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Abstract
Classification tasks in datasets that suffer from high class imbalance pose challenge to machine learning algorithms and

such datasets are prevalent in many real-world domains and applications. In machine learning research, ensemble methods

for classification tasks in imbalanced datasets have attracted a lot of attention due to their ability to improve classification

performance. However, these methods are still prone to the negative effects of noise in the training sets. Furthermore, many

of them alter the original class distribution to create a sort of balance in the datasets through over-sampling or under-

sampling techniques, which can lead to overfitting or discarding useful data, respectively, and thus may still hamper

performance. In this work, we propose a novel ensemble method for classification that creates an arbitrary number of

balanced splits (sBal) of data generated based on Instance Hardness as a weighting mechanism for creating balanced bags.

Each of the generated bags will contain all the minority instances, and a mixture of majority instances with varying degrees

of hardness (easy, normal, and hard), and we call this approach sBal_IH technique. This will enable base learners to train

on different balanced bags comprising varied characteristics of the training data. We evaluated the performance of our

proposed method on a total of 100 datasets that include 30 synthetic datasets with controlled levels of noise, 29 balanced

and 41 imbalanced real-world datasets, and compared its performance with both traditional ensemble methods (Bagging,

Wagging Random Forest, and AdaBoost), and those specialized for class imbalanced problems (Balanced Bagging,

Balanced Random forest, RUSBoost, and Easy Ensemble). The results reveal that our proposed method brings a substantial

improvement in classification performance relevant to the compared methods. For statistical significance analysis, we

conducted Friedman’s nonparametric statistical test with Bergman post hoc test. The analysis shows that our method

performs significantly better than the compared traditional and specialized ensemble methods for imbalanced problems

across many datasets.

Keywords Imbalanced data � Binary classification � Instance hardness � Data complexity � Ensemble � Split balancing �
Balanced bagging � Balanced random forest � Easy ensemble � Wagging

1 Introduction

Pattern classification has attracted considerable attention in

the field of machine learning with a wide area of applica-

tion in contemporary real life such as face recognition,

anomaly detection, image classification, cancer classifica-

tion, medical diagnosis, among many others. The main

challenge of pattern classification is the capability of the

trained classifier to classify unseen patterns correctly. This

challenge is most often associated with data complexities

existing within the underlying datasets [1] such as class

ambiguity, data sparsity and dimensionality, class bound-

ary complexity, and class imbalance problem.
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Class imbalance problem is a situation where a dataset is

characterized by an uneven class distribution, i.e., the

proportion of instances of one class is much smaller than

those of other classes. In the real world, despite the vast

availability of data, the class of interest (minority or pos-

itive class) in binary classification problems usually has

fewer instances than the opposite class (majority or nega-

tive class).

One clear complication that arises as a result of the class

imbalance problem is the performance of traditional

machine learning algorithms and the effectiveness of their

accuracy. Let’s consider an example of a dataset with an

imbalance ratio of 99:1 where the majority class is com-

posed of 99% of the data instances. In such a situation, a

naive classifier will have an accuracy score of 99% since it

always predicts the class with majority instances. This

limitation cuts across most traditional machine learning

algorithms such as decision tree (DT), k-nearest neighbors

(kNN) when faced with imbalanced datasets since most of

them optimize accuracy-based loss metrics. Hence, pro-

ducing similar models as to that of the naı̈ve model in the

example described before [2, 3].

Apparently, in most practical situations misclassifying

the class of interest can result in a heavy cost. For example,

in cancer detection, patients with tumors might emerge out

of hundreds of records but failing to identify a malignant

tumor (false negative) may cause a serious threat to a

patient since they may miss out on treatment. It is therefore

useless to have a model with a very high accuracy score but

failing to detect the minority class (i.e., low sensitivity)

which is considered as the class of interest. However, it is

possible to get a low misclassification cost by using an

effective traditional algorithm for solving such a problem.

But the cost component has to be addressed during the

classification process through cost-sensitive learning. Cost-

sensitive learning, which aims at minimizing errors, takes

into account the cost of prediction errors, and potentially

other costs during the training process [4]. It is closely

related to the field of imbalanced learning that is much

concerned with the classification of imbalanced datasets.

As a result, various cost-sensitive techniques have been

proposed. Unfortunately, defining the costs is still a big

challenge, since misclassification costs are often unknown

[5].

As a result, the problem of class imbalance has emerged

as one of the challenges in the machine learning commu-

nity and it has attracted much attention of researchers in

academia and industry to an extent that 2 special work-

shops devoted to addressing this problem were held in

2000, at AAAI 2000 Workshop on Learning from Imbal-

anced Datasets [6] and in 2003 at ICML 2003 Workshop

on Learning from Imbalanced Datasets [7]. It is evident

that researchers have extensively studied the problem of

class imbalance and various methods have been proposed

to overcome this problem. These methods fall into three

categories: Data level, Algorithm level, and hybrid/

Ensemble Level.

Data level methods, also referred to as external tech-

niques, first preprocess the data by trying to rebalance the

class distribution. The data level techniques can further be

broken down into sampling techniques and feature selec-

tion techniques. For sampling techniques, instances from

the minority class are replicated to balance the class dis-

tribution through oversampling [8], or instances of the

majority class are discarded to balance the class distribu-

tion through undersampling [9]. Researchers in [10]–[13]

have proposed various oversampling approaches for bal-

ancing the class distributions; furthermore, researchers in

[14]–[16] have similarly presented several undersampling

approaches for solving the class imbalance problem. On the

other hand, the feature selection techniques try to neutral-

ize the effects of class imbalance by selecting the most

influential features that can produce exclusive knowledge

that can easily discriminate between the classes.

Researchers in [17] explored feature selection for the cat-

egorization of text with imbalanced data. Mladenic et al.

[18], utilized feature subsets to develop a Naive Bayes

(NB) classifier on imbalanced text data. It is important to

note that feature selection techniques for addressing the

class imbalance problem have not yet been fully explored,

creating a research gap in this area. On the other hand,

feature selection techniques have been widely used in class

balanced problems to improve performance score [19]–

[22].

Algorithm Level (Internal) techniques modify the

learning algorithm to take into consideration the signifi-

cance of the minority instances by biasing the algorithm to

learn towards the minority class [23, 24]. The most com-

mon algorithm level technique is the cost-sensitive method

[25], where the algorithm is modified to integrate in

varying penalties for each of the selected groups of

examples. The higher cost is assigned to fewer represented

instances to boost their significance during the learning

process. Various cost-sensitive classification techniques

have been proposed in the literature [4, 26]. A common

strategy of these techniques is to deliberately increase the

weight of instances with higher misclassification costs

during the boosting process. However, the challenge with

cost-sensitive classification is that the misclassification

costs are often unknown and difficult to estimate.

Finally, the Hybrid/Ensemble level techniques utilize

the advantage of both data level and algorithm level

techniques by combining them to handle the problem of

class imbalance efficiently. For example, Wang et al.

proposed the hybridization of both sampling and cost-

sensitive learning in handling imbalanced data [27].

11234 Neural Computing and Applications (2021) 33:11233–11254

123



Furthermore, Zhang et al. in their work [28] proposed a

method for handling imbalanced data by integrating

ensemble and classification techniques in enhancing the

performance of the ensemble. In another study [29], Paweł

et al. proposed a hybrid ensemble method that combines

the advantages of ensemble learning, deep learning, and

evolutionary computation, to effectively classify cardiac

arrhythmias using ECG signal segments.

Ensemble machine learning techniques combine more

than one single learner (base learner) using a given com-

bination rule to produce enhanced predictive models [30].

Base learners can be any machine learning algorithm (e.g.,

Decision Tree, Naı̈ve Bayes, Artificial Neural Network,

Linear Regression, etc.). The ensemble topology can be as

simple as an independent collection of learners combined

via a majority vote or using some other advanced mecha-

nisms such as those indicated in [31], where ensembles

consist of General Regression Neural Network and Geo-

metric transformation model.

Ensemble techniques are among the most commonly

used methods that utilize data level or algorithm level

together with data resampling techniques in the classifica-

tion of imbalanced data. This work is motivated by the

growing trends in the use of ensemble techniques in

imbalanced classification. This is because of their ability to

improve classification performance, by leveraging the

classification power of multiple base learners trained on

different bootstraps of training data as compared to tradi-

tional classification algorithms. The main ground of the

ensemble techniques is that by combining various classi-

fiers, the error of one classifier will most likely be com-

pensated by another classifier in the ensemble, and as a

result, the general prediction score of the ensemble model

would be more effective than that of a single classifier [32].

Different reasons have been discussed why ensemble

methods most of the time perform better than single clas-

sifiers [33, 34]. One of the reasons is that the training data

may not give adequate information for selecting a single

best algorithm. For instance, there may be a range of

algorithms that performs equally fine on the training data.

Instead of choosing one of them, joining the predictions of

these algorithms can be a much better choice. The other

important reason is that, in some cases, the hypothesis

space which is being searched may not include the real

target function. In such a situation, combining various

hypotheses can efficiently broaden the space and provide a

better estimation for the unknown predictor function. For

instance, the classification boundary of normal decision

trees is hyperplanes that are parallel to the coordinate axes.

In case the target classification boundary is of a different

type, a single decision tree may not give a smooth esti-

mation [35]. On the other hand, a combination of decision

trees can give estimations to smooth boundaries of arbi-

trary shape.

In the literature, a good number of comprehensive sur-

veys on ensemble techniques have been published [8, 36]–

[44]. Bootstrap aggregating (Bagging) [45] and Boosting

[46, 47] are considered the most widely used ensemble

methods; for Bagging, Breiman in 1996 introduced the idea

of bootstrap aggregation to build an ensemble where dif-

ferent base algorithms are trained on bootstrap samples

randomly drawn from the original dataset based on uniform

probability distribution with replacement. As for Boosting,

it was introduced by Schapire in 1998 [46] as a technique

for boosting the performance of weak learners.

Since then, many variations of bagging and boosting

based ensembles have been proposed in the literature to

address the problem of class imbalance. M. Galar et al. in

their study [36] proposed a taxonomy for ensemble-based

methods that utilize data preprocessing techniques to solve

the problem of class imbalance. They clustered them into 3

groups which include: Boosting-based ensembles, Bag-

ging-based and Hybrid ensembles as depicted in Fig. 1.

