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Abstract
In this paper, we address the problem of automatic clothing parsing in surveillance images using the information from user-

generated tags, such as ‘‘jeans’’ and ‘‘T-shirt.’’ Although clothing parsing has achieved great success in the fashion domain,

it is quite challenging to parse target under practical surveillance conditions due to the presence of complex environmental

interference, such as that from low resolution, viewpoint variations and lighting changes. Our method is developed to

capture target information from the fashion domain and apply this information to a surveillance domain by weakly

supervised transfer learning. Most target tags convey strong location information (e.g., ‘‘T-shirt’’ is always shown in the

upper region), which can be used as weak labels for our transfer method. Both quantitative and qualitative experiments

conducted on practical surveillance datasets demonstrate the effectiveness of the proposed surveillance data enhancing

method.

Keywords Clothing parsing � Transfer learning � Weakly supervised learning

1 Introduction

Clothing parsing aims to label specific items on the level of

pixels. Though clothing parsing is a relatively new research

area in sensing data, it has attracted increasing levels of

attention across numerous fields on humans, ranging from

person tracking [1–3], body shape estimation [4] and

content-based image retrieval [5] to fashion images parsing

[6]. Target parsing in fashion has received the most

attention [7–11] because fashion images are often depicted

in stable illumination with a uniform viewpoint, a high

resolution and sharp edges.

Compared to its fashion applications, target parsing

applied under surveillance camera has rarely been studied.

Some related work only focuses on extracting an entire

target region [12], providing labels on the image-level

[13, 14], or recognizing items through a rough region

[15, 16], diverging from the conditions of genuine pixel-

level clothing parsing. Associated difficulties are twofold.

The first difficulty is the related to complex environmental

interferences, such as lighting changes, viewpoint varia-

tions, low resolution and motion blur. The second difficulty

is related to the endless and painstaking pixel-level labeling

work required to manage innumerable images. Despite

these difficulties, clothing parsing in a surveillance envi-

ronment is of great importance because it can be used as an
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implicit cue signaling a person identity, location and even

occupation, which are all key intelligence clues used in a

security system.

Given the successes of clothing parsing achieved in the

fashion domain, it is natural to conceptualize clothing

parsing in surveillance environments with the aid of

numerous fashion images. However, directly using fashion

images as training data to parse surveillance data remains

challenging due to intrinsic domain differences between

surveillance and fashion environments. Some instances of

failure, such as labels covering on wrong parts or missing

human parts, from MIT dataset are illustrated in Fig. 1.

Some researchers have attempted to apply transfer

learning to cross-domain attribute recognition. The transfer

learning aims to store knowledge (as a ‘‘trained model’’ in

this work) gained while solving one problem and applying

it, which needs to be updated, to a different but relevant

problem [19]. Along this line of reasoning, some early

works [16, 20, 21] used CNN-based domain adaptation

networks to jointly model data from two domains or

employed graph models with latent variables to update

model. However, such feature adaptation methods mainly

focus on attribute transfers. In terms of clothing parsing,

they are inefficient because semantic segmentation can

suffer due to the complexity of the high-dimensional fea-

tures of visual cues, including appearance, shape and

context.

We note that the segmentation region structures of

parsing results share numerous similarities across the two

different domains. As Fig. 2 shows, even when there is a

large appearance gap between the two domains, the cor-

responding gap is smaller in parsing results containing rich

information on the shape, location and area. Based on this

observation, we explored the relationship between a pars-

ing model and a data instance structure, instead of focusing

on similar feature representations. The classic instance-

based transfer learning [22] assumed that certain parts of

the data in the source domain can be used to re-weight

models, originally trained in the source domain, in the

target domain. We broaden the assumption that certain

portions of the data of the target domain are also of central

importance to transferring when they are compatible with a

trained model from a source domain. In this work, we refer

to certain portions of the data that have parsing results with

high confidence values calculated from structure evalua-

tions as fine data, and we refer to the remaining data as

unfit data. With the help of fine data, an iterative instance-

based transfer scheme is introduced to improve the parsing

of surveillance images, as illustrated in Fig. 3. We first

consider a fashion domain as the source domain and a

surveillance domain as the target domain. Then, an initial

parsing model is trained on the fashion domain. Next, the

model is used to parse surveillance images with stripe

constraint, and the fine data are utilized to update a pre-

viously learned parsing model. Our quantitative and qual-

itative experiments demonstrate that the proposed method

can be applied to a new surveillance domain.

