
ORIGINAL ARTICLE

Robust visual tracker combining temporal consistent constraint
and adaptive spatial regularization

Yi Zhang1 • Guixi Liu1 • Haoyang Zhang1 • Hanlin Huang1

Received: 7 June 2020 / Accepted: 11 December 2020 / Published online: 11 January 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

Abstract
Existing discriminative correlation filters suffer from the defects of potential spatial distractors and the degradation of

appearance model caused by hard-temporal correlation. Aiming at this issue, a robust tracker which combines the adaptive

spatial regularization and the temporal consistent constraint is proposed in this paper. First, we propose to take the

extracted saliency map of the background as a reference weight to construct the spatial regularization term, with which the

perceived performance of the filter against distractors is enhanced by learning the spatial sparse constraint adaptively.

Second, we further implement the temporal consistent regularization formed by capturing dynamic appearance information

from multiple historical frames with a high-confidence strategy to mitigate the model degradation. Third, we employ the

alternating direction method of multipliers to solve the constrained optimization problem efficiently, thereby the com-

putational complexity can be reduced. The concrete experimental results on OTB-2013, OTB-2015, Temple-Color-128 and

VOT2016 benchmarks demonstrate that our tracker outperforms several state-of-the-art algorithms.

Keywords Correlation filter tracking � Temporal consistent constraint � Adaptive spatial regularization � High-confidence
strategy

1 Introduction

Visual tracking is one of the most significant topics in

computer vision. It has comprehensive application pro-

spects in intelligent surveillance, human–machine interac-

tion, vehicle navigation and so on [1]. The core mission of

generic tracking is to estimate the trace of a target in a

series of consecutive frames on the basis of the initial

specified state. In recent decades, the developing comput-

ing capability and robustness of correlation filter-based

trackers lead to the substantial progress of it. However,

visual tracking remains to be a complex and challenging

problem due to the complicated interference factors in

practical scenarios, such as deformation, occlusion and

background clutter.

Generally, tracking algorithms can be classified into

either generative or discriminative tracking according to

modeling method. The generative model-based method

[2–5] can be regarded as a template matching process

realized by searching for the candidate patch which is the

most relevant to the target model. Discriminative tracking

approaches [6, 7] provide a tracking-by-detection frame-

work. They distinguish target from various negative sam-

ples through a learned classifier. Recently, discriminative

correlation filter-based (DCF) tracking methods [8–11]

have attracted extensive attention in the visual tracking

community and displayed superior characteristics in mul-

tiple challenging benchmarks. We attribute this competi-

tive performance to the implementation of circulant

structures for efficient training and detection in the Fourier

domain.

However, all negative examples adopted in the filter

training process are generated through the cyclic property

of correlation, which cannot truly represent the negative

patch in real-world scenarios. Due to the limitation of the

pseudo-negative sample, the tracker tends to drift under the

heavy influence of background distractors. Addressing this

problem, Danelljan et al. [12] propose a spatially regular-

ized correlation filter for learning a more discriminative
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model by retaining more negative information on a larger

image region. The spatial regularization component with

fixed weights ignores the diversity of the target and leads to

an inaccurate description of the feature in case of back-

ground clutters and deformations. Galoogahi et al. [13]

increase the proportion of real patches by preprocessing the

image content with a binary mask, hence the filter could be

learned from real negative samples extracted densely from

the background. This approach requires a larger cropped

region to offer more visual information of the background,

which results in the increase of the computational burden

during the whole training process. Moreover, Mueller et al.

[14] derive a tracking framework with explicit incorpora-

tion of background content, which collects context patches

around the target as hard negative examples and makes the

context information regress to zeros. It would have the

potential risk of model drift that provides limited back-

ground information in cluttered scenarios when such con-

text-aware trackers taking context samples at the fixed

position.

In addition, the classifier updates with an aggressive

learning rate for handling appearance variations over time

due to the extremely limited reliable positive samples in

online classification. Addressing this problem, Li et al. [15]

suggest a passive updating strategy which mitigates the

filter degradation by introducing a temporal regularization

that keeps the learned filter close to previous ones. Based

on online passive-aggressive learning, the adaptability of

the target template to appearance differences is improved.

However, the temporal regularization component in

aforementioned work is trained on the basis of the previous

learned filter, which maintains diversity of the target

appearance through two consecutive frames. The hard

matching may incorporate inaccurate historical information

continually that eventually leads to failure in complex

scenarios.

In this paper, we aim at learning a joint correlation filter

consisting of temporal consistent constraint and adaptive

spatial regularization, with which we could enrich the

target appearance diversity and perceive the background

variations simultaneously. Specifically, we take the

extracted saliency map of the background as a reference

weight to construct a spatial regularization term which

could learn the target-aware spatial constraint adaptively.

Moreover, we introduce the temporal consistent component

according to multiple historical target appearances selected

by the high-confidence strategy, thereby eliminating the

limitation of hard matching between two consecutive

frames. For the proposed constrained optimization formu-

lation, we apply the ADMM algorithm [16] to obtain the

closed-form solution. Furthermore, we perform compre-

hensive experiments on tracking benchmarks to verify the

effectiveness of the proposal. The main contributions are as

follows:

• An adaptive spatial constraint is learned by integrating

a spatial regularization component into the DCF

framework, which takes the saliency map of distractors

as the reference weight.

• A temporal consistent constraint is constructed with the

captured dynamic target appearance information by

multiple reliable historical frames selected according to

high-confidence strategy, by which a robust visual

tracker combining temporal consistent constraint and

adaptive spatial regularization (TSCF) is formulated.

• An ADMM algorithm is implemented to solve TSCF

efficiently, where the closed-form solution is obtained.

• A thorough discussion and comparison between the

proposed algorithm and several state-of-the-art trackers

in details are illustrated on the OTB-2013 [17], OTB-

2015 [18], Temple-Color-128 [19] and VOT2016 [20]

datasets.

The rest of this paper is summarized as follows: Sec-

tion 2 gives a brief review of some relevant literature.

Section 3 presents a detailed description of the proposed

tracking method. Section 4 provides experimental results

and relevant discussions. Section 5 gives the conclusion.