The majority of these ensemble techniques, despite

reported improvement in their classification performance, it

has been reported that they cannot completely survive the

common problem of noise in machine learning [48]. The

term noise applies to all types of anomalies in the training

data, from errors to unusual cases of the observed domain,

which make it harder to interpret the data. Noise in the

training data can either be: attribute noise (errors or unu-

sual instances) or class noise (incorrect class labels) or a

mixture of both [49]. Therefore, those instances that

complicate the learning process and degrade the perfor-

mance of learning algorithms are referred to as noisy

instances [50].

Most bagging-based ensemble methods utilize the

existing data sampling techniques in the bootstrap aggre-

gating process. However, they are still prone to the effects

of noise, given that bootstrap instances are always selected

based on uniform probability distribution with replace-

ment, hence creating the possibilities of randomly

Ensemble Methods with 
Data Preprocessing 

Bagging Based Boosting Based Hybrid 

- OverBagging  
- BalancedBagging 
- UnderBagging 
- UnderOverBagging 

- SMOTEBoost 
- RUSBoost 
- DataBoost-IM 

- Easy Ensemble 
- BalancedCascade 

Fig. 1 Ensemble Methods utilizing Data Preprocessing
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generating variety bootstraps with a high number of noisy

instances that might be hard to classify, which might

eventually affect the overall classification performance of

an ensemble.

One of the key ideas in our proposed new method is not

to make the sampling probability distribution uniform but

instead a function of instance hardness. We aim to influ-

ence the process of picking instances, unlike most bagging

methods that use a uniform probability to select instances.

Our approach will select instances based on their level of

hardness, i.e., the probability of an instance being selected

will be equal to its hardness level; this will ensure that in

each bootstrap/bag there is a representation of easy, nor-

mal, and hard instances. We discuss instance hardness in

detail in Sect. 2.

Furthermore, there have been numerous studies pointing

out defects of existing ensemble methods with their

underlying data sampling techniques for handling class

imbalance problems [13, 51]. Most of the proposed solu-

tions alter the original dataset by either creating new data

through oversampling methods that may increase the pos-

sibility of overfitting or by eliminating data from the

majority class through undersampling techniques that may

discard potentially useful data that might be important

during the learning process. As discussed earlier, there are

many widespread methods for building diverse ensembles

classifiers, such as Bagging, AdaBoost, Random Forests,

Random Subspaces, etc. [52], while each of these methods

can be presented to datasets that have undergone sampling,

this is not ideal as it disregards the power of joining the

ensemble generation method and sampling to create a more

structured approach. As an outcome, several ensemble

techniques have been combined with sampling techniques

to create ensemble methods that are more appropriate for

handling class imbalance problem such as UnderBagging

[53], OverBagging [54], SMOTE Bagging [54], Balanced

Bagging [55], RUSBoost [12] among others. It is impera-

tive to note that since most of these ensemble methods are

based on sampling techniques that alter the original class

distribution, they may, therefore, inherit the defects of

sampling-based methods as earlier discussed [56].

In our method, we propose to generate balanced bags by

using the split Balancing (sBal) technique and instance

hardness (IH) as a weighting mechanism during the sam-

pling process. Each of the generated bags will contain all

the minority instances, and a mixture of majority instances

with varying degrees of hardness (easy, normal, and hard).

This will ensure that base learners are trained on balanced

bags, containing diverse data segments with different levels

of hardness to learn various patterns over a different por-

tion of the data.

We hypothesize that generating several balanced bags

that contain instances with varying degrees of hardness,

will induce a set of base algorithms that are able to learn

patterns in the data induced from data points that represent

the overall difficulty of dividing the input space into dif-

ferent classes. We expect that an ensemble constructed

with such base algorithms should have a better overall

classification performance as compared to an ensemble that

is constructed with base algorithms trained on just balanced

or imbalanced bags that are uniformly sampled, regardless

of their importance in identifying the classes.

We carry out an extensive empirical study of our pro-

posed method and compare its performance with existing

widely used state-of-the-art ensemble methods. We have

structured our experimental framework in a way that

enables us to extract justified conclusions. We used three

sets of datasets for our experiments, the first set is com-

posed of 30 synthetic imbalanced datasets with controlled

levels of noise obtained from KEEL repository [57], the

second set is composed of 29 real-world balanced datasets

and the final set is composed of 41 real-world imbalanced

datasets obtained from KEEL and UCI repositories. We

further, conducted a nonparametric Friedman test and

Bergmann’s post hoc statistical test, at a significant level of

p\ 0.05, to ascertain our findings.

The results reveal that training base algorithms on bal-

anced bags with varying degrees of hardness can bring

substantial improvement in the classification performance

of an ensemble. The findings demonstrate that the proposed

method performed significantly better than the regular

ensemble methods (Bagging, Wagging, Random Forest,

and Adaboost) on both synthetic and real-world balanced

and imbalanced datasets except for Random Forest where

performance was comparable when evaluated on real-

world balanced datasets. Furthermore, the proposed

method performed better than ensemble methods special-

ized for class imbalance problems (Balanced Bagging,

Balanced Random Forest, RUSBoost, and Easy Ensemble)

in the majority of both balanced and imbalanced datasets.

In summary, the main contribution of this paper is

twofold. First, we propose an ensemble method based on a

data-level sampling approach to balance ensemble bags

(sBal_IH), which takes data complexity into account in

order to find good representative points within the bags, to

improve prediction accuracy in imbalanced datasets.

Secondly, we conducted extensive experiments on 100

datasets and evaluated the proposed method in comparison

with state-of-the-art methods, both standard ensembles and

those specialized for handling class imbalance problems.

The corresponding results, validated by statistical signifi-

cance tests, demonstrate that our innovative method of

split-balancing based on data complexity, proxied by

instance hardness (IH), significantly outperformed most of

the other compared methods as measured by Area Under

the Curve (AUC) performance. We believe that this study
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will significantly contribute to the efforts of the machine

learning community on addressing the challenge of data

imbalance.

The remainder of this paper is organized as follows. We

present our proposed method in Sect. 2, followd by a

detailed experimental design in Sect. 3. In Sect. 4, we

report and discuss in detail experimental and statistical

results. We finally make conclusions and propose future

works in Sect. 5.

2 Proposed method

We base our proposed method on the idea of making bal-

anced bags of instances, where each bag contains a mixture

of varying degrees of data complexity. To achieve this, we

utilize Instance Hardness as a measure of data complexity.

2.1 Instance hardness (IH)

It is well known in the machine learning community, that

the performance of most classifiers is dependent on both

their parameters and the underlying training dataset

[14, 59]. However, most researchers mainly focus on

model parameter tuning as a way of achieving better model

performance while ignoring the understanding of the data

that is being modeled by the classifier. As a result, it may

be difficult to understand which instances are being mis-

classified and why they are being misclassified, on

assumption that the right parameters and the right evalua-

tion metric are being used. Instance Hardness (IH) is a

measure that specifies the degree of complexity in classi-

fying a given instance in a dataset [60]. This implies that

each instance in a respective dataset has a property that

suggests its probability of being classified incorrectly

regardless of the choice of the classifier. For example, we

anticipate having high IH among outliers and mislabeled

instances since the classifier will most likely have to overfit

in order to classify them correctly. IH examines classifi-

cation problems at the instance level as compared to the

majority of machine learning studies that are focused on

dataset level and mostly concerned with maximizing

p f jsð Þ, where f : X ! Y is a function that maps input fea-

ture vector X in the input space to their corresponding label

vectors Y ; and s ¼ xi; yið Þ : xi 2 X ^ yi 2 Yf g is the train-

ing set. On assumption that the pairs in s are drawn inde-

pendently and identically distributed (i.i.d).

M. Smith et al. in their study [60] presented the notion

of IH through the decomposition of p f jsð Þ, while using the

Bayes’ theorem:

p f jsð Þ ¼ p sjfð Þ:P fð Þ
p sð Þ

¼
Q sj j

i¼1 pðxi; yijf Þ:p fð Þ
p sð Þ

¼
Q sj j

i¼1 pðyijxi; f Þpðxijf Þp fð Þ
p sð Þ ð1Þ

Furthermore, for xi; yið Þ as a training instance, pðyijxi; f Þ
measures the probability that f will assign the label yi to the

input feature vector xi. M. Smith et al. further state that the

larger the pðyijxi; f Þ the more likely f will assign the right

label to xi; on the other hand, the smaller the pðyijxi; f Þ the

less likely for f to produce the right label for xi. Therefore,

they define IH with respect to f . as

IHf xi; yið Þ ¼ 1 � pðyijxi; f Þ

Under normal practice, f is induced by an algorithm c

being trained on the training set s. Hence, the hardness of

an instance is reliant on the instances in the training set and

the underlying algorithm used to produce f .

In the literature, M. Smith et al. in their study [60]

proposed several IH measures such as k-Disagreeing

Neighbors (kDN), Disjunct Size, Disjunct Class Percentage

(DCP), Class Likelihood (CL), Class Balance (CB) among

others. These measures measure several characteristics

about the hardness level of a specific instance; they show

why instances are misclassified hence giving an insight as

to why specific instances are hard to classify and how best

we can detect them. This has laid a base foundation for

researchers on dealing with dataset complexities as a result,

and many state-of-the-art machine learning classification

studies have been proposed based on instance hardness.

Previous studies in the literature have utilized instance

hardiness in different ways in order to improve classifica-

tion performance, such as noise and outlier filtering

[61, 62], boosting through weight adjustments, etc.

A. Kabir et al. in their study [63] proposed a mixed bagging

technique for non-class imbalance problems, that incor-

porates IH in the bootstrap aggregating process. Further-

more, researchers in [64] incorporated hardness ordering

under the learning process using filtering and boosting;

they significantly improved generalization accuracy.

Our proposed method utilizes the concept of IH in the

classification process but in a basically different way.

While bagging based methods have been reported to offer

good classification performance, their bootstrap sampling

process is still prone to the effects of outliers or noise,

given that instances are randomly sampled based on uni-

form probability, thus creating the possibilities of having a

high percentage of outliers or noisy instances in some

bootstraps, which might eventually affect classification
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performance. For our case, we propose using IH as a

weighting mechanism during the sampling process, we

then incorporate IH information in the ensemble boot-

strapping process, we ensure each bootstrap has a repre-

sentation of instances with varying degree of hardness (we

discuss in detail IH estimation and implementation in

Sect.3) that will allow base algorithms to learn different

patterns of the training data, and that an ensemble con-

structed with such base algorithms should have a better

overall classification performance.

