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Abstract
Concrete-filled steel tube (CFST) columns are widely used in the construction industry. Prediction of the ultimate bearing

capacity of CFST columns is complicated because it is influenced nonlinearly by many factors such as steel tube length,

steel tube thickness, ratio length and column diameter, and concrete compressive strength. This study proposes an artificial

intelligence (AI) model to predict the ultimate bearing capacity of CFST columns. The AI model was developed based on

support vector regression (SVR) and grey wolf optimization (GWO). The GWO optimized the SVR configuration that

produces highly accurate prediction results. A large experimental dataset with normal, high, and ultimate strength concretes

was used to validate the model’s effectiveness through the learning and test phases. A k-fold cross-validation method was

adopted to ensure the generalizability. The column diameter (D), thickness of steel tube (t), yield stress of steel, com-

pressive strength of concrete, column length, D/t ratio were used as inputs for the model. Results show that the proposed

SVR-GWO model was more effective than the compared models and empirical methods in the bearing capacity prediction

of CFST columns. The SVR-GWO yielded the outstanding performance in which the accuracy improvements by the

proposed model were ranged from 10.3 to 87.9% in the mean absolute percentage error and from 15.4 to 74.2% in the mean

absolute error compared to baseline models and empirical methods. As contributions, the study suggested an AI-based tool

for estimating the ultimate bearing capacity of CFST columns in structural design.
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List of symbols
CFST Concrete-filled steel tube

RC Reinforced concrete

NSC Normal strength concrete

HSC High-strength concrete

UHSC Ultra-high-strength concrete

UBC Ultimate bearing capacity

L Steel tube length

t Steel tube thickness

D Column diameter

L/D Ratio length and diameter of CFST columns

EC4 Eurocode 4

AISC American standards

AI Artificial intelligence

MARS Multivariate adaptive regression splines

M5Tree M5 model tree

SVR Support vector regression

GEP Gene expression programming

ANNs Artificial neural networks

PSO Particle swarm optimization

GA Genetic algorithms

e/D Ratio of eccentricity to diameter
�k Relative slenderness
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Npl,Rd Plastic cross-sectional resistance under

compression

gc Confinement coefficient of concretes

ga Confinement coefficient of steel tubes

As Section areas of the steel

Ac Section areas of concrete

fy Yield strength of the steel

fc Unconfined concrete compressive strength

Ncr Elastic critical normal force for the relevant

buckling mode

ðEIÞeff Effective flexural stiffness

Ke Correction factor

Ec2 Concrete elastic modulus

Is Moment of inertia of steel tube

Ic Moment of inertia of concrete core

NEd Plastic resistance to compression with

considering the buckling

v Reduction factor for the buckling curve

P0,AISC Plastic capacity of the section with zero-length

strength

NAISC Nominal axial capacity of a circular CFST

columns

Pe Elastic buckling load

(EI)eff1 Effective stiffness of the composite section

KA Effective length factor

LA Laterally unbraced length of the column

Ec1 Modulus of elasticity of concrete

x Linear approximator’s parameter

ek Errors

C Regularization parameter

yk Dependent variables

b Bias

n Dataset size

ak Lagrange multipliers

RBF Radial basis functions

K(x,xk) Kernel function

r RBF width

X~ðt þ 1Þ Location vector of wolves at iteration (t ? 1)

X~pðtÞ A location vector of prey at iteration t

A~;C~ Coefficient vectors

r~1; r~2 Random vectors of [0,1]

RMSE Root-mean-square error

MAE Mean absolute error

MAPE Mean absolute percentage error

R Correlation coefficient

1 Introduction

Concrete-filled steel tube (CFST) columns are widely used

in construction works such as high-building columns and

piers due to its superiority compared to traditional rein-

forced concrete (RC) or absolute steel columns in terms of

high strength and ductility, high stiffness, high fire resis-

tance, and large energy dissipation capacity [1, 2]. CFST

columns can use concretes with different strengths such as

normal strength concrete (NSC), high-strength concrete

(HSC), high-strength concrete, or ultra-high-strength con-

crete (UHSC).

The load acting on the CFST columns usually has two

forms: the load acting on the entire steel and concrete (type

1) and the load acting only on the concrete core (type 2)

[3]. Specifically, for type 1, the steel tube of the CFST

columns plays a role of reinforcing both longitudinal and

transverse reinforcement, bearing axial force with a con-

crete core and creating round stress to the concrete core

when expansion deformation of concrete is higher than

steel tube. The confinement effect caused by steel pipes

increasing the strength and ductility of CSFT columns. For

type 2, the load is only applied to the concrete cross sec-

tion, so the steel tube only bears the axial force along with

concrete through the adhesion force of two layers of

material and the main effect is to restrain the expansion of

concrete core, thereby transmitting round stress into con-

crete to enhance compressive strength and ductility.