2 Related works

2.1 Discriminative correlation filters

Discriminative correlation filter-based approaches with

high efficiency have been widely applied in visual tracking

community. Their efficiency comes from the element-wise

multiplication implemented in the frequency domain. The

minimum output sum of squared error tracker proposed by

Bolme et al. [8] is the earliest DCF-based method that

adopts only grayscale features to learn a filter. In practice,

the single-channel gray information is too limited to

express the characteristics of the target in complex sce-

narios. Henriques et al. [9] present a dense sampling

technique to construct numerous training examples, with

which exploit kernel trick to handle the nonlinear problem

effectively. On this basis, multi-channel histogram features

are utilized for performance improving in [10]. However,

such algorithms cannot solve the variation of the target

scale. Considering the impact of scale changing, an effi-

cient method of training one-dimensional correlation filter

based on a scale pyramid for obtaining the optimal target

scale is demonstrated in [21, 22]. These approaches

improve the tracking accuracy at the cost of speed reduc-

tion. Moreover, they also have high-precision requirement

on target location in practical applications. Li et al. [23]

8356 Neural Computing and Applications (2021) 33:8355–8374

123



suggest a framework integrating 1D boundary and 2D

center filters to deal with the scale variation. However, the

average running time of this method is only 1.25 frames

per second. In view of the feature representation, Danelljan

et al. [11] extend trackers with multi-channel color attri-

butes, which exhibits favorable discriminative character-

istics with appearance description. But this tracker drifts

away easily when the surroundings share similar visual

cues with the object. Bertinetto et al. [24] learn a com-

plementary tracker that is inherently robust to both defor-

mations and illumination changes by merging histogram of

oriented gradients (HOG) features and color histograms at

the response map level. The fusion coefficient is fixed

throughout the tracking process, which may not be optimal,

hence shows the potential for improvement in accuracy. In

order to integrate the multi-resolution feature map effec-

tively, a continuous-domain learning formulation is intro-

duced in [25] to obtain accurate localization thereafter. The

trained continuous convolution filter is sparse, and it is

prone to over-fitting with high-dimensional deep features.

Therefore, Danelljan et al. [26] reduce the number of

model parameters and increase tracking performance by

introducing a factorized convolution operator for learning

the filter with significant energy. From the perspective of

the development process, various tracking algorithms are

derived based on the correlation filter framework [27–30].

Among all the discriminative correlation algorithms

mentioned above, background region and appearance

diversity are not considered in the tracking process that

inevitably brings unreliable distractors information. On this

basis, we propose a robust tracker consisting of adaptive

spatial regularization and temporal consistent constraint in

this paper. We construct a spatial regularization term to

learn the adaptive spatial weight, which can effectively

suppress the background distractors in different tracking

scenarios. Furthermore, we propose to learn reliable

appearance information under the temporal consistent

constraint, which improves the adaptability of the appear-

ance model to target deformation.

2.2 Spatial constraint correlation filters

The traditional DCF-based trackers exploit the circulant

structure to solve the ridge regression problem. The

potential periodic assumption caused by the circulant

matrices derives the redundant background information

which hampers the learned model severely. To alleviate

this issue, Danelljan et al. [12] introduce a spatial weight

function into the DCF formulation to decrease the signifi-

cance of background. The predefined spatial constraint

keeps a negative Gaussian distribution in the tracking

process that cannot guarantee the coefficient to be zero

outside of the bounding box. As a result, the filter may

learn unexpected background information when the target

undergoes appearance deformations. Galoogahi et al. [13]

take background patches into account and then exploit a

binary mask to crop the central image to increase the

proportion of the real training sample. However, the image

patches extracted by the mask do not explicitly exploit the

shape information of the target. Mueller et al. [14] incor-

porate contextual information into the learned filter to

suppress the background clutter. The context patches

around the target are regressed to zeros that increases the

risk of spurious detection on complex patterns. Moreover,

the regression method of cropping image patches at fixed

positions ignores the importance of pixel at different

locations. [31] alleviates the impact of the surrounding

background with a spatial reliability mask constructed by

the target likelihood and the prior probability. But the

feature adopted by this approach is sensitive to illumination

variation.

As described above, [12–14] cannot suppress the back-

ground information completely in the positive sample

because the unreliable region in the tracking box is not

considered in the tracking process, and the shape infor-

mation of the target is not effectively utilized by these

methods. The spatial reliability adopted in [31] is sensitive

to target deformation and has the risk of degradation.

Compared with trackers mentioned above, we introduce a

spatial regularization component into the discriminative

correlation model while taking the extracted background

reliability map as the reference weight. The spatial con-

straint learned by regularization takes the importance of

pixel and shape variation of the target into account.

Thereby, the unreliable region is penalized effectively by

the learned spatial constraint.

2.3 Temporal regularized correlation filters

Generally, the target appearance changes over time during

the whole tracking process, so it is critical for trackers to

construct a robust appearance model. To maintain memory

of the appearance description, Li et al. [15] formulate a

robust tracker integrated temporal regularization which

learns the appearance model from two consecutive frames.

The filter adapts to appearance difference effectively by

updating passively in sequence with occlusion and defor-

mation. However, most temporal constraint-based dis-

criminative correlation trackers ignore the consistency of

the target appearance in temporal dimension. They learn

the object diversity by constructing hard matching based on

adjacent historical filter. This leads to poor generalization

and model degradation when the visual relevance between

the current and previous frames decreased in complex

scenarios. Different from the above tracking methods, we

filter out the frame with high relevance from the continuous

Neural Computing and Applications (2021) 33:8355–8374 8357

123



historical frames and put forward the temporal consistent

constraint according to reliable filters. We apply a high-

confidence mechanism to learn rich information of target

appearance, which breaks through the limitation of hard

matching between two consecutive frames. Moreover,

reliable correlation in temporal dimension can further

improve the representation ability of the appearance model.

3 Proposed tracking method

Motivated by the discussion above, we propose a robust

tracker which combines the adaptive spatial regularization

and the temporal consistent constraint in this paper. To be

specific, first, we propose to integrate the constructed

background saliency map into the correlation filter-based

tracker, which can suppress the background information

successfully. Second, we formulate the temporal consistent

regularization according to the high-confidence strategy to

improve the adaptability of appearance model. Finally, we

use the ADMM algorithm to solve the constrained opti-

mization model and obtain the closed-form solutions of all

subproblems. Compared with the traditional spatial con-

straint method with fixed coefficients, we take the saliency

map as a reference weight to formulate a spatial regular-

ization term, hence the spatial constraint could be learned

adaptively through quadratic regularization. By iterative

solution, the penalty coefficients residing outside the target

region have higher weights that can effectively suppress

the distractors. Moreover, in order to overcome the limi-

tation of the hard matching between two consecutive

frames, we construct a temporal consistent constraint on

the basis of reliable historical frames which are selected

according to the high-confidence mechanism to mitigate

the filter degradation. To evaluate the reliability of histor-

ical targets, we propose a dynamic threshold measurement

to distinguish spurious detection. In addition, we exploit

HOG features to train a CF model separately for fast scale

estimation. The overall tracking flowchart of our proposed

method is shown in Fig. 1.

