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Abstract
Cognitive impairment must be diagnosed in Alzheimer’s disease as early as possible. Early diagnosis allows the person to

receive effective treatment benefits apart from helping him or her to remain independent longer. In this paper, different

feature selection techniques are utilized with different classifiers in the classification of this chronic disease as normal

control (NC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD) based on the MRI images of ADNI dataset.

Dimensionality reduction plays a major role in improving classification performance when there are fewer records with

high dimensions. After different trials to select the ample features, support vector machine (SVM) with radial basis

function kernel is found to produce better results with 96.82%, 89.39% and 90.40% accuracy for binary classification of

NC/AD, NC/MCI and MCI/AD, respectively, with repeated tenfold stratified cross-validation. Combining mini-mental

state examination (MMSE) score to the MRI data, there has been an improvement of 2.7% in the MCI/AD classification,

but it does not have much influence in the NC/AD and NC/MCI classification.

Keywords Alzheimer’s disease (AD) � Feature selection � Genetic algorithm (GA) � Mini-mental state examination

(MMSE) score

1 Introduction

Most elderly people are affected by dementia mainly due to

Alzheimer’s disease. Alzheimer’s disease slowly pro-

gresses from mild, moderate to severe stage of dementia. It

occurs mainly due to the abnormal build-up of proteins like

amyloid plaques and tau tangles in the brain. In the

preclinical stage, changes take place in the brain decades

before the actual diagnosis of Alzheimer’s disease (AD).

The next stage is mild cognitive impairment (MCI) where

slight but noticeable changes occur in memory and cog-

nitive functionalities. The final stage is dementia due to

memory loss and impaired daily activities. None of the

treatments available is a complete cure for the disease.

There is a strong need for identifying the disease at an

earlier stage to effectively implement preventive measures.

Significant studies were carried out to understand the

pathological conditions in the brain. Imaging modalities like

structural and functional magnetic resonance imaging (sMRI,

fMRI) [1–3], positron emission tomography (PET) [4] and

cerebrospinal fluids (CSF) [5] were used as biomarkers to

classify the disease stage either separately or combined [5–7].

These imaging biomarkers quantify the structural and func-

tional information of the brain. Apart from these biomarkers,

mini-mental state examination (MMSE) scores were consid-

ered for the diagnosis of AD [1, 2]. MMSE is a 30-point

questionnaire for measuring cognitive impairment.

Different approaches were used for identifying AD.

Traditional machine learning approaches based on the

Data used in preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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features obtained manually were used in [4, 8]. Quantita-

tive studies were developed to analyze the volume, thick-

ness, surface, shape and texture of the brain [9–11]. In [12],

region of interest (ROI)-based analysis was used for

obtaining the features. Voxel-based morphometry in sta-

tistical parametric mapping [13] and volumes generated

from FreeSurfer [14] were used to extract the brain fea-

tures. In [15], a multi-feature kernel discriminant dic-

tionary learning technique that combines the sMRI,

fluorodeoxyglucose (FDG) PET and florbetapir-PET

imaging features was used. In [16], three different two-

dimensional convolutional neural networks were used for

Alzheimer’s disease classification based on the slice

importance of sMRI images. Instead of using the entire

brain, the hippocampus region was segmented and used for

the disease classification [17]. Networks were constructed

from cortical gray matter volume, cortical thickness, cor-

tical surface area, cortical curvature, cortical folding index

and subcortical volume. Node and edge features of these

networks were selected using F-score and were used for

classification [6]. In [18], support vector machine (SVM)

used recursive feature elimination (RFE) to reduce model

complexity.

Most of the previous studies used only baseline data.

Despite many efforts in identifying the biomarkers for

early diagnosis, classification of the disease state is still

quite hard. In this study, sMRI images are used for the

classification of AD disease stages. Volumetric segmenta-

tion is used where the images are normalized and registered

using Desikan–Killiany atlas. The predominant challenge

is the limited records with large dimensions of imaging

features. Cortical parcellation volume (CV), subcortical

parcellation volume (SV), surface area (SA), cortical

thickness average (TA), cortical thickness standard devia-

tion (TS), hippocampal subfields parcellation volume (HS)

biomarkers are considered for the classification. Though

the RFE and Genetic Algorithm (GA) were used in other

studies for the feature selection, there was no study on the

classification based on the above-proposed biomarkers. For

these biomarkers, different wrapper-based feature selection

techniques using RFE and GA are performed to find the

optimal feature set. MMSE score is used along with the

optimal volumetric segmentation features to check whether

it affects the classification performance. Classifier with

better predicting accuracy is determined.

