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Abstract
Scoliosis is a medical condition where a person’s spine has a sideways curve. The Cobb angle quantifying the degree of

spinal curvature is the gold standard for a scoliosis assessment. Recently, the deep learning methods based on segmentation

and landmark estimation both achieve high performance for automated Cobb angle measurement on X-rays. However, we

notice that these methods utilize segmentation and landmark information separately. In this light, we propose an automated

architecture that uses combined segmentation with landmark information to estimate 68 landmarks of 17 vertebrae. In

addition, we consider spinal curvature described by 68 landmarks as a constraint to estimate the Cobb angle. Extensive

experiment results which test on 240 X-rays demonstrate that our method improves the landmark estimation performance

effectively and reduces the Cobb angle error.
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1 Introduction

Adolescent idiopathic scoliosis (AIS) is defined as a

spinal torsional deformity combined with different degrees

of rotational spinal deformity [1]. According to the current

literature, 0.47–5.2% [2] of children have different degrees

of scoliosis.

The Cobb method [3] is considered as a classical and

efficient way to quantitatively measure the angle of scol-

iosis both on the coronal and the sagittal plane such as the

Cobb angle [4]. The Cobb angle is the angle between the

two most tilted vertebrae, specifically between the upper

endplate of the uppermost vertebra and the lower endplate

of the lowest vertebra, as shown in Fig. 1. However,

manual Cobb angle measurement is time-consuming on

X-rays with a low contrast because clinicians find four

landmarks on every vertebra and compare the slope of

them to measure the Cobb angle.

In this paper, we propose an automated architecture for

the Cobb angle measurement. The architecture uses both

segmentation and landmarks of vertebrae to supervise

estimated landmarks. In addition, the architecture considers

spinal curvature as a constraint to estimate the Cobb angle.

2 Related work

Recent studies based on deep learning have proposed some

effective methods for the Cobb angle measurement on

X-rays. These methods can be divided into two categories:

(1) direct landmark estimation methods, and (2) indirect

segmentation methods.

The direct landmark estimation methods aim to directly

capture landmarks of interest on X-rays, which are like the

manual process. Such as landmarks with a structured multi-

output regression network are predicted in [5]. The use of
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Boost-net to find landmarks by transforming the feature

space is proposed in [6]. A series of methods (MVC-Net,

MVE-Net) that use multi-view (anterior-posterior and lat-

eral) X-rays together joint features of multi-view X-rays

[7, 8]. An AEC-Net uses calculated Cobb angles by rules

and estimated angles to correct the Cobb angle error [9].

The indirect segmentation methods aim to segment the

vertebrae of interest on X-rays and then measure the Cobb

angle based on the segmentation. Such as in [10], an

automated model is proposed for spine segmentation, and a

polynomial to fit the spinal curvature. Owing to the high-

level performance of U-Net [11] in the medical field,

numerous studies are based on the use of U-Net, such as

dense U-Net [12], residual U-Net [13] and shape-aware

U-Net [14]. In [15], an automatic DU-Net segmenting the

spine based on deep learning is proposed, and a sixth

polynomial to characterize the spinal curvature. In [16], an

MBR-Net based on U-Net to segment the images and a

minimum bounding rectangle is considered vertebrae. The

Mask RCNN [17] is used to segment vertebrae, and the

centers of segmentation are used to calculate the Cobb

angle [18]. The U-Net is used to segment lumbar vertebrae

and estimate the lumbar lordosis angle on lateral X-rays in

[19]. In [20], the Mask RCNN is used to segment vertebrae

and a small network to estimate landmarks on anterior-

posterior X-rays.

These two methods both achieve high performance for

the Cobb angle measurement. However, these methods

separately use the segmentation and landmark information

to supervise networks. In this light, we propose an auto-

mated architecture which uses combined segmentation and

landmark information. It takes the segmentation as an

auxiliary task to estimate landmarks and uses spinal cur-

vature to estimate the Cobb angle on anterior-posterior

X-rays. The experiment results show that our method

achieves smaller error on landmark and Cobb angle

estimation.