This paper is an extension of our previous conference

paper [23]. Compared to our previous work, we present an

improved clothing parsing approach and a new data

Fig. 1 Some failed parsing results derived from an MIT surveillance

dataset [17] with a clothing parsing model directly trained on the

Fashionista dataset [18]. Parsing results for pedestrians with wrong

parts, such as (a), represent more than 15% of the dataset. Parsing

results for pictures with wrong labels, such as (b) and (c), account for

roughly 28%

Different in 
appearance

Similar in  
structure 

Target domain Source domain

Fig. 2 While the appearance of images always varies, the corre-

sponding structures of the parsing results are similar because clothing

is always found within a corresponding spatial region, and all

segments are always integrated into a similar human shape
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selection module, and we present expanded experiments to

evaluate the performance of the model. The major contri-

butions of this work are as follows:

• We address clothing parsing problems of surveillance

environments without the use of pixel-level labels.

• We propose a novel transfer learning method and

design an evaluation strategy to explore useful infor-

mation for pedestrian parsing problems from both

domains.

• Our experiments show the flexibility of the proposed

method, which can be incorporated into any segmen-

tation algorithm and which can derive impressive

results from mainstream fashion and surveillance

datasets.

The remainder of this paper is organized as follows: Sect. 2

presents related work, Sect. 3 introduces the clothing

parsing approach, Sect. 4 describes the technical details of

the transferring scheme, Sect. 5 represents our experi-

mental results, and discussion, and Sect. 6 concludes the

work.

2 Related work

2.1 Clothing parsing

Clothing parsing is an attractive computer vision tool

developed in recent years that is important for enabling

many applications and for developing useful representa-

tions. Different from some similar work like face parsing

[24, 25] focusing on face components or street scene

parsing [26] focusing on outdoor stuff, clothing parsing

mainly considers the parsing work on clothing and body

parts.

Early work is mainly based on low-level features

[6–8, 18, 27, 28]. One of the first approaches developed by

Chen et al. [27] modeled clothing as a grammar of sketch

templates to match input images. Then, a representative

work from Yamaguchi et al. [18] studied human pose

estimations for sequentially attributing labels and for

refining clothing parsing using a retrieval-based approach

[7]. A similar approach developed by Simo-Serra et al. [6]

further explored the shape and location priors for garments

and achieved improved results. Later work [28] tried to

introduce mid-level semantics to facilitate clothing parsing.

Traditional hand-crafted pipelines often combine low-level

features with graphical models, which need to be carefully

designed.

The development of deep learning in recent years has

highlighted new ways to address various problems [29–33]

with high-level features and has achieved considerable

success in the area of clothing parsing. For example,

Yang et al. [34] extended the output of a fully convolu-

tional neural network (FCN) to infer clothing contexts from

superpixels, and Tangseng et al. [9] trained a FCN archi-

tecture with a side-branch network and CRF postprocessing

to achieve impressive results. Meanwhile, He et al. [35]

adopted a lightweight multiscale network to achieve the

fastest levels of parsing performance. However, these

approaches mainly focused on ways to parse clothing in

fashion environments. Here, we address clothing parsing

problems related to surveillance to explore ways to address

complex environmental interference with insufficient

training data. The superresolution technology [36–38]

