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Abstract
Unconfined compressive strength (UCS) is a major mechanical parameter of the rock which has an essential role in

developing geomechanical models. It can be estimated directly by lab testing of retrieved core samples or from well log

data. These methods are very expensive and require huge efforts and time. Therefore, there is a need to develop a new

technique for predicting UCS values in real-time. In this study, three artificial intelligence (AI) models were developed

using artificial intelligence tools; artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and

support vector machine (SVM) to predict UCS of the downhole formations while drilling based on real-time recording of

the drilling mechanical parameters. These parameters include rate of penetration (ROP), mud pumping rate (GPM), stand-

pipe pressure (SPP), rotary speed in revolution per minute (RPM), torque (T), and weight on bit (WOB). A dataset of 1771

points from a Middle Eastern field was used to build the developed models: for training and testing processes. A new UCS

correlation was developed based on the optimized AI model. Another set of data (2175 data points unseen by the model)

was used to validate the model and the developed UCS correlation. The developed ANN-model outperformed the ANFIS-

and SVM-models with a correlation coefficient (R-value) of 0.99 and an average absolute percentage error (AAPE) of

3.48% between the predicted and actual UCS values. The new UCS correlation outperformed the available correlations for

UCS prediction and it was able to predict the UCS with AAPE of 4.2% compared to the actual UCS values.
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Abbreviations
AAPE Average absolute percentage error

AI Artificial Intelligence

ANN Artificial neural network

ANFIS Adaptive network-based fuzzy interference

system

SVM Support vector machine

R Correlation coefficient

R2 Coefficient of determination

ROP Rate of penetration

WOB Weight on bit

RPM Rotating speed in revolution per minute

GPM Gallon per minute

SPP Standpipe pressure

T Torque

Fitnet

Function

Fitting neural network

Newdtdnn Create distributed time delay neural network

newnarx Create feedforward backpropagation

network with feedback from output to input

newelm Create Elman backpropagation network

newfftd Create feedforward input-delay

backpropagation network

newff Create feedforward backpropagation

network

newlrn Layer-Recurrent Network

tansig Hyperbolic tangent sigmoid transfer

function

logsig Log-sigmoid transfer function

hardlims Hard-limit transfer function

trainbr Bayesian regularization
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purelin Linear transfer function

softmax Softmax transfer function

tribas Triangular basis transfer function

trainlm Levenberg–Marquardt backpropagation

trainbfg BFGS quasi-Newton backpropagation

traingdx Gradient descent with momentum and

adaptive learning rule backpropagation

trainoss One step secant backpropagation

1 Introduction

Unconfined compressive strength (UCS) is an essential

mechanical rock-parameter for building geomechanical

models. It defines themaximum compressive stress limit that

the rock can endure without failure when uniaxial loading is

applied under confinement conditions [1]. Rock mechanics

is generally theoretical and applied science that describes the

mechanical behavior of the rock when different stresses are

applied. Rock failure is one of the petroleum-related features

of rock mechanics which is the reason behind many down-

hole problems such as solids production and wellbore

instability issues [2]. The availability of UCS data of the

downhole formations has a high degree of importance in

optimizing the drilling operation performance, bit hydrau-

lics, determining the proper mud weight while drilling, and

avoiding wellbore instability issues [3].

Rock mechanical properties can be determined directly

using experimental tests conducted on retrieved core

samples representing the actual stress-state conditions and

mechanical properties of the rocks downhole. UCS can be

estimated in the laboratory using different tests such as

uniaxial compressive strength test, triaxial compressive

strength test, scratch test, Schmidt hammer test, and point

load test. These laboratory measurements are considered

the most accurate and reliable method for determining such

properties [4]. However, since retrieving core samples

representing the sections of interest is very costly and

requires a lot of time, core-testing data cannot yield a

continuous profile of UCS along the drilled wellbore [5].