The ultimate bearing capacity (UBC) of the CFST col-

umn is a very important factor in the working capacity of

the CFST columns. Accurate determination of the UBC of

CFST columns is complicated because they are influenced

nonlinearly by many factors such as steel tube length (L),

steel tube thickness (t), ratio length and diameter of CFST

(L/D) columns, steel fiber properties (if any) in concrete

and compressive strength of concrete used in CFST col-

umns. Currently, international standards such as Eurocode

4 (EC4), AISC (American standards), ACI 318R (standards

of the American concrete association), Chinese standards

DLT/5085-1999 have proposed many formulas and dif-

ferent approaches to calculating extreme load capacity.

Besides, there have also been many experimental models

proposed in previous studies of many authors around the

world.

The load capacity or critical compressive strength of

CFST columns is a matter of interest to many researchers.

There are various empirical and theoretical studies to come

up with a formula for predicting the load capacity of the

CFST columns [2, 4, 5]. For example, Han et al. presented

the advanced applications of CFST structures [1], Gardner

et al. studied structural behavior of CFST [6], Goode used

1819 tests on CFST columns and compared to
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experimental studies [7]. Besides, Guler et al. also studied

axial capacity and ductility of circular UHPC-filled steel

tube columns [8] or Liew et al. designed the concrete-filled

tubular beam columns with high-strength steel and con-

crete [9]. In addition, the standards (ACI 318, AISC 2010,

AS3600, CECS 28:90, CISC 2007, DBJ 13-51-2003, EC4)

also provide specific formulas to calculate the CFST col-

umns load capacity.

Most of the formulas for predicting the extreme strength

of CFST columns are only suitable for NSC concrete, in

some standards, and studies have also expanded and

adjusted for HSC but only up to 90 MPa. The standards are

also limited in accurately predicting the strength of CFST

columns for all types of concrete strength, especially with

UHSC concrete [10]. These studies have not proposed the

formula for estimating the UBC of CFST columns covering

various types of concretes. Therefore, it is essential and

practical to set up a model to predict the UBC of CFST

columns using various concrete compressive strengths.

With the explosion of the science and technology net-

work, many new techniques are born, including artificial

intelligence (AI). The final goal of AI is to develop human-

like intelligence in machines and can be accomplished

through learning algorithms which try to mimic how the

human brain learns [11]. There are more and more

researchers used the application of AI such as predicting of

ore crushing-plate lifetimes [12], analyzing automatic

image of cutting edge wear by neural network approach

[13], or predicting the micro-drilling using multiple sensors

using AI-based hole quality [14].

The experimental formula limits the accuracy in pre-

dicting the compressive strength of a CFST column due to

its simplicity. The AI and machine learning are considered

a revolution that can apply for solving real problem in civil

structures [15], shear strength prediction in reinforced

concrete deep beams [16], energy efficiency [17, 18],

predictions of long-term deflections of reinforced concrete

structures [15], crack detection [19], building information

modeling [20], and prediction of concrete components

[21]. Due to its fast learning performance and high relia-

bility, there have been several studies using AI to simulate

the behavior of structures and materials help increase

predictive accuracy and helps reduce deviations in struc-

tural design [22, 23].

The application of AI for predicting the bearing capacity

of CFST columns is necessary for designing of the engi-

neering domain. Gholampour et al. applied multivariate

adaptive regression splines (MARS), M5 model tree

(M5Tree), and support vector regression (SVR) models in

evaluating mechanical properties of concretes [24]. Among

the AI techniques for regression problems, the SVR is one

of the most used models [25]. For example, the SVR

models have been applied for evaluating the stiffness of RC

members [26]. In addition, the performance optimization of

the SVR models is meaningful in practice. The grey wolf

optimization (GWO) algorithm was effective in solving

complex optimization problems [27]. Therefore, this study

used the SVR model and the GWO algorithm to develop a

prediction model for estimating the ultimate bearing

capacity in CFST columns.

In this study, the proposed model integrated the SVR

with the GWO algorithm in which the GWO aims to

automatically fine-tune the SVR parameters. The goal of

the study is to create a best model (SVR-GWO) to estimate

the ultimate bearing capacity in CFST columns. The pro-

posed model can consider the influencing factors such as

the column diameter (D), thickness of steel tube (t), yield

stress of steel (fy), compressive strength of concrete (fc),

column length (L), D/t ratio (D/t) as inputs for the pre-

diction. Details of the proposed SVR-GWO model are

described in Sect. 3. The contributions of this study are

twofold. The first contribution is to propose an AI-based

hybrid prediction model in predicting the bearing capacity

of CFST columns. The second contribution is to promote

and highlight AI applications in the civil engineering

domain.

2 Literature review

2.1 Relevant studies

Normally, the CFST columns are divided into three types

based on the length/diameter (L/D) ratio of the column:

short column (if L/D B 4); medium columns (if 4\ L/D

B 12) and thin column (if L/D C 12)—this is a standard

classification of Japanese AIJ 2001. Many studies have

shown that the strength of columns reduces when

increasing the L/D ratio. Moreover, the load capacity also

depends on the diameter/thickness ratio of steel tube (D/t),

the tensile strength of steel pipe, concrete strength, addi-

tional load on steel core or on the whole section. According

to researches, the load strength increases when the ratio of

D/t decreases or the tensile steel strength increases [2, 28].