Compared with the existing CF-based tracking algo-

rithm, the proposed method achieves a balance between

accuracy and robustness during online tracking in the given

sequences as shown in Fig. 2. We attribute this to the fact

that our TSCF tracker emphasizes the incorporation of the

adaptive spatial constraint and the temporal consistent

regularization separately. The learned spatial weight sup-

presses surrounding distractors, hence the tracking accu-

racy is effectively boosted. The temporal constraint

component integrates the diversity of the target appear-

ance, which makes the model more robust against chal-

lenging patterns.

3.1 Adaptive spatial constraint model

The periodic assumption of the cyclic property produces

distractors if the surroundings share similar visual cues

with the target. In this paper, we extract the background

saliency map from the search region and take it as a ref-

erence weight to formulate the spatial regularization

component, which assigns higher penalty coefficients to the

background by learning an adaptive spatial weight. The

background saliency map that displays the spatial distri-

bution information of the image is composed of the nega-

tive Gaussian shaped matrix and the background log-

likelihood. We obtain the likelihood map of the image

through the Bayesian formula, which calculates the prob-

ability of each color component belongs to the background

region. This probabilistic model is prone to confusion when

the target is surrounded by distractors similar to its color.

In order to improve the performance in this situation, we

combine the likelihood with a negative Gaussian matrix to

form the background saliency map. This extension pro-

vides an effective suppression of the background.

The probability that a pixel pn which is labeled as ln 2 L

(foreground = 0, background = 1) at location n belongs to

the background color model rt via Bayesian rule in the

current frame t can be depicted as [32]:

P rtjnð Þ ¼
P njltn ¼ 1;Ht�1

b

� �

P njltn ¼ 0;Ht�1
f

� �
þ P njltn ¼ 1;Ht�1

b

� � ð1Þ

where Ht�1
f and Ht�1

b denote the color histograms corre-

sponding to the foreground object and background in the

previous frame t � 1. The spatial saliency map is described

with the proper combination of the probability model and

the negative Gaussian matrix, which assigns higher penalty

weights to region residing outside the target. The Gaussian

function is constructed as follows:

G pr; pcð Þ ¼ g1 �
pr
wtar

� �2

þ pc
htar

� �2
 !

þ g2 ð2Þ

where pr; pcð Þ represents the pixel coordinate of the input

image, wtar; htarð Þ is the target scale, g2 is the minimum

value of the predefined Gaussian window, and g1 deter-

mines the decay speed of weights from edge to center. The

reference weight is obtained by simply multiplying the

probability model by the two-dimensional Gaussian func-

tion. Therefore, the construction formula of the reference

weight is as follows:

wref ¼ G pr; pcð Þ � P rtjnð Þ ð3Þ

where wref is the reference weight matrix. By applying the

Gaussian model centered at the target position on the

likelihood map, the distractors with similar color to the
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target can be further suppressed. Furthermore, we introduce

the saliency map as a reference weight into the correlation

filter-based model to learn the spatial weight adaptively.

The adaptive spatial constraint model can be constructed as

follows:

argmin
f

1

2

XNd

d¼1

xd � f d � y

�����

�����

2

þ k1
2

XNd

d¼1

w � f d
�� ��2þ k2

2
w� wref
�� ��2

ð4Þ

where xd represents the d-th channel of the vectorized

image feature. f d represents the d-th channel of the filter.

Nd is the number of channels in total. y is the desired output

ConvNet

Feature
extraction

Feature
extraction

Feature Map

Corr

Translation estimation

hog feature

Current search image

Multi-scale samples

Initial spatial weight

Estimated position

Desired response

Scale estimation

Scale estimation
Learn scale filter

Historical filters with high confidence

Tracking resultFrame x

Temporal consistent measurement

Historical images

Fig. 1 The overall tracking flowchart of the TSCF tracker

TSCF STRCF BACF SRDCFCSRDCF

Fig. 2 Visualized tracking results of our TSCF tracker, STRCF, BACF, CSRDCF and SRDCF on 3 challenging video sequences of Biker, bird1

and skiing. Our tracker performs well throughout the tracking process

Neural Computing and Applications (2021) 33:8355–8374 8359

123



response. wref is the reference weight. k1 and k2 are the

regularization parameters. The symbols � and � stand for

circular convolution and element-wise multiplication,

respectively.

By learning the spatial constraint with quadratic regu-

larization, an adaptive penalty coefficient matrix is opti-

mized in the training process. Thus, the tracker is more

robust against cluttered background. Figure 3 shows the

visualization of the learned spatial weights. It can be seen

from the figure that the adaptive spatial constraint assigns a

higher weight to the background region in the positive

sample to suppress the background information, and it can

adjust adaptively according to the target in different sce-

narios. Compared with the algorithm using the fixed

coefficient constraint, the adaptive spatial constraint we

proposed takes the reliability of the tracking region into

consideration, which can suppress the distractors within the

tracking box effectively.

3.2 Temporal consistent mechanism

The traditional DCF methods adopt a fixed learning rate to

update a model without considering the reliability of the

changing appearance. It makes the tracker bearing a high

risk of model fluctuation and corruption. Existing temporal

regularized trackers rely on the previous filter excessively,

thereby the model may degrade by the introduction of

inaccurate detection. In this case, we propose a temporal

consistent mechanism to extract historical frames with high

confidence, thus the temporal consistent regularization is

constructed based on reliable appearance information. By

capturing the reliable information of the target appearance

from continuous historical frames, the adaptability of the

model to the appearance changes is improved significantly.

In this paper, we consider the peak-to-sidelobe ratio (PSR)

[8] as the evaluation index of target reliability. It can be

defined as:

PSRt ¼
Rtmax xð Þ � ls Rt xð Þð Þ

rs Rt xð Þð Þ ð5Þ

where Rtmax xð Þ denotes the maximum value of the tracking

response map corresponding to the image patch x in frame

t. ls
F and rsF are the mean value and standard deviation of

the sidelobe, respectively. Generally, the reliability of the

tracking results is determined by the predefined experien-

tial threshold. However, this approach is not universally

suitable because the response amplitude of different video

sequences is not uniform in the same range. Aiming at this

problem, this paper applies a dynamic evaluation threshold

calculated by the average PSR (APSR) value of historical

frames:

APSRt ¼
PT

i¼1 PSR
i

T
; T ¼ t � nþ 1 ð6Þ

where
PT

i¼1 PSR
i represents the sum of PSR values of all

tracking results, PSRi is the PSR value of the i-th tracking

response. The parameter T is the total number of frames

from the initial image to the current image, and n is the

initial frame number. In the case when the initial frame

number is 1, the value of T is the same as that of the current

frame t.

We employ APSR to describe the tracking quality in

advance. The historical filter is reliable only when the

certain condition is met: the PSR is higher than the average

value APSR with a certain ratio a. The evaluation criterion

is shown in Eq. (7):

PSRt [ aAPSRt ð7Þ

This evaluation strategy can effectively prevent the filter

from learning inaccurate target representation information.