Besides, representative core samples are not always

available and their number is often restricted. Therefore,

indirect methods were developed to fill the missing gaps

using derived correlations between the rock mechanical

properties and petrophysical well-log data.

Many studies in the literature have reported different

correlations (Table 1) to predict UCS of different litholo-

gies using logging data based on nonlinear regression

techniques [6–11]. Most of these models are based on sonic

transit time (Dt) and formation porosity (Ø) for estimating

UCS. Moreover, the application of artificial intelligence

tools has been introduced to correlate core-testing UCS

data with different well-log data such as bulk density and

sonic log data [12–14]. However, such well-log data are

not always available while drilling the wellbore, as they are

often obtained using a wireline logging technique which is

usually performed after drilling the wellbore to avoid the

harsh drilling environment [15]. Besides, the acquisition of

logging data while drilling is a costly process and has

several operational limitations and requires many correc-

tions as well. This created the main motivation behind this

study which is developing a new technique through which

UCS values can be estimated in real-time other than using

the well-log data. Additionally, the substantial value of

obtaining the UCS data during drilling addresses the

increasing need for such data in real-time. This is because

it is very crucial to optimize the drilling operation, reduce

the non-productive time (NPT), prevent the collapse of

downhole formations, and, hence, avoid many wellbore

instability problems by choosing the proper mud weight.

Therefore, the main objective of this paper is to intro-

duce a novel technique for predicting the UCS values of the

downhole formations while drilling. This involved devel-

oping new models using different AI tools to predict UCS

depending on the mechanical drilling parameters instead of

well log data. These mechanical drilling parameters are

usually available while drilling; include rate of penetration

(ROP), mud pumping rate (GPM), stand-pipe pressure

(SPP), drillstring rotating-speed (RPM), drilling torque (T),

and weight on bit (WOB). Unlike the logging data, such

drilling data are always available during the drilling

operation at a low cost. Accordingly, the developed AI-

based models would help estimate UCS of the downhole

formations while drilling in a time- and cost-effective way.

2 Materials and methods

In this study, new AI models were developed to estimate

UCS values of the downhole formations while drilling

using three AI tools: the artificial neural network (ANN),

Table 1 Published correlations to predict UCS in MPa

Equation number Correlation References

(1) UCS ¼ 7682
Dt

� �1:82 [6]

(2) UCS ¼ 10 2:44þ 109:14
Dt

� �
[7]

(3) UCS ¼ 143:8 expð6:95/Þ [8]

(4) UCS ¼ 80204
Dt

� �1:285 [9]

(5) UCS ¼ 7600e�0:064Dtc [10]

(6) UCS ¼ 292:047e�9:541/ [11]

(7) UCS ¼ 570:808e�0:031Dtc
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adaptive neuro-fuzzy inference system (ANFIS), and sup-

port vector machine (SVM). The developed models used

the mechanical drilling parameters as feeding inputs to

predict the output; formations’ UCS-values.

2.1 Data description

A dataset of 1771 data points was collected representing a

vertical section (Well A) within a field in the Eastern

province of Saudi Arabia (Middle East Region). The

obtained dataset included mechanical drilling data and the

corresponding UCS values of the drilled formations. These

drilling parameters (ROP, GPM, SPP, RPM, T, and WOB)

are normally recorded at the surface while drilling using

accurate real-time sensors to monitor the drilling perfor-

mance. The corresponding UCS data were extracted from

the geomechanical model of the area under study: The

aforementioned model was developed based on actual core

samples lab-testing data.

2.2 Dataset statistical analysis

The dataset used was statistically analyzed to describe its

ranges and distributions before the model development.

Table 2 lists different statistical parameters for the inputs

(ROP, GPM, SPP, RPM, T, and WOB) and the output

parameter (UCS). The ranges of the input and output

parameters are ROP from 35.18 to 108.34 ft/hr, GPM from

645.30 to 854.01 gallon-per-minute, SPP from 2140 to

3076 psi, RPM from 77.94 to 162.53 revolution-per-min-

ute, T from 4.29 to 10.68 kft.Ib, WOB from 1.54 to 25.48

kIb, and UCS from 1030.02 to 17378.06 psi. The dataset

used was found to cover wide ranges with satisfactory

distribution as inferred from the statistical analysis. This

would boost the prediction performance of the proposed

model to describe the phenomena more efficiently.

