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Abstract
It is a long-standing challenge to reconstruct the locations and extents of cortical neural activities from electroen-

cephalogram (EEG) recordings, especially when the EEG signals contain strong background activities and outlier artifacts.

In this work, we propose a robust source imaging method called L1R-SSSI. To alleviate the effect of outliers in EEG, L1R-

SSSI employs the L1-loss to model the residual error. To obtain locally smooth and globally sparse estimations, L1R-SSSI

adopts the structured sparsity constraint, which incorporates the L1-norm regularization in both the variation and original

source domain. The estimations of L1R-SSSI are efficiently obtained using the alternating direction method of multipliers

(ADMM) algorithm. Results of simulated and experimental data analysis demonstrate that L1R-SSSI effectively suppresses

the effect of the outlier artifacts in EEG. L1R-SSSI outperforms the traditional L2-norm-based methods (e.g., wMNE,

LORETA), and SISSY, which employs L2-norm loss and structured sparsity, indicated by the larger AUC (average AUC

[ 0:80), smaller SD (average SD \50 mm), DLE (average DLE \10 mm) and RMSE (average RMSE \1:75) values

under all the numerically simulated conditions. L1R-SSSI also provides better estimations of extended sources than the

method with L1-loss and Lp-norm regularization term (e.g., LAPPS).
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1 Introduction

Reconstructing brain activities from electroencephalogra-

phy (EEG) plays an important role in neuroscience

research and clinical treatment [2, 15, 34]. For example, for

drug-resistant epilepsy, the epileptogenic zone can be

removed through a surgical intervention. For this surgical

planning, the precise delineation of the epileptic focuses is

critical for surgeons [4].

EEG source imaging (ESI) is to estimate cortical active

areas from the scalp EEG signals, which is a highly ill-

posed inverse problem with infinite solutions [15, 16]. To

solve this inverse problem, there are mainly two classes of

source models. One is the equivalent current dipole model

(ECD), and the other is the distributed current density

model (DCD). ECD uses a few dipoles to approximate

cortical activities, which can estimate the locations of focal

cortical activities [15, 20]. However, ECD provides little

information of source extents.

DCD divides the cortical surface into several triangular

grids, each of which represents a dipole, and a large

number of fixed dipoles in the brain represent the contin-

uous distribution of current activity [7, 15, 16]. The posi-

tion of each dipole is fixed, so cortical activities can be

estimated by solving a linear inverse problem. Since the

dipoles largely outnumber the scalp sensors, the forward

equation of DCD is underdetermined [2, 16, 34]. To obtain

a unique solution, suitable constraints are needed to narrow

the solution space.
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One common DCD ESI solver is the L2-norm-based

methods, such as minimum norm estimate (MNE) [15, 16].

Since the source signals on the cortical surface are closer to

the scalp sensors and easier to be detected by the sensors,

MNE is biased toward superficial sources [15]. To over-

come depth bias of MNE, the weighted minimum norm

estimate (wMNE) weights the dipoles at different locations

using the norm of the columns of lead-field matrix [23]. To

consider the dependencies between adjacent sources, low

resolution brain electromagnetic tomography (LORETA)

penalizes the L2-norm of the second-order spatial deriva-

tive of sources and obtains spatial coherent and smoothness

solutions [15]. Although the L2-norm-based methods are

computationally efficient, they suffer from too diffused

estimations, covering most areas of the cerebral cortex,

beyond the actual cortical active area.

To improve the spatial resolution of reconstructed

sources, the Lp (p� 1)-norm regularization and sparse

Bayesian learning are employed to obtain sparse solutions

[10, 24, 33, 37]. Although the sparse constraint methods

provide good estimations for focal cortical activities, it

provides little information of the sizes for sources with

large extents. Hence, some studies applied the sparsity

constraint to transform domains instead of the original

source domains to reconstruct the source extents

[8, 22, 38]. Variation transform, which computes the dif-

ference between neighbored dipoles, was first reported to

use transform sparseness [9]. By using variation sparse-

ness, the variation-based sparse cortical current density

(VB-SCCD) achieved better estimation results for extended

sources [9].

The above ESI methods assume that the measurement

noise satisfies Gaussian distribution and uses L2-norm to fit

the residual error. However, during EEG recordings, the

EEG signals are inevitably contaminated by outliers (e.g.,

background noise of the measurement experiment and

some artificial noise caused by the blink, head movement,

etc.) [5, 29]. The L2-norm is sensitive to these outliers. To

tackle these outliers, least absolute Lp penalized solution

(LAPPS) [6] used the L1-norm to fit residual to reduce the

effect of outliers. Experiments show that LAPPS has better

performance than methods based on L2-norm residual.

