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Abstract
Sparsity of the signal has been shown to be very useful for blind source separation (BSS) problem which aims at recovering

unknown sources from their mixtures. In this paper, we propose a novel algorithm based on the analysis sparse constraint of

the source over an adaptive analysis dictionary to address BSS problem. This method has an alternating scheme by keeping

all but one unknown fixed at a time so that the dictionary, the source, and the mixing matrix are estimated alternatively. In

order to make better use of the sparsity constrain, l0-norm is utilized directly for a more exact solution instead of its other

relaxation, such as lp-norm (0\p� 1). Numerical experiments show that the proposed method indeed improves the

separation performance.
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1 Introduction

In signal and image processing, we frequently need to

address the problem of recovering unknown sources from

their mixtures, that is, the blind source separation (BSS)

problem, which can be described as the following linear

mixing model

Y ¼ AXþ V ð1Þ

where Y ¼ ½y1; y2; . . .; ym�
T 2 Rm�N and X ¼

½x1; x2; . . .; xn�T 2 Rn�N denote the observed matrix and the

source matrix, respectively, A 2 Rm�n is the mixing

matrix, and V 2 Rm�N is referred to the additive Gaussian

noise. Notice that X and Y contain n sources and m mix-

tures, respectively, and here N is the data size. BSS’s task

is to estimate the sources X (and the mixing matrix A)

without any prior knowledge except the observation Y. As

we all know that this problem does not have a unique

solution in general. Therefore, it is necessary to impose

some restrictions into the separation process and make the

sources distinguishable.

Independent component analysis (ICA) [1], as one of

classical approaches to solve the over-determined BSS

problem (m� n), assumes that the sources are non-Gaus-

sian and as statistically independent as possible. It has led

to many well-known approaches, such as Infomax [2],

maximum likelihood estimation [3], the maximum a pos-

terior (MAP) [4] and FastICA [1]. Where Infomax using a

stochastic gradient algorithm to maximize the likelihood

may require some hand-tuning and often fails to converge

[5], or only converges slowly. Therefore, various methods

have been proposed to maximize Infomax likelihood much

faster by using curvature information, especially the com-

plete set of second-order derivatives (Hessian). However,

as a large object, Hessian will cause high computational

cost for large data sets. To address the cost issue, [6]

adopted a truncated Newton algorithm, and another

approach is to use approximations of the Hessian, such as a

simple Quasi-Newton method in [7] and [8], and a trust-

region method in [9]. Nevertheless, the work in [10]

compared these methods [7–9] and found that the Hessian

approximations do yield a low cost per iteration, but that

they are not accurate enough on real data. Therefore, lit-

erature [10] proposed a Preconditioned ICA for Real Data

(Picard) algorithm, which is a relative L-BFGS algorithm

preconditioned with sparse Hessian approximations, to

overcome this problem. However, the classical ICA algo-

rithm is weak in processing noisy sources separation.
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Meanwhile, Lee and Seung proposed another effective

method, nonnegative matrix factorization (NMF) by taking

advantages of the nonnegativity constraints. These con-

straints lead to aparts-based representation because they

allow only additive, not subtractive, combinations [11].

Afterward, Boutsidis and Gallopoulos described nonnega-

tive double singular value decomposition (NNDSVD) [12],

a new method designed to enhance the initialization stage

of NMF, which is well suited to initialize NMF algorithms

with sparse factors and many numerical examples showed

that NNDSVD made the approximation error of many

NMF algorithms decrease rapidly.