2.3 Data processing and filtration

The prediction accuracy of the AI-based models is signif-

icantly affected by the quality of the data used while

developing the model. Therefore, the data were pre-pro-

cessed and filtered using statistical analysis and engineer-

ing sense based on the literature. A specially designed

MATLAB program was used to remove unreasonable

values like zeros and negative values in addition to any

missing points. Then, outliers were removed using box and

whisker plot, in which the top whisker represents the upper

limit of the data and the bottom whisker represents the

lower limit of the data [16]. Any value beyond these limits

was considered an outlier then removed. These limits were

determined using the statistical parameters listed in

Table 2.

2.4 Study of input(s)/output relationship
strength

To identify the strength of the relationship between the

output (UCS) and the input parameters, the Pearson cor-

relation coefficient (R) with a mathematical formula

expressed in Eq. 8 was used to identify how strongly two

parameters are linearly related to each other [17]. Its value

ranges from - 1 to ?1. A strong direct linear-relation is

indicated with an R-value of ?1. On the contrary, the R-

value of - 1 shows a strong inverse linear-relation

between these two variables. While the R-value of zero

indicates no linear relationship exists between the two

study variables. Figure 1 shows the relative importance

between the output parameter (UCS) and the input

parameters individually in terms of R-value. UCS had R-

values of 0.15, 0.14, 0.12, 0.07, 0.02 and -0.18 with ROP,

SPP, T, WOB, GPM, and RPM, respectively.

R ¼ k
P

xy�
P

xð Þ
P

yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
P

x2ð Þ �
P

yð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
P

b2ð Þ �
P

bð Þ2
q ð8Þ

where; R represents the correlation coefficient between the

two variables x and y.

Table 2 Statistical analysis

describing the ranges and

distribution of the used data

Statistical parameter WOB (klb) T (kft.Ib) SPP, psi RPM ROP (ft/hr) GPM UCS (psi)

Minimum 1.54 4.29 2140.20 77.94 27.41 645.30 1030.02

Maximum 25.48 10.68 3076.00 162.53 119.57 854.01 17378.06

Range 23.94 6.39 935.80 84.60 92.16 208.71 16348.04

Mean 12.13 7.48 2604.42 128.67 66.03 729.26 6193.38

Median 11.45 7.06 2611.89 134.10 70.10 700.11 5240.81

Mode 12.13 6.86 2802.09 159.25 108.35 843.09 10985

Standard deviation 7.22 1.66 210.77 14.11 19.16 72.38 3782.81

Skewness 0.44 0.31 - 0.32 - 1.06 - 0.05 - 0.03 0.45
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2.5 Application of artificial intelligence tools

2.5.1 Artificial neural network (ANN)

ANN is an artificial intelligence tool which has recently got

a remarkable reputation for modeling complex engineering

phenomenon and complicated problems in a significant

efficient way. Recently, ANN has been used in many

applications in petroleum engineering fields. Many studies

in the literature introduced the application of ANN in the

area of formation evaluation and rock characterization

[18–24]. A typical neural network consists of three types of

layers; input layer, hidden layer, and output layer [25].

These layers are connected by a set of weights and biases

which are tuned during the optimization process of the

network to control the prediction performance of the net-

work [26]. The connection between the network compo-

nents mimics that of the biological neural system in

handling and processing the data [27]. The network is

usually trained with different learning algorithms to opti-

mize the network and to control the processing of the

neurons [28]. These neurons are considered the elementary

elements from which any neural network is constructed

[29].