The load strength in CFST columns mainly is influenced

by the expansion confinement of the steel tube. Accord-

ingly, when adding load on a concrete core, steel tube

works as expansion material confinement inside the con-

crete core; therefore, it yields a higher load capacity than

the case of additional load on the whole section when the

steel tube has both vertical and round stresses making the

expansion stress decreases [5, 29].

Recently, an important issue that studies mention is the

effect of concrete strength. Liew et al. [9], Tue et al. [30],

and Uy et al. [28] showed that when the concrete strength

raised, the expansion confinement reduced because of the
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higher the strength of concrete, the lower the coefficient of

expansion compared to the lower concrete capacity. With

CFST columns, research by An and Fehling [3] showed

that the design criteria for predicting the load were higher

than the actual test of CFST columns, especially those

using concrete strength higher than 90 MPa. On the other

hand, there is various concrete with different aggregates as

well as properties and affects loads such as light weight

reinforced concrete, fibrous concrete, recycled concrete.

Hence, it is important to study CFST columns using dif-

ferent concrete, high-strength, and ultra-high-strength

concrete and proposing a formula for calculating the load

capacity for this column is necessary.

Ahmadi et al. [31] introduced the artificial intelligence

(AI) approach to forecast compressive concrete strengths of

round-section CFST columns with different column

parameters. In this model, the compressive concrete

strength was reached to 106 MPa and the yield strength of

steel tube was 853 MPa. Jayalekshmi et al. [32] introduced

the load capacity of round-section CFST columns formu-

lation using the AI approach and compared with the pre-

dicted models of the previous researches.

Du et al. [33] used the AI method to calculate the critical

compression strength of rectangular section CFST columns

based on 305 experimental results and compared with

predictions from European standards EC4, standards of

American ACI concrete, Chinese standard GJB4142, and

American AISC360-10 steel Association standard. In

addition to this, Du et al. [33] used AI to examine effects of

column parameters such as the yield strength steel tube,

steel tube thickness, concrete strength, the height/diameter

ratio of the column to the strength, and ductility of

columns.

Recently, Linh et al. [34] used 300 axial compression

test samples on square section CFST columns to propose

an empirical formula for calculating vertical load capacity

based on the artificial neural networks (ANNs) model. The

author observed that the formulas given from ANNs had

more accurate results than those of other authors and the

existing design standards. The ANNs model was also

applied for predicting the flutter velocity of suspension

bridges [35].

Sarir et al. [36] based on the advanced methods

including gene expression programming (GEP) according

to the decision tree algorithm, ensemble models including

ANN and optimized algorithm (particle swarm optimiza-

tion—PSO) to build a prediction model for predicting the

load capacity of CFST columns and optimizing this model.

In addition, the authors compared the GEP, ANNs, and

PSO methods and showed that the GEP method had the

best predictive results and yielded the best regression

coefficients.

Karatas [37] used the MARS method to establish a

formula for the bearing capacity of the CFST columns.

Nour and Guneyisi [38] based on 97 experimental samples

and used genetic algorithms (GA) to develop the formula

for predicting the bearing capacity for short columns (L/

D from 2 to 3.5). The CFST columns in their study used

recycled aggregate. They then compared the calculated

load capacity from the new formula with the predicted

values from the design standards and showed that the new

formula based on the genetic algorithm had high accuracy.

Ahmadi et al. [39] also investigated the load capacity of

round-section CFST columns by using AI for a large

number of tested samples and compared with five previ-

ously predicted models. Similar results could be found in

the studies of Jegadesh and Jayalekshm [32], Liu [40],

Güneyisi et al. [41]. Therefore, overviewing the number of

studies using AI to assess the bearing capacity of the CFST

columns is very limited. Furthermore, previous studies just

focused on columns using concrete cores of normal com-

pressive strength (\ 50 MPa) or high (50–90 MPa), and

there have been no studies related to columns using ultra-

high reinforced concrete strength ([ 90 MPa). Thus, this

study aims to research CFST columns samples with dif-

ferent compressive strength of concrete cores.

2.2 Empirical methods for CFST columns

This section describes two popular empirical methods for

calculating the bearing capacity of CFST columns that are

the Euro code 4 [42] and American code AISC 2010 [43].

For CFST columns, these two codes are usually used by

engineers in design, which are detailed as below.