Nevertheless, due to the Lp-norm regularization term,

LAPPS severely underestimates the extents for large size

sources. Thus, our former work [36] proposed the L1-norm

loss and L1-norm regularization of the variation sources,

which provided accurate estimations for extended sources.

Nevertheless, the minimization of the variation trans-

form (first-order derivative) does not constrain the global

energies and often underestimates the source amplitudes. In

this work, to reconstruct the locations, extents and ampli-

tudes of cortical activities, especially when the EEG

signals contain outlier artifacts, we propose a robust ESI

method, named L1-norm Residual and Structured Sparsity-

based Source Image (L1R-SSSI). Specifically, we employ

L1 loss to reduce the noise sensitivity. To estimate source

extents, L1R-SSSI applies L1-norm regularization based on

variation transform to obtain globally sparse and locally

smooth solutions. Moreover, to alleviate the underesti-

mated amplitudes due to variation sparseness, we further

add L1-norm regularization term of the original source.

Alternating direction method of multipliers (ADMM)

algorithm [18] is employed to efficiently estimate the

sources. Both numerical and experimental data analyses

validate the superior performance of the proposed algo-

rithm compared to the conventional methods.

The remaining of the paper is organized as follows. In

Sect. 2, we derive the L1R-SSSI algorithm. In Sect. 3, we

present the simulation design and evaluation metrics. In

Sect. 4, we compare the performance of L1R-SSSI method

with the benchmark algorithms in simulated and real EEG

data, followed by a brief discussion and summary in

Sects. 5 and 6.

2 Methods

2.1 Background

Usually, the relationship between EEG signals and cortical

sources can be described as [15]

b ¼ Lsþ e ð1Þ

where b 2 Rdb�1 is the EEG signal measured on db sen-

sors. s 2 Rds�1 is the unknown source vector with ds can-

didate brain sources. L 2 Rdb�ds is the lead-field matrix,

which describes the relationship between EEG and cortical

sources of the ds candidate locations. e is the measurement

noise.

Since the number of EEG electrodes is much less than

the number of unknown cortical sources (i.e., db � ds),

Eq. (1) is seriously undetermined. And there exist infinite

solutions for the inverse problem. To obtain unique solu-

tion, prior constraints or regularization terms are necessary

to narrow the solution space. Typical constraints are the L2-

norm and Lp-norm (p� 1) regularization terms. Evidences

from other neuroimaging techniques, such as fMRI and

ECoG [1], have revealed the compact nature of cortical

activations, i.e., the sources are locally smooth and globally

clustered. The conventional L2-norm and Lp-norm-based

methods provide little information of source extents. To

reconstruct extended patches, several studies have

employed the L1-norm constraint in the transform domains,

such as the variation transform [9, 22], which describes the
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first-order differences of amplitudes between adjacent

dipoles. For variation sparseness, a variation operator of

cortical source V 2 RP�ds is defined as [9, 22, 38]

V ¼

v11 v12 � � � v1ds

v21 v22 � � � v2ds

..

. ..
. . .

. ..
.

vP1 vP2 � � � vPds

2
66664

3
77775

vpi ¼ 1; vpj ¼ �1; i\j; if source i; j share edgep

vpi ¼ 0; otherwise

�

ð2Þ

where P is the number of edges of triangular elements.

Each row of matrix V corresponds to a shared edge

between two triangular grids. Each row of the variation

source u ¼ Vs 2 RP�1 denotes the difference of ampli-

tudes between the two adjacent dipoles. If each active

clustered source has a uniform current density distribution,

the sparseness largely occurs on the boundaries between

active and inactive regions. Therefore, one can recover the

sparseness in the variation domain to estimate the extents

of cortical activations.

However, the minimization of variation (first-order

derivative) sources does not constrain the global energies

of inverse solutions and tends to overestimate the source

extents [22]. Hence, additional constraints are needed to

limit global energies [38]. Becker et al. [4] proposed

SISSY to reconstruct the extended sources, which uses the

L1-norm regularization in both the variation and original

source domains:

ŝSISSY ¼ argmin
s

kLs� bk22 þ k1kVsk1 þ k2ksk1 ð3Þ

2.2 L1R-SSSI algorithm

Typical ESI methods use L2-norm to measure the residual

error, which can exaggerate the effect of outliers caused by

head movement or eye blinks during recordings [31, 35].

Prior studies have shown that L1-norm loss for outliers is

more robust and stable than the L2-norm loss [12, 32].

Hence, we develop a robust ESI method to reconstruct

extended sources, namely L1R-SSSI, which uses L1-norm

to measure the residual error. To reconstruct the extents,

locations and amplitudes of cortical activations, similar as

[4], we employ the structured sparsity, which penalizes L1-

norm of both variation sources and original sources.