2.5.1.1 Neural network application to predict UCS In this

study, a new model was developed using the obtained

dataset to predict UCS while drilling using ANN. A spe-

cially designed MATLAB program was used to feed the

network with the input parameters to estimate UCS. Fig-

ure 2 shows a schematic diagram for the developed net-

work architecture. The model development passes through

three main stages; these are the training process, the testing

process, and the validation process. First, the obtained

dataset was randomly stratified into two sets; training and

testing set for building the model. Splitting the data was in

the way that the testing set was within the same range as

the training set. During the training process, the network

was trained with the data to tune its parameters to achieve

the highest possible accuracy. Then, the results were

evaluated and compared to the actual output (UCS) values

Fig. 1 Relationship strength

between the output (UCS) and

the input parameters in terms of

correlation coefficient (R)
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Fig. 2 The typical schematic architecture of the developed network
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based on two main evaluating factors; these were correla-

tion coefficient (R), and average absolute percentage error

(AAPE). The formulas used for estimating these factors (R

and AAPE) are stated in Eqs. 8 and 9. Thereafter, the

developed network was tested and cross-validated using

hidden testing set to check the performance of the devel-

oped network while using unseen data.

AAPE ¼
P UCSmeasured�UCSpredicted

UCSmeasured

���
���� 100

n
ð9Þ

where; n is the number of the data points used.

2.5.1.2 ANN-model optimization The accuracy of the

prediction process depends mainly on the tuning process of

the network parameters. These parameters include:

• Data splitting ratio

• Number of hidden layers

• Number of neurons in each hidden layer

• Network function

• Type of transfer functions

• Type of training algorithm

• Learning rate

The developed network was trained using the stochastic

gradient descent optimization algorithm which is consid-

ered the most popular optimization algorithm in AI appli-

cations. It depends on updating the network parameters

iteratively in the gradient direction of the objective func-

tion. Through every update, the algorithm helps the model

gradually converge to reach the optimal value of the

objective function. It involves taking random values of the

model hyperparameters and adjusting them iteratively

based on the available options to reduce the loss function

eventually. Through each iteration, the model is guided to

update the model hyperparameters to reduce the error of

the next iteration using the backpropagation technique.

The developed MATLAB code was designed to gener-

ate different combinations of the aforementioned parame-

ters with their available options listed in Table 3. The

network was run with several trials and each trial included

using one of the generated combinations of ANN param-

eters. During each trial, the results were tested, and the

prediction performance was evaluated based on the com-

parison between the actual UCS values and the predicted

ones, indicated from the evaluating factors (R, and AAPE).

The target of the optimization process was to identify the

ANN parameters’ combination which would result in the

highest prediction accuracy. This would be inferred from

the highest R-value between the predicated and actual UCS

values accompanied by the lowest AAPE between them.

The optimized network parameters were:

• Data splitting ratio: 70/30 ratio for training and testing

respectively

• Number of hidden layers: single hidden layer

• Number of neurons in each hidden layer: 30 neurons

• Network function: fitnet

• Type of transfer functions: tan-sigmoidal function

(tansig)

• Type of training algorithm: Bayesian Regularization

backpropagation (trainbr)

• Learning rate: 0.12

The proposed model was developed by training the

network with 70% of the dataset (1240 points) while 30%

of the data (531 points) was used for testing the perfor-

mance of the model. The results of the prediction process

showed that the predicted UCS values significantly mat-

ched with the actual values. This obvious match is indi-

cated from the high R-value which reached 0.99 between

the predicted and actual UCS values for both the training

and testing processes as shown in the cross-plots (Fig. 3a

and b). These cross-plots inferred that the predicted UCS is

so close to the actual ones as the plotted data considerably

coincide with the forty-five-line with a correlation novalety

coefficient exceeded 0.99 between the actual and predicted

UCS values. This confirms the high accuracy of the pre-

diction of The UCS values using the developed ANN-

model.