During the past decade, sparsity has been widely used in

many aspects [13–18]. Vast works have been in an attempt

to use sparsity for BSS problem, and many sparsity-based

approaches have proposed [19–24]. They are collectively

coined sparse component analysis (SCA), which means

that the sources can be sparsely represented using a known

common basis or dictionary. For instance, morphological

component analysis (MCA) [19] is a novel decomposition

method based on sparse representation of signals with a

signal dictionary, which showed that different dictionaries

produce entirely different representations and the sparser

representation, the better separation. Therefore, Jérôme

Bobin described an extension of the MCA-multichannel

morphological component analysis (MMCA) [20] adapted

to the multichannel data. MMCA took advantage of a large

over-complete dictionary to obtain different sparse repre-

sentations for n sources based on their morphological

diversity. And in literature [21], generalized morphological

component analysis (GMCA) was proposed to the much

more general case and considered that each source is a

linear combination of several components and each com-

ponent is sparse in a given dictionary. Moreover, Vahid

Abolghasemi proposed BMMCA [22], which can adap-

tively learn the dictionaries from the mixed images via

K-SVD, adapting MMCA to those cases that the known

dictionaries are not available. Further, the work in [24]

extended the BMMCA method that uses the only one

dictionary to sparsely represent different sources. And it

inventively incorporated SimCO optimization framework

[25] into two-stage dictionary learning and mixture learn-

ing, thus significantly reducing the implementation effort.

It is noting that the above sparsity-related methods

without exception are all relied on synthesis model. In this

model, a signal w 2 Rd can be composed as w ¼ Da,

where D 2 Rd�k ðd� kÞ is a dictionary and the represen-

tation coefficient a 2 Rk is expected to be sparse, i.e.,

kak0 ¼ c � k. Just like above mentioned, the synthesis

model has been extensively applied to BSS problem. As for

its dual analysis angle—analysis sparse model—in sparse

representation has been barely touched [26, 27]. The

analysis model is described as z ¼ Xw, where the X 2
Rp�d ðp� dÞ refers to a analysis dictionary. The implica-

tions of this model are the signal w 2 Rd can be trans-

formed into a low-dimensional subspace via a linear

operation X. Therefore, the representation coefficient z is

assumed as sparse, i.e., kzk0 ¼ c � p.

Although the two models have very similar structure,

the theoretical as well as simulation results provided in [28]

have indicated that there exists a respectable gap between

them, especially in the over-complete case. Moreover, in

some respects, analysis model has advantages over syn-

thesis model. For example, analysis model contains a larger

number of low-dimensional subspaces in the case of the

same dimension ðk ¼ d � lÞ, which enrich in terms of its

descriptive power [26]. In addition, in the framework of

synthesis model where only a small number of atoms are

used to represent each signal, the significance of every

atom grows enormously; any wrong choice could poten-

tially lead to a ’domino effect.’ But in the analysis for-

mulation, all atoms take an equal part in describing the

signal, thus minimizing the dependence on each individual

one, and stabilizing the recovery process [28]. More gen-

erally, analysis-based methods are a very common struc-

ture in image processing and computer vision applications.

Due to the smaller dimension of the unknown, compared

with the similar-sized synthesis-based method, the analy-

sis-based method leads to a more simple optimization

problem in the over-complete case ðp[ dÞ , which is

considerably easier to be solved [28]. Therefore, fusing

analysis sparse constraint to the processing of BSS problem

becomes necessary.

Recently, one of the effective related attempts was the

work of literature [29], in which experimental results have

demonstrated that the approach based on analysis sparse

model has better separation performance. Nevertheless, it

should be noticed that this work replaced the l0-norm with

l1-norm as the sparsity measure to obtain a approximate

solution, which will certainly reduce sparsity. l0-norm is

the most intuitive measure of sparsity. Only when certain

conditions, such as exact recovery condition (ERC) and

restricted isometry property (RIP) [26] are met, can l1-

norm be considered equivalently to l0-norm.

Hence, in this paper, we propose a new method, termed

analysis BSS (ABSS), to make better use of the sparsity

constrain. Different from the most BSS algorithms based

on synthesis model, this method bases on analysis model.