2.2 Split balancing (sBal)

Most popular machine learning binary classification algo-

rithms are designed to perform better on balanced datasets

[65], and under such circumstances, it is always easy to

choose the right algorithm and the right performance

evaluation metric that will truly represent your optimal

model [66, 67]. But the challenges always start to emerge

when faced with an imbalanced dataset since the majority

of these algorithms tend to perform poorly where the cost

of classifying the minority class is always much higher as

compared to the cost of classifying the majority class [68].

Thus, several techniques that try to balance the imbalanced

datasets have been proposed and given much attention.

However, numerous studies have pointed out the defects of

proposed solutions for handling the class imbalance prob-

lem [51], i.e., they alter the original class distribution of the

dataset by either creating new data through oversampling

that might likely lead to overfitting [15], or by discarding

potentially useful data from the majority class through

undersampling [69]. Moreover, ensemble techniques have

been combined with sampling techniques to create

ensemble methods that are more appropriate for handling

the class imbalance problem [8]. There is a variety of

widespread approaches for building ensembles that are

diverse such as Random Forests [70], Random Spaces [71],

Bagging [45], AdaBoost [72], and many more. Whereas

each of these approaches can be applied to datasets that

have gone through sampling, but in an actual sense this is

not optimal as it disregards the combining power for gen-

erating ensemble methods and sampling to create a better-

organized approach. Consequently, several ensemble

methods have ended up being combined with sampling

techniques to create suitable ensemble methods for dealing

with a problem of class imbalance. Chawla et al. in their

study [10] proposed a novel approach SMOTEBoost for

addressing the class imbalance problem, their approach is

based on Synthetic Minority Oversampling TEchnique

(SMOTE) [73] and boosting techniques. In other studies,

Seiffert et al. proposed RUSBoost [12], a hybrid ensemble-

based method that combines the RUS approach with the

boosting technique.

However, most of these ensemble-based methods, are

based on data sampling techniques and therefore they may

alter the class distribution of the original datasets by either

eliminating the majority class samples (undersampling) or

by increasing the minority class samples (oversampling).

Furthermore, for the case of boosting and bagging

ensemble-based methods, they might still suffer from a

problem of class imbalance because for each iteration (for

boosting and bagging methods) the class distribution in

each sampled subset in a certain iteration is the same as

that of the original dataset. It is, therefore, prudent to

convert the imbalanced dataset into multiple balanced

datasets (bags) without creating new extra data or dis-

carding potentially useful original data.

Our proposed ensemble-based methods will try to tackle

the possible shortfalls of the conventional methods stated

above for handling class imbalance problems by first

converting a problem of class imbalance into several bal-

anced problems that do not suffer anymore from the

challenge of class imbalance without creating new extra

data or discarding potentially useful original data, hence

making it unique from the conventional methods for han-

dling class imbalance problem.

Our proposed method is based on a split balancing

technique [74], dubbed as sBal, where we generate bal-

anced bags by randomly splitting instances of the majority

class into multiple bags and each of them containing all the

minority instances and a sample of the majority instances.

However, we introduce the additional constraint that

sampled majority instances should have varying degrees of

hardness (easy, normal, and hard). These majority instan-

ces will be sampled based on IH as a weighting mecha-

nism. This will ensure that base learners are trained on data

points with different levels of hardness that we believe will

better represent the input space that the dataset represents.

We then combine the binary classifiers into an ensemble to

classify new unseen data. The overall method is shown in

Fig. 2.

3 Experiment design

In this section, we present the details of the several

experiments which we used to evaluate the effectiveness of

our proposed sBal_IH ensemble method and compare its

performance against existing regular ensemble methods

and state-of-the-art ensemble methods specialized for

solving class imbalance problems.

The proposed method is first compared with regular

ensemble methods that include: Bagging, AdaBoost, Ran-

dom Forest (RF), and Wagging [75], on both balanced and

imbalanced datasets to assess the performance of sBal_IH

in situations of balanced and imbalanced problems.

11238 Neural Computing and Applications (2021) 33:11233–11254

123



Thereafter, we compare sBal_IH against ensemble methods

specialized for class imbalanced problems, namely

Balanced Bagging (BB), Balanced Random Forest (BRF),

Easy Ensemble (EE), and Random Undersampling Boost-

ing (RUSBoost), on both synthetic and real-life public

datasets, balanced and imbalanced. In Sect. 3.1, we briefly

introduce all the ensemble methods studied in this paper

alongside our proposed method.

We organized our experiments and their analysis into 2

stages. In the first stage, we conduct experiments on dif-

ferent groups of datasets to facilitate the analysis of results.

In one group, experiments are performed on synthetic

imbalanced datasets (Table 1) with controlled levels of

noise (disturbance ratio) to examine the influence of noise

on the performance of sBal_IH alongside existing ensem-

ble methods in terms of AUC. To further examine the

performance of our proposed method in real-world situa-

tions against other ensemble methods, we performed

experiments on another 2 groups of 29 balanced and 41

imbalanced real-world datasets. For evaluating the perfor-

mance results of all the methods, we used a fivefold cross-

validation technique repeated 5 times, where each fivefold

cross-validation is calculated 5 different times with dif-

ferent random seeds. For fairness and uniformity, we used

an ensemble size of 10 (n_estimators), and a Decision Tree

algorithm with its default parameters as a base estimator

for all the ensemble methods apart from Easy Ensemble,

which uses AdaBoost as a base estimator. We considered

the Easy ensemble method as part of our experiments to
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Fig. 2 Proposed Method—sBal_IH

Table 1 Synthetic Imbalanced Datasets with Controlled Noise

ID Dataset #Feat #Inst %Maj %Min IR

S1 03subcl5-600–5-0 2 600 83.3 16. 7 5

S2 03subcl5-600–5-30 2 600 83.3 16. 7 5

S3 03subcl5-600–5-50 2 600 83.3 16. 7 5

S4 03subcl5-600–5-60 2 600 83.3 16. 7 5

S5 03subcl5-600–5-70 2 600 83.3 16. 7 5

S6 03subcl5-800–7-0 2 800 87.5 12.5 7

S7 03subcl5-800–7-30 2 800 87.5 12.5 7

S8 03subcl5-800–7-50 2 800 87.5 12.5 7

S9 03subcl5-800–7-60 2 800 87.5 12.5 7

S10 03subcl5-800–7-70 2 800 87.5 12.5 7

S11 04clover5z-600–5-0 2 600 83.3 16. 7 5

S12 04clover5z-600–5-30 2 600 83.3 16. 7 5

S13 04clover5z-600–5-50 2 600 83.3 16. 7 5

S14 04clover5z-600–5-60 2 600 83.3 16. 7 5

S15 04clover5z-600–5-70 2 600 83.3 16. 7 5

S16 04clover5z-800–7-0 2 800 87.5 12.5 7

S17 04clover5z-800–7-30 2 800 87.5 12.5 7

S18 04clover5z-800–7-50 2 800 87.5 12.5 7

S19 04clover5z-800–7-60 2 800 87.5 12.5 7

S20 04clover5z-800–7-70 2 800 87.5 12.5 7

S21 paw02a-600–5-0 2 600 83.3 16. 7 5

S22 paw02a-600–5-30 2 600 83.3 16. 7 5

S23 paw02a-600–5-50 2 600 83.3 16. 7 5

S24 paw02a-600–5-60 2 600 83.3 16. 7 5

S25 paw02a-600–5-70 2 600 83.3 16. 7 5

S26 paw02a-800–7-0 2 800 87.5 12.5 7

S27 paw02a-800–7-30 2 800 87.5 12.5 7

S28 paw02a-800–7-50 2 800 87.5 12.5 7

S29 paw02a-800–7-60 2 800 87.5 12.5 7

S30 paw02a-800–7-70 2 800 87.5 12.5 7
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compare performance against a hybrid (ensemble of

ensembles) method.

In the second stage, we performed a series of statistical

comparisons of sBal_IH against existing ensemble tech-

niques. The goal of this analysis is to validate whether

there is a significant difference in the performance in terms

of AUC, which will enable us to draw more confident

conclusions.

All the experiments were carried out in Python 3.7 using

scikit-learn library [76] version 0.21.3, and imbalanced-

learn library [77] version 0.5. For statistical significance

tests, we used KEEL’s nonparametric statistical analysis

software [57], version 3.0. The computer used for con-

ducting the experiments was running Windows 10 64 bit,

with an Intel Xeon processor (2.5 GHz) and 12 GB of

RAM.

3.1 Featured ensemble methods

We briefly introduce the 8 ensemble methods evaluated in

this study. Four of them are regular ensemble methods,

namely Bagging, AdaBoost, Random Forest (RF), and

Wagging, and the other four are ensemble methods spe-

cialized for class imbalance problems, namely Balanced

Bagging (BB), Balanced Random Forest (BRF), Easy

Ensemble (EE) and Random Undersampling Boosting

(RUSBoost). The motivation for selecting these methods is

that they are widely used and the majority of the studies on

ensemble methods and class imbalance problems include

one or more of these methods. They are all discussed

comprehensively in the literature, such as in the studies of

[36] and [39] mentioned above, and of [46] and [75] that

will be referred afterward.

Bagging, also referred to as Bootstrap Aggregating, was

first introduced by Breiman [45], and today is one of the

most intuitive and possibly the simplest ensemble-based

methods. It involves training different classifiers with

bootstrapped copies of the data points randomly drawn

with replacement from the original training dataset. The

decisions of individual classifiers are then combined

through majority voting.

Wagging (Weights Aggregation) is a variant of Bagging

that was proposed by Bauer et al. [75], it needs a base

algorithm that utilizes training instances with different

weights. It randomly assigns weights to the instances that

are available in each training set rather than using bootstrap

samples to establish successive training set. It uses Gaus-

sian noise to adjust the weight of instances, this might

reduce the weights of some instances to zero, hence effi-

ciently eliminating them from the training set.

Balanced Bagging [9], also referred to as Blagging, is an

extension of bagging for solving class imbalance problems.

The idea is to continuously undersample instances from the

majority class in each of the bootstraps in order to get

balanced bootstraps, on which individual decision trees are

trained. This leads to an emphasis on the minority class and

more balanced decisions.

Random forest [70] consists of a big number of indi-

vidual decision trees that work as an ensemble. The ran-

dom trees are generated using bootstrap samples of the

training data and a set of selected random features during

the tree induction process.