2.5.2 Adaptive neuro-fuzzy inference system (ANFIS)

Fuzzy Logic (FL) systems are structured based on fuzzy

techniques that resemble human reasoning during infor-

mation processing. Its technique emulates the way of

human decision making involving all intermediate possi-

bilities. Adaptive fuzzy systems depend on the automatic

Table 3 Summary of the tested ranges of the network parameters

during the optimization process

Network parameter Tested options

Splitting ratio 70/30 80/20 90/10

No. of hidden layer(s) 1–3

No. of neurons 5–30

Network function fitnet newdtdnn newnarx

newelm newfftd newff newlrn

Transfer function (s) tansig purelin

logsig softmax

hardlims tribas

Training algorithm (s) trainbr trainlm

trainbfg traingdx trainoss

Learning rate 0.01–0.9
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online synthesis and tuning of fuzzy controller parameters

using online data to continually ‘‘learn’’ the fuzzy con-

troller. Recently, different adaptive fuzzy systems are used

to simulate complex, and nonlinear systems; adaptive

neuro-fuzzy inference system (ANFIS), Event-triggered

adaptive fuzzy systems, etc. [30–32]. From the function-

ality perspective, there are almost no constraints on the

node functions of the ANFIS network except piecewise

differentiability. While from the structure perspective, the

only limitation of network configuration is that it should be

a feedforward network. According to these minimal

restrictions, ANFIS applications are immediate and

immense in various areas [33].

Additionally, many studies in the literature introduced

ANFIS as a reliable predictive tool with several applica-

tions in the petroleum industry [34–37]. Therefore, ANFIS

was selected in this study to build the predictive model of

UCS. ANFIS is an integrated supervised learning algorithm

for processing data that combines the concepts of neural

networks and fuzzy logic utilizing a fuzzy inference system

[38, 39]. Such a combination between neural networks and

fuzzy logic provides an advantage of easy translation of the

final system into a set of if–then rules, and the fuzzy system

can be viewed as a neural network structure with knowl-

edge distributed throughout connection strengths. It fol-

lows Takagi–Sugeno inference system which employs

conventional Boolean logic (i.e., zeros and ones) while

analyzing the systems using a set of fuzzy IF–THEN rules

[33].

ANFIS uses a hybrid learning algorithm to identify

parameters of Sugeno-type fuzzy inference systems. This

learning algorithm uses the least-squares method and the

backpropagation gradient descent method for training

membership function parameters of the Fuzzy Inference

System (FIS) to imitate a certain training dataset. The

learning algorithm works in two main steps. First, in the

forward phase, consequent parameters identify the least-

squares estimate. In the backward phase, the error signals

represented by the derivatives of the squared error con-

cerning each node output, propagate in the backward

direction into the input layer. During the second step, the

parameters are updated by the gradient descent algorithm.

A combination of the gradient descent algorithm and a

least-squares algorithm is used as an effective tool for

investigating the optimal parameters with much faster

convergence. This is because it helps reduce the search

space dimensions used by the backpropagation method

[40].

2.5.2.1 ANFIS application to predict UCS The same fil-

tered dataset was used to build the ANFIS-model. Data

were split randomly using MATLAB for selecting the best

partitioning ratio that resulted in the highest prediction

accuracy. Two different algorithms were tested while

building the model; these are Grid partitioning; genfis-1,

and subtractive clustering; genfis-2. No reasonable results

were observed when genfis-1 type was applied, however,

subtractive clustering type (Sugeno-Fis type) yielded much

better results with accepted accuracy. The developed

ANFIS-model was optimized by testing different cluster

radii and evaluating the prediction accuracy in terms of R-

value and AAPE as listed in Table 4. The optimized

ANFIS-model of Sugeno-Fis type with a clustering radius

of 0.3 and splitting ratio of 70/30 for training and testing,

respectively, resulted in acceptable prediction accuracy

with an R-value exceeds 0.97 between the actual and

predicted UCS values compared to the other tested options.

Figure 4a and b shows a high-degree matching between the

predicted UCS values using the optimized ANFIS-model

and the corresponding actual ones with AAPE of 7.85% for

the testing process.