2 Methods

Data used in the preparation of this article is obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu). Longitudinal sMRI images

are used which are processed for gradient inhomogeneity,

B1 non-uniformity correction, and scaling by the Mayo

Clinic. Volumetric segmentation is carried out using

FreeSurfer version 5.1 based on the image processing

framework mentioned in [19, 20]. The quality control

process is used on the segmented images and is provided

for the usage in the ADNI website.

For the classification of sMRI imaging data into normal

control (NC), mild cognitive impairment (MCI) and Alz-

heimer’s disease (AD), the imaging data which pass the

overall quality control process are considered. This reduces

the data size considerably due to the partial or total seg-

mentation failure based on quality control. Apart from this

neuropsychological measure, mini-mental state examina-

tion (MMSE) scores are also obtained from the LONI

Image Data Archive website. Missing feature readings are

not calculated to avoid bias being introduced in the results.

Hence, records with missing values are discarded.

After the preprocessing of data, total records include

347 normal controls (NC), 558 MCI, and 171 AD. Among

these records, 27 MCI subjects converted to AD in three

years time period from the baseline. The demographic

information of the data samples used in this study is shown

in Table 1.

3 Features selection

Totally 69 CV, 50 SV, 70 SA, 68 TA, 68 TS, 16 HS fea-

tures are present for every record. The records are scaled to

their inter-quartile range so that they are robust to the

outliers. Training time is high if all the features are used for

classification purposes. When the feature dimension is

large, it leads to problems like overfitting, models with

higher complexity, and lesser accuracy. To overcome the

above-mentioned problems, feature selection strategies are

carried out.

Univariate methods such as t-test and Fisher’s criteria

were used for feature selection in [21, 22]. Though the

features selected were the best as an individual, they might

not be the best as a whole. Multivariate feature selection

methods do not individually rank the features but they rank

sets of features.

Table 1 Demographic information of the data samples

Disease state Number of records Gender MMSE score

NC 347 137M/210F 29.04 ± 1.27

MCI 558 274M/284F 27.68 ± 1.98

AD 171 81M/90F 22.05 ± 4.31

MMSE score is out of 30
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RFE is a backward elimination technique that starts with

the total feature set, and then the most irrelevant features

are removed one after another. This RFE technique is used

to select the most prominent and discriminative features

from the entire feature set. GA is an evolutionary com-

puting algorithm suitable for searching an efficient subset

of features that are optimal from the high-dimensional

feature set. In this work, RFE and GA methods are com-

bined with the logistic regression and linear support vector

machine classifiers in the wrapper technique to select the

highly relevant features from the large feature set. The

classifiers are then trained to verify the usefulness of the

different sets of the selected features.

3.1 RFE features selection

Recursive feature elimination is a simple heuristic

approach to select features that are most relevant for pre-

dicting the target. RFE looks for a subset of features by

starting with all the features and removes features itera-

tively until the desired feature set is obtained. It is achieved

by fitting LR or SVM model with all the features. Then,

features are ranked by importance score and the least

important features are discarded. The model is re-fitted.

This process is repeated until a specified number of fea-

tures remains.

3.2 GA features selection

Genetic algorithm is a simple meta-heuristic algorithm that

imitates the biological evolution is used for feature selec-

tion. In this feature selection, volumetric measures are

encoded as genomes using binary strings. The steps

involved in GA feature selection process are listed below.

Step 1. Random population of 50 chromosomes are

generated which are the solutions.

Step 2. The fitness function is evaluated for each

chromosome in the random population. Here, the fitness

function is the accuracy measured from the classifier (LR

or SVM). This accuracy is calculated using fivefold

cross-validation technique.

Step 3. Tournament selection is performed for selecting

the parent chromosomes based on their fitness value.

Tournament size of 3 is used for this tournament

selection.

Step 4. Uniform cross-over operator is used to produce

offspring with cross-over probability of 0.5

Step 5. With a mutation probability of 0.1 new offspring

is mutated by flipping the binary bits. This offspring is

added into the population. For the further iterations,

newly generated population is used.

Step 6. If the chromosomes generated are same for the

last 10 generations, then stop the process and return the

best solution (feature set) from the current population.

Otherwise go to step 2.