shows a possible way to enhance surveillance image but

still suffer from insufficient labels. [39] proposed a robust

semi-supervised learning method based on maximum cor-

rentropy criterion. The proposed method could effectively

capture the negative influence of noisy labels from

Fig. 3 Iterative instance-based

transfer scheme. Given an initial

model trained on a fashion

dataset, surveillance images (in

circle 1) are parsed. Then, the

fine surveillance parsing results

(in circle 2) using fine fashion

data are selected by our

selection strategy (in circle 3) to

update the parsing model (in

circle 4), and then, the model is

used to parse the surveillance

images. Finally, the iteration is

stopped with data confidence

converged (related description

will be presented in Sect. 4)
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complex and very high dimension image data which

inspired us to use weak labels to deal with insufficient

labels problem.

2.2 Domain adaptation

A key challenge facing our strategy concerns bridging the

domain gap between the fashion and surveillance domains.

Domain adaptation problems, which are often encountered

in transfer learning, have been widely studied in the realm

of computer vision [22, 40–46] and data mining [47, 48].

However, most transfer methods only address this problem

in relation to different datasets of a single scene. Dong e-

t al. [49] noted that spatial information could benefit the

domain adaption performance in various remote sensing

scenes. But those scenes are still quite different from ours.

For fashion scenes, some nonparametric methods

[7, 50, 51] have been proposed and successfully applied to

existing datasets and newly annotated images. Recently,

some deep learning architectures have also shown transfer

characteristics, such as [52] has used the CNN to deal with

clothing classification transferring problem directly. And

[53] proposed a deep domain adaptation method by

matching the discriminative embedding between source

domain and target domain effectively with pseudo labels,

which obviously improved the domain adaptation perfor-

mance. Some other methods rely on retraining the last few

layers of a network with samples from the target domain or

on combining region matching with CNN matching from

original and target images [54, 55]. In regard to surveil-

lance scenes, some works [56, 57] have tried to identify

shared features to build connections between two datasets.

Other works [58–60] have adapted transfer learning pro-

cesses by using external data or by exploring intra-latent

information to improve the performance of target data.

Unlike the above works, which only focus on single

scenes, some CNN-based methods [20, 61], have been

developed to address domain adaptation problems

encountered between fashion scenes and real-life images.

However, target domain conditions (primarily photographs

of humans taken with mobile phones from a close distance)

remain superior to those of the surveillance domain. While

similar studies of different scenes have used generative

adversarial networks (GANs) [62, 63], such works mainly

address street scene parsing problems of the synthetic and

real domains. The first work to transfer semantic repre-

sentations between the fashion and surveillance domains is

[16] which only uses coarse segmentation as a latent

variable for person re-identification and searching. Com-

pared to the above works, we aim to apply transfer learning

to generate delicate clothing parsing results from surveil-

lance environments. Specifically, we use instance-based

transfer learning to transfer clothing parsing from the

fashion domain to the surveillance domain. Our approach

follows the principles of self-paced learning [64, 65] by

selecting samples iteratively. However, our sample selec-

tion criteria are based on the connections between two

different domains. Moreover, while self-paced learning is

applied to fully supervised settings with labeled samples,

our approach does not apply labels to all target samples.

3 Clothing parsing approach

In this section, we describe the method of parsing clothing

from practical surveillance environments and introduce our

clothing parsing approach.

3.1 Overview of the clothing parsing approach

Clothing parsing can be viewed as a labeling problem in

which each pixel of an image is assigned a semantic label

that can be selected from the background, from images of

skin or hair, or from a large set of clothing items, e.g.,

boots, tights and sweaters. However, images of some gar-

ment items, such as ‘‘ring’’ or ‘‘bracelet,’’ cannot be parsed

in the surveillance domain due to the low quality of such

images. These items are removed from our framework.

Table 1 lists the garment items we use.

Our clothing parsing approach involves two steps as

Fig. 4 shows. For the first step, segmentation algorithms

are used to obtain initial clothing regions. To prove the

effectiveness of our method, we adopt a classic parsing

architecture, the fully convolutional network (FCN) [66] as

our backbone. In the second step, stripes are leveraged to

constrain the segmentation results from previous step. The

positioning of specific item is often fixed within the same

stripe, as pedestrians typically walk and stand upright in

surveillance images, rendering it possible to refine the

results.