3 Methods

3.1 Overview

In this study, we propose a landmark and Cobb angle

estimation network (LCE-Net). The architecture consists of

two parts: (1) a landmark estimation network (LEN), and

(2) a Cobb angle estimation network (CEN). The LEN first

estimates 68 landmarks of 17 vertebrae (12 thoracic ver-

tebrae and 5 lumbar vertebrae) by taking segmentation as

an auxiliary task. Then, the CEN uses the spinal curvature

described by 68 landmarks to estimate the Cobb angle by

considering spinal curvature as a constraint.

3.2 Landmark estimation network

We assume that the locations of the landmarks and the

segmentation have a potential relationship in a physical

space. The LEN combines the features of two kinds of

networks: (1) the network for segmentation (NFS) and (2)

the network for landmark estimation (NFL). Because of the

FCN [21] achieves high performance for image segmen-

tation, the LEN takes the FCN as the NFS and a simple

network composed of fully convolutional layers as the

NFL. The LEN combines the segmentation and landmark

information by concatenating features of the NFS and NFL.

The architecture of the LEN is shown in Fig. 2. Input-

ting an X-ray, the LEN outputs a pixel-wise segmentation

heatmap and landmark coordinates:

I ! h; c

where I means an image, h means an estimated heatmap

and c means estimated landmark coordinates formatted as

EC ¼ ½xe1; ye1; . . .; xe68; y
e
68�. The landmarks are arranged

from top to bottom and from left to right. We scale the

estimated landmarks and ground-truth landmarks between

0 and 1. Estimated coordinates are normalized by a sig-

moid function: EC ¼ 1
1þe�x. Ground-truth coordinates are

normalized by GC ¼ ½xg1=w; y
g
1=h; . . .; x

g
68=w; y

g
68=h�, where

w and h are the width and height of the image size.

Two types of loss functions are used in training stage:

(1) a mean squared error loss is used for comparing esti-

mated landmarks to ground-truth landmarks per image:

Fig. 1 a An anterior-posterior X-ray image showing how to measure

the Cobb angle. Green points are the four landmarks of every

vertebra. Blue points are the landmarks of the two most tilted

vertebrae. b Corresponding manually generated binary mask
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Lmse ¼ 1

N

XN

i¼1

ðECi � GCiÞ2 ð1Þ

where N means the number of coordinates, 136 (68 x-co-

ordinates and 68 y-coordinates) in our experiment. (2) A

cross-entropy error loss is used for comparing estimated

segmentation heatmaps to ground-truth heatmaps per

image:

Lcee ¼ � 1

WH

XWH

i¼1

ðy log ŷÞ ð2Þ

where W and H mean the width and height of the image, y

means the ground-truth label and ŷ means the estimated

probability of every pixel. Ground-truth segmentation

heatmaps are constructed by modeling pixels of vertebrae

as 1 and background as 0. The full training loss of the LEN

is Loss ¼ Lmse þ u� Lcee where u is the weight to

balance the segmentation and landmark estimation task,

0.05 in our experiment.

As ablation experiments, we design a series of networks

that combine different level features of the NFS and the

NFL. These architectures are shown in Fig. 3. All convo-

lutions except the last layer of the LEN in our proposed

model use a 3 � 3 convolution kernel with a stride of 1

(with padding = 1); the last convolution uses a 4 � 2

convolution kernel, followed by batch normalization (BN)

[22], prelu, and a dropout with a 25% probability [23].