ŝ ¼ argmin
s

kLs� bk1 þ k1kVsk1 þ k2ksk1 ð4Þ

where k1 [ 0 and k2 [ 0 are regularization parameters to

adjust the balance between the residual term and the two

regularization terms.

To solve Eq. (4), we rewrite it as

ŝ ¼ argmin
s

kek1 þ k1kuk1 þ k2kwk1

s:t:; e ¼Ls� b; u ¼ Vs;w ¼ s
ð5Þ

The augmented Lagrangian function associated with the

optimization problem (5) is

Lðs; e; u;w; x; y; zÞ ¼ kek1 þ k1kuk1 þ k2kwk1

þ x>ðLs� b� eÞ þ q1
2
kLs� b� ek22

þ y>ðVs� uÞ þ q2
2
kVs� uk22

þ z>ðs� wÞ þ q3
2
ks� wk22

ð6Þ

where x 2 Rdb�1, y 2 RP�1 and z 2 Rds�1 are the Lagran-

gian multipliers, while q1 [ 0, q2 [ 0 and q3 [ 0 are

penalty parameters. By minimizing the Lagrangian func-

tions L with respect to ðs; e; u;wÞ, these vectors can be

updated alternately:

sðkþ1Þ ¼ q1L
>Lþ q2V

>V þ q3I
� ��1

qðkÞ

eðkþ1Þ ¼S 1
q1

Lsðkþ1Þ � bþ 1

q1
xðkÞ

� �

uðkþ1Þ ¼Sk1
q2

Vsðkþ1Þ þ 1

q2
yðkÞ

� �

wðkþ1Þ ¼Sk2
q3

sðkþ1Þ þ 1

q3
zðkÞ

� �

ð7Þ

where qðkÞ ¼
h
q1L

> bþ eðkÞ
� �

þ q2V
>uðkÞ þ q3w

ðkÞ�

L>xðkÞ � V>yðkÞ � zðkÞ
i
, and SjðaÞ is

SjðaÞ ¼
a� j; a[ j

0; jaj\j

aþ j; a\� j

8><
>:

Using the dual ascent method, the corresponding update

rules for the Lagrangian multipliers ðx, y, zÞ can be

deduced:

xðkþ1Þ ¼ xðkÞ þ q1 Lsðkþ1Þ � b� eðkþ1Þ
� �

yðkþ1Þ ¼ yðkÞ þ q2 Vsðkþ1Þ � uðkþ1Þ
� �

zðkþ1Þ ¼ zðkÞ þ q3 sðkþ1Þ � wðkþ1Þ
� �

ð8Þ

where xðkÞ denotes the value of x at the kth iteration.

By alternatively updating ðs; e; u;wÞ and ðx, y, zÞ, we
can get the solutions of L1R-SSSI. When the maximum

number of iteration is reached or the relative change of s

reaches a specified tolerance, the iterative procedure stops.
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2.3 Computational complexity and application
details

To determine the computational complexity, we compute

the number of floating-point operations (FLOPs, in terms

of real-valued multiplications) needed for the completion

of L1R-SSSI. L1R-SSSI is based on alternating updates of

seven vectors, among which the update of the source vector

s is the most complex. The update of s involves the inverse

solution of a large matrix ðq1L>Lþ q2V
>V þ q3IÞ�1

,

which can be solved by employing the Woodbury inversion

lemma:

ðL>LþMÞ�1 ¼ M�1 �M�1L>ðI þ LM�1L>Þ�1LM�1

ð9Þ

where M ¼ q2
q1
V>V þ q3

q1
I, which is a sparse matrix and can

be computed at a low computational cost of Oð3
2
ds

2Þ and

inverted using only Oð4ds2Þ multiplications [3]. Compared

to the multiplication LM�1L>, which requires Oðdbd2s Þ
FLOPs, the computation and inversion of M can be

neglected. In practice, the computation of the inverse ðI þ
LM�1L>Þ�1

is avoided by resorting to the Cholesky

decomposition which requires Oð1
6
db

3Þ real-valued multi-

plications [3, 4]. Once the hyperparameters q1, q2 and q3
are determined, these operations are performed only once

at the beginning of the algorithm. Additionally, at each

iteration, the update of the signal vector s requires

Oð2dbds þ 2dsPþ d2s Þ. Compared to computational cost of

the vector s, the computational complexity of the other six

vectors is small and can be ignored. Hence, the computa-

tional complexity of L1R-SSSI is around

Oðdbd2s þ 1
6
d3b þ ð2dbds þ 2dsPþ d2s ÞKÞ, where K is the

number of iterations.

During our experimental simulations, we used a stan-

dard PC (Corei5-8500 CPU 3 GHz and 8 GB RAM) for

numerical experiments. e, u, w, x, y, z were initialized to 0.