3.2 Clothing parsing backbone

All parsing models are available for the clothing parsing

backbone. Here, we use the classic FCN (Fig. 5) as our

target parsing backbone. The FCN is an end-to-end training

that has achieved remarkable results in many areas of

computer vision. According to experiments reported in [9],

the FCN model also performs well when applied to a

fashion dataset. As an extension of the CNN, the FCN

transforms the fully connected layers of the CNN into

convolutional layers to allow the classification net to output

a heatmap and applies a spatial loss to produce an efficient

machine for end-to-end dense learning. However, spatial

information is fuzzy after a couple convolutional layers. To

address this problem, FCN defines a ‘‘skip’’ architecture to
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combine coarse, high-layer information with fine, low-

layer information. Further information on this point is

given in [66]. Here, we alter the last output layer by

increasing the number of classes involved from 21 to 45

(including the background class) to adapt the model to our

surveillance dataset.

3.3 Stripe constraint

The stripe constraint is the postprocessing step after the

clothing parsing backbone is determined and is used to

refine the parsing results. Each item label corresponds to

one stripe, and these ‘‘stripes’’ divide each pedestrian in an

image into a set of horizontal regions. From a collection of

surveillance datasets, we found that a change in the posi-

tioning of the surveillance camera has little impact on the

stripe proportions of pedestrians, as they stand or walk

upright, and their clothing is always typical in a common

surveillance scene. Therefore, we can apply a mask around

each stripe to remove false predictions. A stripe mask only

considers a vertical pixel with two hinge functions defined

as follows:

Table 1 We use 44 garment items for different body parts taken from a fashion dataset as our experimental labels and omit labels that cannot be

parsed

Top region Hair, hat, sunglasses

Upper region Blazer, blouse, bodysuit, bra, cape, cardigan, coat, gloves, jacket, jumper, scarf, shirt, sweater, sweatshirt, T-shirt, tie, top, vest

Lower region Jeans, leggings, panties, pants, shorts, skirt, stockings, tights

Bottom region Boots, clogs, flats, heels, loafers, sandals, shoes, sneakers, socks

Other Bag, belt, dress, romper, skin, suit

(a) Input Image (b) Parsing Model (c) Initial Result (d) Stripe Constraint (e) Output Result 

Fig. 4 Overview of our clothing parsing approach involving two steps (as illustrated in the boxes). The first step can be applied using any parsing

model. The second step, the stripe constraint, is used to refine the initial results derived from surveillance images

96

256

384 384 384
4096 4096 45

45

Fig. 5 Overview of clothing

parsing model. We first train an

end-to-end fully convolutional

networks with 45 classes. Then

given a pedestrian image, we

put it into the network to output

a human item prediction per

pixel
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fnðyÞ ¼
max 0; 1 � ðtn � yÞ=hnf g; y\tn
1; tn � y� bn
max 0; 1 � ðy� bnÞ=hnf g; y[ bn:

8
<

:
ð1Þ

This is shown in Fig. 6b, where y is the pixel position in the

vertical direction and tn, bn denote the top line and bottom

line of the n-th stripe, respectively. And hn denotes the

stripe height, which is calculated as

hn ¼ bn � tn: ð2Þ

The hyperparameters tn and bn are obtained from the stripe

proportion parameters Ctn and Cbn and from the target

image height H by

tn ¼ Ctn � H;

bn ¼ Cbn � H;
ð3Þ

where Ctn and Cbn are obtained from the statistics for a

corresponding pedestrian region of a fashion dataset. Note

that we set the mask of some items (like skin) to 1 without

considering tn and bn, as these items may appear anywhere

in the image. The stripe mask reserves predictions for the

stripe and weakens predictions oriented farther from the

stripe. Then, results are refined through the elementwise

multiplication of the stripe mask and the corresponding

original probability map of the last step. Figure 6 illustrates

the stripe constraint processing step.