3.3 Cobb angle estimation network

We found that a small landmark error can cause a big Cobb

angle error because the slope of drawn lines shown in

Fig. 1 may change too much. Addressing this issue, we

assume that spinal curvature and the Cobb angle have a

potential relationship. Unlike the manual measurement

process which compares the most oblique vertebrae, the

CEN uses spinal curvature described by 68 estimated

landmarks as a constraint to estimate the Cobb angle. The

architecture is shown in Fig. 4. The CEN takes EC as input

and output the estimated Cobb angle:

c ! a

where a means the estimated Cobb angle. We also scale

estimated Cobb angles and ground-truth Cobb angles

between 0 and 1. Estimated Cobb angles are normalized by

a sigmoid function: EA ¼ 1
1þe�x. Ground-truth Cobb angles

are normalized by GA=180�. A mean squared error loss is

Fig. 2 An illustration of the LEN. The gray part is the segmentation

network based on an FCN. The blue part is the landmark estimation

network and it uses fully convolutional networks to estimate

landmarks. Inputting a 3-channel image, the LEN outputs a binary

mask heatmap and 136 estimated coordinates of 68 landmarks
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also used for comparing estimated angles to ground-truth

angles:

Lmse ¼ 1

N

XN

i¼1

ðEAi � GAiÞ2 ð3Þ

where N means the number of images.

4 Experiments

4.1 Dataset

Our dataset consists of 1200 spinal X-rays with an average

pixel resolution of 957 � 491 provided by a local hospital.

Four landmarks and the segmentation mask of each ver-

tebra are labeled by two professional clinicians. Every

clinician labels the half images, and labels are checked by

each other. Each clinician has 8 years of experience. We

scaled all images to a pixel resolution of 512 � 256. The

range of the Cobb angle is distributed from 1:56� to 91:74�

in our dataset.

4.2 Training details

The experiments were run on a PC with Ubuntu 14.04, and

an NVIDIA GeForce GTX 1080Ti GPU. The code

implementation of the architecture is based on the Pytorch

framework in Python. The learning rates of LEN and CEN

(a) (b)

(c) (d)

Fig. 3 A series of compared networks which combine different level features as ablation experiments. The only differences between these

models are the different concatenating operations

136 128 full connec�on

64

32

Cobb 
angle

Fig. 4 An illustration of the CEN. Inputting an estimated landmark

vector, CEN outputs the Cobb angle scaled between 0 and 1
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both are set to 0.001 and the momentum is set to 0.9 during

the stochastic gradient descent (SGD). The 1200 X-rays are

divided into the training set, validation set, and test set

randomly in every training session, where the proportion is

6:2:2. The results are the average performance of 5-folds

validation.

4.3 Performance metrics

For the landmark estimation, we use the landmark mean

absolute error (LMAE) to calculate the error. The LMAE is

defined as follows:

LMAE ¼ 1

M

1

N

XM

j¼1

XN

i¼1

jECi � GCij ð4Þ

where M is the number of images and N is the number of

coordinates per image, 136 (68 x-coordinates and 68

y-coordinates) in our experiments.

For the Cobb angle estimation, we use the angle mean

absolute error (AMAE) and symmetric mean absolute

percentage error (SMAPE) to calculate the error:

AMAE ¼ 1

M

XM

j¼1

jAngleest
i � Angle

gt
i j ð5Þ

SMAPE ¼ 100%

M

XM

j¼1

jAngleest
i � Angle

gt
i j

ðjAngleest
i j þ jAngle

gt
i jÞ=2

ð6Þ

where Angleest
i means estimated angles or calculated angles

by estimated landmarks, and Angle
gt
i means ground-truth

angles. The method of calculating angles by landmarks is

like the manual process shown in Fig. 1:

Angle ¼ j arctan
y

up
2 � y

up
1

xup
2 � xup

1

� arctan
ylow

2 � ylow
1

xlow
2 � xlow

1

j ð7Þ

where xup
i and yup

i mean landmark coordinates on the upper

endplate of the uppermost vertebra, xlow
i and ylow

i mean

landmark coordinates on the lower endplate of the lowest

vertebra. The upper and lower endplates are the two edges

of the two most tilted vertebrae such as the two red lines

shown in Fig. 1.

5 Results and discussion

5.1 Results

We compare our framework with other methods. We also

compare the LEN with the NFL for landmark estimation.

The results are shown in Table. 1. From the results, the

LEN reduces the error of landmark estimation and the LCN

reduces the Cobb angle error. As shown in Table 2, we also

compare the landmark estimation performance on a series

of networks which combine different level feature shown

in Fig. 3. The data in Tables 1 and 2 are calculated by

Eqs. 4, 5 and 6.