Balanced Random Forest (BRF) [78] is a variant of RF

that was designed to deal with the problem of class

imbalance. It utilizes the undersampling technique in each

iteration of RF by drawing bootstrap instances from the

minority class, and then drawing the same number of

instances with replacement from the majority class, and

then induces classification trees (CART algorithm) from

the data in each iteration.

AdaBoost algorithm was developed by Schapire and

Freund [46, 72]; it uses the whole training set to train

multiple classifiers in a serial format. In each round,

AdaBoost gives more attention to misclassified instances,

with an aim to correctly classify them in subsequent iter-

ations. This is achieved by maintaining a set of weights of

the training instances, which are initially equal, and get

updated according to correct or incorrect classification.

RUSBoost [79], a variation of the SMOTEBoost algo-

rithm [10], works in a similar way to AdaBoost, but it

discards instances from the majority class by Random

Undersampling (RUS) in each iteration. In a previous study

[80], it was shown that RUS often outperforms SMOTE,

and thus RUSBoost being preferred as an alternative

method to SMOTEBoost due to its simplicity and lower

computational cost.

Easy Ensemble (EE) was proposed by Liu et al. [14]. It

involves generating balanced samples of the training set by

selecting all minority instances from the majority instan-

ces. Then boosted decision trees are induced on each bal-

anced subset, particularly the AdaBoost algorithm.

3.2 Experiment datasets

As mentioned earlier (Sect. 3), we use three groups of

datasets in our experiments, all of them prepared for binary

classification tasks in mind. The first group is shown in

Table 1, which was obtained from KEEL repository [57]

and is composed of 30 synthetic imbalanced datasets with

controlled levels of noise, i.e., disturbance ratio (the last

number in dataset name) applied to create noisy examples

in the dataset. This set was used in [81] to investigate the

effect of noise and borderline instances from the minority

class on the performance of the classifier. We chose to add

this group to evaluate the effectiveness of our proposed

method at handling imbalanced datasets in the presence of
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noise compared to other methods. The second group is

composed of 29 real-world balanced datasets as indicated

in Table 2. We included this group to examine in a fair way

if our proposed method will show a distinctive effect if the

dataset was not actually imbalanced. The final group is

composed of 41 real-world imbalanced datasets as shown

in Table 3. Both groups were obtained from KEEL [57] and

UCI repositories. Tables 1, 2, and 3 summarize all the

datasets used, highlighting some of their respective prop-

erties which include Dataset id (ID), Dataset name (Data-

set), Total number of instances (#Inst), Percentage of

Majority instances (%Maj), Percentage of minority

instances (%Min) and Imbalance Ratio (IR). In this study,

we consider IR as the ratio of percentages of Majority to

Minority instances, i.e., IR ¼ %Maj
%Min.

3.3 Instance hardness estimation

As explained in Sect. 2, IH is the probability that an

instance will be classified incorrectly by a classifier built

from other instances of the same dataset. M. Smith et al. in

their study [60] described various metrics for estimating

IH; they empirically analyzed IH in over 190,000 instances

of multiple datasets, using different learning algorithms.

They established that there are always a good number of

instances that are hard to be classified correctly.

The chosen metric used in our experiments estimates the

hardness of a data instance as a percentage of a pre-selected

set of classifiers that misclassify that instance. We con-

sidered the following algorithms for instance hardness

estimation: Logistic Regression (LR), Decision Tree (DT),

k-Nearest Neighbor (kNN), and Gaussian Naive Bayes

(NB). This collection is a cocktail of both linear (LR) and

nonlinear algorithms (kNN, DT, NB), and both parametric

(NB, LR) and nonparametric algorithms (kNN, DT), as

well as instance-based (kNN) and model-based (DT, NB,

LR) ones. This enables a diverse and probably more reli-

able estimate of instance hardness.

We estimate Instance Hardness (IH) of each instance

(data point) in a dataset as the percentage of incorrect

classifications for that instance made by a pre-selected set

of classifiers C ¼ c1; c2; ::; cmf g which are built from other

instances in the dataset.

summarizes the steps that can be taken to calculate IH for

every instance in a given dataset. The steps are laid out

Table 2 Summary of Balanced Real-world Datasets Sorted by IR

ID Datasets #Feat #Inst %Maj %Min IR

B1 balance_scale_LR 4 576 50 50 1.0

B2 monks_prob_1 15 432 50 50 1.0

B3 teaching_assistant_LM 3 99 50.51 49.49 1.0

B4 teaching_assistant_MH 3 102 50.98 49.02 1.0

B5 teaching_assistant_LH 3 101 51.49 48.51 1.1

B6 kr-vs-kp 36 3196 52.22 47.78 1.1

B7 monks_prob_3 15 432 52.78 47.22 1.1

B8 diabetic_retinopathy 19 1151 53.08 46.92 1.1

B9 Sonar 60 208 53.37 46.63 1.1

B10 mammographic_mass 12 961 53.69 46.31 1.2

B11 arrhythmia_cfs 37 452 54.2 45.8 1.2

B12 heart_disease 13 303 54.46 45.54 1.2

B13 wine_c1c2 13 130 54.62 45.32 1.2

B14 contraceptive_NS 9 1140 55.18 44.82 1.2

B15 Phishing 30 2456 55.46 44.54 1.2

B16 credit-a 10 690 55.51 44.49 1.2

B17 banknote_authentication 4 1372 55.54 44.46 1.2

B18 wine_c2c3 13 119 59.66 40.34 1.5

B19 wine_c1c3 13 119 59.66 40.34 1.5

B20 contraceptive_LS 9 844 60.55 39.45 1.5

B21 voting_records 16 435 61.38 38.62 1.6

B22 Titanic 9 1309 61.8 38.2 1.6

B23 chronic_kidney 24 400 62.5 37.5 1.7

B24 horse_colic 18 368 63.04 36.96 1.7

B25 Ionosphere 34 351 64.1 35.9 1.8

B26 pima_indians_diabetes 8 768 65.1 34.9 1.9

B27 tic-tac-toe 9 958 65.34 34.66 1.9

B28 contraceptive_NL 9 962 65.38 34.62 1.9

B29 breast-w 9 699 65.52 34.48 1.9
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based on a Leave-One-Out (LOO) style to assess the

hardness of each instance separately, using the remaining

instances in the training set. Even though we use LOO in

the layout of the algorithm for its simplicity, the calculation

of IH can be made using a less compute-intensive

approach, such as a less extreme style of cross-validation.

In our implementation, we have used a variant based on

fivefold cross-validation in order to save on computation

times.

The hardness of an instance is represented by a real

value between 0 and 1, where an instance with a hardness

value close to 0 is more likely to be correctly classified,

Table 3 Summary of

Imbalanced Real-world

Datasets Sorted by IR

ID Datasets #Feat #Inst %Maj %Min IR

I-1 monks_prob_2 15 432 67.1 32.9 2.0

I-2 vertebral_column 6 310 67.7 32.3 2.1

I-3 credit-g 19 1000 70.0 30.0 2.3

I-4 car_evaluation 6 1728 70.0 30.0 2.3

I-5 breast_cancer 13 286 70.3 29.7 2.4

I-6 indian_liver_patients 10 583 71.4 28.6 2.5

I-7 haberman 3 306 73.5 26.5 2.8

I-8 page-blocks-1-3_vs_4 10 472 94.1 28.0 3.4

I-9 hepatitis 19 155 79.4 20.7 3.8

I-10 spect_heart 22 267 79.4 20.6 3.9

I-11 cleveland-0_vs_4 13 190 84.2 15.8 5.3

I-12 cardiotocography_c1c2 21 1950 84.9 15.1 5.6

I-13 balance_scale_BL 4 337 85.5 14.5 5.9

I-14 balance_scale_BR 4 337 85.5 14.5 5.9

I-15 internet_ad_cfs 24 3279 86.0 14.0 6.1

I-16 ecoli-0–3-4_vs_5 7 200 90.0 10.0 9.0

I-17 yeast-2_vs_4 8 514 90.1 9.9 9.1

I-18 ecoli-0–6-7_vs_3-5 7 200 90.1 9.9 9.1

I-19 yeast-0–3-5-9_vs_7-8 8 506 90.1 9.9 9.1

I-20 yeast-0–2-5–7-9_vs_3-6–8 8 1004 90.1 9.9 9.1

I-21 ecoli-0–4-6_vs_5 6 203 90.2 9.9 9.2

I-22 ecoli-0-1_vs_2-3–5 7 244 90.2 9.8 9.2

I-23 ecoli-0–3-4-6_vs_5 7 205 90.2 9.8 9.2

I-24 yeast-0–5-6–7-9_vs_4 8 528 90.3 9.7 9.4

I-25 cardiotocography_c1c3 21 1831 90.4 9.6 9.4

I-26 cardiotocography_c2c3 21 1831 90.4 9.6 9.4

I-27 vowel0 13 988 90.9 9.1 10.0

I-28 ecoli-0–1-4-7_vs_2-3–5-6 7 336 91.4 8.6 10.6

I-29 climate_model 18 540 91.5 8.5 10.7

I-30 led7digit-0–2-4–5-6–7-8-

9_

7 443 91.7 8.4 11.0

I-31 ecoli-0–1-4-6_vs_5 6 280 92.9 7.1 13.0

I-32 shuttle-c0-vs-c4 9 1829 93.3 6.7 13.9

I-33 seismic-bumps 18 2584 93.4 6.6 14.2

I-34 yeast-1_vs_7 7 459 93.5 6.5 14.3

I-35 cervical_cancer_risk_facto 33 858 93.6 6.4 14.6

I-36 ecoli4 7 336 94.1 6.0 15.8

I-37 yeast-1–4-5-8_vs_7 8 693 95.7 4.3 22.1

I-38 yeast4 8 1484 96.6 3.4 28.1

I-39 yeast-1–2-8-9_vs_7 8 947 96.8 3.2 30.5

I-40 yeast5 8 1484 97.0 3.0 32.8

I-41 yeast6 8 1484 97.6 2.4 41.4
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whereas the opposite is true for that instance with a hard-

ness value close to 1. This implies that an instance with an

estimated hardness value higher than a predefined thresh-

old th is categorized as Hard (H), and with hardness value

below the threshold te is categorized as Easy (E), or else as

Normal (N) as shown in Fig. 3. In our study, we set the

default IH thresholds for easy and hard instances as te ¼
0:33 and th ¼ 0:66, respectively, to maintain equal ranges

of hardness.