And it directly uses l0-norm as the measure of sparsity to

obtain a more exact solution. In turn we come up with a

novel objective function for the BSS problem based on

analysis sparse model. In order to simplify this problem,

the solution process is divided into three stages: dictionary

learning stage, sources estimating stage and mixing matrix
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estimating stage. In the first stage, we adopt Analysis

KSVD [30] to adaptively estimate the analysis dictionary

from mixed sources. Next in the second and third stage, the

sources and mixing matrix can be uniquely obtained sep-

arately by a simple least square linear regression. Finally,

the results indicate that using l0-norm enhances the sepa-

rability of the sources.

The organization of this manuscript is as follows. In

sect. 2, we are devoted to introducing the proposed

framework. Then the details of our algorithm are presented

in Sect. 3. Finally, the simulations compared with some

typical methods to verify the competitive separation per-

formances of the proposed algorithm are provided in Sect.

4.

2 Problem formulation

Firstly, BSS problem (1) can be written as the following

optimization problem

min
A;X

kY � AXk2F ð2Þ

where k � kF denotes the Frobenius norm. Notice that in this

problem, the mixing matrix A 2 Rm�n and the source

matrix X : fxigni¼1 2 Rn�N are completely unknown. We

can only use the known observed matrix Y : fyigmi¼1 2
Rm�N which is the input of our algorithm to estimate X and

A. Therefore, this problem is ill-posed and here we will

impose the analysis sparse constraint on it, that is, the

forward projection of the source xi is sparse enough on the

basis elements. The sparse representation of xi based on

analysis model can be described as

min
Xi;si

ksik0 s:t: si ¼ Xixi ð3Þ

where the si is referred to the representation coefficient of

xi, which most entries are zero, and the k � k0 is the ‘0-norm
which counts the number of nonzeros. In particular, Xi 2
Rp�d is an analysis dictionary corresponding to the ith

source. Optimization problem (3) can be written in its

Lagrangian form

min
Xi;si

ksi �Xixik2F þ lksik0 ð4Þ

Note that formula (4) describes the analysis model, which

is different from the expression of the synthesis model in

BMMCA [22]. In addition, l0-norm is directly used as the

measure of sparsity, which is different from the method

proposed by Fang [29]. Overall, the BSS problem based on

the analysis sparse model can be described as a joint

optimization problem

min
A;Xi;xi;si

kkY � AXk2F þ
X

i

lksik0 þ
X

i

ksi �Xixik2F

ð5Þ

where scalars k and l control the noise power and sparsity

degree, respectively. To simplify the problem, the dic-

tionary, the sources and the mixing matrix are estimated

alternatively. So overall optimization problem (5) is divi-

ded into the following stage

– Dictionary learning stage (with X and A fixed)

min
Xi;si

ksik0 s:t: ksi �Xixik2F � d i ¼ 1; . . .; n ð6Þ

– Sources estimating stage (with Xi, si, and A fixed)

min
X

kkY � AXk2F þ
X

i

ksi �Xixik2F ð7Þ

– Mixing matrix estimating stage (with X, Xi, and si
fixed)

min
A

kY � AXk2F ð8Þ

In the overall separation process, the above three opti-

mization subproblems should be addressed iteratively until

convergence. The specific details of the proposed algo-

rithm, coined Analysis BSS (ABSS), are described in Sect.

3.

3 ABSS algorithm

Before giving the ABSS algorithm, we make some con-

ventions on the variables in the model in advance, which

will be more conducive to the proposed method’s appli-

cation, such as solving large images separation problems.

Here, the j th
ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
observation image Yj is presented

as the vector yj 2 RN�1 and the ith
ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
source

image X i is also vectorized by xi 2 RN�1. Then, we divide

each xi and each yj into M patches of size d � 1 which may

be overlapped, where xi;f is the fth patch of xi and yj;f is the

fth patch of yj. The observation matrix

y:;f ¼ ½y1;f ; y2;f ; . . .; ym;f �T 2 Rm�d, f ¼ 1; . . .;M can be

modeled as

y:;f ¼ Ax:;f þ v ð9Þ

where x:;f ¼ ½x1;f ; x2;f ; . . .; xn;f �T 2 Rn�d refers to the

source matrix and v is the additive noise. Thus, large-scale

images separation problem (1) can be transformed into M

small-scale images separation problems (9). Solving

overall BSS problem (5) amounts to solving the following

problem one patch by one patch
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min
A;Xi;xi;f ;si;f