2.2.1 Euro Code 4 (EN 1994-1-1:2004) (EC4)

Confinement effect is considered for concrete-filled circu-

lar tubes with relative slenderness �k not larger than 0.5 and

the ratio of eccentricity to diameter e/D less than 0.1, and

then, the plastic cross-sectional resistance under compres-

sion can be determined as [42]:

Npl;Rd ¼ gaAsfy þ Acfc 1 þ gc
tfy
Dfck

� �
ð1Þ

in which

gc ¼ 4:9 � 18:5�kþ 17�k2 ðgc � 0Þ ð2Þ

ga ¼ 0:25 3 þ 2�k
� �

ðga � 1Þ ð3Þ

�k ¼
ffiffiffiffiffiffiffiffiffiffiffi
Npl;Rk

Ncr

r
ð4Þ

Npl;Rk ¼ fyAs þ 0:85fcAc ð5Þ

8528 Neural Computing and Applications (2021) 33:8525–8542

123



Ncr ¼
p2ðEIÞeff

l2
ð6Þ

ðEIÞeff ¼ EsIs þ KeEc2Ic ð7Þ

gc is the confinement coefficient of concretes; ga is the

confinement coefficient of steel tubes; fy is the yield

strength of the steel, fc is the unconfined concrete com-

pressive strength, As and Ac are the section areas of the

steel and concrete, respectively; Ncr is the elastic critical

normal force for the relevant buckling mode; ðEIÞeff is the

effective flexural stiffness for calculation of relative slen-

derness; Is and Ic are the moment of inertia of steel tube and

concrete core, respectively.

Ke is the correction factor that should be taken as 0.6,

and l is the buckling length of the CFST columns, and Ec2

is the concrete elastic modulus.

The plastic resistance to compression with considering

the buckling is given by:

NEd ¼ vNpl;Rd ð8Þ

where v is the reduction factor for the buckling curve

v ¼ 1

/þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 � k2

p ð9Þ

/ ¼ 0:5 1 þ 0:21 �k� 0:2
� �

þ �k2
� �

ð10Þ

Some limitations of EC4 (2004) can be given as follows:

• The code is limited to structural steel grades S235 to

S460 and normal weight concrete of strength classes

C20/25 to C50/60.

• The steel contribution ratio d should follow the

condition: 0:2� d� 0:9, where

d ¼ Asfy
Npl;Rd

ð11Þ

• The local buckling could be neglected with the

maximum value D/t

maxðD=tÞ ¼ 90
235

fy
ð12Þ

• The relative slenderness �k should not exceed 2.0. The

ratio of the depth to the width of the composite cross

section should be within the limits of 0.2 and 5.0

2.2.2 American Code AISC 2010 (AISC)

For circular CFST columns, the AISC [43] has considered

the concrete confinement through the hoop stress in steel

tube (using coefficient 0.95), and the cross-sectional

strength P0,AISC is given by [43]:

P0;AISC ¼ 0:95fcAc þ fyAs ð13Þ

P0,AISC is defined as the plastic capacity of the section

with zero-length strength. fy is the yield strength of the

steel, fc is the unconfined concrete compressive strength, As

and Ac are the section areas of the steel and concrete,

respectively. Therefore, to consider the length effects of the

column, the nominal axial capacity of a circular CFST

column is calculated by:

NAISC ¼ P0;AISC 0:658
P0;AISC

Pe

� �	 


0:877Pe; ðPeh0:44P0;AISCÞ

8<
: ; Pe � 0:44P0;AISC

� �

ð14Þ

where Pe is the elastic buckling load and is given by:

Pe ¼
p2ðEIÞeff1
ðKALAÞ2

ð15Þ

in which (EI)eff1 is the effective stiffness of the composite

section

ðEIÞeff1 ¼ EsIs þ C3Ec1Ic ð16Þ

C3 ¼ 0:6 þ 2
As

Ac þ As

� �
ð17Þ

KA is the effective length factor; LA is the laterally

unbraced length of the column; Is and Ic are the moment of

inertia of steel tube and concrete core, respectively; Ec1 is

the modulus of elasticity of concrete

Some limitations of AISC (2010) are shown as below:

• The code is limited to structural steel yielding strength

up to 525 MPa, normal weight concrete of cylinder

strength from 21 to 70 MPa, and lightweight concrete

of cylinder strength from 21 to 42 MPa

• Limitation of the diameter-to-thickness ratio of circular

CFST column is given by:

maxðD=tÞ ¼ 0:15Es

fy
for compact/noncompact

maxðD=tÞ ¼ 0:19Es

fy
for compact/slender ð18Þ

Higher ratios are permitted when their use is justified by

testing or analysis

• The cross-sectional area of the steel core shall comprise

at least 1% of the total composite cross section.
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3 Hybrid AI-based prediction model

3.1 Support vector regression for bearing
capacity of CFST columns

The support vector regression (SVR) [44] is a supervised

learning model belonging to machine learning, that is used

for regression problems. It has been used for capturing the

nonlinear relationship between the predictors and depen-

dent variables. Figure 1 demonstrates a framework of the

SVR model. It uses a kernel function to map predictors to

high-dimension feature space. A least-squares cost function

is applied to train an SVR model to yield linear equations

in a dual space that reduces computing time. Particularly,

SVR models are taught by solving Eq. (19).

min
x;b;e

Jðx; b; eÞ ¼ 1

2
xk k2þ 1

2
C
Xn
k¼1

e2
k ;

subject to yk ¼ x;uðxkÞh i þ bþ ek; k ¼ 1; . . .n

ð19Þ

where J(x,b,e) is an objective function; x is a linear

approximator’s parameter; ek is errors; C� 0 is a regular-

ization parameter; xk is predictors; yk is dependent variables

(i.e., the ultimate bearing capacity of CFST columns in this

study); b is bias; and n is the dataset size.