2.5.3 Support vector machine (SVM)

SVM is one of the AI tools that can handle highly complex

problems for both regression and classification purposes. It

Fig. 3 Crossplots between the

predicted and actual UCS values

for a training process, and

b testing process, using the

developed ANN-model. This

shows how the predicted values

were so close to the actual ones
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provides a larger space for training the data features in

hyperplanes by transforming the data into space with a

higher degree of dimensions [41]. SVM uses a statistical

learning algorithm for solving quadratic-programming

problems by minimizing generalization errors to reach the

optimized solution [42]. SVM has been introduced as an

effective predicting and classifier tool in the oil and gas

industry through many studies in the literature [43–45].

2.5.3.1 SVM application to predict UCS Another model

was developed using the same dataset using SVM to pre-

dict UCS of the drilled formations from the drilling

parameters (ROP, SPP, GPM, ROP, T, and RPM). Splitting

the data into a 70/30 ratio for training and testing the

model, respectively, the model was tested using two kernel

functions; polynomial and Gaussian functions, with dif-

ferent tuning parameters; kernel option, epsilon, lambda,

verbose, and C-value). Thereafter, the model performance

was evaluated in terms of R-value and AAPE between the

predicted and actual UCS-values. The SVM-model with

the optimized parameters listed in Table 5, yielded to

predicting the UCS values with an R-value of 0.94 and

AAPE of 6.5% when they are compared with the actual

values during the testing process. The results show that the

predicted UCS values using the SVM model agreed in a

satisfactory degree with the actual ones as shown in the

cross-plots; Fig. 5a and b.

The results of the testing process of the three developed

models, listed in Table 6, show that the ANN-model is

more accurate with AAPE of 3% between actual and

predicted UCS values, and outperforms the two other

models when tested using an unseen dataset. This obser-

vation is also confirmed by the significant match between

the actual and predicted UCS values from the ANN model

when a continuous profile therebetween is plotted along

with the section understudy for both the training and testing

processes (see Fig. 6a and b). Thus, it is more recom-

mended to use the ANN-model as a robust tool for pre-

dicting the UCS of the downhole formations from the

drilling mechanical parameters while drilling.

3 New correlation development
for estimating UCS

The ANN-model was converted from a black-box into a

white-box model by extracting an empirical correlation that

mimics the developed network. The derived correlation

Table 4 Optimizing the

ANFIS-model with different

cluster radii

Cluster Radius R-value (Train) R-value (Test) AAPE (Train), % AAPE (Test), %

0.3 0.98 0.97 7.75 7.85

0.5 0.93 0.94 17.53 15.91

0.7 0.92 0.92 19.73 17.56

0.9 0.84 0.85 27.89 25.61

Fig. 4 Cross-plots between the

predicted and actual UCS values

for a training process, and

b testing process, using the

developed ANFIS-model

Table 5 Optimization of the SVM-model tuning parameters

Parameter Optimized value

Kernel function Gaussian

Kernel option 5

Epsilon 1.00E-05

Lambda 1.00E-05

Verbose 1

C-value 3000
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Fig. 5 Cross-plots between the

predicted and actual UCS values

for a training process, and

b testing process, using the

developed SVM-model

Table 6 Comparison of the

prediction performance of the

three developed models

AI tool R-value (Train) R-value (Test) AAPE (Train), % AAPE (Test), %

ANN 0.99 0.99 3.03 3.48

ANFIS 0.98 0.97 7.75 7.85

SVM 0.98 0.92 2.52 6.53

Fig. 6 Predicted UCS versus

actual UCS for a training

process, and b testing process,

using the developed ANN-

model
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includes the weights and biases that control the connections

between input/hidden layers and hidden/output layers as

described in Eq. 10. Table 7 lists the weights and biases of

the developed correlation.