kky:;f � Ax:;f k2F þ
X

i

lksi;f k0

þ
X

i

ksi;f �Xixi;f k2F
ð10Þ

or equivalently,

min
A;Xi;xi;f ;si;f

kkEi;f � a:;i x
T
i;f k

2
F þ

X

i

lksi;f k0

þ
X

i

ksi;f �Xixi;f k2F
ð11Þ

where Ei;f is defined as the multichannel residual of xi;f and

its expression is Ei;f ¼ y:;f �
Pn

r¼1;r 6¼i a:;r x
T
r;f . Here a:;i

corresponds to the ith column of A. Because the above

optimization subproblems are invariant to scaling [24], we

require A is column-normalized matrix and Xi is row-

normalized matrix, that is

ka:;ik ¼ 1; i ¼ 1; . . .; n ð12Þ

and

kwj;ik2 ¼ 1; j ¼ 1; . . .; p ð13Þ

where wj;i is the jth row of Xi. To minimize problem (11),

we propose an alternating algorithm by keeping all but one

unknown fixed at a time. The estimation process of sour-

ces, mixing matrix and analysis dictionary are discussed in

the following three subsections, respectively. And the

procedure of the proposed algorithm is given at the end of

this section.

3.1 Dictionary learning stage

During the dictionary learning stage, we fix fxi;f gMf¼1 and A

to estimate the dictionary Xi, so problem (6) can be

transformed as follows

fX̂i; ŝi;f g ¼ min
Xi;si;f

X

f

ksi;f k0 s:t:ksi;f �Xixi;f k2F � d

ð14Þ

Note that, for each picture xi we need learn a corresponding

dictionary X̂i. Thus, we consider adopt Analysis KSVD to

the above problem, in which the learning of ‘0 analysis

dictionary Xi and the recovery of the correct noiseless

signal f~xi;f gMf¼1 from its noisy version fxi;f gMf¼1 can be

achieved. Note that xi;f ¼ ~xi;f þ vi;f where vi;f is a zero-

mean white-Gaussian additive noise vector, and the anal-

ysis coefficients can be described as si;f ¼ Xi~xi;f . Then

formula (14) can be transformed into the objective function

of Analysis KSVD

fX̂i; ~̂xi;f g ¼ min
Xi;~xi;f

X

f

kXi~xi;f k0 s:t: k~xi;f � xi;f k2F � d

ð15Þ

or

fX̂i; ~̂xi;f ; K̂i;f g ¼ min
Xi;~xi;f ;Ki;f

X

f

k~xi;f � xi;f k2F

s:t: XiKi;f
~xi;f ¼ 0; RankðXiKi;f

Þ ¼ d � r

ð16Þ

since here we assume the signal ~xi;f resides in r-dimen-

sional subspace, which implies that d � r rows in Xi are

orthogonal to it. These rows define the co-support Ki;f of

signal ~xi;f and XiKi;f
is a submatrix of Xi that contains only

the rows indexed in Ki;f . In problem (15), we constrain the

target sparsity of Xi~xi;f to d � r, whereas in problem (16),

we require the solution to be d-close to the given noisy

signal, where this error tolerance is derived from the noise

power. Once given the correct correspondence between r

and d, problem (15) and problem (16) can be considered

equivalent. Note that in the proposed method, the Analysis

KSVD is based on a two-phase block-coordinate-relaxation

approach to solve problem (16). The first phase is called

the sparse-coding stage, using a pursuit method, such as the

backward greedy (BG) algorithm and the optimized back-

ward greedy (OBG) algorithm, to estimate f~xi;f gM1 with Xi

fixed. It is worth noting that this method is a greedy