The regularization parameters k1, k2 were determined by

cross-validation [32]. Detailed selection for k1 and k2 is

shown in Appendix B. For EEG data with db ¼ 62 elec-

trodes, a source space comprising ds ¼ 15;002 dipoles,

P ¼ 44;986 edges of triangular grids, and stop tolerance

d ¼ 10�4, L1R-SSSI converges after about 1000 iterations,

which takes less than 4 minutes.

3 Simulation design and evaluation metrics

To verify the performance of L1R-SSSI, we carried out a

series of Monte Carlo numerical simulations to compare

L1R-SSSI with SISSY and the followed algorithms.

(1) wMNE [23], which is a L2-norm-based method to

compensate depth bias of MNE.

ŝwMNE ¼ argmin
s

kLs� bk22 þ kkWsk22

¼ L>Lþ kW>W
� ��1

L>b

ð10Þ

where W 2 Rds�ds is a diagonal matrix, and the ith

diagonal element is W i;i ¼ klik�1
2 , where li is the ith

column of lead-field matrix L.

(2) LORETA [25], which penalizes the second-order

spatial derivative to obtain smooth and coherent

sources.

ŝLORETA ¼ argmin
s

kLs� bk22 þ kkDsk22

¼ L>Lþ kD>D
� ��1

L>b

ð11Þ

where D ¼ I � N is the discrete Laplacian operators

on the cortex, and N is defined as

Ni
j ¼

1

jN ij
if j 2 N i

0 others

8<
:

where N i is the source set adjacent to the ith source,

jN ij denotes the amount of elements in set N i.

(3) LAPPS [6], which employs L1-norm for the residual

and Lp-norm regularization term.

ŝLAPPS ¼ argmin
s

kLs� bk1 þ kkskpp ð12Þ

ADMM was used to obtain the estimations of

LAPPS in this work.

For the detailed application of these methods, in this work,

we used the Bayesian Minimum-Norm method [7, 21] to

determine the regularization parameter k for wMNE and

LORETA. As for the LAPPS, we used cross-validation to

determine the parameter k. Furthermore, as suggested in

[11], the nonconvex penalty function with p ¼ 0:5 yields

good performance in sparse analysis. Hence, we set p ¼
0:5 for LAPPS in our work. The regularization parameters

k1, k2 for SISSY are also determined by cross-validation.

To facilitate reproducibility, the codes of L1R-SSSI and the

above benchmark methods are available upon requests

from the authors.

3.1 Simulation design

Due to the lack of ground truth for EEG source imaging,

we first validate the performance of the proposed method

with numerically simulated EEG data. For the Monte Carlo

numerical simulations, we used Brainstorm software [27]

to get a three-shell head model based on the default ICBM

152 anatomy. The high-resolution cortical surface was
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downsampled to 15,002 triangular grids to obtain the

source space for simulation. Each triangle grid indicated a

dipole source, and the direction of each dipole was per-

pendicular to the cortical surface. The lead-field matrix L

was calculated using Brainstorm with the sensor configu-

ration of the 64-channel Neuroscan Quik-cap system. Since

two channels are not EEG electrodes, L 2 R62�15002.

To construct an extended source, we randomly selected

a seed triangle grid on the cortical surface and iteratively

added adjacent triangle grids until the extent of cluster

satisfied a specified value. The clean EEG recordings were

obtained by multiplying the simulated sources with lead

field L. We then added Gaussian white noise and artifacts

to the clean EEG data to simulate the actual EEG record-

ings. The noise level is controlled by the signal-to-noise

ratio (SNR), which is defined as SNR ¼ 10 log10
r2ðLsÞ
r2ðeÞ

h i
.

where r2ðLsÞ is the variance of clean EEG data and r2ðeÞ is
the variance of mixed noise including Gaussian noise and

artifacts. Similar to [6], the mixture noise e was obtained as

e ¼ e1

rðe1Þ
10ð�

SNR
20

Þ
h i

rðLsÞ ð13Þ

where e1 2 Rdb�1 is the outliers and r is the standard

deviation. Each element of e1 obeys Gaussian distribution

Nðlþ 10r2; r2Þ, where l and r2 are the mean and vari-

ance of the clean EEG data Ls across all channels. Then,

for a given SNR, the mixture measurement noise was

generated using Eq. (13) and added to the clean EEG data

Ls. During the numerical simulations, three scenarios were

tested:

(1) One source with different extents (i.e., 0.5, 5, 10, 15,

30 cm2).

(2) Various number of patch sources (i.e., from 1 to 4),

where the extents of each patch was around 10 cm2.

(3) EEG signals with different SNRs (i.e., - 10, - 5, 0,

5, 10 dB), where one cluster of around 10 cm2 was

simulated for each SNR.

Except for the case of various SNRs, we set the SNR for

the other two cases to be 5 dB. For each case, we carried

out 100 Monte Carlo simulations, which guaranteed that

the simulated patches covered most regions of the cortex.