To verify the validity of the dynamic threshold more

intuitively, we compare the variation curves of different

evaluation indicators of tracking results in typical chal-

lenge video sequences.

Figure 4 shows the variation trends of PSR and a APSR

in different video sequences. By comparing the curve of

the two sequences, it can be seen that the fixed experiential

threshold is not universally applicable. In panda, the target

is subject to the cluttered background at frame 130

resulting in a significant decrease in PSR value to 7.303,

but still higher than the predefined threshold s because the

overall confidence value is at a relatively high level. The

tracking results at this state introduce background infor-

mation into the training process, which leads to poor

Fig. 3 Visualization of the

learned spatial weights. The

target and the distractors are

given different weights

according to the different

reliability in the tracking region
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discrimination of the filter. Meanwhile, it is obvious that

the overall confidence score in bird1 is lower than the value

of s, which means the predefined experiential threshold

may misjudge the reliable tracking result. Therefore,

exploiting the experiential threshold is not sufficient to

reflect the tracking quality. In this work, the proposed

historical average threshold can change adaptively for the

sequences with different tracking response values, which

breaks the limitation of fixed mode and evaluates the target

consistency efficiently. In addition, the comparison of the

same sequence demonstrates that the dynamic threshold is

more accurate than the fixed threshold in distinguishing

whether the target appearance is continuous. Through the

target appearance consistency evaluation, a number of

historical frames with high matching degree are screened

for enriching the information of target appearance

diversity.

3.3 Objective function of our TSCF tracker

Based on the above discussion, we combine the adaptive

spatial constraint and the temporal consistent regularization

into the CF-based tracker. This minimization problem takes

the form:

argmin
f

1

2

XNd

d¼1

xdt � f d � y

�����

�����

2

þ k1
2

XNd

d¼1

w � f d
�� ��2þ k2

2
w� wref
�� ��2þ c

2

X

fi

f � fik k2
ð8Þ

where the second term denotes the adaptive spatial regu-

larization. w identifies pixels that should be ignored in f d,

and the third term introduces a reference weight to prevent

degradation of the constraint matrix. By learning an

adaptive spatial constraint to suppress the background

distractors, a more discriminative classifier can be learned

on a huge set of negative patches. The last term is the

temporal regularization component, in which fi represents

the screened historical frames with consistent appearance. c
is the regularization parameter. The variation of the target

appearance can be effectively simulated according to the

L2-norm minimization.

The model in Eq. (8) is a convex function, with which

the global optimal solution can be obtained via the ADMM

method. By introducing a dual variable h ¼ f and the

stepsize parameter l, the augmented Lagrangian form of

Eq. (8) can be formulated as:

L f ; h;w; sð Þ ¼ 1

2

XNd

d¼1

xdt � f d � y

�����

�����

2

þ k1
2

XNd

d¼1

w � hd
�� ��2þ k2

2
w� wref
�� ��2

þ
XNd

d¼1

sd
� �T

f d � hd
� �

þ l
2

XNd

d¼1

f d � hd
�� ��2

þ c
2

X

fi

f � fik k2

ð9Þ

where s denotes the Lagrange multiplier, l is the penalty

parameter that controls the convergence rate. Equation (10)

is obtained when we set z ¼ s=l:

L f ; h;w; sð Þ ¼ 1

2

XNd

d¼1

xdt � f d � y

�����

�����

2

þ k1
2

XNd

d¼1

w � hd
�� ��2

þ k2
2

w� wref
�� ��2

þ l
2

XNd

d¼1

f d � hd þ sd
�� ��2

þ c
2

X

fi

f � fik k2

ð10Þ

According to the ADMM method, the objective function

can be decomposed into multiple subproblems. The itera-

tive solution steps are:

=7

=7

=7

=7

Fig. 4 PSR and a APSR variation curves corresponding to the video

sequences bird1 (top) and panda (bottom). s is the predefined

experiential threshold
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f iþ1ð Þ ¼ argmin
f

1

2

XNd

d¼1

xdt � f d � y

�����

�����

2

þl
2

XNd

d¼1

f d � hd þ sd
�� ��2þ c

2

X

fi

f � fik k2

h iþ1ð Þ ¼ argmin
h

k1
2

XNd

d¼1

w � hd
�� ��2þ l

2

XNd

d¼1

f d � hd þ sd
�� ��2

w iþ1ð Þ ¼ argmin
w

k1
2

XNd

d¼1

w � hd
�� ��2þ k2

2
w� wref
�� ��2

s iþ1ð Þ ¼ s iþ1ð Þ þ f iþ1ð Þ � h iþ1ð Þ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð11Þ

Each subproblem can be, respectively, solved in details

as follows:

Subproblem f : For the computational efficiency, we

transform the objective function of subproblem of f into

Fourier domain according to the Parseval’s theorem:

argmin
f̂

1

2

XNd

d¼1

x̂dt � f̂ d � ŷ

�����

�����

2

þ l
2

XNd

d¼1

f̂ d � ĥd þ ŝd
�� ��2þ c

2

X

f̂i

f̂ � f̂
�� ��2

i

ð12Þ

Considering the processing of all channels of each pixel,

we let V i fð Þ 2 RNd represent the vector composed of the i-

th element of f along all Nd channels. The closed-form

solution for V i f̂
� �

is obtained by the following derivation:

V i f̂
� �

¼ V i x̂ð ÞV i x̂ð ÞTþlI þ
X

f̂i

c

0

@

1

A

�1

V i x̂ð Þŷþ lV i ĥ
� �

� lV i ŝð Þ þ c
X

f̂i

V i f̂i
� �

0

@

1

A

ð13Þ

Since V iðx̂Þ is a column vector and V iðx̂ÞV iðx̂ÞT is a

rank-1 matrix, Eq. (13) can be re-expressed by the Sher-

man–Morrison formula:

V i f̂
� �

¼ 1

lþ
P

f̂i
c

I � V i x̂ð ÞV i x̂ð ÞT

lþ
P

f̂i
cþ V i x̂ð ÞTV i x̂ð Þ

 !

V i x̂ð Þŷþ lV i ĥ
� �

� lV i ŝð Þ þ c
X

f̂i

V i f̂i
� �

0

@

1

A
ð14Þ

Then, the optimal f can be obtained by the inverse dis-

crete Fourier transform (IDFT) of V i f̂
� �

f .

Subproblem h: By taking the derivative of the second

equation in Eq. (11), the closed-form solution of h is

h ¼ k1W
TW þ lI

� ��1
lf þ lsð Þ ¼ l f þ sð Þ

k1w � wþ lI
ð15Þ

where W ¼ diag wð Þ is the NdMN � NdMN block diagonal

matrix.