algorithm which selecting rows from X one-by-one in a

greedy fashion to solve the l0-norm problem. The problem

can be described as follows

f ~̂xi;f ; K̂i;f g ¼ min
~xi;f ;Ki;f

k~xi;f � xi;f k2F

s:t: XiKi;f
~xi;f ¼ 0; RankðXiKi;f

Þ ¼ d � r
ð17Þ

Once f ~̂xi;f gM1 is computed, we turn to update Xi in the

second phase, which is called the atom update step. The

optimization is carried out sequentially for each of the rows

wj;i in Xi. And the update of wj;i should only depend on

those signals of f~xi;f gM1 that are orthogonal to it, while not

on the remaining signals. Therefore, denoting ~XJ;i whose

columns are derived from the signal in f~xi;f gM1 and are

orthogonal to wj;i. In addition, denoting by XJ;i the corre-

sponding columns of fxi;f gM1 . The update step for wj;i can

be written as

fŵj;i; ~̂XJ;ig ¼ min
wj;i; ~XJ;i

k ~XJ;i � XJ;ik2F

s:t: XiKi;f
~xi;f ¼ 0; 8f 2 J

RankðXiKi;f
Þ ¼ d � r; 8f 2 J

kwj;ik2 ¼ 1

ð18Þ

Unfortunately, in general, solving problem (18) is a
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difficult task. [30] proposed the following approximation to

the above optimization goal

ŵj;i ¼ min
wj;i

kwj;iXJ;ik2F s:t: kwj;ik2 ¼ 1 ð19Þ

For the optimization problem, the wj;i can be updated using

the eigenvector associated with the smallest eigenvalue of

XJ;iX
T
J;i. Finally, the process is repeated until a fixed

number of iterations are reached. And the analysis coeffi-

cients of ~xi;f can be obtained as ŝi;f ¼ X̂i ~̂xi;f .

3.2 Sources estimating stage

In this stage, we estimate source xi;f by solving the fol-

lowing convex minimization problem

fx̂i;f g ¼ min
xi;f

kkEi;f � a:;i x
T
i;f k

2
F þ ksi;f �Xixi;f k2F ð20Þ

where Xi and si;f were already obtained in the previous

step, and the other sources in x:;f are assumed to be given

(Ei;f fixed). Then the solution can be obtained by setting

the gradient of subproblem (20) to zero

0 ¼ kðxi;f aT:;i � ET
i;f Þa:;i þXT

i ðXixi;f � si;f Þ
¼ kxi;f þXT

i Xixi;f � kET
i;f a:;i �XT

i si;f
ð21Þ

leading to

x̂i;f ¼ ðkI þXT
i XiÞ�1ðkET

i;f a:;i þXT
i si;f Þ ð22Þ

where I is the identity matrix. With the help of these cor-

responding patches fxi;f gM1 , the source xi can be obtained

by averaging over the overlapping regions and then the

source matrix X can be recovered.

3.3 Mixing matrix estimating stage

At this part, all the unknowns, except A, are fixed and

problem (5) is simplified as

â:;i ¼ min
a:;i

kEi � a:;i x
T
i k

2
F ð23Þ

where the multichannel residual of xi is defined as

Ei ¼ Y �
Pn

r¼1;r 6¼i a:;r x
T
r . The above minimization sub-

problem is easily solved by setting its gradient to zero, and

then, the estimation of a:;i is achieved

a:;i ¼ ðEixiÞðxTi xiÞ
�1 ð24Þ

In order to maintain the column norm, the mixing matrix A

needs to be normalized after each update of a:;i.

3.4 Complexity analysis

Since the proposed algorithm directly uses l0-norm as the

measure of sparsity, the computational complexity of the

proposed algorithm must be higher than Fang’s method.