UCS

¼
XN

i¼1

w2i

2

1þ e�2 w1i;1
WOBnþw1i;2

Tnþw1i;3
SPPnþw1i;4

RPMnþw1i;5
ROPnþw1i;6

GPMnþb1i

� � � 1

 !" #

þ b2

ð10Þ

where, UCSn is the normalized UCS value, N is the number

of neurons in the hidden layer, w1 is the weights between

input/hidden layers, w2 is the weights between hidden/

output layers, b1 is the biases associated with the hidden

layer, and b2 is the bias associated with the output layer.

To use the developed correlation, the input parameters

should be normalized between - 1 and ?1 as shown in

Eq. 11.

Y ¼ 2� X � Xmin

Xmax � Xmin

� �
� 1 ð11Þ

where Y is the normalized input value, X is the input

parameter value, Xmin is the minimum value of the input

dataset, and Xmax is the maximum value of the input.

Thereafter, the normalized value of the output (UCSn)

can be calculated using Eq. 10 with the weights and biases

listed in Table 7. Finally, UCSn should be de-normalized to

get the UCS value using Eq. 12.

Table 7 Weights and biases of the developed ANN-based correlation

Neuron index (i) w1 w2 b1 b2

w1i;1 w1i;2 w1i;3 w1i;4 w1i;5 w1i;6

1 - 1.889 1.230 - 0.861 0.646 - 1.194 2.556 4.958 - 1.638 7.474

2 11.907 - 11.266 0.561 1.617 - 1.424 - 5.727 1.269 2.832

3 - 1.322 - 0.938 1.070 - 5.527 - 0.797 2.902 3.221 3.705

4 - 4.292 2.893 - 2.868 4.519 - 6.530 0.308 2.405 2.754

5 - 2.189 - 5.351 4.680 - 10.042 - 2.917 0.416 - 0.500 6.145

6 4.306 - 3.375 - 6.420 - 3.917 3.207 0.265 2.078 - 3.121

7 2.666 - 6.311 - 2.892 - 1.257 - 0.483 - 4.036 3.203 - 0.076

8 - 3.030 0.239 2.324 2.228 2.098 - 1.231 - 1.806 - 0.009

9 - 6.309 6.524 - 0.098 5.616 1.683 - 2.462 - 2.484 1.041

10 - 8.449 3.170 - 3.687 - 1.040 - 3.802 - 0.766 - 0.979 - 1.547

11 - 0.587 0.836 2.650 0.554 0.004 1.893 3.867 - 0.472

12 - 4.746 - 0.182 - 0.622 2.822 - 2.892 - 1.077 4.710 4.262

13 - 1.464 - 0.937 - 0.788 2.178 - 1.048 - 1.921 6.158 0.341

14 1.223 1.506 0.546 - 0.068 2.420 - 1.123 5.293 - 1.502

15 - 5.561 8.856 0.012 - 1.790 3.302 3.320 2.125 - 1.015

16 - 5.832 3.825 4.823 1.110 1.027 - 2.951 1.154 -1.235

17 - 0.667 0.621 - 2.345 - 3.388 - 2.869 5.157 - 4.217 - 0.217

18 3.750 - 9.610 - 0.439 - 0.754 3.781 - 4.160 - 2.113 - 1.718

19 - 5.108 5.871 - 0.343 6.678 4.217 5.320 - 0.861 1.115

20 2.507 - 0.106 - 6.443 - 7.317 7.858 1.834 - 0.843 - 0.115

21 - 2.107 - 2.828 - 4.849 1.117 6.791 - 4.217 0.728 - 0.519

22 - 2.651 2.028 1.636 - 4.181 5.938 1.497 1.464 - 1.488

23 2.412 - 0.008 - 1.950 - 3.774 2.204 1.937 3.913 - 2.369

24 2.864 - 5.711 - 0.256 - 2.595 2.538 - 2.429 1.694 - 1.543

25 2.042 - 2.085 0.456 - 4.835 0.825 - 2.308 - 2.891 - 0.193

26 6.663 3.848 3.432 0.335 3.462 5.616 1.935 - 2.993

27 - 2.696 3.981 2.151 5.919 - 2.138 1.477 - 2.155 - 5.736

28 - 1.913 2.223 0.383 - 1.427 - 3.111 - 0.162 7.828 - 3.977

29 0.814 6.396 - 0.359 - 2.239 0.011 5.454 - 1.378 4.639

30 0.560 - 2.198 2.053 3.772 0.653 - 2.164 - 2.710 - 2.616
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UCS ¼ 8174:02� UCSn þ 9201:04 ð12Þ

4 Model validation

4.1 Phase # 1

To evaluate the performance of the developed ANN-based

correlation, it was tested using the validation dataset. This

dataset included 2175 points comprising drilling parame-

ters and the corresponding UCS values of formation

interval of 2175 ft. These data were collected from another

well (Well B) from the same field under study. It should be

noted that the validation dataset was not used while train-

ing and testing the model. The results showed an obvious

agreement between the predicted and actual UCS values

indicated from the R-value which exceeded 0.98 and AAPE