4 Proposed workflow

ADNI longitudinal sMRI features that are preprocessed and

normalized are given as input to the four wrapper-based

feature selection processes. The feature subsets obtained

are then available to be trained by the classifiers. Three

different binary classifications are performed in AD diag-

nosis: NC/AD, NC/MCI and MCI/AD classification. For

this purpose, logistic regression, SVM, random forest (RF)

and extreme gradient boosting classifiers (XGB) are used.

Based on these classifications, the best feature set is

selected. To this feature set, a neuropsychological measure

MMSE score is added. Once again, classification is per-

formed on these combined measures. The workflow of this

classification process is shown in Fig. 1.

4.1 Classifiers

The following classifiers are considered for the diagnosis of

Alzheimer’s disease stage using sMRI features.

4.1.1 LR classifier

Consider the training set of n points {(xi, yi) | xi [ Rm,

yi [ {0,1}}. Logistic regression generalizes from the linear

regression, where sigmoid function is applied to the linear

regression function as given by Eq. (1):

y ¼ g hTx
� �

where g zð Þ ¼ 1

1 þ e�z

ð1Þ

This enables to classify the inputs into binary valued

labels, yi [ {0,1}.

4.1.2 SVM classifier

Consider the training set of n points {(xi, yi)| xi [ Rm, yi-
[ {± 1}} where i = 1 to n, xi denotes the feature vectors

and yi denotes the class label. SVM maximizes the margin

around the hyperplane. This is achieved by solving the

following optimization problem in Eq. (2):

min
w;n;b

1

2
jjwjj2 þ C

XN

i¼1

ni

( )

s:t: yi w:xi � bð Þ� 1 � ni; ni � 0; i ¼ 1; . . .; n

ð2Þ
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When radial basis function kernel is used, dot product is

replaced by the Gaussian kernel function which is given in

Eq. (3).

K xi; xj
� �

¼ exp �cjjxi � xjjj2
� �

; c[ 0; ð3Þ

4.1.3 RF classifier

Random forest is an ensemble tool that builds many deci-

sion trees and combines them to produce better results.

Consider the m set of points for the training {(xi, yi)| xi-
[ Rm, yi [ {0,1}}.

for b = 1 to B:

1. n samples are taken with replacement from m set of

points.

2. A classifier tree fb is constructed on these n samples.

After training, predictions for the unseen samples x̂ are

made by averaging the predictions from all these individual

trees as per Eq. (4):

f̂ ¼ 1

B

XB

b¼1

fb x̂ð Þ ð4Þ

When data are provided to the decision tree, splitting of

data is based on Gini index and entropy.

4.1.4 XGBoost classifier

XGBoost (XGB), extreme gradient boosting classifier, is an

optimized gradient boosting algorithm. Trees are grown

one by one and attempt to reduce misclassification rate in

subsequent iterations. The next tree is grown by giving

higher weights to the misclassified points of the previous

tree. Consider a dataset {(xi, yi)| xi [ Rm, yi [ {0,1}}. The

objective function for XGBoost is given in Eq. (5).

L tð Þ ¼
Xn

i¼1

l yi; byi t�1ð Þ þ ft xið Þ
� �

þ X ftð Þ

where X fð Þ ¼ cT þ 1

2
kjjwjj2

ð5Þ

ft represents a tree with weights w. T is the number of

leaves in a tree. l denotes differentiable convex loss func-

tion that measures the difference between the prediction byi
and the target yi. The second term X penalizes the com-

plexity of the model.

4.2 Performance metrics

For analyzing the performance of the models, accuracy,

sensitivity and specificity are used. Accuracy is calculated

by the formula given in Eq. (6):

Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
ð6Þ

Sensitivity is calculated by the formula given in Eq. (7):

Sensitivity ¼ TP

TP þ FN
ð7Þ

Specificity is calculated by the formula given in Eq. (8):

Specificity ¼ TN

TN þ FP
ð8Þ

where TP, TN, FP and FN stand for true positive, true

negative, false positive and false negative, respectively.

The performance measures are the means of these mea-

sures computed in the cross-validation runs.

Fig. 1 Workflow of the classification process
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5 Results and discussion

In RFE, the volumetric features corresponding to the

lowest rankings are discarded and the remaining metrics

are used for training the classifier at each level. The feature

ranking for all the three binary classifications using RFE

method is shown in Fig. 2

One hundred and seventy features are chosen among the

341 features for LR and linear SVM wrapper method.

Between the two wrapper methods, there are 140, 132 and

118 identical features in NC/AD, NC/MCI and MCI/AD

classification, respectively.