The detailed analysis of the complexity of the proposed

method per iteration is as follows. The complexity analysis

of the dictionary learning stage is divided into two parts. In

Analysis KSVD, the backward greedy (BG) pursuit algo-

rithms used in sparse coding have complexity OðMd2pÞ,
and atoms update cost OðMdpÞ. Therefore, line 4 costs

OðMd2pþMdpÞ. The complexity of updating the repre-

sentation coefficient (line 6) and computing the residual

(line 8) is OðMdpÞ and Oððn� 1ÞmNÞ, respectively.

Updating sources in line 9 costs Oðd2pþ d3Þ. Finally, the
mixing matrix estimating stage including computing

residual (line 11), updating mixing matrix (line 12) and

normalization (line 13) total cost

Oððn� 1ÞmNþmNþ 2mÞ. Since all these calculations

are executed for each source (i.e., i ¼ 1; . . .; n), then the

overall computation cost per each iteration of the algorithm

would be OðnNd2pþ n2mNþ nd3 þ 2mnÞ, where

N ¼ M � d.
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4 Simulations

In the first experiment, we chose two very similar source

images1 (shown in Fig.2a) mixed together using a 4� 2

full rank random column normalized mixing matrix A to

examine the performance of ABSS algorithm. Each 128�
128 (=N) mixture and initialized source were divided into

patches of size 8� 8, which can avoid leading to large

dictionaries and provide sufficient training signals for the

dictionary learning stage. The overlap percentage of the

patches was fixed to 50%. Of course, the higher the overlap

percentage lead to a better the recovery result. In addition,

three hundred iterations were selected as the stopping cri-

terion. As to the selection of parameter k, we investigated

the effects of choosing a different k on recovery quality.

For this experiment, we calculated the normalized mean

square error (NMSE) while varying k. The NMSE in dB

can measure the distance between the mixing matrix A and

the estimated matrix Â and is defined as

NMSE ¼ 10 log10ð
P

p;qðâp;q � ap;qÞ2
P

p;qðap;qÞ
2

ð25Þ

where âp;q is the (p, q) element of the estimated matrix Â.

And the smaller the value of NMSE, the better the mixing

matrix estimation. Figure 1 represents the achieved results

for this experiment. It can be found that k ¼ 3 is a optimal

choice.

Then, we applied the following methods for comparison

purposes: FastICA [1], Picard [10], BMMCA [22] and the

algorithm proposed by Fang [29] (Computer OS: Windows

8.1, CPU: Intel (R) Core (TM) i5-5200U @ 2.20GHz

RAM: 4G). And using the peak signal-to-noise ratio

(PSNR) describes the reconstruction performance of the

candidate algorithm. PSNR is calculated as

PSNR ¼ 20 log10ðMAX=
ffiffiffiffiffiffiffiffiffiffi
MSE

p
Þ ð26Þ

where the MAX indicates the maximum possible pixel

value of the image, such as for a uint-8 image, the MAX

equals to 255. And the MSE refers to mean square errors

given by MSE ¼ ð1=NÞkX � X̂k2F, where X and X̂ are the

source image and recovered image. The better the quality

of the image, the higher value of PSNR. Note that in the

ABSS algorithm, the number of atoms of dictionary is set

to 80. Although there is not much can be theoretically said

about choosing the optimum dictionary size (or redundancy

factor d/p), we try to give an explanation by experiment.

Table 1 shows the PSNR values for different numbers of

atoms.

As shown in Table 1, the separation effect is better when

the number of atoms is 80 or 90, and the computation time

of 90 atoms is greater than that of 80 atoms. For compre-

hensive consideration, we set the number of atoms to 80.

Then, Fig. 2 shows the reconstructed source images of the

five test algorithms. And Table 2 presents the average

PSNR results.

We observed that the proposed algorithm achieves the

best performance. BMMCA and Fang have almost similar

results, and the results of FastICA and Picard are not as

good as the other three algorithms in processing very

similar source images. As for another measure on the

performance of the proposed method, the reconstruction

error as a function of the number of iterations is shown in

Fig. 3, which shows that a monotonic decrease in the value

of the separation error is achieved. In addition, the

asymptotic error decreases relatively rapidly with a very

small value around the 20th iteration and is almost zero

around the 300th iteration. Therefore, the proposed algo-

rithm is convergent well.