Even though we use the term ‘‘training dataset’’ in IH

estimation above, we emphasize that this does not refer to

the original imbalanced datasets in our study, but rather to

the training subset in a cross-validation fold. In other

words, for rigorous experiment design, IH estimation is

performed multiple times, once in every fold, for each of

the original imbalanced datasets. This is done to avoid data

leakage from the test sets to the training phase as shown in

Fig. 2.

3.4 Evaluation metric

An obvious challenge raised with evaluating classifiers on

imbalanced datasets is choosing the right performance

metric. Accuracy is a well-known metric frequently used

for classification problems [82]; however, it might not be

an appropriate metric as reported by many studies, for its

ineffectiveness in situations of imbalanced datasets

[67, 83, 84]. Instead of accuracy, researchers have adopted

other evaluation metrics for imbalanced problems such as

F-Measure, Recall, Precision, G-Means, Area Under Curve

(AUC), and Mathew Correlation Coefficient (MCC). On

precision and recall, it has been reported in [85] that pre-

cision is sensitive to data distribution while recall is not.

With many metrics in place, researchers have encountered

the challenge of choosing the right metric for imbalanced

problems; most researchers in the machine learning com-

munity are preferring AUC [2, 3], and MCC [86] over

other metrics. Researchers in [87] empirically compared

and evaluated the performance of AUC against MCC on a

series of real-world imbalanced datasets and established

that AUC was statistically consistent and more discrimi-

nating than MCC; hence suggesting that AUC is a better

measure than MCC to be used for evaluating binary clas-

sification with imbalanced datasets. In that regard, we

chose to use AUC as an evaluation metric throughout our

experiments.

4 Results and discussion

In this section, we present and discuss the outcomes of our

experiments resulting from the fivefold cross-validation

runs, and randomly recalculated with 5 different random

seeds (as explained in Sect. 3.0). We tested our proposed

method against regular ensemble methods; Bagging (Bag),

Wagging (Wag), Random Forest (RF), AdaBoost (AdaB),

and ensemble methods specialized for imbalanced prob-

lems; Easy Ensemble (EE), Balanced Bagging (BB),

Balanced Random Forest (BRF) and RUSBoost (RUSB).

These methods were evaluated on the 100 publicly avail-

able datasets: 30 synthetic imbalanced datasets (from

Table 1), 29 balanced real-world datasets (from Table 2),

and 41 imbalanced real-world datasets (from Table 3).

In all the tables, the results highlighted in bold indicate a

higher AUC score as compared to the others in the same

row for a given dataset. In case of a tie between methods,

we consider it a win in its capacity.

4.1 Results for synthetic datasets

In this subsection, we present and discuss the performance

of our proposed methods against regular and specialized

ensembles methods for class imbalance problems when

faced with imbalanced datasets perturbed with different

levels of noise. This group of datasets will help us evaluate

and understand the effectiveness of our proposed method,

compared to the other methods, at handling noise in data-

sets as a proxy for underlying data complexities.

4.1.1 (a) sBal_IH Against Regular Ensemble Methods
on Synthetic Datasets

We compared the proposed sBal_IH ensemble method with

the regular ensemble methods in terms of AUC, evaluated

on the 30 synthetic imbalanced datasets. Table 4 shows the

mean AUC values of 5 repeated trials. The results high-

lighted in bold demonstrate the better performance of

sBal_IH against all the other regular ensemble methods in

28 datasets out of 30. AdaBoost, despite its efforts of

adding weight on difficult to classify instances, it ranked

second, performing better in only 2 out of 30 datasets.

We can also observe that with the increase in noise level

(disturbance ratio values increase every 5 rows in Table 4,

from 0, 30, 50, 60, up to 70), performance starts to dete-

riorate proportionally for all ensemble methods; however,

our proposed method struggles the least with this and still

maintains higher performance. We believe that the reasonFig. 3 Instance Hardness Threshold Ratio
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for this is the ability of sBal_IH to still learn most of the

underlying complexities existing within the dataset due to

the use of learners trained on balanced bags which still

have varying levels of hardness. This implies that our

proposed method is more efficient in handling noise and

class imbalance problems than the regular ensemble

methods.

4.1.2 (b) sBal_IH against specialized ensemble methods
for class imbalance problems on synthetic datasets.

Since the regular ensemble methods are not specially

designed to handle class imbalance problems, we evaluate

the effectiveness of our proposed method in comparison

with the methods specialized for class imbalanced

problems as mentioned in Sect.3. In Table 5, we present the

performance of sBal_IH against ensemble methods in

terms of AUC on the 30 synthetic imbalanced datasets.

The results highlighted in bold, show that out of the 30

datasets, sBal_IH outperformed the rest of the methods in

16 datasets, followed by BRF with only 6 wins. The results

indicate that sBal_IH faced fair competition from state-of-

the-art ensemble methods specialized for handling imbal-

anced datasets.

This is because most of these specialized methods try to

take care of the class imbalance problem and the under-

lying complexities existing within the dataset. For instance,

Balanced Random Forest (BRF) and Balanced Bagging

(BB) are similar to our proposed method in trying to

Table 4 AUC Score for sBal_IH Against Regular Ensemble Methods

on 30 Synthetic Imbalance Datasets

Dataset ID Bagging RF Wagging AdabB sBal_IH

S1 0.95 0.882 0.943 0.969 0.947

S2 0.788 0.749 0.789 0.802 0.831

S3 0.711 0.686 0.697 0.723 0.787

S4 0.668 0.666 0.681 0.696 0.803

S5 0.628 0.604 0.645 0.66 0.777

S6 0.952 0.865 0.968 0.971 0.96

S7 0.746 0.743 0.769 0.798 0.836

S8 0.68 0.634 0.674 0.714 0.786

S9 0.645 0.651 0.644 0.685 0.777

S10 0.601 0.569 0.619 0.628 0.767

S11 0.849 0.807 0.864 0.878 0.931

S12 0.737 0.716 0.758 0.783 0.86

S13 0.701 0.674 0.696 0.709 0.832

S14 0.677 0.666 0.678 0.726 0.807

S15 0.615 0.64 0.661 0.682 0.804

S16 0.794 0.774 0.836 0.843 0.918

S17 0.735 0.656 0.746 0.766 0.844

S18 0.658 0.622 0.66 0.673 0.834

S19 0.636 0.611 0.638 0.661 0.813

S20 0.609 0.578 0.61 0.661 0.779

S21 0.926 0.904 0.916 0.921 0.94

S22 0.803 0.792 0.789 0.805 0.853

S23 0.76 0.751 0.779 0.772 0.852

S24 0.711 0.71 0.714 0.729 0.815

S25 0.707 0.694 0.719 0.718 0.84

S26 0.906 0.902 0.898 0.911 0.941

S27 0.794 0.779 0.806 0.79 0.833

S28 0.732 0.718 0.736 0.757 0.841

S29 0.677 0.677 0.691 0.681 0.812

S30 0.641 0.635 0.668 0.682 0.83

Table 5 AUC Score for sBal_IH against ensemble methods special-

ized for class imbalanced problems on 30 synthetic imbalanced

datasets

Dataset ID EE RUSB BB BRF sBal_IH

S1 0.95 0.905 0.946 0.949 0.947

S2 0.825 0.831 0.82 0.816 0.831

S3 0.816 0.798 0.779 0.799 0.787

S4 0.829 0.803 0.792 0.82 0.803

S5 0.805 0.793 0.783 0.794 0.777

S6 0.968 0.933 0.948 0.939 0.96

S7 0.829 0.82 0.828 0.83 0.836

S8 0.801 0.812 0.791 0.797 0.786

S9 0.807 0.769 0.783 0.819 0.777

S10 0.805 0.763 0.766 0.788 0.767

S11 0.835 0.816 0.916 0.881 0.931

S12 0.795 0.765 0.842 0.844 0.86

S13 0.779 0.762 0.823 0.823 0.832

S14 0.799 0.782 0.802 0.807 0.807

S15 0.768 0.747 0.791 0.792 0.804

S16 0.819 0.805 0.908 0.881 0.918

S17 0.776 0.773 0.841 0.824 0.844

S18 0.771 0.785 0.816 0.811 0.834

S19 0.788 0.771 0.823 0.798 0.813

S20 0.768 0.745 0.79 0.793 0.779

S21 0.894 0.858 0.93 0.915 0.94

S22 0.819 0.797 0.834 0.844 0.853

S23 0.833 0.824 0.848 0.841 0.852

S24 0.816 0.798 0.804 0.837 0.815

S25 0.823 0.795 0.827 0.837 0.84

S26 0.905 0.867 0.94 0.925 0.941

S27 0.825 0.819 0.861 0.847 0.833

S28 0.816 0.799 0.822 0.844 0.841

S29 0.803 0.795 0.802 0.826 0.812

S30 0.806 0.798 0.828 0.821 0.83
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balance bootstraps during the aggregating process. How-

ever, this happens in an interestingly different way; for

BRF, they draw bootstrap instances from the minority class

and then randomly draw the same number of instances,

with replacement, from the majority class [78]. As for BB,

in each bootstrap, they draw the same number of minority

and majority instances based on the undersampling tech-

nique using a negative binomial distribution [55].

Nevertheless, for most of the specialized methods, as

much as they try to balance the class distributions, there is

a likelihood of drawing more complex or noisy instances

into a bag or across many bags, since the sampling process

is based on a uniform probability distribution, and this

seems to have a negative effect on the overall classification

performance of the ensemble as compared to what sBal_IH

was able to achieve when the balanced bags were com-

posed of a mixture of instances with varying degree of

hardness.

4.2 Results for real-world datasets

We go ahead and compare the performance of sBal_IH

against regular and specialized ensemble methods on real-

world multi-domain datasets to further understand its per-

formance behavior in the real-world setup.

4.2.1 (a) sBal_IH against regular ensemble methods
on real-world datasets

Here, we compare sBal_IH with the regular ensemble

methods in terms of AUC on the 29 balanced and 41

imbalanced real-world datasets. Tables 6 and 7 present the

AUC performance scores on the mentioned datasets

groups, respectively. In the experiments, we considered a

group of balanced datasets in order to examine in a fair way

if our proposed method will show a distinctive effect if the

datasets were actually balanced. As highlighted in bold in

Table 6, it is observed that sBal_IH outperformed the tra-

ditional ensemble methods in only 15 out of the 29 bal-

anced datasets, followed by Random Forest with 13 wins,

and the remaining methods far behind. The results show a

comparable performance between sBal_IH and the other

regular ensemble methods.