In GA, genomes are represented using binary strings

which are the set of volumetric measures encoded. The bit

whose value is zero indicates the feature is not selected;

otherwise, the feature is selected. The initial population is

chosen as 50, and tournament size is selected as 3. Forty

generations are performed with fivefold cross-validation,

where four folds are used for training and one fold is used

for testing in all the iterations. A total of 82 to 104 features

are chosen among the 341 features for LR and SVM

wrapper methods as shown in Fig. 3. There are 19, 44 and

25 identical features in NC/AD, NC/MCI and MCI/AD

classification, respectively, when the two wrapper methods

are compared.

The features whose ranking scores are 1 based on RFE

and GA will be selected for further classification purposes.

The remaining features are discarded. After the four feature

subsets are identified, hyper-parameters C and c are tuned

using grid search on SVM which is implemented using the

LIBSVM library [23]. Fivefold cross-validation is per-

formed for grid search. Similarly, models are built using

LR, RF and XGB classifiers.

All the models are developed using tenfold stratified

cross-validation, and they are repeated fifteen times. The

records are randomly partitioned into ten subsets with

roughly the same proportions of the different class labels.

Each class is almost equally represented across the training

and test fold. Stratified cross-validation is performed due to

the imbalance in the data size. For each of the 10 folds, the

model is trained with nine folds and the remaining fold is

used for testing. This process is repeated fifteen times with

different randomization of the samples. The results of the

binary classification experiments are presented in Tables 2,

3 and 4.

From Tables 2, 3 and 4, the selected features from the

wrapper-based GA-LR algorithm differentiate the disease

stages better when compared to the other feature selecting

algorithms. From the 341 features of the structural MRI

image, only 82, 89 and 84 features are selected for NC/AD,

NC/MCI and MCI/AD classification, respectively. This

helps in attaining better classifiers with reduced number of

features which makes the models have lesser complexity.

In the GA-LR feature selection technique, SVM with RBF

kernel gives better accuracy when compared with the other

classifiers. LR provides the least accuracy in all the clas-

sification models. RF and XGB produce approximately

equal accuracy results.

The performance metrics of the models developed with

MMSE score along with the best feature subset obtained in

NC/AD, NC/MCI and MCI/AD classification are shown in

Fig. 4. Receiver operating characteristic (ROC) curves for

the three binary classifiers are shown in Fig. 5

For each classifier, the ROC curve represents the mean

ROC from the 150 cross-validation runs and area under

curve (AUC) corresponds to the mean AUC of 150 cross-
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Fig. 2 Feature ranking using

RFE a NC vs AD, b NC vs

MCI, c MCI vs AD
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validation runs. SVM with RBF kernel has achieved higher

AUC, i.e., 0.99, 0.95 and 0.94, respectively, for NC vs AD,

NC vs MCI and MCI vs AD classification, respectively.

Upon adding MMSE score to the feature subset, in the

NC/AD classification and NC/MCI classification, there is

not much difference in the performance of the model. But,
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Fig. 3 Features selected using

GA a NC vs AD, b NC vs MCI,

c MCI vs AD

Table 2 NC/AD classification using different feature selection techniques

Feature selection No. of features Classifier Accuracy (%) Sensitivity (%) Specificity (%)

RFE-LR 170 LR 92.85 84.90 96.77

RF 93.61 87.56 96.60

SVM (linear) 94.39 89.05 97.02

SVM (RBF) c = 10 c = 0.01 93.07 84.17 97.47

XGB 93.82 87.96 96.72

RFE-SVM 170 LR 92.89 85.14 96.72

RF 93.60 87.48 96.62

SVM (linear) 94.25 89.12 96.79

SVM (RBF) c = 1 c = 1 95.66 91.62 97.65

XGB 94.02 88.42 96.78

GA-LR 82 LR 91.16 82.37 95.48

RF 93.28 87.20 96.27

SVM (linear) 92.11 84.01 96.10

SVM (RBF) c = 1 c = 1 96.41 92.17 98.50

XGB 92.66 86.36 95.77

GA-SVM 104 LR 91.11 81.83 95.69

RF 93.82 87.48 96.95

SVM (linear) 92.42 84.33 96.42

SVM (RBF) c = 1 c = 1 95.79 89.44 98.92

XGB 95.13 89.58 97.87
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Table 3 NC/MCI classification using different feature selection techniques

Feature selection No. of features Classifier Accuracy (%) Sensitivity (%) Specificity (%)