Additionally, L1R-SSSI was further applied to analyze

real human data to test its practical use. The dataset

includes the simultaneous MEG/EEG recordings of 16

subjects who performed a simple visual task on a large

number of famous, unfamiliar and scrambled faces, which

can be downloaded from the OpenNeuro website1. The

MEG data consist of 102 magnetometers and 204 planar

gradiometers from an Elekta VectorView system at 1100

Hz [30]. The same system was used to simultaneously

record EEG data from 70 electrodes (using a nose refer-

ence). In this work, only EEG data were used for analysis.

3.2 Evaluation metrics

To quantitatively assess the performance of ESI methods,

we employed four evaluation metrics.

(1) The area under the receiver operating characteristic

(ROC) curve (AUC), which evaluates the detection

sensitivity and specificity of reconstructed sources

[14, 22].

(2) Spatial dispersion (SD), which measures the degree

of spatial blurriness and dispersion of reconstructed

sources [22, 38]. A low SD value indicates that the

estimated source solution has less blurriness.

(3) Distance of localization error (DLE), which mea-

sures the location error of the recovered sources

compared to the ground truth [8, 22].

(4) Relative mean square error (RMSE), which is the

relative squared error between the estimated and

simulated source activity:
kŝ�sk22
ksk22

[14, 38].

A better ESI method is expected to yield a larger AUC, and

a lower SD, DLE and RMSE values. Using the four met-

rics, we can comprehensively analyze the performance of

ESI algorithms in various aspects, i.e., detection sensitivity,

dispersion, locations, and amplitudes. Detailed computa-

tions of the four metrics are presented in the supplementary

document of [22]. To assess the significance of results, we

employed the Kruskal–Wallis test. If a test statistic from

the Kruskal–Wallis test was significant, Wilcoxon rank

sum tests were subsequently performed in L1R-SSSI

against each of the benchmark algorithms to determine

whether L1R-SSSI yielded significantly better estimations.

For imaging visualization, we displayed the absolute value

of estimated sources at specified time points. The imaging

threshold was determined by the Otsu’s method [22].

4 Results

4.1 Results of simulated data analysis

4.1.1 Influence of source extents

We first tested the performance of L1R-SSSI under one

simulated cluster source with various extents. Figure 1

shows the performance metrics of wMNE, LORETA,

LAPPS, SISSY, L1R-SSSI. When the source extents

increased, the AUC values of all algorithms except LOR-

ETA showed degraded values. The larger AUC values for
1 https://openneuro.org/datasets/ds000117.

Neural Computing and Applications (2021) 33:8513–8524 8517

123

https://openneuro.org/datasets/ds000117


larger extents indicate that LORETA is suitable to localize

extended sources, which is in line with the results in [14].

For wMNE, LORETA, SISSY and L1R-SSSI, the SD, DLE

and RMSE values gradually decreased with the increase in

source extents. However, RMSE of LAPPS increased sig-

nificantly, while SD and DLE values changed slightly. For

focal source (e.g., 0.5 cm2), LAPPS provided the smallest

RMSE, SD, DLE values and large AUC ([ 0:9) values,

showing that it was suitable for recovering focal sources.

Nevertheless, LAPPS was less powerful in reconstructing

extended sources, indicated by the largest RMSE and

smallest AUC values for sources with large extents (e.g.,

30 cm2). For all source extents, L1R-SSSI obtained the

largest AUC (p\0:05), the smallest SD (p\0:05), DLE

(p\0:05), and RMSE (p\0:05) values compared to

wMNE, LORETA, and SISSY.

Table 1 shows the results of the Spearman’s correlation

analysis between the performance metrics of each algo-

rithm and the source extents. The four performance metrics

of wMNE, SISSY and L1R-SSSI are significantly nega-

tively correlated with the source extents. In contrast,

LORETA’s AUC and LAPPS’ RMSE values are signifi-

cantly positively correlated with the source extents.

Therefore, as the source extents increase, the AUC values

of LORETA and RMSE values of LAPPS will gradually

increase. Furthermore, the SD and DLE values of LAPPS

are weakly related to source extents (jrj\0:3), indicating

that its SD and DLE values are only slightly sensitive to the

extents.

Figure 2 shows an imaging example under different

extents. The first column in Fig. 2 was the simulated

sources, which was located in the left occipital lobe. The

remaining columns were the recovered source maps by

each ESI method, which were shown as the absolute

value of sources. The threshold was determined by the

Otsu’s method. The results of wMNE and LORETA

were overly diffused and covered multiple brain func-

tional regions, which greatly exceeded the areas of the

simulated source activities. Compared with wMNE,

LORETA provided more smooth and coherent spatial

solution. Due to the Lp-norm regularization term, LAPPS

was not sensitive to the source extents and obtained

several point sources around the ground truth. Using

structured sparsity, SISSY obtained solutions with less

blurriness and clearer boundaries of brain activities.