On the other hand, with the 41 real-world imbalanced

datasets, the highlighted results in Table 7 show a similar

pattern to that of the synthetic imbalanced datasets (sub-

section 4.1.a), where sBal_IH exhibits good performance in

36 out of the 41 real-world imbalanced datasets. This is an

endorsement of the effectiveness of our proposed method

in addressing the class imbalance problem as compared to

the regular ensemble methods.

The observations above may indicate that when the data

is already balanced, sBal_IH still benefited from the

varying hardness in generated bags, but that benefit will

magnify if the dataset is also imbalanced. This can be

inferred from our findings of sBal_IH outperforming the

regular ensemble methods when the datasets were imbal-

anced (synthetic and real-world) and is consistent with

what other researchers have found [88], in that when the

data is imbalanced, the negative effect of noise is

magnified.

4.2.2 (b) sBal_IH against specialized ensemble methods
for class imbalance problems on real-world datasets

Our proposed method was also compared against state-of-

the-art ensemble methods specialized for handling imbal-

anced data on a group of 41 real-world multi-domain

imbalanced datasets. The outcomes from this experiment,

Table 6 AUC Score for sBal_IH Against Regular Ensemble Methods

on 29 Balanced Datasets

Dataset ID Bag RF Wag AdaB sBal_IH

B1 0.904 0.907 0.906 0.884 0.931

B2 0.993 0.91 0.995 0.921 0.995

B3 0.616 0.605 0.611 0.591 0.606

B4 0.665 0.663 0.65 0.699 0.654

B5 0.636 0.614 0.63 0.635 0.62

B6 0.993 0.979 0.993 0.995 0.994

B7 1 0.988 1 1 1

B8 0.634 0.656 0.629 0.612 0.681

B9 0.749 0.79 0.749 0.715 0.789

B10 0.766 0.823 0.77 0.77 0.803

B11 0.791 0.827 0.794 0.755 0.814

B12 0.758 0.81 0.766 0.753 0.787

B13 0.977 0.972 0.973 0.976 0.959

B14 0.631 0.658 0.633 0.61 0.666

B15 0.926 0.938 0.925 0.926 0.938

B16 0.843 0.847 0.825 0.811 0.853

B17 0.986 0.99 0.988 0.983 0.99

B18 0.939 0.988 0.96 0.951 0.986

B19 0.994 1 0.99 0.995 1

B20 0.575 0.61 0.575 0.585 0.615

B21 0.945 0.96 0.945 0.943 0.953

B22 0.757 0.781 0.754 0.749 0.766

B23 0.979 0.996 0.979 0.976 0.99

B24 0.789 0.81 0.801 0.776 0.824

B25 0.888 0.913 0.893 0.888 0.907

B26 0.688 0.721 0.697 0.654 0.738

B27 0.968 0.931 0.965 0.954 0.981

B28 0.672 0.69 0.664 0.69 0.707

B29 0.944 0.957 0.947 0.941 0.957
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if good enough, will position the sBal_IH method among

the best alternative ensemble methods for addressing the

problem of class imbalance.

In Table 8, we observe a better performance of the

proposed method (sBal_IH) across 18 out of the 41

imbalanced real-world datasets. This is followed by Easy

Ensemble (EE) with 11 wins and Balanced Random Forest

Table 7 AUC Score for sBal_IH Against Regular Ensemble Methods

on 41 Real-world Imbalanced Datasets

Dataset ID Bagging RF Wagging AdaB sBal_IH

I-1 0.732 0.493 0.774 0.944 0.64

I-2 0.803 0.797 0.789 0.775 0.849

I-3 0.655 0.663 0.651 0.643 0.705

I-4 0.992 0.978 0.992 0.989 0.997

I-5 0.6 0.589 0.584 0.589 0.598

I-6 0.608 0.588 0.596 0.596 0.683

I-7 0.547 0.568 0.558 0.575 0.645

I-8 0.945 0.928 0.955 0.979 0.992

I-9 0.664 0.656 0.668 0.663 0.752

I-10 0.7 0.681 0.7 0.686 0.753

I-11 0.895 0.897 0.914 0.935 0.948

I-12 0.861 0.859 0.871 0.874 0.903

I-13 0.503 0.509 0.509 0.511 0.722

I-14 0.548 0.522 0.511 0.502 0.709

I-15 0.926 0.932 0.928 0.928 0.933

I-16 0.875 0.87 0.854 0.813 0.879

I-17 0.841 0.876 0.845 0.83 0.917

I-18 0.838 0.79 0.834 0.861 0.86

I-19 0.637 0.581 0.635 0.656 0.672

I-20 0.877 0.864 0.874 0.848 0.913

I-21 0.856 0.867 0.853 0.813 0.889

I-22 0.83 0.779 0.87 0.832 0.874

I-23 0.875 0.87 0.854 0.813 0.879

I-24 0.646 0.589 0.647 0.662 0.787

I-25 0.95 0.953 0.951 0.947 0.95

I-26 0.948 0.94 0.944 0.945 0.958

I-27 0.95 0.947 0.953 0.944 0.967

I-28 0.831 0.783 0.797 0.799 0.853

I-29 0.656 0.533 0.605 0.673 0.883

I-30 0.886 0.87 0.88 0.888 0.895

I-31 0.789 0.859 0.813 0.836 0.873

I-32 1 1 1 1 1

I-33 0.534 0.508 0.535 0.554 0.653

I-34 0.649 0.606 0.638 0.639 0.684

I-35 0.758 0.713 0.805 0.742 0.921

I-36 0.83 0.81 0.868 0.854 0.898

I-37 0.491 0.499 0.492 0.536 0.598

I-38 0.648 0.557 0.654 0.656 0.813

I-39 0.611 0.549 0.594 0.6 0.614

I-40 0.795 0.759 0.78 0.836 0.967

I-41 0.703 0.649 0.732 0.713 0.867

Table 8 AUC Score for sBal_IH Against Ensemble Methods Spe-

cialized for Class Imbalanced Problems on 41 Imbalanced Datasets

Dataset ID EE RUSBoost BB BRF sBal_IH

I-1 0.937 0.51 0.733 0.532 0.64

I-2 0.797 0.818 0.815 0.828 0.849

I-3 0.682 0.688 0.693 0.697 0.709

I-4 0.994 0.952 0.995 0.972 0.997

I-5 0.581 0.64 0.6 0.604 0.598

I-6 0.675 0.655 0.675 0.676 0.683

I-7 0.62 0.605 0.587 0.654 0.645

I-8 0.992 0.977 0.989 0.951 0.992

I-9 0.739 0.731 0.704 0.767 0.752

I-10 0.718 0.748 0.749 0.744 0.753

I-11 0.951 0.94 0.955 0.926 0.948

I-12 0.91 0.877 0.896 0.91 0.903

I-13 0.772 0.717 0.736 0.717 0.722

I-14 0.771 0.768 0.737 0.698 0.709

I-15 0.934 0.864 0.931 0.932 0.941

I-16 0.85 0.906 0.865 0.92 0.879

I-17 0.935 0.833 0.907 0.894 0.917

I-18 0.849 0.819 0.849 0.826 0.86

I-19 0.702 0.675 0.671 0.681 0.672

I-20 0.896 0.858 0.909 0.887 0.914

I-21 0.854 0.863 0.852 0.878 0.889

I-22 0.871 0.85 0.878 0.856 0.874

I-23 0.857 0.841 0.865 0.92 0.879

I-24 0.78 0.708 0.751 0.783 0.787

I-25 0.958 0.891 0.956 0.958 0.959

I-26 0.941 0.96 0.952 0.942 0.958

I-27 0.967 0.917 0.966 0.965 0.967

I-28 0.835 0.823 0.863 0.852 0.853

I-29 0.873 0.807 0.871 0.842 0.883

I-30 0.866 0.861 0.883 0.852 0.895

I-31 0.854 0.875 0.854 0.951 0.873

I-32 1 1 1 0.998 1

I-33 0.665 0.7 0.652 0.69 0.653

I-34 0.688 0.612 0.762 0.74 0.684

I-35 0.904 0.831 0.915 0.896 0.921

I-36 0.916 0.894 0.904 0.928 0.898

I-37 0.767 0.603 0.63 0.625 0.598

I-38 0.834 0.804 0.798 0.833 0.813

I-39 0.651 0.593 0.636 0.706 0.614

I-40 0.967 0.904 0.96 0.948 0.968

I-41 0.855 0.84 0.854 0.875 0.867
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coming third with only 9 wins. RUSBoost and Balanced

Bagging were the least performing in terms of AUC.

We note that even though there might be a reasonable

competition in performance between sBal_IH and EE

method, sBal_IH still outperformed EE even though EE is

considered a hybrid ensemble (an ensemble of ensembles),

since it uses AdaBoost ensemble as its default base algo-

rithm, hence having a higher advantage over sBal_IH.

Lastly, we curiously assessed the performance of sBa-

l_IH against the specialized ensemble methods in situations

where the data is actually balanced, i.e., on the 29 balanced

real-world datasets.

The results in Table 9 show a remarkable performance

of sBal_IH against the other methods, with 16 wins out of

29 balanced datasets, followed by Easy Ensemble with 6

wins, and RUSBoost registering the least performance. The

findings suggest that sBal_IH significantly outperforms

specialized ensemble methods when there is no class

imbalance problem.

Throughout the experiments, we observe a consistent

and good performance of the proposed method across the

majority of the datasets. The intuitive explanation for this

is that when a classifier is trained on a section of instances

from a dataset with varying degrees of hardness, the clas-

sifier will have a better chance to learn the underlying

pattern to classify the data while maintaining two proper-

ties: learn from hard instances as well as easy ones, and at

the same time not overfit to those that are easy or hard.

Hence, producing a consistent and noise-tolerant (robust)

model that can better deal with both balance and class

imbalanced problems.

In order to draw more reliable conclusions, in the next

subsection, we discuss Friedman’s nonparametric statisti-

cal test used to ascertain if there exists any significant

difference in performance between sBal_IH and the other

ensemble methods.