Lagrange multipliers (ak) are utilized for dealing with

this problem that results in Eq. (20). A kernel function is

described in Eq. (21). Among the kernel function, the

Gaussian radial basis functions (RBF) kernel is powerful

and is applied in this study as presented in Eq. (22).

f ðxÞ ¼
Xn
k¼1

akKðx; xkÞ þ b ð20Þ

Kðx; xkÞ ¼
Xn
k¼1

gkðxÞgkðxkÞ ð21Þ

Kðx; xkÞ ¼ expð� x� xkk k2=2r2Þ ð22Þ

where ak is Lagrange multipliers; K(x,xk) is the kernel

function; r is the RBF width.

Performance of SVR models is affected by the value

settings of its hyperparameters that consist of the RBF

width (r) and the regularization parameter (C). In this

study, the optimal settings of these two hyperparameters

were considered comprehensively. Particularly, a recently

developed metaheuristic grey wolf optimization (GWO)

algorithm [27] was integrated to optimize the performance

of the proposed AI model. The mathematical theory of

GWO was presented in the next section.

3.2 Grey wolf optimization for improving
performance of AI model

The GWO is a metaheuristic optimization algorithm [27]

that inspires the natural behaviors of grey wolves. The

GWO follows the power hierarchy and hunting activities of

wolves. Particularly, a swarm of grey wolfs is split hier-

archically into four subswarms of alphas (a), beta (b), delta

(d), and omega (x) in which power and responsibility of

each group are different.

Fig. 1 The framework of support vector regression
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• Alpha is a leader.

• Beta is subordinate wolves that consult the alpha and

manage the pack

• Delta is wolves that need to report to the alpha and

betas.

• Omega plays as a scapegoat and reports to the alpha,

beta, and delta.

For modeling the social power of wolves, the a is con-

sidered as the fittest solution, and b and d are considered as

the 2nd and 3rd third best solutions, respectively. The

optimization by the GWO includes searching, encircling,

and attacking prey. The hunting process is led by a, b, and

d. Encircling prey was performed by updating the wolf

position by using by Eq. (23). Three of them were used to

predict the location of the grey, while the location of

omegas was updated randomly surrounding the three best

wolves as shown in Eqs. (25)–(28) [27].

X~ðt þ 1Þ ¼ X~pðtÞ � A~ � C~ � X~pðtÞ � X~pðtÞ
��� ��� ð23Þ

Fig. 2 Pseudo-code of the grey

wolf optimization

Table 1 Descriptive analysis of data attributes

Statistical

values

Data attributes

Column

diameter

Thickness of

steel tube

Yield stress

of steel

Compressive strength

of concrete

Column

length

D/t

ratio

Ultimate bearing capacity of

CFST column

D (mm) T (mm) Fy (N/mm2) Fc (N/mm2) L (mm) D/t Nu (kN)

Average 174.35 4.42 359.42 62.87 506.05 48.62 3095.70

Std. dev. 109.74 2.46 111.23 37.11 313.97 34.23 4476.56

Min 48.00 0.52 181.40 9.90 150.00 9.00 106.00

Max 1020.00 16.54 853.00 193.30 3060.00 220.93 46000.00

Fig. 3 Proportion of three different strength concretes
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A~¼ 2a~ � r~1 � a~ and C~ ¼ 2 � r~2 ð24Þ

X~1 ¼ X~a � A~1 � C~1 � X~a � X~
��� ���; ð25Þ

X~2 ¼ X~b � A~2 � C~2 � X~b � X~
��� ��� ð26Þ

X~3 ¼ X~d � A~3 � C~3 � X~d � X~
��� ��� ð27Þ

X~ðt þ 1Þ ¼ X~1 þ X~2 þ X~3

3
ð28Þ

where X~ðt þ 1Þ is a location vector of wolves at iteration

(t ? 1); X~pðtÞ is a location vector of prey at iteration t; A~

and C~ are coefficient vectors; a~ are reduced from 2 to 0

through iterations; r~1 and r~2 are random vectors of [0,1].

The diversity of exploitation and exploration in the

GWO was controlled by the vector A~. During the opti-

mization process, when |A|\ 1, the wolves tend to

approach the prey because the next location of wolves is in

the area between their current locations and the prey’s

position. This conforms the exploitation of the GWO.

In contrast, as A|[ 1, wolves tend to diverge from the

prey that confirms the global exploration. Besides, the

vector C~ influences on the exploration and exploitation of

the GWO because it is a random weight that affects the

update of wolf location as shown in Eq. (25). This helps

the GWO to overcome local optima. Figure 2 shows a

pseudo-code of the GWO.

Fig. 4 Distribution of column geometry attributes
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4 Results

4.1 Database

A large dataset was collected in this study to evaluate the

proposed AI prediction technique that consists of 802

samples of experimental tests circular CFST short columns.