Compared to the ground truth, L1R-SSSI showed clearer

and more accurate reconstructions than SISSY. As shown

in Fig. 2, under spatial extents, the reconstructions of

L1R-SSSI matched the ground truth most accurately.

According to the evaluation metrics and imaging results,

L1R-SSSI outperformed the other compared methods

under different source extents.

4.1.2 Influence of number of clusters

In this section, we further tested the performance of L1R-

SSSI in multiple patch sources. The extents of each patch

were approximately 10 cm2. Figure 3 depicts the evalua-

tion metrics of all algorithms as the number of patches

increases. As shown in Fig. 3, the AUC and SD values of

all methods except LAPPS decreased with the increase in

the number of sources, which is also validated by the

results of Spearman’s correlation analysis in Table 2.

However, LAPPS’s AUC and SD values were only slightly

affected by the number of clusters (Spearman’s correlation:

AUC: r ¼ 0:214, p ¼ 2:17e� 6; SD: r ¼ �0:216,

p ¼ 8:61e� 4). The DLE and RMSE values of all algo-

rithms were not sensitive to the number of sources. In

comparison, L1R-SSSI provided higher AUC (p\0:05),

the smaller DLE (p\0:05) and RMSE (p\0:05) values

than other methods in estimating multiple patches. Due to

the sparse constraint, LAPPS always produced several

point sources in or around the ground truth and obtained

the smallest SD values. However, LAPPS provided little

information of source extents.

Figure 4 is an imaging example under various num-

bers of clusters. From the leftmost to the rightmost

column, the number of simulated sources increased from

1 to 4. The four active sources were located in the left

occipital lobe (Source A), left frontal lobe (Source B),

right parietal lobe (Source C) and left central cortex

(Source D) respectively. The estimations of wMNE and

LORETA were too diffuse to obtain globally separated

clusters. WMNE and LORETA were not able to separate

the activations for adjacent sources (e.g., Source B and

D). In contrast, LAPPS always produced focal and sparse

solutions. Compared to LAPPS, SISSY and L1R-SSSI

were able to recover the extents of cortical activities.

However, SISSY also produced some spurious activa-

tions and mis-localized some clusters (e.g., Source C).

Compared with the other methods, L1R-SSSI was more

sensitive to source extents and showed no missing

sources and visible false alarms.

4.1.3 Influence of SNRs

Figure 5 depicts the performance metrics of all ESI

methods with one active cluster under various SNR level.

The noise levels greatly affected the accuracy of source

estimation. Combined with the results of Spearman’s cor-

relation analysis between the performance metrics and

SNRs in Table 3, when the noise pollution in EEG signals

decreased, all algorithms show improved performance,

which was indicated by the gradually increased AUC and

decreased SD, DLE, RMSE values. Among all the imaging
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methods, L1R-SSSI always obtained the best performance

with the largest AUC (p\0:05), the smallest DLE

(p\0:05) and RMSE (p\0:05) values for all SNRs.

4.2 Results of real data analysis

Furthermore, L1R-SSSI was applied to analyze the human

face-processing data. The dataset includes the simultaneous

MEG/EEG recordings of 16 subjects, which can be avail-

able at https://openneuro.org/datasets/ds000117. During

the data recordings, the subject performed a simple visual

task on a large number of famous, unfamiliar and scram-

bled faces. In this work, only the EEG signals were

employed for analysis. We downsampled the EEG data to

275 Hz and averaged the 16 subjects’ EEG recordings

corresponding to face (famous and unfamiliar) stimulus for

source estimation. The time window of EEG recordings

was - 200 to 900 ms, where 0 ms denotes the stimulus

onset time. The topography distribution of EEG recording

at 170 ms and the averaged EEG time courses are shown in

Fig. 6a, b, respectively. The lead-field matrix was calcu-

lated using OpenMEEG based on BEM model.

Figure 6c is the imaging results at 170 ms, including the

ventral and lateral views of the cortex. As shown in Fig. 6,

L1R-SSSI and SISSY located bilateral fusiform and right

temporal cortices, which was consistent with prior studies

[17, 28]. However, SISSY also located some irrelevant

areas. wMNE and LORETA can recognize the activities of

bilateral fusiform area, but they were too widespread. In

contrast, LAPPS only detected some point activities at the

bilateral fusiform and right temporal areas. For the human

face-processing EEG data analysis, the proposed method

obtained more reasonable results that were also consistent

with previous reports [17, 28, 30].