Subproblem w: The adaptive spatial constraint weight is

denoted as w, we apply an additional ADMM solver to

optimize it. By introducing the penalty parameter g and the

auxiliary variable v ¼ w, the augmented Lagrange formula

of subproblem w can be expressed as:

L w; v; sð Þ ¼ k1
2

XNd

d¼1

w � hd
�� ��2þ k2

2
v� wref
�� ��2þsT w� vð Þ

þ g
2

w� vk k2

ð16Þ

Let u = s/l, the above formulation is equivalent to the

following one:

L w; v; uð Þ ¼ k1
2

XNd

d¼1

w � hd
�� ��2þ k2

2
v� wref
�� ��2þ g

2
w� vþ uk k2

ð17Þ

The closed-form solution of the subproblem w obtained

by the derivation of Eq. (17) is:

w ¼ g v� uð Þ
k1
PNd

d¼1 h
d � hd þ gI

ð18Þ

Similarly, the solution of subproblem v is:

v ¼ k2wref þ g wþ uð Þ
k2 þ g

ð19Þ

In the process of solving subproblem w, the updating

scheme of Lagrange multiplier u and the selection of the

stepsize parameter g are as follows:

u iþ1ð Þ ¼ u ið Þ þ w iþ1ð Þ � v iþ1ð Þ ð20Þ

g iþ1ð Þ ¼ min gmax; eg
ið Þ

� �
ð21Þ

where e denotes the scale factor. Different g in each iter-

ation improves the convergence with the less dependent on

the initial choice of parameter. The background can be

suppressed effectively by learning the adaptive spatial

weight w through an additional ADMM solver.

Lagrange Multiplier s: The updating scheme of

Lagrange multiplier vector s is as follows:

s iþ1ð Þ ¼ s ið Þ þ f iþ1ð Þ � h iþ1ð Þ ð22Þ

f iþ1ð Þ and h iþ1ð Þ are the solutions of the subproblem in the

iþ 1ð Þ-th iteration. And the stepsize parameter is update

with l iþ1ð Þ ¼ min lmax; bl
ið Þ� �
.

3.4 Online detection and scale estimation

In the detection stage, the target’s position is detected by

correlating the learned filter with image feature. Let x

represents the d-th channel of the vectorized image feature

extracted from the current frame, the response map at all

locations can be calculated by the following function:
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r ¼ F�1
XNd

d¼1

x̂d � f̂ d
 !

ð23Þ

where F�1 represents the IDFT operator. The maximum

value in the response map corresponds to the target

location.

For scale estimation, the method in [21] is adopted to

learn a one-dimensional filter based on the scale pyramid

with HOG features in this paper. Specifically, we extract

multiple scale candidates centered at the same predicted

location and thereby obtain the optimal scale by calculating

the maximum response value. Compared with multi-scale

deep features, exploiting shallow features for scale esti-

mating can significantly improve the efficiency of the

tracking algorithm.

3.5 Model update

In this work, we update the appearance model adaptively to

accommodate the appearance variations of the target. The

online adaptation at frame t is formulated as:

xmodel
t ¼ 1� hð Þxmodel

t�1 þ hxmodel
t ð24Þ

where h denotes the online learning rate parameter and

xmodel
t�1 denotes the template model of frame t � 1. This

updating approach combines the current information with

the historical frame in a simple way that makes the model

maintain stabilized to the target appearance changes. The

outline of our TSCF tracker is summarized in Algorithm 1.

4 Experiments

Comprehensive experimental evaluation and discussion of

the proposed TSCF tracker are demonstrated in this sec-

tion. Section 4.1 is the experiment setup that describes the

benchmark datasets and evaluation indicators in experi-

ments. Experimental details and parameter settings are

provided in Sec. 4.2. Section 4.3 evaluates the perfor-

mance of the proposal and the related trackers on different

benchmarks. Section 4.4 is the attribute-based analysis of

all trackers in comparison. Section 4.5 gives a qualitative

comparison with related trackers on several representative

sequences. Furthermore, an evaluation on VOT2016 is

displayed in Sec. 4.6. Section 4.7 demonstrates the effec-

tiveness of each component of the proposed tracker with an

ablation study. Section 4.8 studies the impact of the key

parameters on tracking performance. Section 4.9 discusses

the failure cases and analyzes the shortcomings of the

proposed method in detail. Finally, Sec. 4.10 summarizes
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all the observations and lessons learned from this research

for future work propositions.

4.1 Experiment step and methodology

Datasets and evaluation metrics: This paper performs the

evaluation on the OTB-2013, OTB-2015, Temple-Color-

128 and VOT2016 datasets. OTB-2013 dataset contains 50

fully annotated sequences, and OTB-2015 is an extension

of the former with 100 sequences. These two datasets are

manually labeled with 11 different attributes, including

illumination variation (IV), scale variation (SV), occlusion

(OCC), deformation (DEF), motion blur (MB), fast motion

(FM), in-plane rotation (IPR), out-of-plane rotation (OPR),

out-of-view (OV), background clutters (BC), low resolu-

tion (LR). The tracking performance is evaluated by the

distance precision plots and overlap success plots in one-

pass evaluation (OPE).

Temple-Color-128 dataset contains 128 color sequences

in different tracking scenarios. The evaluation metric is the

same as the OTB benchmark.

VOT2016 dataset consists of 60 challenging video

sequences, with which it takes the expected average

overlap (EAO), accuracy value (A) and robustness value

(R) as the evaluation metric.

Experimental platform: We implement our TSCF

tracker on Matlab with the MatConvNet toolbox. The

experiments are performed on a 2.90 GHz Intel i5-9400F

Core CPU with 16 GB RAM and a NVIDIA GeForce RTX

2070 GPU. The proposed tracker runs at a speed of 17.2

frames per second (FPS) on the OTB-2015 dataset.

4.2 Implementation parameters

For all experiments, the regularization parameters of spa-

tial and temporal components are set as k1 ¼ 1:2, k2 ¼
0:001 and c ¼ 1:1; respectively. Within the ADMM opti-

mization process of the filter, the initial value, maximum

value and scale factor in the update step of the stepsize

parameter are set as l 0ð Þ ¼ 0:89, lmax ¼ 100 and b ¼ 11.

The maximum number of iterations is 2. Similarly, opti-

mization parameters of the spatial constraint are set as

g 0ð Þ ¼ 1, gmax ¼ 103 and e ¼ 10 while the iteration is 3 to

make sure the accuracy and efficiency are balanced. For the

scale estimation, five scales are considered and the scale

step is chosen as 1.01. The learning rate of target appear-

ance model is 0.0186. In addition, we employ the public

available codes of other trackers for fair comparison.