The dataset was derived from the Association of Steel–

Concrete Composite Structures [45]. Table 1 presents the

descriptive analysis of data attributes in the dataset that

includes the column diameter (D), thickness of steel tube

(t), yield stress of steel (fy), compressive strength of con-

crete (fc), column length (L), D/t ratio (D/t), and ultimate

bearing capacity of CFST columns (Nu). For examples, the

average diameter of CFST columns was 174.35 mm with a

standard deviation of 19.74 mm and the average thickness

of steel tubes ranged from 0.52 to 16.54 mm. The yield

stress of steel used in the CFST columns varied widely

from 181.40 to 853.00 N/mm2.

The used concretes in the experiments consist of the

NSC, HSC, and UHSC. Their proportions are shown in

Fig. 3 in which the CFST columns with the NSC account

for 49% and those of HSC and UHSC account for 23% and

28%, respectively. The average UBC of CFST columns in

the dataset was 3095.70 kN with the standard deviation of

4476.56 kN that reveals the wide range of Nu. To provide

readers with graphical information, Figs. 4 and 5 visualize

the distributions of column geometry attributes and column

materials and bearing capacity of CFST columns, respec-

tively. Six attributes related to column geometry and

materials were used as input data for the AI prediction

model that consists of D, t, fy, fc, L, D/t. The output of the

Fig. 5 Distribution of column materials and bearing capacity of CFST columns
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model was Nu. Figure 6 provides the scatter plots of six

above-mentioned inputs and the UBC in the dataset.

4.2 Evaluation process

The evaluation process is the learning phase and the test

phase in which the experimental dataset of 802 samples of

CFST columns was split randomly to the learning dataset

and the test dataset. Figure 7 presents data processing for

the model evaluation process. The learning dataset was to

train and optimize the AI models, which accounts for 90%

of the sample size of the original dataset. In the learning

phase, the AI model was trained by using the training data

that account for 70% of the learning database. In total, 30%

of the learning database was used as the validating data to

optimize the AI models by fine-tuning the hyperparameters

of the AI models. Meanwhile, the test dataset aimed to test

the performance of the trained and optimized AI models for

predicting the UBC of circular CFST short columns.

The optimal configuration of the SVR-GWO model was

defined by the values of hyperparameters C and r. As

shown in Fig. 7, the GWO algorithm was to optimize the

configuration of the SVR-GWO model by minimizing the

objective function which was the root-mean-square error

Fig. 6 Scatter plots of CFST columns attributes and ultimate bearing capacity
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(RMSE). Table 2 shows the settings of the SVR-GWO

model. The search space was set from 0.001 to 1000. The

RBF was used as the kernel function in the SVR model.

The GWO population was set as 100, and the maximum

iteration was 10. The GWO was generated initially by the

population of the grey wolf in which their coordinates

represented the C and r values in the search space. The

optimal configuration was reached as stopping criteria were

satisfied. The SVR-GWO model was implemented in

MATLAB programming language.

To ensure the generalizability in the model evaluation,

the AI models were evaluated 10 times with the aid of a k-

fold cross-validation method. The original database was

split with tenfold as shown in Fig. 8. In each evaluation,

Fig. 7 Evaluation process for predicting ultimate bearing capacity of CFST columns
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the model was learnt by ninefold, while the last fold was to

test the accuracy of the learned model. This process was

repeated ten times to ensure the model’s generalizability.

4.3 Evaluation indices

Model performance is assessed via statistical indices that

consist of RMSE [Eq. (29)], mean absolute error (MAE)

[Eq. (30)], mean absolute percentage error (MAPE)

[Eq. (31)], and correlation coefficient (R) [Eq. (32)].

Higher R, lower MAE, RMSE, and MAPE indicate good

predictive performance.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðy� y0Þ2

s
ð29Þ

MAE ¼ 1

n

Xn
i¼1

y� y0j j ð30Þ

MAPE ¼ 1

n

Xn
i¼1

y� y0

y

����
���� ð31Þ

R ¼ n
P

y � y0 � ð
P

yÞð
P

y0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð
P

y2Þ � ð
P

yÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nð
P

y02Þ � ð
P

y0Þ2
q ð32Þ

where y0 is predicted data; y is actual data; and n is database

size.

4.4 Analytical results

The result section shows evaluation results of the proposed

SVR-GWO model for predicting the UBC in circular CFST

columns through the learning and test phases. The com-

parison among the proposed model with other AI models

and empirical methods was also presented in this section.

Table 2 Settings for the GWO-

SVR model
Model Parameter Value

Support vector regression Regularization parameter C 0.001–1000

RBF width r 0.001–1000

Kernel function Radial basis functions RBF

Grey wolf optimization algorithm Number of wolves 100

Maximum iteration 10

Fig. 8 k-fold cross-validation

method for evaluation process
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4.4.1 Evaluation results

Figure 9 presents a comparison of actual values and pre-

dicted the UBC of CFST columns by the hybrid AI model.

The scatter points in four evaluations in Fig. 9 were very

close to the diagonal line that reveals the strong agreement

between the experimental results of the CFST column test

and predicted values produced by the SVR-GWO model.