5 Discussions

In this work, we proposed a robust ESI method, L1R-SSSI,

to reconstruct extended sources, especially when strong

background activity and outlier noise existed in the EEG

recordings. L1R-SSSI uses L1-norm to fit the residual errors

and implements the sparse constraint in the variation

domain and the original source domain. The solution of

L1R-SSSI is efficiently solved by ADMM. Simulation

studies reveal the superior performance of L1R-SSSI

compared with the benchmark algorithms (e.g., wMNE,

LORETA, LAPPS and SISSY). L1R-SSSI obtains more

accurate estimation in terms of detection sensitivity, source

extents, locations and amplitude errors. For real experi-

mental data, L1R-SSSI also provides more meaningful

neurophysiological results.

Since the EEG inverse problem is highly ill-posed,

suitable regularization constraints are necessary to obtain

unique source solution [13, 34]. The traditional L2-norm-

based methods (e.g., wMNE and LORETA) always
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Fig. 1 Evaluation metrics under various source extents. The figure is

the results of 100 Monte Carlo simulations and is shown as Mean ±

SEM (SEM: standard error of mean). The SNR is 5 dB

Table 1 Correlations between the performance metrics and source

extents

Methods Performance metrics Correlation (r) p value

wMNE AUC - 0.778 2.86e–27

SD - 0.593 2.15e–10

DLE - 0.870 1.48e–30

RMSE - 0.483 4.58e–14

LORETA AUC 0.701 3.25e–35

SD - 0.636 3.4e–21

DLE - 0.851 1.38e–32

RMSE - 0.536 3.23e–19

LAPPS AUC - 0.805 4.21e–13

SD - 0.203 3.45e–24

DLE - 0.182 2.37e–32

RMSE 0.750 1.35e–12

SISSY AUC - 0.605 3.41e–14

SD - 0.782 1.25e–13

DLE - 0.752 3.57e–31

RMSE - 0.714 3.42e–18

L1R-SSSI AUC - 0.683 5.61e–28

SD - 0.713 1.89e–14

DLE - 0.726 2.40e–23

RMSE - 0.735 3.41e–13
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generate blurred and diffused source estimations, which is

also indicated by the high SD and DLE values in Figs. 1, 3

and 5. To improve the spatial resolution of reconstructed

sources, some studies have proposed sparse constraint

0.5cm2
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30cm2
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Fig. 2 Imaging results for different extents. Source activity maps show the absolute value of the sources. The threshold is determined using

Otsu’s method. The SNR is 5 dB. Some sources are circled for illustration purpose
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Fig. 3 Evaluation metrics of different numbers of patches. The data

are the results of 100 Monte Carlo simulations and is described as

Mean ± SEM . The SNR is 5 dB and the extents of each cluster is

about 10 cm2

Table 2 Correlations between the performance metrics and number of

patches

Methods Performance metrics Correlation (r) p value

wMNE AUC - 0.789 2.31e–15

SD - 0.835 6.67e–36

DLE - 0.730 0.193

RMSE 0.026 0.719

LORETA AUC - 0.801 3.18e–18

SD - 0.792 2.42e–30

DLE 0.043 0.564

RMSE 0.016 0.826

LAPPS AUC 0.214 2.17e–6

SD - 0.216 8.61e–4

DLE 0.179 0.122

RMSE - 0.122 0.631

SISSY AUC - 0.426 1.63e–10

SD - 0.386 1.18e–15

DLE 0.183 0.734

RMSE - 0.135 0.794

L1R-SSSI AUC - 0.482 1.78e–14

SD - 0.401 2.73e–13

DLE 0.231 0.551

RMSE 0.203 0.135
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methods, such as the Lp-norm (p� 1) and sparse Bayesian

Learning-based methods. However, the sparse penalties in

the original source space produce overly focal estimations

[33]. These highly focal results are caused by enforced
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Fig. 4 Imaging results for different numbers of clusters. Source

activity maps show the absolute value of estimated sources. The

threshold is determined using Otsu’s method. The SNR is 5 dB and

the extent of each patch is about 10 cm2. The reconstructed sources of

LAPPS are circled for illustration purpose
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Fig. 5 Evaluation metrics of various SNRs. The figure is the results of

100 Monte Carlo simulations and is described as Mean ± SEM. The

extent of source is about 10 cm2

Table 3 Correlations between the performance metrics and SNRs

Methods Performance metrics Correlation (r) p value

wMNE AUC 0.441 4.51e–7

SD - 0.307 1.03e–18

DLE - 0.798 2.79e–7

RMSE - 0.331 5.21e–18

LORETA AUC 0.495 1.37e–6

SD - 0.363 1.25e–15

DLE - 0.806 1.95e–10

RMSE - 0.350 4.51e–21

LAPPS AUC 0.631 3.78e–9

SD - 0.314 3.43e–20

DLE - 0.709 5.67e–9

RMSE - 0.372 2.76e–18

SISSY AUC 0.794 5.12e–5

SD - 0.815 4.56e–13

DLE - 0.738 3.21e–5

RMSE - 0.626 2.84e–15

L1R-SSSI AUC 0.776 2.57e–4

SD - 0.835 3.58e–19

DLE - 0.755 2.18e–4

RMSE - 0.687 3.12e–16
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sparseness in the original source domain. Therefore, to

estimate both the locations and extents, some studies have

proposed the sparsity penalties in the transform domains,

such as the variation domain [9]. However, the sparsity in

the variation domain produces amplitude-biased solutions.