RFE-LR 170 LR 73.96 86.42 53.90

RF 86.61 95.19 72.80

SVM (linear) 74.61 84.26 59.07

SVM (RBF) c = 1 c = 1 88.37 96.56 75.20

XGB 84.37 92.44 71.37

RFE-SVM 170 LR 72.25 84.61 52.36

RF 86.98 94.42 74.20

SVM (linear) 74.91 84.38 59.65

SVM (RBF) c = 1 c = 1 88.22 96.56 74.80

XGB 84.25 92.08 71.64

GA-LR 89 LR 71.06 83.95 50.33

RF 86.66 94.79 73.57

SVM (linear) 72.11 83.11 54.41

SVM (RBF) c = 1 c = 1 89.39 95.21 80.05

XGB 83.04 90.78 70.59

GA-SVM 93 LR 68.33 82.42 45.66

RF 86.15 94.58 72.58

SVM (linear) 69.32 80.10 51.98

SVM (RBF) c = 1 c = 1 82.76 88.18 74.05

XGB 80.79 89.59 66.63

Table 4 MCI/AD classification using different feature selection techniques

Feature selection No. of features Classifier Accuracy (%) Sensitivity (%) Specificity (%)

RFE-LR 170 LR 87.32 60.48 95.56

RF 88.99 62.86 96.99

SVM (linear) 87.70 65.05 94.64

SVM (RBF) c = 1 c = 1 85.19 40.49 98.90

XGB 88.72 66.68 95.48

RFE-SVM 170 LR 86.91 60.79 94.92

RF 89.15 62.83 97.23

SVM (linear) 87.32 64.80 94.23

SVM (RBF) c = 10 c = 0.01 87.31 57.43 96.47

XGB 89.06 67.82 95.58

GA-LR 84 LR 85.78 54.28 95.44

RF 89.04 63.94 96.74

SVM (linear) 85.72 56.19 94.78

SVM (RBF) c = 1 c = 1 90.13 66.53 97.37

XGB 89.09 67.84 95.60

GA-SVM 84 LR 85.61 56.20 94.64

RF 88.76 62.83 96.71

SVM (linear) 86.34 59.90 94.46

SVM (RBF) c = 1 c = 1 89.85 64.32 97.68

XGB 88.79 67.10 95.45
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for the MCI/AD classification, accuracy approximately

increases by 2.7%, sensitivity improves by 8.7%, and

specificity improves by 1.4% for RF classifier when MMSE

score is combined with the sMRI features subset. But

adding the MMSE score to the features had not improved

SVM with RBF kernel performance. On the other hand, the

XGB classifier has a better performance over SVM but

underperforms when compared to RF. Thus, RF classifier is

ideal for classifying the MCI and AD subjects with

improved accuracy.

From the above-mentioned results, the MMSE score

does not play a major role in classifying NC/AD or NC/

MCI classification. However, the MMSE score influences

RF and XGB classifiers in MCI/AD classification. These

results indicate that features derived from sMRI images

Fig. 4 Classification upon combining MMSE feature to MRI features

Fig. 5 ROC curves for disease classification a NC vs AD, b NC vs MCI, c MCI vs AD
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play a vital role in the classification rather than the neu-

ropsychological measure MMSE score.

The proposed model outperforms the hippocampus-

based method [17] in terms of the performance measures.

The model developed achieves better results when com-

pared to the other whole-brain methods [6, 15, 16] mainly

because of their smaller and effective feature set as shown

in Table 5. The proposed model performs much better in

MCI/AD and NC/MCI classification with a single imaging

modality. With the minimal feature set, consistent perfor-

mance over Alzheimer’s disease classification is attained.

6 Conclusion

The influence of different feature selection algorithms on

CV, SV, SA, TA, TS, HS features of the longitudinal

structural MRI images has been investigated. GA-LR fea-

ture selection performs better than the other algorithms.

Appending MMSE score to the structural MRI reduced

feature set helps in improving the accuracy and specificity

of the classifier that distinguishes MCI and AD. The model

developed from the features selected using GA-LR com-

bined with the MMSE score has a 2.7% increase in accu-

racy, an 8.7% increase in sensitivity and a 1.4% increase in

specificity for RF classifier in MCI/AD classification. SVM

with RBF kernel produces better results with 96.82% and

89.39% accuracy for binary classification of NC/AD and

NC/MCI, respectively. The proposed models have been

developed with lesser features when compared to the

existing works and they exhibit high accuracy. As the

future work, other imaging measures will be reviewed for

improving the classification accuracy.
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