Table 3 depicts the predictive accuracy of the model in ten

evaluation through the learning phase and test phase. Par-

ticularly, the predictive accuracy was assessed by the

RMSE, MAE, MAPE, and R.

In the learning phase, the average accuracy of the SVR-

GWO model in the prediction was 277.11 kN in the RMSE,

174.41 kN in the MAE, 8.25% in the MAPE, and 0.998 in

R. The proposed model also obtained a competitive accu-

racy in the test phase. Particularly, the MAPE reached

9.07% on average and 1.69% in standard deviation, while

the R-value was 0.994 which was extremely close to 1. The

results confirmed the effectiveness of the SVR-GWO

model in the UBC prediction of circular CFST columns

with considering various concretes of NSC, HSC, and

UHSC.

To improve the readability, Fig. 10 charts the MAPE

and R comparisons across tenfold cross-evaluation.

Fig. 9 Actual and predicted ultimate bearing capacity of CFST columns by the hybrid AI model
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Table 3 Predictive accuracy of the hybrid AI model in training and test phases

Evaluation RMSE_Tr (kN) RMSE_Te (kN) MAE_Tr (kN) MAE_Te (kN) MAPE_Tr (%) MAPE_Te (%) R_Tr R_Te

1 273.76 359.52 172.35 207.48 8.15 8.47 0.998 0.994

2 262.83 403.12 166.39 239.97 8.07 8.15 0.998 0.995

3 370.26 365.38 219.41 213.36 10.56 13.70 0.996 0.998

4 276.21 309.01 175.63 170.20 8.04 8.03 0.998 0.996

5 266.31 996.01 168.62 274.86 7.89 9.47 0.998 0.991

6 254.13 471.15 162.03 256.27 7.74 8.43 0.998 0.997

7 274.40 327.28 174.04 203.81 8.12 8.73 0.998 0.996

8 238.75 1521.16 155.39 409.51 7.81 9.22 0.998 0.977

9 280.12 267.20 177.50 171.97 8.19 8.43 0.998 0.995

10 274.31 238.29 172.75 154.70 7.96 8.12 0.998 0.997

Average 277.11 525.81 174.41 230.21 8.25 9.07 0.998 0.994

Min. 238.75 238.29 155.39 154.70 7.74 8.03 0.996 0.977

Max. 370.26 1521.16 219.41 409.51 10.56 13.70 0.998 0.998

Std. 35.02 410.85 17.18 73.87 0.82 1.69 0.001 0.006

Tr stands for training, and Te stands for test

Fig. 10 Predictive accuracy of the hybrid SVR-GWO model in learning and test phases

Table 4 Optimal hyperparameters of hybrid SVR-GWO model over the tenfold cross-evaluation process

Hyperparameters of hybrid SVR-GWO model Optimal hyperparameters of hybrid SVR-GWO model over tenfold cross-evaluation process

1 2 3 4 5 6 7 8 9 10

C 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

r 26.24 23.71 79.19 25.80 21.59 23.44 26.39 19.85 26.86 22.38
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Figure 10 reveals that most MAPE values in the evaluation

process were less than 10% except the 3rd evaluation and

the correlation coefficient R values were higher than 0.970

that confirmed the predictability of the proposed model. To

provide readers with reference for setting the prediction

model, Table 4 reports the optimal results of the model’s

hyperparameters which were derived from the optimization

by the GWO.

4.4.2 Comparison results

This section aims to compare the proposed AI model and

baseline AI models (i.e., LR, ANNs, and SVR models) and

the empirical methods (i.e., EC4 and AISC codes). These

baseline AI models are effective for prediction tasks [46].

The SVR was proposed by Vapnik [47], and its mathe-

matical theory was presented in [47, 48]. The ANNs model

is an effective technique that has been commonly used in

the engineering domain. The architecture of an ANNs

includes an input layer, one, or more hidden layers of

computational nodes, and an output layer. Its theory was

presented in [49]. LR models develop the linear relation-

ship between inputs and output as explained in [50]. These

models were implemented in the Weka which is an open-

source machine learning software [51]. The settings of

baseline AI models are presented in Table 5 as default

values in the Weka.

Table 6 summarizes the comparison results that reveal

performance improvement by the hybrid AI model com-

pared to other models and empirical methods in terms of

the four statistical indices. The LR model obtained the low

accuracy in the prediction with the high MAPE of 75.10%

and MAE of 893.79 kN. The LR model was poor for the

nonlinear and complex prediction because it is suitable for

capturing a linear relationship between inputs and outputs.

The ANNs and SVR models enable to capture the

nonlinear relationship between the characteristics of CFST

columns and the bearing capacity of the CFST columns.