of 4.2%. Figure 7 shows the predicted UCS values versus

the actual ones along with the depth interval. The results of

the validation process demonstrated the high accuracy of

the developed ANN model in estimating the UCS values of

the drilled formations while drilling.

4.2 Phase # 2

In this phase, the developed correlation was validated by

comparing its performance with previously published cor-

relations. A dataset of 2175 points from Well B was used

for testing the developed ANN-correlation against some of

the previously published correlations listed in Table 1. The

results confirmed the robustness of the developed ANN-

based correlation for predicting the UCS values with high

accuracy in terms of the lowest AAPE (4.16%) between the

predicted and measured UCS values, compared to the

published correlations as shown in Fig. 8. Additionally, the

results of the ANN-based correlation were plotted in a

cross plot versus those obtained from Eq. 1 (see Fig. 9)

which resulted in the lowest AAPE (24.71%) among the

other published correlations. Figure 9 shows the significant

deviation of Eq. 1 results from the forty-five line which

indicates that its results are far from the actual UCS values.

On the other hand, the results of the developed ANN-based

correlation significantly coincided with the forty-five line

to confirm the high accuracy of its prediction process.

5 Conclusions

This study presents a novel technique for predicting UCS

values of the downhole formations while drilling in a time-

and cost-effective way. This involved developing new AI-

based models to predict UCS based on the low-cost

mechanical drilling parameters other than using the high-

cost well-log data. Besides, the usual availability of the

mechanical data during the drilling operation makes it

possible to predict the UCS values on a real-time basis

using the developed correlations. In this study, three

Fig. 7 Predicted UCS versus actual UCS for the validation process

using data from Well B

Fig. 8 Comparison of the prediction accuracy of the developed ANN-

based correlation against the preciously published correlations in

terms of AAPE, %
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different AI tools (ANN, ANFIS, and SVM) were applied

to develop the proposed models using the mechanical

drilling parameters (WOB, T, ROP, SPP, RPM, and GPM)

as inputs for these models. The models were developed

using 1771 actual data from a Middle Eastern field to be

optimized. The ANN-model outperformed ANFIS- and

SVM-models with a considerable match between the

predicated and actual UCS values inferred from the high R-

value of 0.99 and AAPE of 3.48%. An empirical correla-

tion was then extracted to convert the model into a white-

box model. The results of the validation process of the

ANN-based correlation confirmed its robustness to predict

the UCS values of the drilled formations while drilling with

high accuracy. This was indicated from the significant

match between the predicted UCS values and the actual

ones with R-value exceeded 0.98 and AAPE of 4.2%.

The performance of the developed models is guaranteed

whenever they are applied using a dataset within the same

range of the data used for training the AI model. For other

fields with different data ranges and geologic features, it is

recommended to update the models with these data to

update the network weights to guarantee a viable prediction

process with high accuracy.
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