4 Surveillance adaptation

In this section, we discuss the technical details of trans-

ferring a fashion-based model to a surveillance dataset with

weak labels.

4.1 Overview of the surveillance adaptation
approach

Images given in fashion datasets with pixel-level labels are

usually applied under ideal imaging conditions. However,

it is unreliable to directly use a model trained to the fashion

domain to predict pixel-level labels in the surveillance

domain as illustrated in Fig. 1. To bridge this gap, we

design a novel instance-based transfer learning method for

surveillance adaptation. Here, the surveillance (target)

domain is quite different from the fashion (source) domain,

while their parsing tasks are similar. Thus, our transfer

method involves transductive transfer learning, which aims

to improve the learning of the target predictive function

[22]. We expand on the original assumptions of instance-

based transfer learning to use certain parts (referred to as

fine data, in this paper) of the data from both domains to

learn the target domain, and we design a confidence eval-

uation to find the fine data. It is worth noting that the fine

data in both domains build a special link between the

fashion and surveillance domains. For the target domain,

we consider data with high confidence as fine data. For the

source domain, we explore data similar to the fine data in

the target domain. Then the fine data which consist of

source images with ground truth and target images with

high quality labels, are set as a new training dataset to

update the parsing model. For domain adaptation, we

propose an iterative parsing method. We initialize the

model based on the fashion dataset. Then, the fine data and

the parsing model are iteratively updated with the inner-

loop of the proposed method. The proposed procedure is

outlined by Algorithm 1.

Stripe

Mask

(a) (b) (c) 

Fig. 6 Overview of the stripe

constraint step. The stripe mask

function, shown as a red line,

constrains the parsing label,

shown in the lighter area, and

prevents the generation of false

results for the darker area
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4.2 Confidence evaluation

Confidence evaluation plays a significant role in the

instance-based transfer learning model, which produces the

criteria for fine data selection processing (in Sect. 4.3). We

combine global and local information to evaluate the

confidence level, which is defined as

C ¼ cg � cl; ð4Þ

where cg and cl are used to evaluate the image segmenta-

tion result performance globally and locally.

The first part of the equation cg is the confidence value

of the deep classification model (CNN-m) [67]:

cg ¼ pðyj ¼ 1jx; hÞ; ð5Þ

where pð�Þ denotes the class label probabilities of the

softmax part of the CNN-m, j represents that the image is

from fine data or unfit data, yj is the prediction for label j, x

is the input data, h is the parameter of the CNN-m. In this

phase, we mainly focus on evaluating pedestrian profile

performance. We collect pedestrian profile images from the

fashion datasets and the PPSS (Pedestrian Parsing in

Surveillance Scenes Dataset) [68] as positive samples and

failed parsing segmentation results derived from our initial

model trained on fashion datasets as negative samples, as

shown in Fig. 7. Only two prediction labels (positive or

negative) are included in the model, which could be con-

sidered a binary classification problem to explore the

parameters of the CNN-m. A parsing result with a high

global confidence cg denotes the achievement of relatively

good results for the pedestrian profiles and vice versa. Most

images included in the fashion datasets only provide a

frontal pose. To enrich the profiles of other poses to train

the CNN-m, we also use the PPSS as an auxiliary database,

as it contains images with pedestrians in various poses and

shares similar human profiles with other datasets such as

experimental datasets MIT and PRID (see Fig. 8), which is

instrumental in calculating generic pedestrians in surveil-

lance scenes with confidence.