Next, in order to make the experimental results more

convincing, we did another experiment to separate four

sources from six noiseless mixtures. The four selected

source images2 have very different morphologies,
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Fig. 1 Normalized mean square error (NMSE) as a function of k

Table 1 PSNRs (dB) and computation times (in seconds) of recon-

structed source images

Atoms Source 1 Source 2 Computation time

70 32.36 29.78 7.5592e?03

80 33.74 35.13 8.2359e?03

90 34.12 37.53 8.9367e?03

100 31.69 32.92 9.1082e?03

110 27.41 28.35 9.1894e?03

1 Available at: http://md.cosmostat.org/Generalized_MCA.html. 2 Available at: http://md.cosmostat.org.
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including noiselike texture and bricklike texture. As found

from Fig. 4, the parameter k should set to 3. Moreover, the

rest of parameters were the same as those in the first

experiment. Figure 5 and Table 3 illustrate the separation

results of applying all these methods mentioned above

(BMMCA, Fang, FastICA and Picard) and the corre-

sponding MSEs. As shown in Fig. 5c the proposed method

could successfully recover the image sources. And the

achieved MSEs, given in Table 3, are lowest for the pro-

posed method for all image sources except for the cartoon

boy. Other methods do not perform as well as the proposed

method. For example, as shown in Fig. 5d, although

BMMCA has perfectly recovered the cartoon boy with the

lowest MSE among all other methods, it has a problem in

recovering bricklike texture. In addition, Fang, FastICA

and Picard all have some difficulties in separation of some

images, separating all the image sources but adding some

interference from other sources.

In the last simulation, we investigated the performance

of all the methods in different noise levels. Gaussian noises

which standard deviations varied from 5 to 15 (r ¼ 15) are

added to the mixtures which are mixed from another two

image sources (Lena and Boat)3. The noisy mixtures are

(a)Mixture

(b) Source (c) ABSS (d)BMMCA (e) Fang (f) FastICA (g) Picard

Fig. 2 a Mixtures (the first row). b Source images (the first column). c–g are separation results by ABSS, BMMCA, Fang, FastICA and Picard

(the second–sixth column), respectively

Table 2 PSNRs (dB) of the five test algorithms

Algorithm ABSS BMMCA Fang FastICA Picard

Source 1 36.89 35.59 32.81 23.11 21.14

Source 2 35.76 31.72 31.15 27.35 27.04
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Fig. 3 MSE varies with the number of iterations, note that the

elements of image sources have amplitude in the range [0, 1]

3 Available at: https://elad.cs.technion.ac.il/software/.

Neural Computing and Applications (2021) 33:8543–8553 8549

123

https://elad.cs.technion.ac.il/software/%20


shown in Fig. 5a. As shown in Fig. 6, selection of k is

dependent on the noise standard deviation. Therefore, at

noise levels ranging from 5 to 15, the optimal choices of k
were 1, 5 and 10, respectively. The other experimental

settings and procedure were the same as the previous

experiment. Table 4 presents the average PSNRS results in

0.1 1 3 5 10 15 20
λ

-23

-22

-21

-20

-19

-18

-17

-16

-15
N

or
m

al
iz

ed
 m

ea
n 

sq
ua

re
 e

rr
or

Fig. 4 Normalized mean square error (NMSE) as a function of k

(a) Mixture

(b) Source (c) ABSS (d) BMMCA (e) Fang (f) FastICA (g) Picard

Fig. 5 a Mixtures (the first row). b Source images (the first column). c–g are separation results by ABSS, BMMCA, Fang, FastICA and Picard