4.3 Statistical tests

Throughout our experiments, we observed a consistent

trend in performance advantage that cuts across most of the

studied methods. However, in order to draw reliable con-

clusions, it is important to determine if there exists a sta-

tistically significant difference in the classification

performance as measured by AUC. For that purpose, we

utilized the standard methodology proposed by Demšar

[89] for testing statistical significance among multiple

methods across various datasets. We carried out a non-

parametric (distribution-free) statistical test on all mean

AUC results. We chose to use [90] Friedman’s test because

we have no knowledge of the distribution of the values in

our analyzed data.

Friedman test is a nonparametric statistical test equiva-

lent to the test of repeated ANOVA. It computes and ranks

the algorithms for each dataset separately, where the best

performing algorithm is assigned rank 1, second with rank

2, and so on. In case there is a tie, it assigns an average rank

to the affected algorithm. Suppose, r ji is the rank of the

j� th algorithm (of k algorithms) on the i� th dataset (of

N datasets). The Friedman test calculates the average rank

of an algorithm j, Rj ¼ 1
N

P

i

r ji .

The Friedman statistic, v2
F , is calculated with k � 1

degrees of freedom, F, as shown in Eq. 2:

v2
F ¼ 12N

k k þ 1ð Þ
X

j

R2
j �

k k þ 1ð Þ
4

2
" #

ð2Þ

For this test, the Null Hypothesis (H0) states that all the

algorithms are comparable and the observed differences in

Table 9 AUC Score for sBal_IH Against Specialized Methods for

Class Imbalanced Problems on 29 Balanced Datasets

Dataset

ID

EE RUSBoost BB BRF sBal_IH

B1 0.884 0.928 0.924 0.929 0.938

B2 0.945 0.75 0.992 0.973 0.978

B3 0.611 0.574 0.594 0.564 0.552

B4 0.66 0.586 0.66 0.611 0.615

B5 0.655 0.593 0.619 0.601 0.632

B6 0.995 0.95 0.994 0.979 0.982

B7 1 1 1 0.997 0.996

B8 0.661 0.646 0.656 0.657 0.683

B9 0.782 0.766 0.778 0.761 0.786

B10 0.771 0.826 0.778 0.819 0.822

B11 0.806 0.772 0.834 0.805 0.816

B12 0.754 0.795 0.784 0.8 0.815

B13 0.97 0.982 0.969 0.99 0.982

B14 0.99 0.995 1 1 1

B15 0.631 0.682 0.639 0.667 0.687

B16 0.921 0.922 0.929 0.944 0.945

B17 0.83 0.849 0.84 0.858 0.868

B18 0.986 0.962 0.988 0.991 0.994

B19 0.973 0.968 0.979 0.981 0.986

B20 0.573 0.644 0.619 0.612 0.644

B21 0.948 0.951 0.947 0.957 0.955

B22 0.759 0.766 0.775 0.783 0.786

B23 0.984 0.996 0.986 0.994 0.997

B24 0.791 0.78 0.801 0.822 0.81

B25 0.88 0.835 0.893 0.907 0.918

B26 0.723 0.714 0.73 0.73 0.745

B27 0.976 0.689 0.972 0.942 0.965

B28 0.683 0.715 0.692 0.72 0.733

B29 0.954 0.942 0.957 0.974 0.969
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their ranks might be random. Whereas the Alternative

Hypothesis (H1) states that, there is a statistically signifi-

cant difference among the algorithms.

Our interest is to reject the null hypothesis; in case the

H0is rejected, we go-ahead to carry out a post hoc test in

order to establish specific pairs of algorithms that produce

differences. Many post hoc tests have been proposed in the

literature [91], such as Nemenyi’s, Holm’s, Bergmann’s,

and Shaffer’s tests, among others, as shown in Fig. 4. A

detailed discussion of nonparametric tests and their corre-

sponding post hoc tests is presented in [89] and [91].

For our study, we used Friedman’s N 9 N statistical test

to first determine if there exists any statistically significant

difference among methods being studied across the data-

sets, followed by a post hoc Bergman procedure to com-

pute a probability value (p value) for the test on each pair

of methods. We choose to Bergman post hoc procedure

because of its high statistical power devoted to multiple

comparisons. Bergman’s procedure has been recommended

in the literature for this kind of study since it exhaustively

finds all the possible sets of hypotheses for given com-

parisons and all those elementary hypotheses that cannot be

rejected [91].

We carried out the statistical tests using KEEL’s non-

parametric statistical analysis tool [57]. We present the

outcome of the statistical analysis in the next subsection.

4.4 Statistical analysis results.

As an outcome of the statistical analysis of the performance

of our proposed method (sBal_IH) against existing popular

ensemble methods when using Friedman/Bergman meth-

ods with a significance level of a ¼ 0:05, we present our

results in Tables 10–15. We highlight with bold all pairs

that comprise the sBal_IH method. In the results column,

we indicate whether the null hypothesis is rejected or

accepted, and we are much interested in determining sta-

tistically significant performance differences between

sBal_IH and other ensemble methods across a series of

datasets.

For the data resulting from Tables 4 and 5, where we

studied sBal_IH against regular and specialized ensemble

methods, respectively, on a series of synthetic imbalanced

datasets with controlled levels of noise, we include the

statistical analysis results in Tables 10 and 11.

It is observed in Table 10 that H0 is rejected across all

pairs of algorithms involving sBal_IH. This shows that

there is a significant difference in performance between

sBal_IH and all traditional ensemble methods on the syn-

thetic imbalanced datasets.

When it comes to specialized ensemble methods for

class imbalance problems, we observe in Table 11, a sig-

nificant difference in performance between sBal_IH and

the other specialized ensemble methods except for sBal_IH

vs Balanced Random Forest (BRF).

N N Post-hoc Procedures 

Friedman Test  

Nemenyi’s 

Holms’s 

Shaffer’s 

Bergmann’s 

Multiple Comparisons 
Test 

Fig. 4 Nonparametric Tests and Post hoc Procedures for N 9 N

Comparisons

Table 10 Statistical Results for Data from Table 4—sBal_IH vs

Regular Ensemble Method on Synthetic Imbalanced Datasets

Comparison z ¼ R0 � R1ð Þ=SE p value Result

sBal_IH vs RF 9.02229 0 H0 rejected

RF vs AdabB 6.5728 0 H0 rejected

sBal_IH vs Bag 6.32785 0 H0 rejected

sBal_IH vs Wag 5.06228 0 H0 rejected

Wag vs RF 3.96001 0.000075 H0 rejected

Bag vs AdabB 3.87836 0.000105 H0 rejected

Bag vs RF 2.69444 0.007051 H0 rejected

Wag vs AdabB 2.61279 0.008981 H0 rejected

sBal_IH vs AdabB 2.44949 0.014306 H0 rejected

Bag vs Wag 1.26557 0.205667 H0 accepted

Table 11 Statistical Results for Data from Table 5—sBal_IH vs

Specialized Ensemble Methods on Real-world Balanced Datasets

Comparison z ¼ R0 � R1ð Þ=SE p value Result

sBal_IH vs RUSB 4.733592 0.000002 H0 rejected

EE vs RUSB 0.373705 0.708624 H0 accepted

BRF vs RUSB 2.615933 0.008898 H0 accepted

BB vs RUSB 1.827001 0.0677 H0 accepted

sBal_IH vs BB 2.906592 0.003654 H0 rejected

sBal_IH vs BRF 2.11766 0.034204 H0 accepted

sBal_IH vs EE 4.359888 0.000013 H0 rejected

EE vs BB 1.453296 0.146142 H0 accepted

BRF vs BB 0.788932 0.430152 H0 accepted

EE vs BRF 2.242228 0.024947 H0 accepted
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In Table 12, sBal_IH is statistically analyzed against

regular ensemble methods when faced with balanced

datasets using results obtained from Table 6. For all the

pairs of comparisons containing sBal_IH, Bergman’s pro-

cedure rejects the null hypothesis except for RF vs

sBal_IH.

In Table 13, which shows the analysis of the results

from Table 7, we observe that H0is rejected for all pairs

involving sBal_IH vs the regular ensemble methods. This

confirms that there exists a statistically significant differ-

ence in performance between sBal_IH and all regular

ensemble methods on imbalanced real-world datasets (in

line with the same observation above on imbalanced syn-

thetic datasets).

Finally, in Tables 14 and 15, we analyze the differences

between sBal_IH and ensemble methods specialized for

class imbalance problems on a series of imbalanced and

balanced datasets, using results from Tables 8 and 9,

respectively.

In Table 14, despite sBal_IH being ranked first above all

other methods by average rankings of Friedman’s test, we

observe that Bergman’s procedure only rejects the H0

hypothesis for sBal_IH vs RUSBoost. However, it is

important to note that, at times, the Friedman test might

report a significant difference in performance between

algorithms but the post hoc test fails to detect it. This might

be due to the used power of the post hoc test.

Interestingly, when it comes to balanced datasets, as

indicated in Table 15, sBal_IH registered a significant

difference in performance with Easy Ensemble, Balanced

Bagging, and RUSBoost. This shows that our proposed

method is comparable to the state-of-the-art specialized

ensemble methods in situations of class imbalance prob-

lem, and more superior in situations where the datasets are

balanced.