4.3 Overall performance evaluation of the TSCF
tracker

To verify the effectiveness of the tracking performance, we

evaluate the proposed TSCF tracker on OTB-2013, OTB-

2015 and Temple-Color-128 datasets with comparison to

10 representative trackers including KCF [10], DSST [21],

Staple [24], SRDCF [12], STRCF [15], CSRDCF [31],

BACF [13], HCF [33], CCOT [25] and ECO [26]. Among

them, ECO, CCOT and HCF are convolutional neural

networks (CNNs)-based tracking methods, while others are

correlation filter-based trackers. The overall performance

evaluation results are shown in Fig. 5.

Figure 5 illustrates the distance precision and overlap

success plots of all compared trackers on OTB-2013, OTB-

2015 and Temple-Color-128 benchmarks. It can be seen

that our method achieves superior performance on all three

datasets. Specifically, our TSCF tracker ranks first with the

area under the curve (AUC) value of 68.7% and the dis-

tance precision (DP) score of 91.3% on OTB-2015, which

are significantly improved 21.3% and 22.4% compared

with the baseline tracker KCF. By learning the spatial

constraint adaptively, our tracker is increased by 12.5%,

10.3% and 13.1% in distance precision over congeneric

trackers CSRDCF, BACF and SRDCF, respectively.

Compared to the STRCF that adopts single previous filter

for the temporal regularization, our TSCF tracker meets

5.6% tracking precision improvement through acquiring

the appearance diversity information from multi-frame

constraints. Our proposal still presents satisfactory perfor-

mance with an accuracy of 3.0%, 4.6% and 7.6% higher

than ECO, CCOT and HCF trackers which behave excel-

lent properties based on deep features. Additionally, a

favorable result also realized on the Temple-Color-128

dataset: our tracker improves the precision and overlap rate

by 1.3% and 0.9% respectively than the second-best

tracker. Overall, the proposed TSCF tracker achieves

superiority and effectiveness against state-of-art trackers.

4.4 Attribute-based comparison

In this section, an attribute-based analysis of all compared

trackers is carried out on the OTB-2015 dataset. Table 1

shows the DP score comparison results of all compared

trackers based on 11 attributes.

From Table 1, the proposed tracker achieves the best

performance in 7 of the challenge attributes including IV,

SV, DEF, FM, IPR, OPR and BC, especially it outperforms

in terms of BC, DEF, OPR and IV with 4.8%, 4.7%, 3.4%

and 2.5% improvement respectively than the second-best

tracker. For sequences with attributes OCC and MB, our

approach enjoys the second rank with scores of 88.8% and
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Fig. 5 Precision and success plots on the OTB-2013, OTB-2015 and Temple-Color-128 datasets using an OPE
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84.6%. Conclusively, the above experimental results reveal

that our tracker achieves favorable performance in multiple

challenging tracking scenarios. We attribute this to the

combination of the adaptive spatial constraint and the

temporal consistent regularization, which not only enable

the filter to suppress background distractors but also

maintain the target diversity effectively. The success plot

of different trackers with 11 attributes on OTB-2015 is

shown in Fig. 6. From the results in the figure, we can see

that our proposed tracker has the highest AUC score on 8

attributes of BC, DEF, IPR, IV, OCC, OPR, OV and SV.

Similarly, the proposed tracker also obtains excellent

results on the Temple-Color-128 benchmark that effec-

tively exhibit the competitiveness of the algorithm. We

report the success plots for 6 attributes on the Temple-

Color-128 benchmark in Fig. 7.

4.5 Qualitative evaluation

We perform a qualitative analysis on 16 representative

challenge sequences for evaluating the tracking perfor-

mance intuitively. For clear visualization, the tracking

results of the proposed method and competitive trackers are

displayed in Fig. 8. The videos (from top to bottom) are

Ball_ce2, Bird1, Busstation_ce1, Eagle_ce, Face_ce,

Fish_ce1, Fish_ce2, Messi_ce, Panda, Railwaystation_ce,

Singer_ce2, Skating_ce2, Surf_ce1, Surf_ce4, Yo-yos_ce2,

Yo-yos_ce3. Our tracker performs well in the video

sequences with multiple challenging attributes.

Deformation In the Bird1 sequence, the target has

obvious deformation due to the change of the posture. Our

tracker is the only one works successfully during the whole

tracking process, and the remaining 10 trackers lost the

target. The temporal consistent constraint proposed in this

paper can effectively maintain the diversity of the target’s

appearance, which makes our tracker identify and locate

the target accurately even if the appearance changes

greatly. Panda is a long-term sequence with the challenge

of deformation. At frame 539, SRDCF, KCF and DSST

drift away to the background region as the continuous

deformation of the target, while Staple, ECO, CCOT,

STRCF, CSRDCF and HCF obtain inaccurate location and

size of the target. At frame 709, Staple also lost the target.

Due to the deformation of the target and the low video

resolution, ECO drifts at frame 980, while only our tracker

and CSRDCF track the target successfully. In general, our

tracking algorithm performs well on video sequences with

the deformation attribute.

Background clutter The target in the sequences of

Eagle_ce, Face_ce and Singer_ce2 suffers from the influ-

ence of background clutter. At frame 60 of Eagle_ce

sequence, ECO, STRCF, BACF, SRDCF, KCF and DSST

cannot identify the specified target, while CCOT, CSRDCF

and Staple accumulate plenty of background information in

the tracking box. At frame 71, only our tracker and HCF

can locate the target accurately. Since the adaptive spatial

constraint proposed in this work can effectively suppress

the unreliable information within the tracking box, our

tracker can cope well with the problem of model drift

caused by background clutter. Face_ce sequence contains a

lot of distractors which are similar to the target. At frame

34, only our tracker performs well, the remaining 10

trackers identify the background of the search region as the

target. Till the 619th frame, our tracker is the only one that

can locate the target accurately. In Singer_ce2 sequence, 7

trackers including ECO, CCOT, HCF, CSRDCF, SRDCF,

KCF and DSST drift away from the target because of the

background clutter. Due to the application of the adaptive

spatial constraint, our tracker can handle the challenge of

background clutter effectively.