(the second–sixth column), respectively

Table 3 MSEs of the five test algorithms

Algorithm ABSS BMMCA Fang FastICA Picard

Bricklike texture 0.0608 0.1394 0.2164 0.0933 0.0720

Cartoon boy 0.1814 0.0427 0.2776 0.1278 0.2652

Barbara 0.0459 0.0463 0.1466 0.1713 0.2288

Noiselike texture 0.0773 0.0988 0.0889 0.2346 0.0859
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different noise levels. And the separation results in the

noise level 10 are shown in Fig. 7c–g. We observed that all

algorithms successfully separated the noise mixtures, but

the proposed algorithm achieves a better separation per-

formance than the other algorithms. When the noise level is

5, the separation results of all methods are similar except

Picard, but as the noise level increases, FastICA performs

obviously worse and Picard has superior performance than

FastICA. In addition, ABSS presents successful perfor-

mance improvement in denoising, for example, Lena’s

facial details are the most legible among the five methods.

Overall, the above experimental results have indicated that

ABSS has a significant performance improvement in both

separation and denoising.

5 Conclusions and future work

In this paper, we proposed a novel algorithm based on the

analysis sparse constraint of the source over an adaptive

analysis dictionary to address BSS problem, where the

number of mixtures is not less than the number of sources.

Moreover, l0-norm was chosen as the measure of sparsity

to make better use of the sparsity constrain. The simulation

results on both noisy and noiseless mixtures have been

confirmed that the proposed method improves the separa-

tion performance significantly.

In fact, the way of updating dictionaries and sources is

completely different from the literature [29]. In the analysis
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Fig. 6 Normalized mean square error (NMSE) as a function of k

Table 4 PSNRs (dB) of the five test algorithms

r Source ABSS BMMCA Fang FastICA Picard

5 Lena 24.19 21.77 23.55 23.30 23.39

Boat 27.78 26.75 27.30 26.37 24.78

10 Lena 21.30 19.00 20.36 19.72 19.64

Boat 24.24 21.89 21.98 18.01 21.72

15 Lena 20.25 18.00 18.28 18.18 17.19

Boat 21.52 20.38 19.25 17.00 20.04

(a) Noisy mixtures

(b) Source (c) ABSS (d) BMMCA (e) Fang (f) FastICA (g) Picard

Fig. 7 a Noisy mixtures when r ¼ 10 (the first row). b Source images (the first column). c–g are separation results by ABSS, BMMCA, Fang,

FastICA and Picard (the second–sixth column), respectively
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dictionary learning stage, we adopt Analysis KSVD [30] to

adaptively estimate the analysis dictionary from mixed

sources, whereas Fang uses SP-ADL directly proposed by

the literature [31], which is an efficient algorithm for

obtaining the analysis dictionary from a given data set in a

KSVD-like manner. And in the sources estimating stage,

since the subproblem we need to solve is a convex function,

the sources can be uniquely obtained by a simple least square

linear regression instead of the split Bergman iteration (SBI)

algorithm introduced by [32], which use directly in the lit-

erature [29] and need five iterations to converge to an

approximate solution. Thus, the convergence rate of the

proposed algorithm is faster than the Fang’smethod. Finally,

the simulation results on both noisy and noiseless mixtures

have been confirmed that using l0-norm enhances the sepa-

rability of the sources and the proposedmethod improves the

separation performance significantly.

However, due to the greedy algorithm—backward

greedy algorithm is used in the dictionary learning stage, it

inevitably slows down the proposed algorithm speed,

which is also the reason why the computation time in

Table 1 is so high. Further work is required to speed up the

algorithm and make it suitable for large-scale problems, for

example, using some novel and more efficient dictionary

learning algorithms [33, 34] for BSS problem. In addition,

this work only focuses on the general overdetermined BSS

problem and tries to find some new angle to deal with it

perfectly. It would be desired to extend this related method

to resolve the underdetermined BSS problem in the future,

in which the number of mixtures is less than that of the

sources, and this kind of problem is harder to deal with

than the problem mentioned in this work.
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