Table 5 Parameter settings of

compared AI models
Model LR ANNs SVR

Settings attributeSelectionMethod = M5 method

ridge = 1.0 9 10-12

HiddenLayer = a (i.e., 4)

LearningRate = 0.3

Momentum = 0.2

TrainingTime = 500

C = 1

RBFKernel function

gamma = 0.01

Epsilon = 1.0 9 10-12

Table 6 Performance improvement by the hybrid AI model compared to other models

AI model Average accuracy for prediction Enhanced accuracy by proposed model (%)

R RMSE (kN) MAE (kN) MAPE (%) R RMSE MAE MAPE

LR 0.943 1488.69 893.70 75.10 5.4a 64.7a 74.2a 87.9a

ANNs 0.980 890.60 610.44 40.26 1.4a 41.0b 62.3a 77.5a

SVR 0.927 2599.82 892.29 27.74 7.2a 79.8a 74.2a 67.3a

EC4 0.992 571.24 272.08 10.12 0.2 8.0 15.4c 10.3b

AISC 0.990 1191.71 587.49 19.71 0.4b 55.9a 60.8a 54.0a

SVR-GWO 0.994 525.81 230.21 9.07

LR is linear regression; ANNs is artificial neural networks; SVR is support vector regression; EC4 is Euro code 4; and AISC is American code

AISC 2005. ‘‘a’’ indicates the level of significance of less than 1%; ‘‘b’’ indicates the level of significance of less than 5%; and ‘‘c’’ indicates the

level of significance of less than 10%. Bold values indicate the outperformance among compared models

Fig. 11 Actual and predicted bearing capacity of CFST columns by

the empirical methods
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Their predictive performance was relatively better than the

LR model. Their average MAPE values were 40.26% and

27.74% for the ANNs and SVR models, respectively.

Table 6 presents that the EC4 and AISC 2005 were quite

effective in calculating the UBC of the CFST columns.

Particularly, the EC4 achieved a competitive accuracy in

which the R was 0.992, RMSE was 571.24 kN, MAE was

272.08 kN, and MAPE was 10.12%. The AISC perfor-

mance was less effective than the EC4 code in prediction in

terms of statistical indices in Table 6. Figure 11 visualizes

the scatter plots of the measured and predicted UBC of

CFST columns by the EC4 and AISC codes. The red circles

represent for prediction by the AISC code, while the black

circles represent for prediction by the EC4.

The average accuracy for prediction in Table 6 shows

that the proposed AI model was more effective than the

compared models and methods in the UBC prediction of

CFST columns. Figure 12 visualizes accuracy comparisons

among the models and methods. The SVR-GWO yielded

the lowest errors compared to the other investigated models

in which the R was 0.994, RMSE was 525.81 kW, MAE

was 230.21 kN, and MAPE was 9.07%. The accuracy

improvements by the proposed model were ranged from

10.3 to 87.9% in the MAPE and from 15.4 to 74.2% in the

MAE compared to other models and methods. The results

confirmed the effectiveness of the proposed SVR-GWO,

and it was suggested as an AI-based alternative tool for

calculating the UBC of CFST columns in structural design.

5 Conclusions

This study proposed an AI-based method for predicting the

UBC of CFST columns in structural design. The proposed

model combined the SVR as a prediction engine and the

GWO as a metaheuristic optimization algorithm. The SVR-

Fig. 12 Performance comparisons among the proposed model and other models
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GWO model considers the influencing factors such as the

column diameter (D), thickness of steel tube (t), yield stress

of steel (fy), compressive strength of concrete (fc), column

length (L), D/t ratio (D/t) as model inputs for predicting the

UBC of CFST columns.

A large dataset was collected in this study to evaluate

the proposed SVR-GWO model that consists of 802 sam-

ples of experimental tests circular CFST short columns.

The used concretes in the experiments consist of the NSC

(49%), HSC (23%), and UHSC (28%). The average UBC

Nu of CFST columns in the dataset was 3095.70 kN with a

standard deviation of 4476.56 kN that reveals the wide

range of Nu. The evaluation process has the learning phase

and the test phase in which the dataset was split randomly

to the learning dataset and the test dataset. The learning

dataset was to train and optimize the AI models, which

accounts for 90% of the sample size of the original dataset.

Meanwhile, the test dataset aimed to test the performance

of the trained and optimized AI models for predicting the

UBC of circular CFST short columns.

The AI models were evaluated 10 times using a k-fold

cross-validation method to ensure the generalizability in

the model evaluation. The evaluation results by a large

dataset of experimental tests of 802 samples revealed that

the SVR-GWO model yielded the outstanding performance

in which the R was 0.994, RMSE was 525.81 kW, MAE

was 230.21 kN, and MAPE was 9.07%. In comparison with

other baseline AI models (i.e., LR, ANNs, SVR) and

empirical methods (i.e., EC4 and AISC), the accuracy

improvements by the proposed model were ranged from

10.3 to 87.9% in the MAPE and from 15.4 to 74.2% in the

MAE.

As contributions of this study, the results confirmed the

effectiveness of the proposed model and it was suggested

as an AI-based alternative tool for determining the UBC of

CFST columns in structural design in practice. In the

proposed model, the GWO was used to fine-tune hyper-

parameters of the SVR model which can improve predic-

tive performance compared to baseline models. This study

contributes to promote the application of AI techniques in

the structural design domain.
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