From Table 1, the LEN achieves less landmark esti-

mation error due to the use of more information. It uses the

information of two tasks to supervise the landmark esti-

mation while existing methods only use single information.

The CEN achieves a smaller error of the Cobb angle esti-

mation than the LEN due to considering spinal curvature as

a constraint. It captures the relationship of the spinal cur-

vature and the Cobb angle, which is more robust against

the rules.

From Table 2, as ablation experiments, the LEN and

models a to d almost have the same performance. They

both achieve less error than the LEN without the seg-

mentation branch due to using the similar multi-task

Table 1 Comparison with existing methods on X-rays

LMAE (%) AMAE (�) SMAPE (%)

Indirect segmentation methods

Tu et al. [15] – 6:32 � 4:17 32:61 � 15:74

MBR-Net [16] – 4:96 � 3:74 26:91 � 13:11

Pan et al. [18] – 10:58 � 7:23 44:25 � 28:12

Direct estimation methods

Boost-Net [6] 1:89 � 1:30 7:13 � 4:06 20:95 � 16:30

Sun et al. [5] 1:92 � 1:22 9:51 � 7:64 36:76 � 26:58

MVC-Net [7] 1:24 � 1:03 7:79 � 5:26 27:12 � 23:63

AEC-Net [9] 7:48 � 4:57 25:83 � 21:90

Ours

LEN 0:89� 0:81 3:73 � 2:97 24:51 � 17:25

LEN ? CEN 3:15� 3:09 19:77 � 15:98

We do not calculate the LMAE of indirect segmentation methods

The bold means the best result (such as the smallest error)

Table 2 Comparison with a series of networks which combine dif-

ferent level features

LMAE(%)

LEN 0:89� 0:81

a 0:96 � 0:89

b 0:98 � 0:85

c 0:94 � 0:89

d 0:92 � 0:84

LEN without the segmentation branch 1:57 � 0:97

The bold means the best result (such as the smallest error)
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network architecture. Moreover, the LCE which uses most

level features achieves higher performance than others.

Figure 5 shows some visual results of the proposed

method and existing methods.

5.2 Discussion

Existing methods directly estimate landmarks or segment

vertebrae, and then they use rules to calculate the cobb

angle such as calculating the center points of vertebrae [18]

and fitting lines to be bounding box of vertebrae [16]. This

may lead to a big angle error while there is a small seg-

mentation error and landmark error. The LCE-Net avoids

this issue due to two parts: (1) the LEN uses segmentation

as an auxiliary task giving more information to estimate

landmarks, which leads to more information utilization,

and (2) the Cobb angle is estimated by spinal curvature

instead of calculated by 7. Therefore, this method is more

robust than the rules while some pivot landmarks are

estimated with errors. The results demonstrate that our

method is more robust both for landmark and angle esti-

mation on X-rays.

This study has limitations. The LCE-Net uses a multi-

task network to estimate landmarks, and this leads to more

labeled information. For the same reason, the LCE-Net

increases the computational cost, luckily not too much, and

the computation time of the developed system is 0:16 �
0:005 in the test stage. In terms of practical perspective, our

method can meet the time and cost requirement to be

integrated into clinicians’ workflows.

6 Conclusion and future studies

In this paper, we first notice that existing methods for the

Cobb angle estimation on X-rays use the segmentation and

landmark information separately. To use the combined

information, we propose a multi-task network that takes

segmentation as an auxiliary task to estimate landmarks. It

achieves higher performance than existing methods on

landmark estimation. In addition, to avoid a big angle error

caused by a small landmark error, we propose a Cobb angle

estimation network that uses spinal curvature described by

68 landmarks to estimate the Cobb angle instead of pivot

landmarks to calculate by rules.

As future work, we plan to analyze whether we can

apply our methods on 3-D images or combine X-rays in

different directions. Future studies will also explore whe-

ther our methods can be used to estimate other clinical

parameters based on spinal curvature.
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