Table 12 Statistical Results for Data from Table 6—sBal_IH vs

Specialized Ensemble Methods on Synthetic Imbalanced Datasets

Comparison z ¼ R0 � R1ð Þ=SE p value Result

sBal_IH vs RUSB 6.0829 0 H0 rejected

RUSB vs BRF 5.388877 0 H0 rejected

RUSB vs BB 3.878359 0.00011 H0 rejected

EE vs RUSB 3.429286 0.00061 H0 rejected

sBal_IH vs EE 2.653614 0.00796 H0 rejected

sBal_IH vs BB 2.204541 0.02749 H0 rejected

EE vs BRF 1.959592 0.05004 H0 accepted

BB vs BRF 1.510519 0.13091 H0 accepted

sBal_IH vs BRF 0.694022 0.48767 H0 accepted

EE vs BB 0.449073 0.65338 H0 accepted

Table 13 Statistical Results for Table 7—sBal_IH vs Regular

Ensemble Methods on Imbalanced Datasets

Comparison z ¼ R0 � R1ð Þ=SE p value Result

sBal_IH vs RF 8.06687 0 H0 rejected

sBal_IH vs Wag 5.936658 0 H0 rejected

sBal_IH vs Bag 5.657285 0 H0 rejected

sBal_IH vs AdaB 5.657285 0 H0 rejected

Bag vs RF 2.409585 0.015971 H0 rejected

RF vs AdaB 2.409585 0.015971 H0 rejected

Wag vs RF 2.130212 0.033154 H0 rejected

Wag vs Bag 0.279372 0.779959 H0 accepted

Wag vs AdaB 0.279372 0.779959 H0 accepted

Bag vs AdaB 0 1 H0 accepted

Table 14 Statistical Results for Data from Table 8—sBal_IH vs

Regular Ensemble Methods on Balanced Datasets

Comparison z ¼ R0 � R1ð Þ=SE p value Result

sBal_IH vs AdaB 5.024252 0.000001 H0 rejected

RF vs AdaB 3.986183 0.000067 H0 rejected

sBal_IH vs Wag 3.654001 0.000258 H0 rejected

sBal_IH vs Bag 3.570956 0.000356 H0 rejected

Wag vs RF 2.615933 0.008898 H0 rejected

Bag vs RF 2.532887 0.011313 H0 rejected

Bag vs AdaB 1.453296 0.146142 H0 accepted

Wag vs AdaB 1.37025 0.170609 H0 accepted

sBal_IH vs RF 1.038068 0.299238 H0 accepted

Wag vs Bag 0.083045 0.933815 H0 accepted

Table 15 Statistical Results for Data from Table 9—sBal_IH vs

Specialized Ensemble Methods on Real-world Imbalanced Datasets

Comparison z ¼ R0 � R1ð Þ=SE p value Result

sBal_IH vs RUSB 5.203306 0 H0 rejected

EE vs RUSB 3.561995 0.000368 H0 rejected

BRF vs RUSB 3.247701 0.001163 H0 rejected

BB vs RUSB 2.654035 0.007954 H0 rejected

sBal_IH vs BB 2.549271 0.010795 H0 accepted

sBal_IH vs BRF 1.955605 0.050512 H0 accepted

sBal_IH vs EE 1.641311 0.100733 H0 accepted

EE vs BB 0.907959 0.3639 H0 accepted

BRF vs BB 0.593666 0.552736 H0 accepted

EE vs BRF 0.314294 0.753298 H0 accepted
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4.5 Computational Cost

From the experimental results, despite the promising per-

formance of the proposed method (sBal_IH), we do note

that this comes at the computational cost of pre-calculating

the Instance Hardness of a given dataset. As observed in

Table 16, the proposed method (sBal_IH) registered a high

computational time compared to all studied methods (2

runs with different random seeds). Due to space limita-

tions, we only reported computational times for 15 data-

sets, selecting 5 from each group (Synthetic, Real World

Balanced, and Imbalanced), composed of different datasets

and features sizes.

While we recognize that the computation times for the

sBal_IH method are much higher than those of other

methods, we believe that for many applications that use

small and medium-size datasets, this can still be an

acceptable compromise in exchange for performance

improvement. We do also draw attention that these higher

computation times are due to the IH estimation step.

Table 17 demonstrates that clearly, by showing (in the first

4 columns) how much time it took to estimate IH versus the

time for the remaining steps of sBal_IH.

Based on that observation, we emphasize that the IH

estimation process is highly parallelizable since it consists

of multiple independent tasks, performed within a cross-

validation scheme (which can easily run in parallel for each

fold). To demonstrate expected efficiency improvements,

we ran some experiments that estimate performance gains

expected if we were to run the IH process with paral-

lelization. This is shown in Table 17 (last 4 columns) with

the following logic:

• Currently, IH estimation was calculated using a fivefold

cross-validation (XV) scheme, and therefore running

this in 5 parallel processes would cost approximately

20% of sequential execution of such scheme.

• In each of the above folds, we have used 4 different

learners to estimate IH. Our experiments show that

KNN had the highest cost across all datasets, and thus if

we were to parallelize each learner to a separate

process, IH estimation has to wait for the longest leaner

to finish (i.e., KNN).

• Based on the highest learner’s cost, running each of the

4 learners in parallel would give an estimated improve-

ment as shown in Table 17 (2nd last column).

• Lastly, the total running time of sBal_IH under such a

parallelization approach is estimated to be as shown in

the last column.

As demonstrated by the above discussion, computation

time for the sBal_IH method can be squashed by a mag-

nitude of * 10 times by a simple parallelization scheme.

We do however recognize that future work is required to

address the issue of computational cost; maybe via faster

alternatives for IH estimates. But even without this, the

sBal_IH method still offers an acceptable compromise in

exchange for performance improvement.

5 Conclusion and future works

In this study, we have addressed the problem of class

imbalance from the perspective of improving the perfor-

mance of ensemble-based classifiers. Though many state-

of-the-art ensemble-based methods have been proposed for

the problem, we have introduced a new ensemble method,

Table 16 Computational Time

(in seconds) for all Ensemble

Methods on Selected Datasets

Data Set ID Bag RF Wag AdaB EE RUB BB BRF sBal_IH

S1 5.65 5.87 5.72 5.68 13.7 5.89 5.97 5.96 132.6

S10 6.07 6.11 6.16 5.91 14.1 6.25 6.32 6.37 153

S19 6.05 6.12 6.16 6.01 14.1 6.23 6.21 6.25 154.8

B17 7.13 7.05 6.97 7.03 18.9 7.33 7.45 7.42 266.4

I-4 7.87 8.01 7.9 7.75 18.3 8.01 8.15 7.92 265.8

I-7 5.26 5.37 5.28 5.43 13.1 5.55 5.51 5.52 88.2

I-9 5.14 5.19 5.12 5.07 12.8 5.37 5.37 5.35 81

I-15 11.7 11.6 11.6 12.5 22.6 11.85 11.9 11.6 790.8

I-17 5.64 5.75 5.62 5.6 13.5 5.83 5.91 5.89 132

S23 5.73 5.77 5.71 5.63 14 5.92 5.99 5.93 135.6

S27 6 6.07 6.11 5.9 13.9 6.25 6.37 6.32 150

B15 14 14 13.9 14.2 28.8 14.1 14.6 14.3 611.4

B9 5.76 5.75 5.68 5.54 19.6 6 6.12 5.83 207

B3 5.26 5.075 5.04 5.14 12.75 5.21 5.26 5.21 70.8

B19 4.99 5.08 4.98 4.97 5.36 5.03 5.25 5.22 72.6
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called sBal_IH, with a new bootstrapping approach that

balances the class distributions of the bags based on

instance hardness. In the proposed method, each bag con-

tains all of the minority instances, and we influence the

process of picking majority instances using pre-calculated

instance hardness categories (easy, normal, and hard),

unlike the common way of most of the bagging based

methods that use uniform probability to select instances.

This ensures that base learners are trained on balanced

bags, and at the same time contain diverse levels of hard-

ness, allowing a good representation of the input space that

reflected well on overall performance, as demonstrated by

the experimental results.

The proposed method is evaluated on 100 datasets,

which include 30 synthetic imbalanced datasets with con-

trolled levels of noise, 29 balanced, and 41 imbalanced

real-world datasets for binary classification. We used the

nonparametric Friedman test and Bergmann’s post hoc test,

at a significant level of p\ 0.05, to statistically ascertain

our findings.

The findings demonstrate that our proposed sBal_IH

method performs statistically and significantly better than

the regular ensemble methods (Bagging, Wagging, Ran-

dom Forest, and AdaBoost) on both synthetic and real-

world imbalanced datasets, and better than these methods

on balanced datasets (except for Random Forest, where

performance was comparable). Furthermore, sBal_IH

performed better than ensemble methods specialized for

class imbalance problems (Balanced Bagging, Balanced

Random Forest, RUSBoost, and Easy Ensemble) in the

majority of both balanced and imbalanced datasets. The

analysis showed a statistically significant difference in

performance between sBal_IH and the specialized methods

on the balanced datasets (except for Balanced Random

Forest, where performance was comparable), and compa-

rable difference on the imbalanced datasets.

These findings suggest that the approach followed by the

sBal_IH method is significantly better than the compared

methods, in the majority of the cases, for both balanced and

imbalanced datasets. This paves the way for similar

extensions based on data complexity and instance hardness

to boost performance further. We do note that this

improvement comes at the expense of computational cost

to pre-calculate the Instance Hardness of a given dataset.

However, for many applications that use small and med-

ium-size datasets, this might be acceptable in exchange for

promising improvement in performance.

In future works, we plan to investigate how to improve

the computational cost of sBal_IH by studying other faster

alternative approaches for estimating IH. We also propose

to extend our experiments to cover multi-class imbalanced

datasets by expanding the sBal_IH approach to take into

consideration, multiple classes. Finally, we also plan to

study the performance of sBal_IH when induced using

Table 17 Computational Time (in seconds) subtasks of IH estimation and expected parallelization gains

Datasets Before Parallelization After Parallelization

IH Estimation Remaining

Steps

Total Sequential sBal_IH IH Cost Per XV-Fold

(20% of Sequential fivefold)

Learner with

Highest Cost

in Each Fold

Total Parallel sBal_IH

% Sec

S1 129.24 3.36 132.6 25.85 57% 14.63 17.99

S10 149.67 3.33 153 29.93 58% 17.36 20.69

S19 151.49 3.31 154.8 30.30 58% 17.63 20.94

B17 262.88 3.52 266.4 52.58 60% 31.55 35.07

I-4 262.21 3.59 265.8 52.44 65% 34.22 37.81

I-7 84.85 3.35 88.2 16.97 52% 8.81 12.16

I-9 77.73 3.27 81 15.55 42% 6.52 9.79

I-15 786.46 4.34 790.8 157.29 65% 101.53 105.87

I-17 128.7 3.3 132 25.74 25% 6.49 9.79

S23 132.31 3.29 135.6 26.46 56% 14.89 18.18

S27 146.65 3.35 150 29.33 58% 17.01 20.36

B15 607.6 3.8 611.4 121.52 70% 85.12 88.92

B9 203.51 3.49 207 40.70 35% 14.38 17.87

B3 67.56 3.24 70.8 13.51 47% 6.32 9.56

B19 69.35 3.25 72.6 13.87 42% 5.77 9.02
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heterogeneous base learners, since in current experiments

we only considered a homogenous one for building the

ensembles. We, therefore, anticipate that this study opens a

few research opportunities that utilize data balancing

techniques based on instance hardness and data complex-

ity, to improve classification performance in the situation

of class imbalance problems, and maybe balanced ones as

well.
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