The second part of the equation cl denotes the confi-

dence level, which only considers the local positioning and

area of each label. It ensures that hair always appears in the

upper section of an image, that the area ratio of sunglasses

does not cover too much of an image, etc. We define the

confidence level as

cl ¼ minff ðDpðDpÞÞ; f ðDaðDaÞÞg; ð6Þ

where f ð�Þ is the hyperbolic tangent used to normalize the

score between 0 and 1, and where

Positive Samples Negative Samples

Fig. 7 Positive samples are set as pedestrian profile images from the

fashion datasets and the PPSS. Negative samples are collected from

failed parsing segmentation results parsed by our initial clothing

parsing model
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DpðDpÞ ¼
W2 þ H2

maxðDpÞ2
� 1; ð7Þ

DaðDaÞ ¼
W � H

maxðDaÞ � 1; ð8Þ

denote the position score and the area score, respectively.

Here, W and H are the width and height of the input image,

respectively, maxðDpÞ denotes the max Euclidean distance

between each predicted regional centroid (the arithmetic

mean positioning of all points in the region) and the cor-

responding mean position obtained from all the labels from

the fashion datasets, while maxðDaÞ is the maximum dif-

ference observed from the region across all labels. A higher

degree of confidence denotes better parsing results at the

label level.

4.3 Data selection

Data selection (steps 6 and 7 of Algorithm 1) involves two

selection parts. The first is selecting the fine data in the

surveillance dataset. The second is selecting the fine data in

the fashion dataset following the first part.

First, each sample of the surveillance dataset is assigned

to the fine dataset if its C is greater than a threshold a (we

set a to 0.5 in our experiments; more information is given

in Sect. 5.2) or is otherwise assigned to the unfit dataset.

After generating the fine data of the surveillance domain,

we extract features from the last convolutional layer to

calculate the mean feature Fmean. We then assign the fine

fashion data with features similar to those of Fmean to the

fine dataset. Then, the combined fine dataset is used to train

a better parsing model. Algorithm 2 illustrates this data

selection procedure.

The combined fine data are used to form a new model,

which then selects new data.
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5 Experiments

In the following section, we describe experiments con-

ducted on several datasets to investigate the performance of

our surveillance adaptation approach.

5.1 Datasets

5.1.1 Training datasets

The Fashionista [18], CCP [8], MIT [17] and PRID [69]

datasets are used in our experiment. Note that the first two

datasets are used as source data, while the last two datasets

are used as target data. Fashionista includes 685 pho-

tographs with pixel-level annotations denoted by 53 dif-

ferent clothing items and 3 additional labels. CCP includes

2098 high-resolution fashion photographs with significant

human/clothing variations reflecting a wide range of styles,

accessories, and garments. Fashion images mainly show

individuals positioned in a frontal standing pose. The MIT

contains 888 pictures of pedestrians with 65 attributes [70],

including age, gender and non-clothing labels. These

attributes have been manually reduced to 44 attributes. We

use 763 pictures during domain adaptation and 25 pictures

for parameter C tuning. The PRID is captured with two

different static surveillance camera views. It includes 1134

images of people (1034 for retraining). The PPSS dataset is

used to train and explore pedestrian profile scores as a part

of the judgment model.

5.1.2 Test datasets

For each target dataset, our measurements involve 100

images for testing. There are no datasets related to clothing

parsing in the surveillance domain. The data that are the

closest match were collected from the human parsing work,

PPSS MIT & PRID

Fig. 8 Various poses with different orientations are reflected in the PPSS, which covers poses found in the MIT and PRID datasets. Here, we

illustrate differences observed between profiles in eight orientations across the three datasets

Fig. 9 Our test samples. We

label images with items at the

pixel level, unlike labels used

for the human-parsing related

dataset
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but they are still quite different. Therefore, we manually

label these images with the same tags as those of the

fashion domain at the pixel level (shown in Fig. 9).

5.2 Confidence threshold

The parameter C controls the scale and the quality of the

retraining dataset. To tune its threshold a, we use a small

random sample of 25 MIT images as a validation set. Then,

we test the value of C from 0.1 to 0.9 by a step of 0.1, with

0.5 denoting optimal performance.

