN

Fig. 8 Neural state solutions x(t) of the different ZNN models for

solving TODNE (10) with CN, NVN and PN. a State trace of the

RNZNN (8) with CN, NVN and PN, b state trace of the BFCZNN

(10) with CN, NVN and PN, c state trace of the ZNN model by LAF

with CN, NVN and PN, d state trace of the ZNN model by SBPF with

CN, NVN and PN

Table 2 Different noises

No. Noise item Example

1 Constant noise (CN) n(t) = 2

2 Non-vanishing noise (NVN) n(t) = 0.16t

3 Periodic noise (PN) n(t) = 2cos(t)

4 Vanishing noise (VN) n(t) = 2exp(-t)
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the task duration is 20 s. The experiment results are dis-

played in Figs. 11 and 12.

Figures 11 and 12 are the trajectory tracking results of

RMC generated by the proposed BFCZNN (9) and the

ZNN model with constant noise n(t)=0.15. Following

Figs. 11 and 12, it can be seen that the RMC by BFCZNN

can accurately locate and complete the circular trajectory

tracking task, and its tracking position errors are less than

2.5910-4 m with constant vanishing noise. At the same

time, the RMC controlled by ZNN model cannot complete

the circular trajectory tracking task. The successful circle-

tracking task further verifies the robustness and effective-

ness of the proposed BFCZNN.

Example 3 Experimental results

In order to verify the physical realizability of the

BFCZNN (9) for solving the position level kinematics

problem of RMC (13), a physical experiment is conducted

with IRB120 robot manipulator in this section. The end-

effector tasks are to track the circle path of example 2.

Figure 13 shows the motion trajectory of the IRB120 robot

manipulator on the simulation platform. As can be seen from

Fig. 13, the red trajectory is basically the same as the circle in

Fig. 11 of example 2. These physical experiments further

verify the effectiveness, accuracy and physical applicability

of the proposed BFCZNN for resolving the position level

kinematics equation of redundant robot manipulators.

6 Conclusion

A new ZNN model for solving DNE is presented and

investigated in this paper. The convergence and robustness

of the BFCZNN model are analyzed theoretically and

verified by simulation, and the simulation results are con-

sistent with the theoretical analysis results. Compared with

Fig. 9 Transient residual

errore(t)of a the different ZNN

models for solving TODNE (10)

with CN and PN. a Error trace

of the different ZNN models

with CN and PN

Fig. 10 Transient residual errore(t)of a the different ZNN models for

solving TODNE (10) with CN, NVN and PN, b error trace of the

different ZNN models with CN, NVN and PN

Neural Computing and Applications (2023) 35:77–87 85

123



the original ZNN model, the new BFCZNN model is

proved to have better robustness and faster convergence,

which will satisfy the scientific and engineering applica-

tions demanding accurate and fast online real-time

computation. The future research directions can be focused

on how to further enhance the robustness of the model, and

its real application to control the industrial robot

manipulator.

Fig. 11 The trace tracking results of the manipulator generated by the proposed model (13) with new AF. a Tracking motion trace. b Desired

path and actual trajectory. c Position errors

Fig. 12 The trace tracking results of the manipulator generated by the proposed model (13) with LAF. a Tracking motion trace. b Desired path

and actual trajectory. c Position errors

Fig. 13 BFCZNN (9) solves the

position level kinematics

equation of the RMC (13)
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