To remedy this issue, SISSY implements the L1-norm

constraint in the variation domain and original source

domain simultaneously [4].

However, the above ESI methods usually employ L2-

norm to fit residual errors, which is based on the assump-

tion that the EEG measurement noise satisfies Gaussian

distribution. Nevertheless, EEG signals are inevitably

contaminated by strong background activities and outliers

caused by ocular or head movements during recordings.

The L2-norm loss may exaggerate the effect of these out-

liers. To remedy this issue, the study in [6] employed the

L1-loss for the residuals and Lp-penalty regularization,

showing superior performance than the L2-norm loss. As

shown in our simulations, LAPPS can reconstruct the focal

sources accurately (see Fig. 1 for 0.5 cm2). However, for

activities with large extents, LAPPS provides little infor-

mation of source extents, as shown in Figs. 2 and 4.

To tackle the outliers in the EEG recordings and

reconstruct extended sources, we proposed a robust ESI

algorithm, i.e., L1R-SSSI. The proposed method employs

the L1-norm to measure the fitting error, assuming that the

EEG measurement noise satisfies the Laplace distribution.

Our former work [36] has proposed the L1-norm loss and

L1-norm regularization of variation sources to reconstruct

the extents and locations of cortical activities. However, as

suggested in [38], the minimization of variation sources

usually severely underestimates the amplitudes of sources

[36]. To more accurately reconstruct source locations,

extents and amplitudes, L1R-SSSI proposed the structured

sparsity constraint (i.e., L1-norm regularization in the

variation and original source domain) as in [4]. The results

of Monte Carlo simulations have verified that L1R-SSSI is

robust to the outlier noise in EEG recordings and provides

more accurate reconstructions than the benchmark

algorithms.
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estimated source activities of LAPPS are circled for illustration
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In this work, we develop L1R-SSSI under the regular-

ization framework. Our future work will model the inverse

problem in the Bayesian probabilistic framework. Specifi-

cally, we can assume that both (1) the EEG measurement

noise and (2) the prior of sources and variation sources

satisfy the Laplace distribution. By solving the inverse

problem under the probabilistic framework, we can obtain

both the point estimations of sources and the corresponding

uncertainty [22].

6 Conclusions

In summary, we propose a robust ESI method L1R-SSSI

to recover brain activities, which is efficiently solved by

ADMM. L1R-SSSI employs L1-norm to fit residuals to

alleviate the effect of outliers in EEG recordings and the

structured sparsity to achieve globally sparse and locally

smooth solution. For the Monte Carlo numerical simu-

lations in this work, compared to the benchmark algo-

rithms, L1R-SSSI obtained larger AUC (average

AUC[ 0.80) and smaller SD (average SD \50 mm),

DLE (average DLE \10 mm), RMSE (average

RMSE \1:75). Comprehensively considering the four

performance metrics, L1R-SSSI is more powerful in

estimating the source locations, extents and amplitudes.

Human EEG data analysis demonstrates that L1R-SSSI is

a useful imaging method for estimating cortical activi-

ties, which will be helpful to the research of neuro-

science and clinical cases. In this work, we only

estimated the sources at a specified single time point.

Due to high temporal resolution of EEG, the use of the

temporal information is helpful to improve the accuracy

of source reconstruction [21, 22, 28]. Our future work

will also employ the temporal information under the

framework of L1R-SSSI to estimate the dynamic process

of brain activities. We will also apply the proposed

algorithm to the analysis of brain networks underlying

various psychiatric disorders [26] and to the decoding of

EEG signals for brain–computer interfaces [19].
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Appendix

The schema of L1R-SSSI is summarized as follows.

Appendix

Figure 7 shows the performance metrics under different

values of k1 and k2. Clearly, the selection of regularization

parameters has a great impact on algorithm performance.

According to Fig. 7, L1R-SSSI achieves better performance

for k1 2 ½1:6; 2:1�, k2 2 ½0:9; 1:3�, indicated by the rela-

tively larger AUC, smaller SD, DLE, and RMSE values.

For simplicity, we employed a fixed value k1 ¼ 2:1 and

k2 ¼ 1:0 for the experimental simulations.
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