Table 1 Precision comparison

results of 11 attributes on the

OTB-2015 benchmark. The top

three results are highlighted in

red, blue and green, respectively

TSCF ECO CCOT STRCF HCF BACF CSRDCF SRDCF Staple KCF DSST

ALL 0.913 0.883 0.867 0.857 0.837 0.810 0.788 0.782 0.777 0.689 0.686

IV 0.912 0.873 0.887 0.837 0.839 0.803 0.755 0.781 0.778 0.724 0.720

SV 0.876 0.858 0.850 0.827 0.789 0.755 0.733 0.733 0.713 0.624 0.642

OCC 0.888 0.890 0.853 0.812 0.774 0.731 0.721 0.727 0.724 0.632 0.602

DEF 0.902 0.855 0.803 0.842 0.789 0.769 0.760 0.730 0.747 0.619 0.560

MB 0.846 0.867 0.838 0.797 0.772 0.715 0.731 0.745 0.676 0.578 0.544

FM 0.865 0.846 0.842 0.780 0.786 0.772 0.717 0.753 0.693 0.604 0.556

IPR 0.899 0.858 0.880 0.812 0.864 0.792 0.766 0.743 0.768 0.701 0.711

OPR 0.906 0.872 0.865 0.837 0.802 0.767 0.724 0.731 0.727 0.666 0.653

OV 0.839 0.841 0.843 0.710 0.602 0.705 0.640 0.561 0.619 0.453 0.428

BC 0.893 0.837 0.821 0.845 0.825 0.776 0.743 0.755 0.727 0.692 0.680

LR 0.811 0.841 0.851 0.743 0.869 0.741 0.746 0.666 0.610 0.560 0.602
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Fig. 6 Success plots of 11 attributes on the OTB-2015 dataset
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Occlusion Ball_ce2, Busstation_ce1, Fish_ce1,

Fish_ce2, Messi_ce, and Railwaystation_ce are typical

video sequences with the challenge of target occlusion. In

Ball_ce2, only our tracker, ECO, CCOT, and HCF achieve

accurate location in the whole tracking process. At frame

51 of Busstation_ce1, all trackers except our proposal have

the problem of model drift due to the occluded target. At

frame 116, only our tracker and CCOT can identify the

target in the scenario where the target is occluded. In

sequences of Fish_ce1 and Fish_ce2, our tracker can also

cope well with the problem of target occlusion. The

occlusion occurs at frame 190 of Messi_ce sequence, only

our tracker, CCOT and SRDCF can track the target suc-

cessfully in subsequent frames. In Railwaystation_ce

sequence, the target is occluded heavily for several times,

our tracker, ECO and SRDCF achieve favorable results in

all frames. In conclusion, our tracker performs well under

the challenge of occlusion.

In-plane rotation The target faces the challenge of

rotation due to the changing of posture in Skating_ce2,

Surf_ce1 and Surf_ce4 sequences. At the beginning of

those videos, most trackers can track the target accurately.

In Skating_ce2, all the trackers except for ours give inac-

curate estimation results when the target rotates. At frame

17 of Surf_ce4 sequence, only our tracker gives the exact

location of the target. BACF and SRDCF lost the target at

frame 76, while the tracking boxes of HCF, CCOT, ECO,

STRCF and DSST contain only a part of the target and

introduce a lot of background information. Till the 99th

frame, our tracker is still able to locate the target

accurately.

Fast motion In the whole tracking process of Yo-

yos_ce2 and Yo-yos_ce3 sequences, only our tracker,

STRCF and CCOT can track the target steadily, the other 8

trackers fail to track the target when it moves rapidly.

Therefore, the tracker proposed in this paper can handle the

challenge of fast motion well.

4.6 Evaluation on VOT2016

Different from the OTB benchmark, the VOT dataset is

dominated by short-term sequences with relatively high

resolution. The tracker resets automatically whenever the

overlap does not exist between the prediction and ground-

truth. We further perform an evaluation of our algorithm in

terms of accuracy, robustness and expected average over-

lap (EAO) on VOT2016. The accuracy metric is the

average overlap rate of the bounding box. The robustness is

measured by the number of tracking failures. And the

expected average overlap is a quite important metric for

evaluation which averages the no-reset overlap of trackers.

The compared trackers in this experiment include STRCF,

Fig. 7 Success plots of 6 attributes on the Temple-Color-128 dataset
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Ball_ce2 (IV, OCC, MB, OV, FM)                       Bird1 (DEF, FM, OV) 

Busstation_ce1 (OCC, BC)                       Eagle_ce (SV, IPR, OPR, BC) 

Face_ce (SV, OCC, IPR, OPR, BC)                   Fish_ce1 (OCC, IPR, OPR, SV) 

Fish_ce2 (OCC, IPR, OPR, SV)                Messi_ce (SV, OCC, DEF, MB, IPR, BC) 

Panda (SV, OCC, DEF, IPR, OPR, OV, LR)           Railwaystation_ce (OCC, IPR, BC) 

Singer_ce2 (IV, SV, DEF, OPR, BC)               Skating_ce2 (SV, MB, FM, IPR, OPR) 

Surf_ce1 (OCC, SV, FM, IPR, OPR)                    Surf_ce4 (FM, IPR, OPR) 

Yo-yos_ce2 (MB, OV, LR, FM)                     Yo-yos_ce3 (MB, FM, OV, SV)

TSCF ECO CCOT HCFSTRCF BACF CSRDCF SRDCF Staple KCF DSST

Fig. 8 Qualitative evaluation of our proposed method with comparison to 10 trackers (denoted in different colors and lines) on 16 challenging

video sequences

Neural Computing and Applications (2021) 33:8355–8374 8369

123



BACF, SRDCF, HCF and Staple, which are related to our

TSCF tracker. From the evaluation results listed in Table 2,

it can be seen that our tracker achieves the best EAO score

(0.2925) with the best accuracy (0.55) and a favorable

robustness score (0.65). The visualization of expected

overlap curves and scores on the VOT2016 dataset can be

found in Fig. 9. Generally, our implementation performs

better than most of other trackers.

4.7 Ablation analysis

To verify the contribution of the components in the pro-

posed tracker, we perform an ablation analysis on the OTB-

2015 dataset. We propose three variants of our approach

for further analysis. TSCF-T is the proposed TSCF tracker

without considering the spatial consistent, TSCF-S is the

TSCF tracker that does not apply the temporal consistent

regularization, and TSCF-TS is the TSCF tracker that

contains neither. For comparison, we report precision and

success plots in Fig. 10, and results for 11 attributes in

Table 3. From the comparison results in Fig. 10, the TSCF-

S with adaptive spatial constraints introduced into the

baseline tracker achieves an AUC improvement of 0.9%

and a DP improvement of 0.9% relative to the TSCF-TS

tracker, while the decreases of 1.0% and 2.4% are obtained

compare with our TSCF tracker. Similarly, when we

incorporate the proposed temporal consistent regularization

in the TSCF-TS, the precision is increased by 2.3%, in

which case the precision score is reduced by 1% compared

with our TSCF tracker. The data results for 11 attributes in

Table 3 reflect the contributions of each component suffi-

ciently. In general, these data speak volumes about the

effectiveness of our proposal.