5.3 Clothing parsing accuracy

We measure the performance of labeling in terms of 3

metrics: average image accuracy, average foreground

accuracy and average IoU values. The image accuracy

measures the pixel accuracy of an entire image, while the

foreground accuracy disregards background pixels. The

average IoU measures the mean Intersection over Union

(also called the Jaccard Index) score of all garments.

Four types of measurements are applied to different

datasets in our experiments: from the Fashionista dataset to

the MIT dataset (Fa-MIT), from the Fashionista dataset to

the PRID dataset (Fa-PRID), from the CCP dataset to the

MIT dataset (CCP-MIT) and from the CCP dataset to the

PRID dataset (CCP-PRID). We also evaluate our models

with the following 4 settings: by parsing images from the

original model trained on the fashion dataset (Original), by

parsing images from the original model with given item

labels (Original þ Item), by parsing images from the

transferred model without given item labels (Transferred),

and by parsing images from the transferred model with

given item labels (Transferred þ Item). We also compare

our method to the most relevant segmentation domain

adaptation model AdaptSegNet [63], which is a state-of-

the-art method for synthetic-to-real urban scene domain

adaptation.

Table 2 compares average levels of image accuracy.

The most frequent labels found in our images are back-

ground labels. Simply predicting all regions as back-

grounds (Background) results in a reasonably strong level

of accuracy (73.3% and 68.6% for each surveillance

dataset). We also evaluate the parsing model with our test

dataset alone (train on the test (ToT)) by tenfold cross-

validation and by the AdaptSegNet model. The results of

Table 2 Clothing parsing

average image accuracy

performance

Dataset Fa-MIT Fa-PRID CCP-MIT CCP-PRID

Background 0.733 0.686 0.733 0.686

ToT [66] 0.790 0.747 0.790 0.747

AdaptSegNet [63] þ Item 0.821 0.773 0.813 0.763

Original 0.743 0.689 0.747 0.699

Original þ Item 0.798 0.754 0.796 0.750

Transferred 0.770 0.746 0.763 0.748

Transferred þ Item 0.873 0.818 0.847 0.790

The bold values indicate the best results

Table 3 Clothing parsing

average foreground accuracy

performance

Dataset Fa-MIT Fa-PRID CCP-MIT CCP-PRID

ToT [66] 0.254 0.210 0.254 0.210

AdaptSegNet [63] þ Item 0.375 0.302 0.321 0.292

Original 0.199 0.112 0.179 0.123

Original þ Item 0.328 0.244 0.294 0.241

Transferred 0.298 0.242 0.267 0.266

Transferred þ Item 0.548 0.404 0.435 0.389

The bold values indicate the best results

Table 4 Ablation study

Dataset Fa-MIT Fa-PRID CCP-MIT CCP-PRID

Without SS 0.373 0.279 0.341 0.272

Without FS [23] 0.538 0.385 0.423 0.358

Without SC 0.446 0.333 0.363 0.309

Complete 0.548 0.404 0.435 0.389

Clothing parsing average foreground accuracy for four levels of the

process. SS, FS, and SC represent surveillance data selection, fashion

data selection and stripe constraint, respectively

The bold values indicate the best results
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these evaluations are inferior to the Background results and

are used as a baseline for comparison. Inevitably, a full

parsing problem with all 44 garment possibilities is quite

challenging to address. Thus, the transferred clothing

parsing method without given item labels (garment meta-

data) is less effective than that using given item labels, but

it still performs better than the Background. The transferred

predictions show an efficient improvement relative to the

original predictions, improving the accuracy levels by

87.3%, 81.8%, 84.7% and 79.0% and drastically outper-

forming the AdaptSegNet results.

We further evaluate the performance for the foreground

in images, as Table 3 shows. The image accuracy is based

more heavily on all pixels, while the foreground accuracy

mainly focuses on the body parts of pedestrians. A fore-

ground evaluation is more challenging due to a lack of

pixels confirmed from the background, leading to lower

values of image accuracy. Nevertheless, our method

improves foreground accuracy levels significantly. From

the table, we can see that the accuracy of the transferred

results with item labels roughly increases by a factor of 1.6

compared to the original results with given item labels.