4.8 Key parameters analysis

The parameter values in the experiment are obtained from

extensive experiments under the condition of balanced

precision and speed. In this section, we analyze the effect

of the key parameters of our method on tracking perfor-

mance in detail, including the spatial regularization coef-

ficients k1, k2, and the temporal consistent coefficient c.
Among them, k1 adjusts the fitting degree of the filter with

penalty weights, k2 constrains the optimization of the

spatial weight, and c is used to smooth the learning of the

filter. We verify the validity of the parameters by com-

paring the precision and success rate with different

parameter values on the OTB-2015 benchmark. Specifi-

cally, we adjust the parameters in the experiment until we

find a parameter that can fully demonstrate the tracking

performance. For fair comparison, we keep the other

parameters unchanged when adjusting one parameter. The

comparison results and rankings are given in Fig. 11.

In Fig. 11, the influence of the spatial regularization

parameters and the temporal consistent parameter on

tracking performance is displayed in detail. By adjusting

the parameters in the experiment, we can intuitively

observe and select the value that can make the tracking

algorithm achieve the optimal performance. From (a) and

(b) in Fig. 11, we can see that the algorithm can obtain

better tracking accuracy when the spatial regularization

parameters are set as k1 ¼ 1:2 and k2 ¼ 0:001; respec-

tively. In Fig. 11 (c), the overall tracking performance

reaches the peak value when the temporal constraint

parameter is c ¼ 1:1. According to the analysis, we set the

above optimal parameter values in all experiments to

ensure satisfactory tracking performance of the proposed

algorithm.

4.9 Failure case analysis

Despite that the proposed method achieves satisfactory

results on the above tracking benchmarks, it still has some

limitations. Specifically, our proposal underperforms on

attribute challenges such as low resolution, drastic scale

variation, fast motion and blur. This section provides a

discussion about the failure cases observed during the

experiment. Figure 12 shows several failure cases of our

TSCF tracker. The videos (from top to bottom) are

Pool_ce3, TennisBall_ce, Ball_ce1, Cup_ce, Trans,

Diving.

Pool_ce3 and TennisBall_ce are typical video sequences

with low resolution. In Fig. 12(a), it can be seen that since

the target is too small, the tracker can hardly extract the

main features of the target. The lack of appearance infor-

mation directly leads to tracking failure. In addition, there

is also the problem of motion blur in these two videos,

which makes the feature of the target more difficult to

identify. Figure 12(b) shows two failed cases caused by

fast motion and blur. From the video Ball_ce1, we can see

that our tracker can locate the target well before it moves

rapidly. At frame 12, motion blur is generated due to the

fast movement of the target. At this time, the external

contour of the object is blurred and the details is lost, which

causes the tracker to drift to the background area. Simi-

larly, the object in the video Cup_ce is also difficult to

Table 2 Performance evaluation on the VOT2016 benchmark. The

top three results are highlighted in red, blue and green, respectively

TSCF Staple STRCF BACF HCF SRDCF

EAO 0.2925 0.2628 0.2545 0.2435 0.2483 0.1810

Accuracy 0.5476 0.5398 0.5258 0.5383 0.5235 0.5216

Robustness 0.65 0.58 0.59 0.55 0.63 0.42
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identify because of its fast motion and blur attributes. In

this case, the representation of general features is too

limited for constructing a robust target model, which

inevitably leads to tracking failure. Moreover, the scale

estimation of our TSCF tracker is proportional, so it is

difficult to fit the exact size when the aspect ratio of

bounding box changes. For the sequences of Trans and

Diving in Fig. 12(c), the aspect ratio of the target keeps

changing during the tracking process, while the fixed

aspect ratio is limited in describing the shape change of the

target. Based on the above analysis, the problems in

tracking failure cases may be mitigated to some extent by

extracting more efficient features and setting bounding

boxes with different aspect ratios.

4.10 Discussion

According to the above analysis and statement of experi-

mental results, the adaptive spatial regularization and the

temporal consistent constraint contained in our proposed

method improve the tracking performance of the baseline

algorithm to a certain extent respectively. Firstly, different

from previous tracking methods [12, 15], our spatial con-

straint weight is not a matrix with fixed coefficients and the

shape of the target is taken into account. Therefore, our

proposal can adaptively suppress background information

in complex tracking scenarios. The experimental data and

graphs show that the constraint scheme is effective. Fur-

thermore, the temporal consistent constraint is constructed

Fig. 9 Expected overlap curves

and scores on the VOT2016

benchmark

Fig. 10 Experiment results of

different cases on the OTB-

2015 dataset using an OPE

Table 3 Ablation analysis with

11 attributes on the OTB-2015

benchmark

ALL IV SV OCC DEF MB FM IPR OPR OV BC LR

TSCF 0.913 0.912 0.876 0.888 0.902 0.846 0.865 0.899 0.906 0.839 0.893 0.811

TSCF-T 0.903 0.894 0.861 0.867 0.898 0.817 0.839 0.879 0.889 0.823 0.871 0.805

TSCF-S 0.889 0.899 0.854 0.844 0.883 0.821 0.828 0.866 0.878 0.823 0.854 0.811

TSCF-TS 0.880 0.870 0.843 0.837 0.862 0.820 0.823 0.864 0.872 0.810 0.829 0.800
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Fig. 11 Precision and success plots of different parameters
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on the basis of a high-confidence strategy. Considering of

the appearance consistency of the target in temporal

dimension, we extract reliable appearance information of

the target from historical frames, which breaks the limita-

tion of hard matching between two consecutive frames in

[15]. The consistent constraint method can effectively

prevent the introduction of inaccurate historical informa-

tion. From the experimental results, both the accuracy and

the robustness of the tracker achieve favorable

improvement.

In the experiment, we observe that the algorithm pro-

posed in this paper has some limitations. From the analysis

of the failure cases, we can find that our method needs

further research and improvement when dealing with the

challenges of low resolution, fast motion and aspect ratio

variation. Among them, the failure of the former two is

mainly due to the difficulty of building a robust target

model with general features. For the problem of scale

variation, an inaccurate tracking box is inevitably obtained

when the premise of scale estimation is a fixed aspect ratio

coefficient. In the future, we plan to explore how to extract

more effective features to represent the target, and further

design a scale search mechanism with different aspect

ratios while ensuring efficient tracking performance.

5 Conclusion

A joint correlation tracker consisting of temporal consistent

constraint and adaptive spatial regularization is proposed in

this paper. We learn a spatial weight adaptively by intro-

ducing the background map as a reference constraint into

the correlation filter, which leads to favorable discrimina-

tion against cluttered background. Moreover, we extract

reliable historical filters to construct the temporal consis-

tent regularization according to the high-confidence

mechanism, which enriches the diversity of the target

appearance. With the unified tracking-detection frame-

work, our approach meets robust and efficient visual

tracking in extremely challenging situations. Additionally,

the experimental results of qualitative and quantitative

evaluations on various benchmarks verified that the pro-

posed tracker achieves favorable tracking performance in

terms of both robustness and accuracy, thereby outper-

forms several state-of-the-art trackers.
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