To analyse the effectiveness of our method, we conduct

ablation study with investigating the effect of removing

certain modules. As reported in Table 4, the results of the

complete process are superior to the results generated

without surveillance data selection (without SS) or fashion

data selection (without FS). The latter selection strategy is

described in our previous work. From these results, we find

that the improvement observed mainly results from the

selected surveillance data. When we remove the stripe

constraint module (without SC), performance drops

approximately 20% compared to the complete approach.

Table 5 shows the average IoU performance for the 44

garments in the same datasets. Here, we also consider the

performance of the FCN model trained on the test and the

performance of the AdaptSegNet model as our baseline.

Our method achieves approximately a 50–70% improve-

ment with respect to the ToT values of the MIT and PRID

datasets and an improvement of 25–35% relative to the

AdaptSegNet results. Figure 10 plots the IoU scores for the

major items (the 10 items most frequently found in the MIT

test set) in the original model compared to the updated

model. Though some items that cover a small area, like

Table 5 Average IoU

performance for clothing

parsing performance

Dataset Fa-MIT Fa-PRID CCP-MIT CCP-PRID

ToT [66] 0.184 0.141 0.184 0.141

AdaptSegNet [63] þ Item 0.250 0.198 0.221 0.155

Original 0.082 0.074 0.104 0.058

Original þ Item 0.235 0.189 0.195 0.111

Transferred 0.115 0.096 0.118 0.122

Transferred þ Item 0.315 0.248 0.276 0.216

The results of the transferred method substantially outperform the original results

The bold values indicate the best results
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Fig. 10 IoUs of the main items. Red bars denote the IoU accuracy of

the original model, and blue bars denote the IoU accuracy after

transfer
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Fig. 11 The parsing accuracy of the MIT dataset when size varies.

The red and blue lines indicate parsing performance with and without

given item labels, respectively
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shoes, exhibit worse performance after transferring, our

model outperforms the original for several items, especially

for major foreground items, such as T-shirts, jeans, shorts,

and pants. This result leads to a significant boost in fore-

ground accuracy levels.
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background
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Fig. 12 Transferred parsing results (right column) compared to the corresponding original results (middle column)
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Fig. 13 Failure cases, which are still superior to the original results
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In Fig. 11, we also explore the influence of target dataset

scale by adjusting the MIT surveillance samples size

gradually. We observe that the accuracy is more sensitive if

images are with given items. It shows an upward trend until

500 target images. And given the item labels, it is

impressive that even in a small target samples (only 100

images), it also obtains a considerable increase (54.8% vs.

41.2%).

5.4 Qualitative evaluation

Our work mainly focuses on the surveillance domain. Thus,

we show some clothing parsing results from the MIT and

PRID datasets. Figure 12 shows final parsing results

compared to the original results. Our method can suc-

cessfully parse clothing at a challenging resolution, illu-

mination level, and contrast ratio. It can also manage

various orientations and complex backgrounds relatively

well.

Failure cases are illustrated in Fig. 13. Results can

deteriorate under the following scenarios: (a) when several

persons appear in a single image; (b) when some items

(e.g., garments and backgrounds) share a similar appear-

ance; and (c) when illumination conditions are poor.

6 Conclusions and future work

The proposed method makes it possible to parse clothing in

a surveillance dataset lacking pixel-level labels. The core

idea of our method is as follows: to use instance-based

transfer learning methods to transfer a fashion-trained

model to a surveillance model using only weak labels. Our

experiments demonstrate that our method is effective. The

proposed algorithm is simple, and its effects are signifi-

cantly promoted. Here, we mainly focus on parsing cloth-

ing from full-body images. However, in real conditions,

pedestrians may only show parts of their bodies. In future

work, we plan to address this problem to render our method

applicable to more complex surveillance environments.
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